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We revisit an old idea that gravity can be unified with Yang-Mills theory by enlarging the gauge group

of gravity formulated as gauge theory. Our starting point is an action that describes a generally covariant

gauge theory for a group G. The Minkowski background breaks the gauge group by selecting in it a

preferred gravitational SU(2) subgroup. We expand the action around this background and find the

spectrum of linearized theory to consist of the usual gravitons plus Yang-Mills fields charged under the

centralizer of the SU(2) in G. In addition, there is a set of Higgs fields that are charged both under the

gravitational and Yang-Mills subgroups. These fields are generically massive and interact with both

gravity and the Yang-Mills sector in the standard way. The arising interaction of the Yang-Mills sector

with gravity is also standard. Parameters such as the Yang-Mills coupling constant and Higgs mass arise

from the potential function defining the theory. Both are realistic in the sense explained in the paper.
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I. INTRODUCTION

There have been numerous attempts to unify Einstein’s
theory of gravity with gauge fields describing other inter-
actions. One such unification proposal is that of Kaluza-
Klein, where the metric and gauge fields arise from a
higher-dimensional metric tensor upon compactification
of extra dimensions. This scenario has become an indis-
pensable part of string theory, which also provides another
unifying perspective by viewing gravity and Yang-Mills as
excitations of closed and open strings, respectively. For
more details on string-inspired unification schemes see a
recent exposition [1].

There have also been attempts to unify gravity with
gauge theory without introducing extra dimensions.
There is, however, a very strong no-go theorem [2] that
shows that at least one type of such unification is impos-
sible. The theorem states that the symmetry group of the S-
matrix of a consistent quantum field theory (in Minkowski
spacetime) is the product of the Poincaré and internal
gauge group. In other words, the spacetime and internal
symmetries do not mix. The only way to go around this
statement is via supersymmetric extensions of the Poincaré
group [3].

Now, since gravity can be (at least loosely) viewed as a
gauge theory for the diffeomorphism group, and the latter
contains the Poincaré group as that of rigid global trans-
formations, the Coleman-Mandula theorem [2] is some-
times interpreted as saying that no unification of gravity
and gauge theory that puts together diffeomorphisms and
gauge transformations is possible. In this discussion, how-
ever, one must be careful to distinguish between local
gauge invariances of a theory and global symmetries
whose presence or absence depends on a particular state
one works with; see [4] that emphasizes this point.

While it may be difficult or impossible to ‘‘unify’’
diffeomorphisms and gauge transformations into a single

gauge group, this is not the only possible way to approach
the unification problem. To understand how a different type
of unification might be possible, let us recall that in the so-
called first-order formalism gravity becomes a theory of
metrics as well as Lorentz group spin connections. The
‘‘internal’’ Lorentz group acts by rotating the frame and
has no effect on the metric. Thus, the physical dynamical
variable is still the metric; one simply added some gauge
variables and enlarged the gauge group, which in this
formulation is a (semi-) direct product of the diffeomor-
phism group and SOð1; 3Þ. Further, in the Hamiltonian
formulation this theory can be easily cast into one on the
Yang-Mills phase space. This is done by adding to the
action a term that vanishes on shell [5]. The phase space
is then that of pairs SU(2) connection plus the canonically
conjugate ‘‘electric’’ field. Thus, after the trick of adding
an on shell unimportant term, gravity becomes a generally
covariant theory of an SU(2) connection. The spacetime
metric (tetrad) is still a dynamical variable, but in this
formulation it receives the interpretation of the momentum
canonically conjugate to the connection.
Yang-Mills theory, on the other hand, after it is written

for a general spacetime metric, also becomes a generally
covariant theory of a connection and spacetime metric.
One could then attempt to put the two generally covariant
gauge theories together in some way that combines the
internal gauge groups, while leaving the total gauge group
to be a (semi-) direct product of diffeomorphisms and
internal symmetries. This would not be in any conflict
with the no-go theorem [2] for what is unified is not the
Poincaré and internal symmetry groups. This might not be
what can legitimately be called a unification, for the end
gauge group is not simple, but this idea does lead to some
interesting ‘‘unified’’ theories, as we hope to be able to
demonstrate in this paper.
The first proposal of this type was put forward by

Einstein and Mayer in [6] and later developed by, e.g.,
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Hoffmann [7]. A more recent version of the same proposal
appeared in [8,9], with the idea being precisely to extend
the gauge group of gravity formulated in tetrad first-order
formalism as a theory of the Lorentz connection. This
proposal was later pushed forward in [10,11]; see also
[12] for the most recent development. The key point of
this proposal is that it is a nondegenerate metric that breaks
the gauge symmetry of the unified theory down to a smaller
group consisting of SOð1; 3Þ for gravity and some internal
group for Yang-Mills fields.

A similar in spirit, but very different in the realization,
idea was proposed in [13] and further developed in [14–
16]. This approach stems from the fact that Einstein’s
general relativity (GR) can be reformulated as a theory
on the Yang-Mills phase space. At the time of writing [13]
it was achieved in Ashtekar’s Hamiltonian formulation of
GR [17] that interprets gravity as a special generally co-
variant (complexified) SU(2) gauge theory. The fact that
gravity in this formulation becomes a theory of connection
suggests that a gauge group larger than SU(2) can be
considered. This is what was attempted in [13–16], with
the main result of [16] being that Yang-Mills theory arises
in an expansion of the theory around the de Sitter back-
ground. Another relevant reference is [18]; this gave a
formulation of a unified Einstein-Maxwell theory based
on a generalization of Plebański formalism [19].

The idea to put together the internal gauge groups of
gravity and gauge theory is an interesting one. However, its
particular realizations available in the literature are not
without problems. Thus, the approach reviewed and further
developed in [12] does a very good job of describing the
fermionic content of the theory. Bosons, on the other hand,
are described less convincingly in that many new propa-
gating degrees of freedom (DOF) are introduced. The other
approach [16] is also not very convincing since it works at
the phase space level, and it is generally very difficult to
approach a theory if no action principle is prescribed.
Another aspect of the particular realization given in [16]
is that it naturally describes a complexified GR put together
with complexified Yang-Mills. No natural reality condi-
tions that would convert this into a physical theory were
given.

The unification by enlarging the internal gauge group
proposal was recently revisited in [20], where the new
action principle [21] for a class of modified gravity theories
[22], extended to a larger gauge group, was used. This
work also avoided the reality conditions problem by ex-
tending the gauge group of an explicitly real formulation of
gravity that works with the Lorentz, not with the com-
plexified rotation group. Specifically, it was suggested in
[20] that the action of the type proposed in [21] considered
for a general Lie groupG describes gravity in its SO(4) part
plus Yang-Mills fields in the remaining quotient G=SOð4Þ.
As in [16], the Yang-Mills coupling constant is related in
[20] to the cosmological constant. As in the approach of

[8,9], in [20] it is a nondegenerate metric that breaks the
symmetry down to a smaller gauge group. The approach of
[20] is also similar to that of [8,9] in that many new bosonic
degrees of freedom are introduced. Thus, it was shown in
[23] that the BF-type action of [21] for G ¼ SOð4Þ no
longer describes pure gravity theory but now describes
six new DOF.
In this paper we take the described unification idea one

step further. Our approach is similar in spirit to [20] in that
we start from an action principle of the type first proposed
in [21]. However, unlike in [20], we interpret only a
(complexified) SU(2) subgroup of the gauge group G as
that corresponding to gravity. The part of the gauge group
that commutes with this gravitational SU(2) is then seen to
describe Yang-Mills fields, and the part that does not
commute with SU(2) describes charged scalar, i.e. Higgs,
fields. We note that the suggestion that in unifications of
this type the ‘‘off-diagonal’’ part of the Lie algebra that
corresponds to Higgs fields is contained already in [20].
Our approach is also similar to the original proposal [16]

that enlarged the SU(2) gravitational gauge group.
However, in contrast to [16] that worked at the phase space
level, our starting point is an action principle that makes a
much more systematic analysis possible. Also the details of
our proposal differ significantly from that of [16] in that a
semirealistic (more on this below) unification is achieved
without the need for a cosmological constant. Thus, the
Yang-Mills (YM) coupling constant in our scheme is re-
lated not to the cosmological constant, which we set to
zero, but to a certain other parameter of the theory. These
features of our proposal also make it different from that of
[20]. We also note that some details of our proposal are
quite similar to that of [18], e.g., the fact that the reality
conditions play an important role; our Lagrangian is, how-
ever, different from the one studied in this reference.
More specifically, we start from a generally covariant

gauge theory for a (complex) semisimple Lie group G,
with certain reality conditions later imposed to select real
physical configurations. A particularly simple solution of
the theory describes Minkowski spacetime. This solution
breaksG down to a (complexified) SU(2) times the central-
izer of SU(2) in G. The spectrum of linearized theory
around the Minkowski background is then shown to consist
of the usual gravitons with their two propagating DOF,
gauge bosons charged under the centralizer of SU(2) in G,
and a set of scalar Higgs fields. The Higgs fields are in
general massive, with the mass being related to a certain
parameter of the potential defining the theory. After the
reality conditions are imposed, all sectors of the theory
have a positive-definite Hamiltonian. We also work out
interactions to cubic order and show that all interactions
are precisely as expected. That is, all nongravitational
fields interact with gravity via their stress-energy tensor,
and the interactions in the nongravitational sector are also
standard and are as expected for Higgs fields. Thus, our
unification scheme passes the zeroth order test of being not
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in any obvious contradiction with observations. However,
to obtain a truly realistic unification model, many problems
have to be solved. In particular, fermionic DOF are not
considered in this paper at all. Thus, our results provide
only one of the first steps along this potentially interesting
research direction. We return to open questions of our
approach in the discussion section.

In this paper we have illustrated the general G case by
considering the simplest nontrivial example ofG ¼ SUð3Þ.
This example is rather generic, and the same technology
that we develop for G ¼ SUð3Þ can be used for any Lie
group. We could have presented a general semisimple case
treatment phrased in terms of the root basis in the Lie
algebra. However, at this stage of the development of the
theory it is not clear whether there is any added value in
doing things in full generality. We thus decided to keep our
discussion as simple as possible and treat one example that,
if necessary, is easily extendible to the general situation.

Another general remark on this paper is as follows. As
the reader will undoubtedly notice, a sizable part of our
paper is occupied by the Hamiltonian analysis of various
sectors, or of the full theory. We also always give the
Lagrangian treatment in which things are much more
transparent. Thus, it might at first sight seem that the
Hamiltonian formulation only clutters the exposition.
We, however, believe that some aspects of the theory are
much clearer precisely in the Hamiltonian formulation. For
instance, our treatment of the reality conditions heavily
uses the Hamiltonian analysis, and it would be very hard to
arrive at the correct conditions without it. This is our main
reason for carrying out such an analysis in all cases that are
discussed.

Our final remark is concerning our strategy of dealing
with the reality conditions. As we have already mentioned,
we start with a complexified theory, and only at the end are
the reality conditions imposed. In this paper appropriate
reality conditions are deduced and dealt with at the line-
arized level, i.e. are imposed on the perturbation fields
only. This is sufficient for both the classical linearized
theory and the quantum theory if the latter is considered
perturbatively. It would be very interesting to formulate the
reality conditions nonperturbatively as well [at least clas-
sically such a formulation exists for the SU(2) gravitational
sector], but we do not consider this problem in the present
paper.

The organization of the paper is as follows. In Sec. II we
define the class of generally covariant gauge theories that is
the subject of this paper. Section III performs a Legendre
transformation that introduces the two-form field as the
main dynamical variable and rewrites the action of our
theory in a form most useful for practical computations. In
Sec. IV we sketch the Hamiltonian analysis and count the
number of propagating DOF. Section V contains a general
discussion on the problem of linearization. In Sec. VI we
warm up by considering the case of pure gravity corre-

sponding to G ¼ SUð2Þ. The Minkowski space back-
ground that we expand about is described here.
Section VII deals with an example of a nontrivial group
for which we take G ¼ SUð3Þ. It is here that we obtain a
Lagrangian describing the YM and Higgs sectors of our
model. In Sec. VIII we deduce interactions between vari-
ous sectors of our model and show that they are the
standard interactions expected from such fields. In
Sec. IX we consider a more general set of defining poten-
tials and show how Higgs masses are generated. We con-
clude with a summary and discussion.

II. ACLASS OF GENERALLY COVARIANTGAUGE
THEORIES

We start by giving the most compact formulation of our
class of theories. This is not the formulation that is most
suited for practical computations, but it is conceptually the
simplest.
According to our proposal, a theory that unifies gravity

with gauge fields is simply the most general generally
covariant group G gauge theory. Thus, consider a connec-
tion AI in the principal G bundle over the spacetime
manifold M. As is usual in physics literature, the bundle
is assumed to be trivial, so the connection can be viewed as
a Lie-algebra-valued one-form onM. The group G that we
consider is a general semisimple complex Lie group.
Reality conditions will later need to be imposed to select
a sector of the theory that corresponds to a particular metric
signature. Note, however, that at this point there is no
metric; the only dynamical variable of our theory is the
connection AI.
As we have said, the idea is to consider the most general

gauge and diffeomorphism invariant action that can be
constructed from AI. The following simple construction,
generalizing verbatim considerations [24] for the case of
pure gravity, provides a Lagrangian with the required
properties. Being gauge invariant, it must involve only
the curvature two-form FI ¼ dAI þ ð1=2Þ½A; A�I, where
½�; ��I is the Lie bracket and the wedge product of forms
is assumed. Consider the four-form FI ^ FJ. This is a four-
form valued in the space of symmetric bilinear forms in g,
the Lie algebra of G. Choosing an arbitrary volume four-
form (vol) we can write FI ^ FJ ¼ ðvolÞ�IJ, where now
�IJ is a symmetric n� nmatrix, where n ¼ dimðgÞ. Since
ðvolÞ is defined only modulo rescalings ðvolÞ ! �ðvolÞ, so
is the matrix �IJ that under such rescalings transforms as
�IJ ! ð1=�Þ�IJ. Let us now introduce a function fðXÞ of
symmetric n� n matrices XIJ with the following proper-
ties. First, the function has to be gauge invariant:
fðadgXÞ ¼ fðXÞ, where adg is the adjoint action of the

gauge group on the space of symmetric bilinear forms on
the Lie algebra. Second, the function must be holomorphic
(we work with complex-valued quantities). Third, and
most important, the function must be homogeneous of
degree one fð�XÞ ¼ �fðXÞ. This property allows it to be
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applied to the four-form FI ^ FJ, with the result being
again a four-form. Indeed, we have fðFI ^ FJÞ ¼
ðvolÞfð�IJÞ, and it is easy to see that due to the homoge-
neity of fð�Þ, the resulting four-form does not depend on
which particular volume form ðvolÞ is chosen. Thus, the
quantity fðFI ^ FJÞ is an invariantly defined four-form,
and it can be integrated over the spacetime manifold to
produce an action:

S½A� ¼
Z
M
fðFI ^ FJÞ: (1)

As we have already said, the action is complex, so later
certain reality conditions will be imposed.

The presented formulation (1) is conceptually nice, but it
is very difficult to deal with in practice. One of the main
reasons for this is that there is no natural background
around which the theory can be expanded to produce a
physically meaningful perturbation theory. This can be
seen as follows. The first variation of the action (1) is given
by

�S ¼
Z @f

@FI ^DA�A
I; (2)

where the derivative of fð�Þ with respect to FI can be
shown to make sense and is a certain g-valued two-form.
The second variation is given by

�2S ¼
Z 1

2

@f

@FI ^ ½�A; �A�I þ @2f

@FI@FJ DA�A
I ^DA�A

J;

(3)

where the second derivative of fð�Þ is a zero-form. Now, the
most natural ‘‘vacuum’’ of the theory seems to be

FI ¼ 0;
@f

@FI ¼ 0;
@2f

@FI@FJ � 0: (4)

Indeed, this would indeed be a vacuum of the theory in the
sense that the first derivative of the ‘‘potential’’ function
vanishes, which then automatically satisfies the field equa-
tions DAð@f=@FIÞ ¼ 0, and only the second derivative is
nontrivial. From (3) we see that in this case the first
‘‘mass’’ term is absent, and there is only the ‘‘kinetic’’
term for the connection. Thus, it seems like the perfect
vacuum to expand about. However, an immediate problem
with this vacuum is that in the absence of any background
structure the second derivative in (4) can be proportional
only to the Killing form gIJ, which then gives a degenerate
kinetic term. So, there does not seem to be any way to build
a meaningful perturbation theory around (4).

As an aside remark, we mention that the fact that the
kinetic form in (3) is necessarily degenerate is very im-
portant for the possibility to describe gravity as a gauge
theory. Indeed, as work [25] showed, general relativity can
be put in the form (1) for G ¼ SUð2Þ and a very special
choice of the function fð�Þ. At the same time, it is known to
be impossible to describe gravity that is mediated by a spin

two particle in terms of a gauge field that corresponds to a
spin one particle. The resolution of this seeming paradox
lies in the fact that the pure connection formulation (1) of
gravity does not allow for a well-defined perturbation
theory around the Minkowski background, and so the
particles that it describes are not spin one as would be
the case in any other gauge theory. Below we shall see how
the usual spin two graviton arises via a certain ‘‘duality’’
trick.
A conventional perturbative treatment for theory (1) is

possible, but requires a rather strange, at least from the
pure connection point of view, choice of vacuum. Thus, as
we shall see in details in the following sections, the usual
perturbative expansion around a flat metric corresponds in
the pure connection language to an expansion around the
following point:

FI ¼ 0;
@f

@FI � 0: (5)

This is a very strange point to expand the theory about, for
one seems to be sitting at a point that is not a minimum of
the potential. However, the nonzero right-hand side of the
first derivative of the potential receives the interpretation of
essentially the Minkowski metric, and a usual expansion
then results. It might seem that this choice introduces a
mass term for the connection, but this is not so. In fact, the
second kinetic term is still a total derivative and plays no
role, and there is only the mass term. However, as we shall
see, the connection is no longer a natural variable in this
case, and one works with a certain new two-form field BI

via which the connection is expressed as AI � @BI, so what
appears as a mass term is, in fact, the usual kinetic one but
for the two-form field.
This discussion motivates introduction of a new set of

dynamical fields. These are originally introduced via the
standard ‘‘Legendre transform’’ trick so that integrating
them out one gets an original action (1). However, one can
then also integrate out the original connection field and
obtain a theory for the new fields only. This point of view
turns out to be very profitable, and we develop it in the next
section.

III. TWO-FORM FIELD FORMULATION

There are at least two different ways to arrive at the new
formulation. One of them is via a Legendre transform from
(1), the other one by thinking about generalizations of BF
theory.

A. Legendre transform

As we have already explained, we introduce a new set of
fields, given by a g-valued two-form BI. The action that we
would like to consider is then of BF-type and is given by

S½A; B� ¼
Z
M
gIJB

I ^ FJ � 1

2
VðBI ^ BJÞ: (6)
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Here Vð�Þ is again a G-invariant, holomorphic, and homo-
geneous order one function of symmetric n� n matrices,
and as such it can be applied to the four-form BI ^ BJ, with
the result again being a four-form. The quantity gIJ is the
Killing-Cartan form on g.

Integrating out BI by solving its field equation,

FI ¼ 1

2

@V

@BI ; (7)

which is algebraic in BI, we get back the formulation (1)
with fð�Þ being an appropriate Legendre transform of Vð�Þ.
However, the formulation (6) is much more powerful in
that we can now choose a constant BI background and
obtain a well-defined perturbation theory. We will later see
how both gravity and Yang-Mills theory appear in such a
perturbative expansion.

While the theories (1) and (6) are obviously classically
equivalent, it may appear that this equivalence does not
extend to the quantum theory. Indeed, with the action (6)
depending on BI in an essentially nonlinear way, the result
of integration out of the two-form field in quantum theory
is much more involved than in the classical one, where one
simply solves for BI from its field equation and substitutes
the result back into the action. In contrast, in quantum
theory the resulting ‘‘partition function’’ as a function of
FI contains both the classical terms, which, if computation
is carried out via perturbation theory appear as tree-level
diagrams, as well as additional terms coming from loop
diagrams. Thus, it appears that what (6) produces once BI

is integrated out is much more involved than the theory (1).
However, this conclusion misses an important point. It
turns out that in the theory (6) there are second-class
constraints. For this reason, the integration measure in
the space of BI fields is nontrivial and needs to be corrected
by the determinant of the matrix of commutators of con-
straints. It can be shown that the correcting determinant is
just that of the matrix @2V=@BI@BJ of second derivatives
of the potential. The effect of this determinant can be taken
into account by introducing ghost variables. One can then
see that, once the ghost loops are allowed, all loop dia-
grams cancel, and the result of path integration over BI

with the correct measure is exactly given by (the exponent
of) (1). This shows that the theories (6) and (1) are, in fact,
equivalent as quantum theories as well, once it is taken into
account that the integration measure over BI is nontrivial.

An alternative viewpoint on the ‘‘Legendre transform’’
described is as follows. As we shall see below, the new
two-form field that we have introduced is essentially the
momentum canonically conjugate to the connection AI.
Thus, a meaningful analogy for the relation between (1)
and (6) is the relation between Lagrangian and Hamil-
tonian formulation of mechanics. The former one uses
only position variables as dynamical variables, but leads
to second-derivative equations of motion. The latter con-
tains an independent variable—momentum—and leads to
first-order equations of motion. Thus, loosely speaking, the

action (6) can be referred to as (1) written in the ‘‘Hamil-
tonian form’’ in which the momentum variable becomes an
independent dynamical field.
Before we proceed with an analysis of properties of the

theory (6), we would like to present an alternative deriva-
tion of this action.

B. Generalization of BF theory

An alternative way to arrive at (6) is to consider possible
ways to generalize the topological BF theory. For the case
of G ¼ SUð2Þ this was done in [26], and here we general-
ize this analysis to a semisimple Lie group. Following this
reference we begin with the action

S½A; B� ¼
Z

gIJB
I ^ FJ � 1

2
�IJB

I ^ BJ; (8)

where BI is a two-form valued in g, FI is the curvature
FI ¼ dAI þ 1

2 f
I
JKA

J ^ AK of AI, fIJK are the structure

constants, and �IJ is a function (zero-form) valued in the
symmetric product of two copies of g. At this stage this
quantity is undetermined. But we should say now that it is
not to be thought of as an independent field to be varied
with respect to, for it will later be fixed by Bianchi iden-
tities. Note that only the symmetric part of �IJ enters the
action, and this is why it is assumed symmetric from the
beginning. Our conventions are that we raise and lower
indices with the Killing-Cartan metric gIJ and its inverse
gIJ. We also note that for a semisimple Lie algebra we can
always find a basis in which the metric is diagonal, i.e.
gIJ ¼ �IJ, where �IJ is the Kronecker delta.
Varying this action with respect to the connection AL

and the field BL we get, respectively,

DAB
I � dBI þ fIJKA

J ^ BK ¼ 0; (9)

FI ¼ �I
JB

J: (10)

We see that the idea of the above action ansatz is to
generalize BF theory in such a way that Eq. (9) relating
B and A is unchanged, while we now allow for a nonzero
curvature. As we have already said, we do not consider a
variation with respect to �IJ because we will later show
that the Bianchi identities fix this quantity in terms of
certain components of the two-form field BI.
Let us now take the covariant exterior derivative of (10)

and use (9) together with the Bianchi identity DAF
I ¼ 0.

We obtain

DA�
I
J ^ BJ ¼ 0: (11)

Now, the covariant exterior derivative of DAB
I is

DAðDAB
IÞ ¼ fIJKdA

J ^ BK þ fIJKf
K
LMA

J ^ AL ^ BM:

(12)

Using the Jacobi identity fNIJf
L
NK þ fNJKf

L
NI þ fNKIf

L
NJ ¼ 0,

the equation above can be rewritten as
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DAðDAB
IÞ ¼ fIJLF

J ^ BL; (13)

and using Eqs. (9) and (10) we get

fIJL�
J
KB

K ^ BL ¼ 0: (14)

Let us now compute the wedge product between (11)
and the one-form ��B

I, which has components ð��BIÞ� ¼
��BI

��, where � is an arbitrary vector field. We get

D�IJ ^ ��B
ðI ^ BJÞ ¼ 0: (15)

But using ��B
ðI ^ BJÞ ¼ 1

2 ��ðBI ^ BJÞ, we can rewrite this

as

D�IJ ^ ��ðBI ^ BJÞ ¼ 0: (16)

Let us now define the internal metric hIJ by means of the
following relation:

BI ^ BJ ¼ hIJðvolÞ; (17)

where (vol) is an arbitrary volume four-form. We can then
rewrite (16) as

hIJD�IJ ^ ��ðvolÞ ¼ 0: (18)

Using the definition of hIJ, we can also rewrite (14) as

fIJK�
J
Lh

LK ¼ 0: (19)

Now, computing hIJD�IJ,

hILD�IL ¼ hILðd�IL þ 2fIJKA
J�KLÞ; (20)

we can see that the second term in the right-hand side
vanishes because of (19) and the condition that the Lie
algebra is semisimple. The latter is used because for a
semisimple Lie algebra it is possible to define a Killing-
Cartan metric, in our case �IJ, with respect to which the
object fIJK ¼ �ILf

L
JK is completely antisymmetric. Our

final result is

hIJ@��
IJ�� ¼ 0; (21)

which implies

hIJ@��
IJ ¼ 0; (22)

since � is an arbitrary vector.
The above equation implies that the quantities hIJ and

�IJ are not independent. Let us define the ‘‘potential
function’’ V :¼ hIJ�IJ. Then,

dV ¼ �IJdh
IJ þ hIJd�

IJ ¼ �IJdh
IJ; (23)

where we have used (22). This means the following: (a) the
potential V is only a function of hIJ, i.e., V ¼ VðhIJÞ;
(b) the quantities �IJ are given,

�IJ ¼ @V

@hIJ
; (24)

and (c) the potential V is a homogeneous function of order
one in hIJ since

V ¼ hIJ
@V

@hIJ
: (25)

Thus, using the above definition of hIJ, and the fact that
Vð�Þ is homogeneous, we can rewrite the action (8) as

S ¼
Z

gIJB
I ^ FJ � 1

2
VðBI ^ BJÞ; (26)

which is exactly the action (6) we have obtained in the
previous subsection.

C. parametrizations of the potential

As defined so far, the theory is specified by the potential
function Vð�Þ. In the action (6) it is applied to a four-form,
which makes things rather inconvenient in practice, since
we do not have much experience with functions of forms.
Thus, it is desirable to rewrite it as a usual function of a
matrix. We have already discussed how to do it by intro-
ducing an auxiliary volume form, but it would be nice if we
could avoid any arbitrariness such as that of rescalings of
(vol). A possible way to do this is as follows. With
our choice of conventions dx� ^ dx� ^ dx� ^ dx� ¼
�~	����d4x, and we have

BI ^ BJ ¼ 1
4B

I
��B

J
��dx

� ^ dx� ^ dx� ^ dx�

¼ �1
4
~	����BI

��B
J
��d

4x; (27)

where ~	���� is a density weight one object that does not
require a metric for its definition. Thus, if we now define a
densitized ‘‘internal metric’’

~h IJ ¼ 1
4B

I
��B

J
��~	

����; (28)

we can write the action as

S½B; A� ¼
Z

gIJB
I ^ FJ þ 1

2
Vð~hÞd4x: (29)

Thus, the potential function is now applied to an n� n
matrix (densitized), and its derivatives can be computed via
the usual partial differentiation. For example, the first
variation of this action can be seen to be given by

�S ¼
Z

�BI ^
�
gIJF

J � @Vð~hÞ
@~hIJ

BJ

�
� gIJDAB

I ^ �AJ:

(30)

Indeed, the variation of the last, potential term is given by

1

2

Z @Vð~hÞ
@~hIJ

1

2
�BI

��B
J
��~	

����d4x ¼ �
Z @Vð~hÞ

@~hIJ
�BI ^ BJ;

(31)

where the matrix of first derivatives ð@Vð~hÞ=@~hIJÞ is an
object of density weight zero. Then, the field equations of
our theory can be written as

FI ¼ @Vð~hÞ
@~hIJ

BJ; (32)
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DBI � dBI þ fIJKA
J ^ BK ¼ 0: (33)

In the literature on this class of theories a different
parametrization of the potential is sometimes used; see
e.g. the original paper [21], and also the unification paper
[20]. Thus, to avoid having to take a function of forms, and/
or having to work with a homogeneous function, one can
parametrize the potential so that an ordinary function of
one less variable arises. This can be done via a Legendre
transform trick. Thus, we introduce a new variable�IJ that
is required to be tracefree gIJ�

IJ ¼ 0. The idea is that the
matrix �IJ is the trace-free part of the matrix of first

derivatives �IJ ¼ ð@V=@~hIJÞ. In other words, let us write

�IJ ¼ �IJ ��

n
gIJ; (34)

where�IJ is traceless. With�IJ being a function of ~hIJ, so
is the trace part �. However, we can also declare � to be a
function of �IJ, make �IJ an independent variable, and
write the action in the form

S½B; A;�� ¼
Z

gIJB
I ^ FJ

� 1

2

�
�IJ ��ð�Þ

n
gIJ

�
BI ^ BJ: (35)

Varying the action with respect to�IJ one gets an equation
for this matrix, which, after being solved and substituted
into the action, gives back (29) with Vð�Þ being an appro-
priate Legendre transform of�ð�Þ. In the formulation (35)
the function �ð�Þ is an arbitrary function of a trace-free
matrix�IJ, so there is no complication of having to require
Vð�Þ to be homogeneous. This formulation was used in the
first papers on this class of theories, but it was later realized
that the formulation that works solely with the two-form
field BI is more convenient. Thus, we do not use (35) in this
paper.

IV. HAMILTONIAN ANALYSIS

To exhibit the physical content of the above theory, it is
useful to perform the canonical analysis. After the 3þ 1
decomposition the action reads, up to an unimportant over-
all numerical factor,

S ¼
Z

dt
Z
�
d3xð ~PaI _AI

a �HÞ; (36)

where

~P aI :¼ ~	abcBI
bc; (37)

and the Hamiltonian H is

� ~H ¼ AI
0Da

~PaI þ BI
0a~	

abcFI
bc � VðBðI

0a
~PaJÞÞ: (38)

If we dealt with the pure BF theory, the last potential term
would be absent and all the quantities BI

0a would be

Lagrange multipliers. However, now the Lagrangian is

not linear in BI
0a, and, as we shall see, all but four of these

quantities are no longer Lagrange multipliers and should
be solved for. The equations one obtains by varying the
Lagrangian with respect to BI

0a are

~	 abcFI
bc ¼ VIJ

ð1Þ ~P
aJ; (39)

where VIJ
ð1Þ denotes the matrix of first partial derivatives of

the function Vð�Þ with respect to its arguments:

VIJ
ð1Þ :¼

@Vð~hÞ
@~hIJ

: (40)

Equation (39) can be solved in quite a generality by
finding a convenient basis in the Lie algebra. Thus, con-
sider the momenta ~PaI. There are at least n� 3 vectorsNI

�,
� ¼ 1; . . . ; n� 3, that are orthogonal to the momenta:

~P aINI
� ¼ 0; 8a; �: (41)

These vectors can be chosen [uniquely up to SOðn� 3Þ
rotations] by requiring

NI
�N

I

 ¼ ��
: (42)

We can then use the quantities ~PaI, a ¼ 1, 2, 3, NI
�, � ¼

1; . . . ; n� 3, as a basis in the Lie algebra.
We can now decompose the quantity BI

0a as

BI
0a ¼ ~PbIB

͠ ab þ NI
�B

�
a ; (43)

where B
͠ ab and B�

a are components of BI
0a in this basis.

There are in total 3n components of BI
0a, and they are

represented here as nine quantities B
͠ ab as well as 3ðn� 3Þ

quantities B�
a . The argument of the function Vð�Þ is now

given by

BðI
0a
~PaJÞ ¼ ~PbðI ~PaJÞB

͠ ab þ NðI
�B�

a
~PaJÞ: (44)

It is clear that this depends only on the symmetric part B
͠ ab

of the components B
͠ ab. Thus, the antisymmetric part of

this 3� 3 matrix cannot be determined from Eq. (39), and
thus Na in B

͠ ½ab� :¼ ð1=2Þ	abcNc remain Lagrange multi-

pliers. It is also clear that due to the homogeneity of Vð�Þ
one more component of BI

0a cannot be solved for. This can

be chosen, for example, to be the trace part BI
0a
~PaI, which

will then play the role of the lapse function. All other 6þ
3ðn� 3Þ � 1 components of BI

0a can be solved for a ge-

neric function Vð�Þ, i.e. under the condition that the matrix
of second derivatives of Vð�Þ is nondegenerate. We are not
going to demonstrate this in full generality, but will verify
it in the linearized theory below.
After the quantities BI

0a are solved for, we substitute

them into (38) and obtain the following Hamiltonian:

� ~H ¼ AI
0Da

~PaI þ Na ~PbIFI
ab þ ~N�ðF; PÞ; (45)

where ~N is the lapse function and�ðF;PÞ is an appropriate
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Legendre transform of Vð�Þ that now becomes a function of
the curvature FI

ab and momentum ~PaI. Thus, there are n
Gauss as well as four diffeomorphism constraints in the
theory. It should be possible to check by an explicit com-
putation that they are first class, as was done, for example,
for the case of G ¼ SUð2Þ in [27], but we shall not attempt
this here, postponing such an analysis till the linearized
case considerations. The above arguments allow a simple
count of the degrees of freedom described by the theory:
we have 3n configurational degrees of freedom minus n
Gauss constraints minus 4 diffeomorphisms, thus leading
to 2n� 4 DOF. Thus, when G ¼ K � SUð2Þ, the above
count of DOF gives the right number for a gravity plus K
Yang-Mills theory. For a general G one might suspect that
the centralizer of the gravitational SU(2) describes Yang-
Mills, while another part of the Lie algebra corresponds to
some new kind of fields. Below wewill unravel their nature
by considering the linearized theory. We also note that the
above count of degrees of freedom agrees with the one
presented in [23] for the caseG ¼ SOð4Þ. Thus, it was seen
there that the theory describes in total 2 � 6� 4 ¼ 8 DOF,
which were interpreted as those corresponding to two
graviton polarizations plus six new DOF.

V. THE LINEARIZED THEORY: GENERAL
CONSIDERATIONS

As we have seen in the previous section, the mechanism
that selects the gravitational SU(2) in G is that the momen-
tum variable ~PaI provides a map from the (co-) tangent
space to the spatial slice into g. This selects a three-
dimensional subspace in g that plays the role of the gravi-
tational gauge group. Below we are going to see this
mechanism at play at the level of the Lagrangian formula-
tion by studying the linearization of the action (6). In this
section it will be convenient to introduce a certain numeri-
cal factor in front of this action so that the normalization of
the graviton kinetic term in the case of gravity will come
out right. Thus, we shall from now on consider the follow-
ing action:

S½A; B� ¼ 4i
Z
M
gIJB

I ^ FJ � 1

2
VðBI ^ BJÞ; (46)

where i ¼ ffiffiffiffiffiffiffi�1
p

.

A. Kinetic term

In this section we present some general considerations
that apply to any background. We specialize to the
Minkowski spacetime background in the next section.
Let us call the first term in (46) SBF and the second
potential term SBB. Then, the second variation of SBF is
given by

�2SBF ¼ 4i
Z

2�BI ^DA�A
I þ BI ^ ½�A; �A�I; (47)

and the action linearized around B0, A0 is obtained by
evaluating this on B0, A0.
As we have already mentioned, we are to view our

theory as that of the two-form field BI, with the connection
AI to be eliminated (whenever possible; see below) by
solving its field equations. Thus, let us assume that we
are given a background two-form BI

0. The linearized con-

nection is then to be determined from the linearized Eq. (9)
that reads:

D0�B
I þ ½�A; B0�I ¼ 0; (48)

where D0 is the covariant derivative with respect to the
background connection AI

0. Now the background two-form

BI
0 is a map from the six-dimensional space of bivectors to

g, and thus selects in g at most a six-dimensional preferred
subspace. Let us denote this subspace by k. This subspace
may or may not be closed under Lie brackets, but for
simplicity, in this paper we shall assume that our back-
ground BI

0 is such that k is a Lie subalgebra (below we shall

make an even stronger assumption about k). It is then clear
that the part of �AI that lies in the centralizer of k in g drops
from Eq. (48) and cannot be solved for. As we shall later
see, this will be the part of the group that is to describe
Yang-Mills fields. The other part of �AI can in general be
found. For this part of the connection both terms in (47) are
of the same form due to (48), and the linearized action can
be written compactly as

�2SBF ¼ 4i
Z

�BI ^D0�A
I; (49)

where �AI has to be solved for from (48). On the other
hand, for the subgroup of g that centralizes k the last term in
(47) is absent, and we have

�2SBF ¼ 8i
Z

�BI ^D0�A
I: (50)

Thus, our analysis of the kinetic term is going to be differ-
ent for different parts of the Lie algebra.

B. Potential term

In this subsection we compute the second variation of
the potential term SBB and discuss how it can be evaluated
on a given background. We have

�2SBB ¼ 4i
Z

2
@2Vð~hÞ

@~hKL@~hIJ
ðB0�BÞIJðB0�BÞKL

þ @Vð~hÞ
@~hIJ

ð�B�BÞIJ; (51)

where the integration measure d4x is implied, and we have
introduced notations

ðB0�BÞIJ ¼ 1
4
~	����BðI

0���B
JÞ
��;

ð�B�BÞIJ ¼ 1
4
~	�����BI

���B
J
��;

(52)
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where the matrix of second derivatives is of density weight
minus one.

Let us now discuss how the derivatives of the potential
can be computed. In general, with the potential function

Vð~hÞ being the homogeneous order one function of an n�
n matrix, it can be reduced to a function of ratios of its
invariants. A subset of invariants is obtained by consider-

ing traces of powers of ~hIJ. However, in general these are
not all invariants, and other invariants will be introduced
and discussed below in section IX. But for now, to simplify
the discussion, let us consider a special class of potentials
that depend only on the invariants obtained as the traces of

powers of ~hIJ. Many aspects of our theory can be seen
already for this special choice. Thus, consider the potential
of the form

V ¼ Tr~h

n
f

�
Tr~h2

ðTr~hÞ2 ; . . . ;
Tr~hn

ðTr~hÞn
�
; (53)

where f is now an arbitrary function of its n� 1 argu-

ments, Tr~h ¼ gIJ ~h
IJ, and

Tr ~hp ¼ ~hM1
M2

~hM2
M3

� � � ~hMp
M1

; (54)

for p � 2. In view of the fact that the rank of ~hIJ is at most
six, not all the invariants are independent, so we could
consider only 5 first arguments of fð�Þ. Note that fð�Þ here
is distinct from the function used in the action (1) in the
pure connection formulation of our theory: it is now an
arbitrary function of its arguments, while this symbol in (1)
stands for a homogeneous order one function.

The parametrization given allows derivatives to be com-
puted. Thus, the first derivative of the potential function

with respect to ~hIJ is

@Vð~hÞ
@~hIJ

¼ gIJ
n

fþ Tr~h

n

@f

@~hIJ
; (55)

with ð@f=@~hIJÞ given by

@f

@~hIJ
¼ Xn

p¼2

f0p
@

@~hIJ

�
Tr~hp

ðTr~hÞp
�

¼ Xn
p¼2

pf0p
� ~hp�1

IJ

ðTr~hÞp �
Tr~hp

ðTr~hÞpþ1
gIJ

�
; (56)

where f0p is the derivative of f with respect to its argument

ðTr~hp=ðTr~hÞpÞ and ~hpIJ is

~h
p
IJ ¼ ~hIM1

~hM1
M2

� � � ~hMp�1
J: (57)

The second derivative of Vð~hÞ is given by

@2Vð~hÞ
@~hKL@~hIJ

¼ gIJ
n

@f

@~hKL
þ gKL

n

@f

@~hIJ
þ Tr~h

n

@2f

@~hKL@~hIJ
;

(58)

with ð@2f=@~hKL@~hIJÞ given by

@2f

@~hKL@~hIJ
¼ Xn

p¼2

Xn
q¼2

f00pq
@

@~hIJ

�
Tr~hp

ðTr~hÞp
�

@

@~hKL

�
Tr~hq

ðTr~hÞq
�

þ Xn
p¼2

f0p
@2

@~hKL@~hIJ

�
Tr~hp

ðTr~hÞp
�
; (59)

where f00pq stands for the derivative of f0p with respect to its

q argument and

@2

@~hKL@~hIJ

�
Tr~hp

ðTr~hÞp
�
¼ p

ðTr~hÞp
@~hp�1

IJ

@~hKL
� p2 ~hp�1

IJ

ðTr~hÞpþ1
gKL

� p2 ~hp�1
KL

ðTr~hÞpþ1
gIJ

þ pðpþ 1ÞTr~hp
ðTr~hÞpþ2

gIJgKL; (60)

with

@~hp�1
IJ

@~hKL
¼ gIðK ~hLÞM1

� � � ~hMp�3
J þ ~hIðK ~hLÞM1

� � � ~hMp�4
J

þ � � � þ ~hIM1
� � � ~hMp�3 ðKgLÞJ: (61)

With the above formulas for the first and second derivatives
of the potential, it is relatively easy to find the linearized
action for any semisimple Lie group.

VI. THE G ¼ SUð2Þ CASE: GRAVITY

As we have already mentioned, the case G ¼ SUð2Þ
describes (complexified) gravity theory. A particular
choice of the potential function (see below) gives general
relativity, while a general potential corresponds to a family
of deformations of GR. In this section, as a warm-up to the
generalG case, we shall study the corresponding linearized
theory. Such an analysis has already appeared in [28].
However, our method and goals here differ significantly
from that reference.

A. The metric

To understand how the G ¼ SUð2Þ case can describe
gravity, we need to see how the spacetime metric described
by the theory is encoded. The answer to this is very simple:
there is a unique (conformal) metric that makes the triple
Bi, where i is the suð2Þ index, into a set of self-dual two-
forms. This is the so-called Urbantke metric [29]ffiffiffiffiffiffiffi�g

p
g�� � 	ijkBi

��B
j
�
B

k
��~	

�
�� (62)

that is defined modulo an overall factor. We remind the
reader that at this stage all our fields are complex, and later
reality conditions will be imposed to select physical real
Lorentzian signature metrics.
Alternatively, given a metric g�� one can easily con-

struct a ‘‘canonical’’ triple of self-dual two-forms that
encode all information about g��. This proceeds via in-
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troducing tetrad one-forms �I, with I ¼ 0, 1, 2, 3 here. One
then constructs the two-forms�IJ :¼ �I ^ �J and takes the
self-dual part of �IJ with respect to IJ. The resulting two-
forms are automatically self-dual. They can be explicitly
constructed by decomposing I ¼ ð0; aÞ and then writing

�a ¼ i�0 ^ �a � 1
2	

abc�b ^ �c: (63)

Here i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit. Its presence in this
formula has to do with the fact that self-dual quantities in a
spacetime of Lorentzian signature are necessarily complex.
Thus, even though at this stage there is no well-defined
signature (all quantities are complex), it is convenient to
introduce i here so that later appropriate reality conditions
are easily imposed. We note that internal Lorentz rotations
of the tetrad �I at the level of �a boil down to (complexi-
fied) SU(2) rotations of �a.

A general suð2Þ-valued two-form field Bi carries more
information than just that about a metric. Indeed, one needs
3� 6 numbers to specify it, while only 10 are necessary to
specify a metric. Avery convenient description of the other
components is obtained by introducing a metric defined by
Bi via (62) and then using the ‘‘metric’’ self-dual two-
forms (63) as a basis and decomposing

Bi ¼ bia�
a: (64)

The quantities bia give nine components, the metric gives
ten, and the choice of internal frame for�a adds three more
components. There is also a freedom of rescalings bia !
��2bia and �a ! �2�a, as well as freedom of SO(3)
rotations, acting simultaneously on �a and bia, overall
producing 18 independent components of Bi.

When one substitutes the parametrization (64) into the
action (6), one finds that the fields bia are nonpropagating
and should be integrated out. Once this is done, one obtains
an ‘‘effective’’ Lagrangian for the metric described by �a.
Below we shall see how this works in the linearized theory.
However, we first need to choose a background.

B. Minkowski background

The Minkowski background is described in our frame-
work by a collection of metric two-forms (63) constructed
from the Minkowski metric. Thus, we choose an arbitrary
time plus space split and write

�a
0 ¼ idt ^ dxa � 1

2	
abcdxb ^ dxc; (65)

where dt, dxa, a ¼ 1, 2, 3, form a tetrad for the Minkowski
metric ds2 ¼ �dt2 þP

aðdxaÞ2. Our two-form field back-
ground is then chosen to be

Bi
0 ¼ �i

a�
a
0 ; (66)

where �i
a is an arbitrary SO(3) matrix that for simplicity

can be chosen to be the identity matrix.
In what follows we will also need a triple of anti-self-

dual metric forms that, together with (63), form a basis in

the space of two-forms. A convenient choice is given by

�� a
0 ¼ idt ^ dxa þ 1

2	
abcdxb ^ dxc: (67)

The following formulas, which can be shown to follow
directly from definitions (65) and (67), are going to be very
useful:

�a
0���

b�
0 � ¼ ��ab��� þ 	abc�c

0��; (68)

�a��
0 �b

0�� ¼ 4�ab; (69)

	abc�a
0���

b�
0 
�

c
0
� ¼ �4!; (70)

	abc�a
0���

b
0���

d��
0 ¼ �2�cd���; (71)

�a
0���

a
0�� ¼ ������ � ������ � i	����; (72)

where ��� is the Minkowski metric. We are going to refer

to them as the algebra of �’s.
The first of the relations above, namely (68), is central,

for all others [apart from (72)] can be derived from it. It is
useful to develop some basis-independent understanding of
this relation. We are working with the Lie algebra suð2Þ
and are considering a basis Xa in it in which the structure
constants read ½Xa; Xb� ¼ 	abcXc. This is the basis given
by Xa ¼ �ði=2Þ�a, where �a are Pauli matrices. The
metric gab ¼ �ab on the Lie algebra can be obtained as
gab ¼ �2TrðXaXbÞ. Then (68) can be understood as fol-
lows: the product of two �’s is given by minus the metric
plus the structure constants times�. Wewill see that in this
form the relations (68) persist to any basis in suð2Þ.

C. Linearized action

We are now going to linearize the G ¼ SUð2Þ theory
around the background (66). Thus, we take

Bi ¼ Bi
0 þ bi: (73)

As we have already discussed, to linearize the kinetic BF
term of the action we need to solve for the linearized
connection if we can. This is certainly possible for the
case at hand, as we shall now see.
If we denote the linearized connection by ai, we have to

solve the following system of equations:

dbi þ 	ijka
j ^ Bk

0 ¼ 0; (74)

where we have used the fact that the background connec-
tion is zero. It is convenient at this stage to replace all i
indices by a ones, which we can do using the background
object �i

a that provides such an identification. We can now
use the self-duality 	�����a

0�� ¼ 2i�a��
0 of the back-

ground to rewrite this equation as

1

2i
	����@�b

a
�� þ 	abcab��

c��
0 ¼ 0: (75)
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We now multiply this equation by �a�

0 �d

0�� and use the

identity (71) to get

aa
 ¼ 1

2
�b

0

��a

0��

1

2i
	����@�b

b
��; or

aa
 ¼ 1

4i
�b �

0
 �a
0��ð@bbÞ�;

(76)

where we have introduced a compact notation:

ð@bbÞ� :¼ 	����@�b
b
�� (77)

for a multiple of the Hodge dual of the exterior derivative
of the perturbation two-form.

The BF part of the linearized action was obtained in
(49). We need to divide the second variation given in this
formula by 2 to get the correct action quadratic in the
perturbation. Thus, we have

Sð2ÞBF ¼ 2i
Z

ba ^ daa ¼ �i
Z

aa�ð@baÞ�; (78)

where we have written everything in index notations and
integrated by parts to put the derivative on ba��, and used

the definition (77). Now substituting (76) we get

Sð2ÞBF ¼ 1

4

Z
��
�a

0��ð@bbÞ��b
0
�ð@baÞ�: (79)

Let us now linearize the potential term. For this we need

to know the background ~hij as well as the matrices of first
and second derivatives for the background. Using (65), it is

easy to see that ~hij0 ¼ 2i�ij. Since the background volume

form is just the identity, we can now safely remove the

density weight symbol from the matrix ~hij0 . Also, as before,
let us replace all i indices by a indices using �i

a. Using (55)
and the fact that the first derivatives ð@f=@habÞ vanish on
this background, we immediately get

@V

@hab

��������h0

¼ �ab

3
f0; (80)

where f0 is the background value of the function f in the
parametrization (53). It is not hard to see that this value
plays the role of the cosmological constant of the theory, so
in our Minkowski background it is necessarily zero by the
background field equations. The matrix of second deriva-
tives of the potential is easily evaluated using (58), and we
find

@2V

@hcd@hab

��������h0

¼ g

2i

�
�aðc�dÞb � 1

3
�ab�cd

�
; (81)

where we have introduced

g :¼ X
p¼2;3

ðf0pÞ0pðp� 1Þ
3p

: (82)

This is a constant of dimensions of the cosmological

constant 1=L2. It is going to play a role of a parameter
determining the strength of gravity modifications.
We can now write the linearized potential term (51). We

must divide it by two to get the correct action for the
perturbation. This gives

Sð2ÞBB ¼ � g

2

Z �
�aðc�dÞb � 1

3
�ab�cd

�
ð�a��

0 bb��Þ

� ð�c��
0 bd��Þ: (83)

Note that the tensor in brackets here is just the projector on
the trace-free part. This fact will be important in our
Hamiltonian analysis below. Our total linearized action is
thus (79) plus (83).

D. Symmetries

The quadratic form obtained above is degenerate, and its
degenerate directions correspond to the symmetries of the
theory. These are not hard to write down. An obvious
symmetry is that under (complexified) SO(3) rotations of
the fields. Considering an infinitesimal gauge transforma-
tion of the background �a

0��, we find that the action must

be invariant under the following set of transformations:

�!b
a
�� ¼ 	abc!b�c

0��; (84)

where !a are infinitesimal generators of the transforma-
tion. It is clear that (83) is invariant since it involves only
the ab-symmetric part of ð�a��

0 bb��Þ, and the transforma-

tion (84) affects the antisymmetric part. Let us check the
invariance of the kinetic term (79). We have the following
expression for the variation:

1

2

Z
��
�a

0��ð@�!b
bÞ��b

0
�ð@baÞ�: (85)

Substituting here the expression (84) for the variation we
find

��
�a
0��ð@�!b

bÞ��b
0
�

¼ 2i��
�a
0��	

bcd@�!
c�

d��
0 �b

0
� ¼ 4i@�!
i; (86)

where we have used the self-duality of �a
0�� and applied

the identity (71) once. Substituting this into (85) and
integrating by parts to move the derivative from !a to
ba, we get under the integral 	����@�@�b

a
�� ¼ 0, since

the partial derivatives commute. This proves the invariance
under gauge transformations.
Another set of symmetries of the action is that of diffeo-

morphisms. These are given by

��b
a ¼ d���

a
0 ; (87)

where �� is the operator of the interior product with a

vector field ��. It is not hard to compute this explicitly
in terms of derivatives of the components of the vector
field. However, we do not need all the details of this two-
form. Indeed, let us first note that the first kinetic term of
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the action is, in fact, invariant under a larger symmetry:

��b
a ¼ d�a; (88)

where �a is an arbitrary Lie-algebra valued one-form.
Indeed, this is obvious given that the kinetic term is con-
structed from the components of the three-form dba given
by the exterior derivative of the perturbation two-form.
Thus, (88) indeed leaves the kinetic term invariant. Then,
since (87) is of the form (88) with �a ¼ ���

a
0 , we have the

invariance of the first term. To see that the potential term
(83) is invariant, we should simply show that the symmet-
ric trace-free part of the matrix ð�0��bÞab is zero. Let us

compute the symmetric part explicitly. We have

�ða��
0 @��

��bÞ
0�� ¼ �ab@��

�; (89)

where we have used (68). Thus, there is only the trace
symmetric part, so the part that enters into the variation of
the action (85) is zero. This proves the invariance under
diffeomorphisms. Note that the second potential term is not
invariant under all transformations (88), since for such a
transformation that is not a diffeomorphism the matrix
ð�0��bÞab contains a nontrivial symmetric trace-free

part, as can be explicitly checked.
We will see that these are the only symmetries when we

perform the Hamiltonian analysis. However, before we do
this, let us show how the usual linearized GR appears from
our theory.

E. Relation to GR

In this subsection we would like to describe how general
relativity (linearized) with its usual gravitons appears from
the linearized Lagrangian described above. We shall see
that to get GR we must take the limit when the mass
parameter g for the components ð�0bÞabtf , where tf stands

for the trace-free part, is sent to infinity. Indeed, the poten-
tial part (83) depends precisely on these components, and
when the parameter g is sent to infinity these components
are effectively set to zero. We shall now see that this gives
GR.

It is not hard to show that in general the trace-free part

htf�� :¼ h�� � ð1=4Þ���h
�
� of the metric perturbation h��

defined via g�� ¼ ��� þ h�� corresponds in our language

of two-forms to the anti-self-dual part of the two-form
perturbation:

ðba��Þasd ¼ �a
0½�

�htf���: (90)

The fact that this two-form is anti-self-dual can be easily

checked by contracting it with �
b��
0 and using the algebra

(68). The result is zero, as appropriate for an anti-self-dual
two-form. In addition to (90), there is in general also the
self-dual part of the two-form perturbation. However, in
the limit g ! 1 all but the trace part of this gets set to zero
by the potential term. The trace part, on the other hand, is

proportional to the trace part ���h�� of the metric pertur-

bation. To simplify the analysis, it is convenient to set this
to zero ���h�� ¼ 0. This is allowed since in pure gravity

the trace of the perturbation does not propagate. Then (90)
is the complete two-form perturbation, and we can drop the
tf symbol.
To simplify the analysis further, instead of deriving the

full linearized action for the metric perturbation h��, let us

work in the gauge where the perturbation is transverse
@�h�� ¼ 0. Let us then compute the quantity ð@baÞ� in

this gauge. Using anti-self-duality of ba�� given by (90) we

have

	����@�b
a
�� ¼ �2i@�b

a��: (91)

Substituting here the explicit expression (90) and using the
transverse gauge condition, we get

ð@baÞ� ¼ i�a��
0 @�h

�
� : (92)

We can now substitute this into the action (79) to get

Sð2Þ ¼ � 1

4

Z
��
�a

0���
b��
0 @�h

�
��b

0
��
a��
0 @�h

�
�

¼ � 1

4

Z
��
ð��

���
� � ��

��
�
� � i	��

��Þ
� ð��


�
�
� � ��


�
�
� � i	
�

��Þ@�h��@�h��; (93)

where we have used (72) to get the second line. We can
now contract the indices and take into account the trace-
free as well as the transverse condition on h��. We get the

following simple action as the result:

Sð2Þ ¼ � 1

2

Z
@�h��@

�h��; (94)

which is the correctly normalized transverse traceless
graviton action. Note that in the passage to GR we have
secretly assumed that h�� in (90) is a real metric perturba-

tion. Below we will see how to impose the reality con-
ditions on our theory that this comes out. Also note that the
sign in front of (94) is correct for our choice of the
signature being ð�;þ;þ;þÞ.

F. Hamiltonian analysis of the linearized theory

For a finite g our theory describes a deformation of GR.
Since not all components of the two-form perturbation ba��

are dynamical, the nature of this deformation is most
clearly seen in the Hamiltonian framework. This is what
this subsection is about.
We note that the outcome of this rather technical sub-

section is that at ‘‘low’’ energies E2 � g the modification
can be ignored and one can safely work with the usual
linearized GR. Thus, it may be advisable to skip this
subsection on the first reading. Let us start by analyzing
the kinetic BF part.
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Kinetic term.—Expanding the product of two � matri-
ces in (79) and using (68), we can write the linearized
Lagrangian density for the BF part as

L BF ¼ 1
4ð@baÞ�ð@bbÞ�ð	abc�c

0�� þ �ab���Þ: (95)

Let us now perform the space plus time decomposition.
Thus, we split the spacetime index as � ¼ ð0; aÞ, where
a ¼ 1, 2, 3. Note that we have denoted the spatial index by
the same lowercase Latin letter from the beginning of the
alphabet that we are already using to denote the internal
suð2Þ index. This is allowed since we can use spatial
projection of the �a

0�� two-form to provide such an iden-

tification. Thus, from (63) we have

�a
0bc ¼ �	abc; (96)

and

�a
00b ¼ i�a

b: (97)

Let us now use these simple relations to obtain the space
plus time decomposition of the Lagrangian. First, we need
to know components of the ð@baÞ� vector. The time com-
ponent is given by

ð@baÞ0 ¼ 	0bcd@bb
a
cd ¼ �@bt

ab; (98)

where our conventions are 	0abc ¼ �	abc and we have
introduced

tab :¼ 	bcdbacd: (99)

The spatial component of ð@baÞ� is given by

ð@baÞb ¼ 	b0cd@0b
a
cd þ 2	bc0d@cb

a
0d

¼ @0t
ab � 2	bcd@cb

a
0d: (100)

Now, the Lagrangian (95) is given by

L BF ¼ �1
4ð@baÞ0ð@baÞ0 þ 1

2ð@baÞ0ð@bbÞd	abc�c
0d

þ 1
4ð@baÞeð@bbÞfð	abc�c

ef þ �ab�efÞ: (101)

Substituting the above expressions we get

LBF ¼ � 1

4
@bt

ab@ct
ac � i

2
@dt

adð@0tbc � 2	cef@eb
b
0fÞ	abc

� 1

4
ð@0tae � 2	emn@mb

a
0nÞð@0tbf � 2	fpq@pb

b
0qÞ

� ð	abc	cef � �ab�efÞ: (102)

Our fields are now therefore ba0b and t
ab. There will also

be another, potential part to this Lagrangian, but it does not
contain time derivatives, so the conjugate momenta can be
determined already at this stage. Thus, it is clear that the
field ba0b is nondynamical since the Lagrangian does not

depend on its time derivatives. The momentum conjugate
to tab, on the other hand, is given by

�ab :¼ @LBF

@ð@0tabÞ
¼ � i

2
	abc@dt

cd � 1

2
ð@0tef � 2	fpq@pb

e
0qÞ

� ð	aec	cbf � �ae�bfÞ: (103)

It is not hard to check that the momentum variable is
simply related to the spatial projection of the connection
(76) as

�a
b ¼ �2iaab: (104)

To rewrite the Lagrangian in the Hamiltonian form, one
must solve for the velocities @0t

ab in terms of the momenta
�ab. However, it is clear that not all the velocities can be
solved for—there are constraints. A subset of these con-
straints is given by the � ¼ 0 component of the (75)
equation that, when written in terms of �ab, becomes

G a :¼ 	abc�bc þ i@bt
ab ¼ 0: (105)

These are primary constraints that must be added to the
Hamiltonian with Lagrange multipliers.
Thus, the expression for velocities in terms of momenta

will contain undetermined functions. These functions are
simply the aa0 components of the connection, as well as (at

this stage undetermined) ba0b components of the two-form

field. The expression for velocities is given by the spatial
components of Eq. (75). After some algebra it gives

@0t
ab ¼ 2	bef@eb

a
0f � 2	abcac0 � 	aed	dbf�ef: (106)

Let us now obtain a slightly more convenient expression
for the Lagrangian. Indeed, recall that using the compati-
bility equation between the connection and the two-form
perturbation, we could have chosen to write our linearized
action (78) as

Sð2ÞBF ¼ �2i
Z

	abc�a
0 ^ ab ^ ac ¼ �2

Z
�a��	abcab�a

c
�:

(107)

Introducing the time plus space split and writing the result
in terms of the momentum variable (104), we get the
following Lagrangian:

L BF ¼ �2	abc�abac0 � 1
2	

aef	abc�be�cf: (108)

We can now easily find the BF part of the Hamiltonian:

H BF ¼ �ab@0t
ab �LBF

¼ 2�ab	bef@eb
a
0f � 1

2	
aef	abc�be�cf: (109)

We need to add to this the primary constraints (105) with
Lagrange multipliers. Thus, the total Hamiltonian coming
from the BF part of the action is

H total
BF ¼ 2�ab	bef@eb

a
0f � 1

2	
aef	abc�be�cf þ!aGa:

(110)
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This is, of course, the standard result for the linearized BF
Hamiltonian. If not for the potential term, the Hamiltonian
would be a sum of terms generating the topological con-
straint @½b�a

c� ¼ 0 and the Gauss constraint (105). Let us

now consider the other ‘‘BB’’ part of the Lagrangian.
Potential part.—We can rewrite the linearized

Lagrangian density for the BB part (83) as

L BB ¼ �g

2
ðbða���

bÞ��
0 Þtfðbða���bÞ��

0 Þtf; (111)

where tf stands for the trace-free parts of the matrices.
Splitting the space and time indices gives

ðbða���
bÞ��
0 Þtf ¼ �ð2ibðabÞ0 þ tðabÞÞtf; (112)

and so

L BB ¼ � g

2
ð2ibðabÞ0 þ tðabÞÞtfð2ibðabÞ0 þ tðabÞÞtf: (113)

Analysis of the constraints.—Thus, the total linearized
Hamiltonian density H ¼ H total

BF �LBB is given by

H ¼ 2�ab	bef@eb
af
0 � 1

2
	aef	abc�be�cf þ!aGa

þ g

2
ð2ibðabÞ0 þ tðabÞÞtfð2ibðabÞ0 þ tðabÞÞtf:

It is now clear that only the antisymmetric part and trace
parts of bab0 remain Lagrange multipliers in the full theory.

These are the generators of the diffeomorphisms. The other
part of bab0 , namely, the symmetric traceless, is clearly

nondynamical and should be solved for from its field
equations. Varying the Hamiltonian with respect to this
symmetric trace-free part we get

ð2ibðabÞ0 þ tðabÞÞtf ¼ i

g
ð	efða@e�bÞ

f Þtf: (114)

Now writing

bab0 ¼ iN�ab þ 1
2	

abcNc þ ðbðabÞ0 Þtf (115)

and substituting the symmetric trace-free part from (114),
we get the following Hamiltonian:

H ¼ �2Ni	abc@a�bc � 2@½a�a
b�N

b þ!aGa

� 1

2
	aef	abc�be�cf þ ið	efða@e�bÞ

f ÞtfðtðabÞÞtf

þ 1

2g
ð	efða@e�bÞ

f Þtfð	pqða@p�bÞ
q Þtf: (116)

The reason why we introduced a factor of i in front of the
lapse function will become clear below. One can recognize
in the first line the usual Hamiltonian, diffeomorphism, and
Gauss linearized constraints of Ashtekar’s Hamiltonian
formulation of general relativity [17]. The terms in the
second and third lines comprise the Hamiltonian. Finally,
the last term is due to the modification and goes away in the
limit g ! 1.

It is not hard to show that the reduced phase space for the
above system is obtained by considering �ab, tab that are
symmetric, traceless, and transverse @a�

ab ¼ 0, @at
ab ¼

0. On such configurations the matrix 	efa@e�fb is auto-
matically symmetric traceless and transverse. The reduced
phase space Hamiltonian density is then given by

H phys ¼ 1

2
ð�abÞ2 þ i	efa@etfb�ab þ 1

2g
ð@a�bcÞ2;

(117)

where we have integrated by parts and put the derivative on
tab in the second term. This Hamiltonian is complex, so we
need to discuss the reality conditions.
Reality conditions.—So far our discussion was in terms

of complex-valued fields. Thus, the reduced phase space
obtained above after imposing the constraints and quotient-
ing by their action was complex dimension 2þ 2. Reality
conditions need to be imposed to select the physical phase
space corresponding to Lorentzian signature gravity.
In the case of GR that corresponds to g ! 1 the reality

condition could be guessed from the form of the
Hamiltonian (117). Indeed, we can write it as

H phys
GR ¼ 1

2ð�ab þ i	efa@etfbÞ2 þ 1
2ð@atbcÞ2: (118)

Thus, it is clear that we just need to require tab and �ab þ
i	efa@etfb to be real. This procedure, however, does not
work for the full Hamiltonian because of the last term in
(117).
Let us now note that the last term in (117), when written

in momentum space, behaves as E2=M2, where E is the
energy and M2 ¼ g is the modification parameter. Thus,
for energies E � M the modification term is much smaller
than the term �2 and can be dropped. It is natural to expect
that gravity is only modified close to the Planck scale, so it
is natural to expect M2 	 M2

p, where Mp is the Planck

mass. With this assumption the last term in (117) is unim-
portant for ‘‘ordinary’’ energies and can be dropped. Thus,
if we are to work at energies much smaller than the Planck
scale’s ones, then we do not need to go beyond GR
described by the first two terms in (117).
The above discussion shows that a discussion of the

reality conditions for the full Hamiltonian (117), even
though possible and necessary if one is interested in the
behavior of the theory close to the Planck scale, is not
needed if one only wants to work with much smaller
energies. For this reason, and in order not to distract the
reader from the main line of the argument, a somewhat
technical reality conditions discussion for the full theory is
placed in the Appendix.
Now that we understand how the simplest case G ¼

SUð2Þ gives rise to gravity, we can apply the same proce-
dure to more interesting cases of a larger gauge group. We
consider the example of SU(3) that well illustrates the
general pattern.
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VII. THE G ¼ SUð3Þ CASE: GRAVITY-MAXWELL
SYSTEM

In this section we perform an analysis analogous to that
in the previous section but taking a larger gauge group. As
before, we first consider the complex theory, and only at
the end do we impose the reality conditions. The end result
of this section is a description of the 12 DOF that, as the
analysis of Sec. IV shows, our theory must have in this
case. These split as follows: we have 2 DOF for the gravity
sector and 2 more for the U(1) YM, and the remaining 8
propagating DOF are those of the Higgs sector. Let us start
by reviewing some basic facts about the suð3Þ Lie algebra.

A. Lie algebra of SU(3)

The standard matrix representation of the Lie algebra of
SU(3) consists of all traceless anti-Hermitian 3� 3 com-
plex matrices. The standard basis for suð3Þ is given by the
imaginary unit times a generalization of Pauli matrices,
known as Gell-Mann matrices. These Hermitian matrices
are given by


1 ¼
0 1 0
1 0 0
0 0 0

0
@

1
A; 
2 ¼

0 �i 0
i 0 0
0 0 0

0
@

1
A;


3 ¼
1 0 0
0 �1 0
0 0 0

0
@

1
A; 
4 ¼

0 0 1
0 0 0
1 0 0

0
@

1
A;


5 ¼
0 0 �i
0 0 0
i 0 0

0
@

1
A; 
6 ¼

0 0 0
0 0 1
0 1 0

0
@

1
A;


7 ¼
0 0 0
0 0 �i
0 i 0

0
@

1
A; 
8 ¼ 1ffiffiffi

3
p

1 0 0
0 1 0
0 0 �2

0
@

1
A:
(119)

However, in our computations the Cartan-Weyl basis is
going to be more convenient. Let us recall that in the
Cartan-Weyl formalism one starts with the maximally
commuting Cartan subalgebra, which in our case is

spanned by two elements 
3, 
8. One then selects basis
vectors that are eigenstates of the elements of Cartan under
the adjoint action. This leads to the following basis (see
[30,31]):

T
 ¼ 1ffiffiffi
2

p ðTx 
 iTyÞ; V
 ¼ 1ffiffiffi
2

p ðVx 
 iVyÞ;

W
 ¼ 1ffiffiffi
2

p ðWx 
 iWyÞ; Tz ¼ 1

2

3; Y ¼ 1

2

8;

(120)

where Tx ¼ 1
2
1, Ty ¼ 1

2
2, Vx ¼ 1
2
4, Vy ¼ 1

2
5, Wx ¼
1
2
6, and Wy ¼ 1

2
7. Then the Cartan subalgebra is Hi ¼
SpanðTz; YÞ, and the commutator between any of the Hi’s
and the rest of the elements of the basis E�, E� ¼
fTþ; T�; Tz; Vþ; V�;Wþ; W�g, is a multiple of E�, i.e.
½Hi; E�� ¼ �iE�. One considers the �i’s, for i ¼ 1, 2, as
the components of a vector, called a root of the system. In

this case we have six roots, i.e. f1; 0g, f�1; 0g, f12 ;
ffiffi
3

p
2 g,

f� 1
2 ;�

ffiffi
3

p
2 g, f� 1

2 ;
ffiffi
3

p
2 g, and f12 ;�

ffiffi
3

p
2 g. The Lie brackets be-

tween elements of this basis are given in Table I. We also
need to know the metric gIJ ¼ �2TrðTITJÞ in this basis. It
is given in Table II.

B. Background

Let us now discuss how a background to expand around
can be chosen. A background two-form field BI

0 is a map

from the space of bivectors, which is six-dimensional, to
the Lie algebra in question. Thus, its image is at most a six-
dimensional subspace in suð3Þ. There are many different
subspaces one can consider. In this paper we study the
simplest possibility. Thus, we choose BI

0 such that the

image of the space of two-forms that it produces in suð3Þ
is three-dimensional. Moreover, we choose this image to
be an suð2Þ Lie subalgebra. Even further, we choose this
subalgebra to be that spanned by fTþ; T�; Tzg. Clearly, this
is not the only suð2Þ subalgebra in suð3Þ. Other possibil-
ities include fVþ; V�; 12 ð

ffiffiffi
3

p
Y þ TzÞg and fWþ;W�; 12 �

ð ffiffiffi
3

p
Y � TzÞg. In this paper we do not study these different

possibilities, leaving a more thorough investigation to fur-

TABLE I. Commutators among Tþ, T�, Tz, Vþ, V�, Wþ, W�, and Y.

½#;!� Tþ T� Tz Vþ V� Wþ W� Y

Tþ 0 Tz �Tþ 0 � 1ffiffi
2

p W� 1ffiffi
2

p Vþ 0 0

T� �Tz 0 T� 1ffiffi
2

p Wþ 0 0 � 1ffiffi
2

p V� 0

Tz Tþ �T� 0 1
2Vþ � 1

2V� � 1
2Wþ 1

2W� 0

Vþ 0 � 1ffiffi
2

p Wþ � 1
2Vþ 0 1

2 ð
ffiffiffi
3

p
Y þ TzÞ 0 1ffiffi

2
p Tþ �

ffiffi
3

p
2 Vþ

V� 1ffiffi
2

p W� 0 1
2V� � 1

2 ð
ffiffiffi
3

p
Y þ TzÞ 0 � 1ffiffi

2
p T� 0

ffiffi
3

p
2 V�

Wþ � 1ffiffi
2

p Vþ 0 1
2Wþ 0 1ffiffi

2
p T� 0 1

2 ð
ffiffiffi
3

p
Y � TzÞ �

ffiffi
3

p
2 Wþ

W� 0 1ffiffi
2

p V� � 1
2W� � 1ffiffi

2
p Tþ 0 � 1

2 ð
ffiffiffi
3

p
Y � TzÞ 0

ffiffi
3

p
2 W�

Y 0 0 0
ffiffi
3

p
2 Vþ �

ffiffi
3

p
2 V�

ffiffi
3

p
2 Wþ �

ffiffi
3

p
2 W� 0
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ther research. We believe that the example we choose to
study is sufficiently illustrating.

Thus, our background is essentially the same as the one
we considered in the previous section. This is motivated by
our desire to have the usual gravity theory arising as the
part of the larger theory we are now considering. Since in
the general Lie-algebra context it is convenient to work
with the Cartan-Weyl basis, we need to change the basis of
basic two-forms (65) as well. This can be worked out as
follows. In the previous section wewere using a basis in the
Lie algebra in which the structure constants were given by
	abc. If we denote the corresponding generators by Xa, then
½Xa; Xb� ¼ 	abcXc. On the other hand, for generators Ta

used in (120) we have ½Ta; Tb� ¼ i	abcTc. The relation
between these two bases is Xa ¼ �iTa. We can then define
a new set of self-dual two-forms �
, �z via

� � X
a¼1;2;3

�aXa ¼ �þTþ þ ��T� þ �zTz: (121)

This gives

�þ ¼ �iffiffiffi
2

p ð�1 � i�2Þ; �� ¼ �iffiffiffi
2

p ð�1 þ i�2Þ;

�z ¼ �i�3:

(122)

The suð3Þ-valued two-form� is our background to expand
about.

C. Linearization: Kinetic term

As before, the first step of the linearization procedure is
to solve for those components of the connection for which
this is possible. As we have discussed in Sec. V, this is in
general possible for the components of the connection in
the directions in the Lie algebra that do not commute with
the directions spanned by the background two-forms. In
our case these are the directions spanned by T
, Tz and V
,
W
. We already know how to solve for the connection
components in the directions T
, Tz. Indeed, the solution is
given by (76), which we just have to rewrite in the different
basis. It is, however, more practical to solve the equations
once more by working in the different basis from the very
beginning.

The suð2Þ part.—The suð2Þ sector equations in the
Cartan-Weyl basis are

dbþ þ az ^�þ � aþ ^�z ¼ 0;

db� þ a� ^�z � az ^ �� ¼ 0;

dbz þ aþ ^�� � a� ^ �þ ¼ 0:

(123)

We rewrite them in spacetime notations, take the Hodge
dual, and use the self-duality of the �
, �z matrices to get

1

2i
ð@bþÞ� þ az��

þ�� � aþ� �z�� ¼ 0;

1

2i
ð@b�Þ� þ a�� �z�� � az��

��� ¼ 0;

1

2i
ð@bzÞ� þ aþ� ���� � a�� �þ�� ¼ 0;

(124)

where the notation is, as before ð@bÞ� ¼ 	����@�b��. We

now need the algebra of the new � matrices. It can be
worked out from the relations (122) and the algebra (68).
We get

�þ
���

��
� ¼ ��� þ �z

��; �z
���

þ�
� ¼ �þ

��;

�z
���

��
� ¼ ���

��; �z
���

z�
� ¼ ���;

�þ
���

þ�
� ¼ 0; ��

���
��

� ¼ 0:

(125)

For purposes of the calculation it is very convenient to
rewrite these relations in the schematic form, by viewing
them as matrix algebra. Our matrix multiplication conven-
tion for the two-forms is ðXYÞ�� ¼ X�

�Y�
�. We have

�þ�� ¼ �þ �z; �z�þ ¼ �þ;

�z�� ¼ ���; �z�z ¼ �;

�þ�þ ¼ 0; ���� ¼ 0:

(126)

This is precisely the relations (68), just written in terms of
metric and the structure constants on suð2Þ for a different
basis.
In matrix product conventions, Eqs. (124) take the fol-

lowing transparent form:

1

2i
ð@bþÞ þ �þaz ��zaþ ¼ 0;

1

2i
ð@b�Þ þ �za� ���az ¼ 0;

1

2i
ð@bzÞ þ ��aþ ��þa� ¼ 0;

(127)

where the convention is that the second spacetime index of
� is contracted with the spacetime index of a.
We can now solve (127) by using the algebra (126). To

this end we multiply the first equation by �þ and the
second one by ��. This leads to two equations involving
only a
 but not az. We can obtain another two equations of
the same sort by multiplying the last equation in (124) by
�
. Then adding and/or subtracting the resulting equations

TABLE II. Components for the internal metric in the base
fTþ; T�; Tz; Vþ; V�;Wþ;W�; Yg.
h# j !i Tþ T� Tz Vþ V� Wþ W� Y

Tþ 0 �1 0 0 0 0 0 0

T� �1 0 0 0 0 0 0 0

Tz 0 0 �1 0 0 0 0 0

Vþ 0 0 0 0 �1 0 0 0

V� 0 0 0 �1 0 0 0 0

Wþ 0 0 0 0 0 0 �1 0

W� 0 0 0 0 0 �1 0 0

Y 0 0 0 0 0 0 0 �1
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we get

aþ ¼ � 1

4i
ð���þð@bþÞ þ �þð@bzÞÞ;

a� ¼ � 1

4i
ð�þ��ð@b�Þ � ��ð@bzÞÞ:

(128)

To obtain the last component of the connection, we
multiply the first equation in (127) by �� and the second
by �þ, and then subtract the resulting equations. We find
��aþ � �þa� ¼ �ð1=2iÞð@bzÞ using (128). We get

az ¼ � 1

4i
ðð@bzÞ þ��ð@bþÞ ��þð@b�ÞÞ: (129)

It is now easy to write the suð2Þ part of the linearized BF
part of the action. Using the metric components given in
Table II, from (78) we have

Ssuð2ÞBF ¼ � 1

4

Z
ð@bþÞð�þ��ð@b�Þ ���ð@bzÞÞ

þ ð@b�Þð���þð@bþÞ þ �þð@bzÞÞ
þ ð@bzÞðð@bzÞ þ��ð@bþÞ � �þð@b�ÞÞ; (130)

where again our convenient schematic form of the notation
is used. This is simplified to give

Ssuð2ÞBF ¼ � 1

2

Z
ð@bþÞð�þ �zÞð@b�Þ þ ð@b�Þ�þð@bzÞ

� ð@bþÞ��ð@bzÞ þ 1

2
ð@bzÞð@bzÞ: (131)

We could now use this as the starting point of the
Hamiltonian analysis similar to the one in the previous
section. However, it is clear that its results are basis inde-
pendent, so we do not need to repeat it. Still, the above
considerations are quite useful as a warm-up for the more
involved analysis that now follows.

The part that does not commute with suð2Þ.—Let us
denote the four directions V
, W
 collectively by index
� ¼ 4, 5, 6, 7. We have to solve the following system of
equations:

db� þ f�
aa

 ^ �a ¼ 0; (132)

where the terms f�aba
a ^ �b are absent since the corre-

sponding structure constants are zero. Explicitly, using
Table I we have

db4 � 1ffiffiffi
2

p a6 ^�þ � 1

2
a4 ^ �z ¼ 0; (133)

db5 þ 1ffiffiffi
2

p a7 ^�� þ 1

2
a5 ^ �z ¼ 0; (134)

db6 � 1ffiffiffi
2

p a4 ^�� þ 1

2
a6 ^ �z ¼ 0; (135)

db7 þ 1ffiffiffi
2

p a5 ^�þ � 1

2
a7 ^�z ¼ 0: (136)

We can solve this system using the same technology that
we used above for the suð2Þ sector. Thus, we take the
Hodge dual of the above equations, use the self-duality
of the �’s, and rewrite everything in the schematic matrix
form. We get

1

2i
ð@b4Þ � 1ffiffiffi

2
p �þa6 � 1

2
�za4 ¼ 0;

1

2i
ð@b5Þ þ 1ffiffiffi

2
p ��a7 þ 1

2
�za5 ¼ 0;

1

2i
ð@b6Þ � 1ffiffiffi

2
p ��a4 þ 1

2
�za6 ¼ 0;

1

2i
ð@b7Þ þ 1ffiffiffi

2
p �þa5 � 1

2
�za7 ¼ 0:

(137)

We can now manipulate these equations using the alge-

bra (126). Thus, let us multiply the third equation by
ffiffiffi
2

p
�þ

and subtract the result from the first equation. This gives

1

2i
ð@b4Þ �

ffiffiffi
2

p
2i

�þð@b6Þ þ
�
�þ 1

2
�z

�
a4 ¼ 0: (138)

It is now easy to find a4 by noting that ð�þ ð1=2Þ�zÞ�1 ¼
ð4=3Þð�� ð1=2Þ�zÞ. Thus, we have

a4 ¼ 1

3i
ð ffiffiffi

2
p

�þð@b6Þ � ð2�� �zÞð@b4ÞÞ: (139)

Similarly, we multiply the last equation by
ffiffiffi
2

p
�� and

add it to the second equation. Multiplying then by the
inverse of ð�� ð1=2Þ�zÞ, we get

a5 ¼ � 1

3i
ð ffiffiffi

2
p

��ð@b7Þ þ ð2�þ �zÞð@b5ÞÞ: (140)

To find a6 we multiply the first equation by
ffiffiffi
2

p
�� and

subtract the result from the third equation. We then multi-
ply the result by the inverse of ð�� ð1=2Þ�zÞ. We get

a6 ¼ 1

3i
ð ffiffiffi

2
p

��ð@b4Þ � ð2�þ �zÞð@b6ÞÞ: (141)

Finally, to find a7 we multiply the second equation byffiffiffi
2

p
�þ and add the result to the last equation. Multiplying

the result by the inverse of ð�þ ð1=2Þ�zÞ, we get

a7 ¼ � 1

3i
ð ffiffiffi

2
p

�þð@b5Þ þ ð2�� �zÞð@b7ÞÞ: (142)

We should now substitute the above results into the
relevant part of the action. This is again obtained from
(78) by taking into account the expression for the metric.
We shall refer to this part of the action as ‘‘Higgs’’ in view
of its interpretation to be developed later. We have
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S
Higgs
BF ¼ i

Z
a4ð@b5Þ þ a5ð@b4Þ þ a6ð@b7Þ þ a7ð@b6Þ;

(143)

where we took into account the extra minus sign that comes
from the metric. Substituting here the above connections,
we get, after some simple algebra,

SHiggsBF ¼ 2

3

Z ffiffiffi
2

p ð@b5Þ�þð@b6Þ � ffiffiffi
2

p ð@b4Þ��ð@b7Þ
� ð@b4Þð2�þ�zÞð@b5Þ � ð@b6Þð2���zÞð@b7Þ:

(144)

A more illuminating way to write this action is by intro-
ducing two two-component fields:

b4

b6

� �
;

b5

b7

� �
: (145)

It is not hard to see that this split of the Higgs sector part of
the Lie algebra is just the split into two irreducible repre-
sentation spaces with respect to the action of the gravita-
tional SU(2). In terms of these columns the above action
takes the following form:

S
Higgs
BF ¼ 2

3

Z
ðð@b5Þð@b7ÞÞ �2�þ�z

ffiffiffi
2

p
�þffiffiffi

2
p

�� �2���z

 !

� ð@b4Þ
ð@b6Þ

 !
: (146)

Below we will use this action as the starting point for an
analysis that will eventually exhibit the physical DOF
propagating in this sector.

Centralizer U(1) part.—We cannot solve for the com-
ponents of the connection in the part that commutes with
suð2Þ. In our case this is the direction Y of the Lie algebra.
We shall refer to this part of the action as ‘‘YM.’’ Thus, the
action remains of BF-type:

SYMBF ¼ �4i
Z

b8 ^ da8; (147)

where the extra minus sign is the one in the metric.

D. Linearization: Potential term

As in the SU(2) case our background internal metric ~hIJ0
is just 2igab in the suð2Þ directions and zero in all other
directions. Since the background metric is flat, we shall

drop the tilde from ~hIJ in this section. We compute the
matrix of first derivatives of the potential using (55). We
get

@V

@hab

��������0
¼ f0

8
gab; (148)

@V

@ha�

��������0
¼ 0; (149)

@V

@h�


��������0
¼
�
f0
8
� 1

8

X6
p¼2

ðf0pÞ0 p

3p�1

�
g�
: (150)

Here f0, ðf0pÞ0 are the value of the function and its deriva-

tives at the background, and index � stands for all direc-
tions in the Lie algebra that are not in suð2Þ. The quantity
f0 can be identified with a multiple of the cosmological
constant. More specifically,

� ¼ � 3f0
8

: (151)

Let us also define another constant of dimensions 1=L2:

� � 1

8

X6
p¼2

ðf0pÞ0 p

3p�1
: (152)

Then we have

@V

@h�


��������0
¼ �ð�=3þ �Þg�
: (153)

The sum here and in the previous formula is taken over
p ¼ 2; . . . ; 6, because the function f can at most depend on
five ratios of six invariants of the matrix hIJ. It has at most
only six independent invariants since it is constructed from
the map BI

�� that has the rank at most six. Since we want to

work with the Minkowski spacetime background, we
should set � ¼ 0, which we do in what follows.
We now need to compute the matrix of second deriva-

tives. Let us first obtain its suð2Þ part. Using (58) we get

@2V

@hcd@hab
¼ g

2i

�
gaðcgdÞb � 1

3
gabgcd

�
; (154)

where we have defined

g ¼ 1

8

X6
p¼2

ðf0pÞ0 pðp� 1Þ
3p�1

: (155)

As in the SU(2) case this constant is going to measure
strength of gravity modifications. Both � and g constants
have dimensions of 1=L2 and are, in general, independent
parameters of our linearized theory, related to first deriva-
tives ðf0pÞ0 of the function f of the ratios.

Let us now compute the matrix of second derivatives in
its part not in suð2Þ. We only need its mixed components
a� and b
. The computation is easy, and using (58) we get

@2V

@ha�@hb


��������0
¼ �

4i
gabg�
: (156)

We note that in this computation only one of the terms in
(61) survives, and this is the reason why it is the constant �
that appears in this formula.
We can now compute all the potential parts. We use (51),

which we have to divide by two to get the correct quadratic
action. For the suð2Þ gravitational part the result is un-
changed from that in the previous section, and we have
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SgravBB ¼ �g

2

Z �
gaðcgdÞb � 1

3
gabgcd

�
ð�a��

0 bb��Þ

� ð�c��
0 bd��Þ: (157)

The Higgs and YM parts of the potential term are both
given by

SHiggs-YMBB ¼ ��

4

Z
gabg�
ð�a��b���Þð�b��b
��Þ

þ 2ig�
	
����b���b



��; (158)

so the indices �, 
 here take values 4, 5, 6, 7, 8. We can
further simplify this using (72). We get

S
Higgs-YM
BB ¼ ��

Z
g�
b

���b
��P�
����; (159)

where

P� ¼ 1

2

�
��½����� þ i

2
	����

�
(160)

is the anti-self-dual projector.

E. Symmetries

We have seen that the suð2Þ sector of the theory is
completely unchanged from what we have obtained in
the G ¼ SUð2Þ case. One can moreover see that diffeo-
morphisms still act only within this sector. Indeed, the
action of a diffeomorphism in the direction of a vector
field �� is still given by (87) and changes only the suð2Þ
part of the two-form field. Similarly, the SU(2) gauge
transformations act only on the suð2Þ sector. Thus, the
gravity story that we have considered in the previous
section is unchanged.

Let us now consider what happens in directions not in
suð2Þ. Let us first consider the Higgs sector spanned by
V
,W
. A gauge transformation with the gauge parameter
! valued in this sector acts as �!b ¼ ½!;��. In compo-
nents this reads:

�!b
4 ¼ � 1ffiffiffi

2
p !6�þ � 1

2
!4�z;

�!b
5 ¼ 1ffiffiffi

2
p !7�� þ 1

2
!5�z;

�!b
6 ¼ � 1ffiffiffi

2
p !4�� þ 1

2
!6�z;

�!b
7 ¼ 1ffiffiffi

2
p !5�þ � 1

2
!7�z:

(161)

The remaining part of the Lie algebra is that spanned by
Y. The corresponding gauge transformation has no effect
on the two-form field b8 (nor on b�, � ¼ 4, 5, 6, 7) since it
commutes with the background. However, this gauge trans-
formation does act on the connection a8 by the usual U(1)
gauge transformation a8 ! a8 þ d!8. The kinetic part
(147) clearly remains invariant, and the potential part is

invariant since it depends only on b8 that does not
transform.

F. Low-energy limit of the Higgs sector

Our analysis of the YM sector presented below will
show that the parameter � that appeared in the ‘‘Higgs-
YM’’ part of the potential (158) must be taken to be of the
order M2

p, where Mp is the Planck mass. This will follow

from the fact that the YM coupling constant should be of
order unity in a realistic unification scheme, which then
immediately implies ��M2

p. Another way to reach the

same conclusion is to note that Mp is the only scale in our

problem, so all dimensionful quantities must be of the
Planck size; see more on this in the last discussion section.
If this is the case, then the role of the potential term (158)
for the Higgs sector is to make the anti-self-dual compo-
nents of the two-forms b��� have Planckian mass and thus

effectively set them to zero. This is completely analogous
to what happened in the gravitational sector in the limit
E2 � g with the babtf components. Thus, we see that in the

low-energy limit E2 � � the two-forms b��� can be effec-

tively assumed to be self-dual. As such they can be ex-
panded in the background self-dual two-forms �a

0��. After

such an ansatz is substituted into the action (146), the result
simplifies considerably. However, in order to exhibit the
physical modes, we need to introduce some convenient
gauge fixing. Inspecting (161) we see that it is possible
to set to zero the following components of the b�a:

b4þ ¼ 0; b5� ¼ 0; b6� ¼ 0; b7� ¼ 0: (162)

This gauge turns out to be very convenient. We now write
the gauge-fixed two-forms b��� as follows:

b4�� ¼ 1

2

�
1ffiffiffi
2

p b4���
�� þ

ffiffiffi
3

p
2

b4z�
z
��

�
;

b5�� ¼ 1

2

�
1ffiffiffi
2

p b5þ�þ
�� þ

ffiffiffi
3

p
2

b5z�
z
��

�
;

b6�� ¼ 1

2

�
1ffiffiffi
2

p b6þ�þ
�� þ

ffiffiffi
3

p
2

b6z�
z
��

�
;

b7�� ¼ 1

2

�
1ffiffiffi
2

p b7���
�� þ

ffiffiffi
3

p
2

b7z�
z
��

�
;

(163)

where the independent fields are now b4�, b5þ, b6þ, b7�, and
b�z and the ‘‘strange’’ normalization coefficients are chosen
in order for the Lagrangian to be obtained to have the
canonical form.
Substituting (163) into (146) and using the algebra of �

matrices, we get the following simple effective low-energy
action:
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S
Higgs
eff ¼ �

Z
@�b5þ@�b4� þ @�b7�@�b6þ þ @�b5z@�b

4
z

þ @�b7z@�b
6
z : (164)

This form of the Lagrangian makes the reality condi-
tions necessary to get a real theory obvious. Indeed, it is
clear that the reality conditions are

ðb5þÞ� ¼ b4�; ðb7�Þ� ¼ b6þ;

ðb5zÞ� ¼ b4z ; ðb7zÞ� ¼ b6z :
(165)

These conditions can be compactly stated by introducing
the following suð2Þ � g valued object:

b :¼ ðb4�Tþ þ b4zTzÞ � Vþ þ ðb5þT� þ b5zTzÞ � V�

þ ðb6þT� þ b6zTzÞ �Wþ þ ðb7�Tþ þ b7zTzÞ �W�
(166)

and requiring it to be Hermitian:

b y ¼ b: (167)

The action can also be written quite compactly in terms of
b. Indeed, using the pairing given by the h�; �i metric in the
Lie algebra, we get

L Higgs
eff ¼ �h@�by; @�bi (168)

for the low-energy E2 � � effective Higgs sector
Lagrangian. It is thus clear that, at least in the low-energy
regime, the Higgs sector of our theory consists just of four
complex massless scalar fields with the usual Lagrangian.
It is not hard to show [see expression (180) for the
Hamiltonian in the next subsection] that in the finite �
limit the content of this sector does not change and is still
given by massless fields.

G. Hamiltonian formulation for the Higgs sector

In this subsection we obtain the Hamiltonian formula-
tion of the sector spanned by V
, W
. After the analysis
performed in the previous subsection, such an analysis is
not really necessary as we know what the propagating DOF
described by this sector are like, and we even know the
correct reality conditions. However, we decided to perform
such an analysis for completeness, and also to confirm the
reality conditions found from the Hamiltonian perspective.
One finds the Hamiltonian analysis to be exactly parallel to
that in the gravitational case, with even the final expression
for the Hamiltonian being analogous. This subsection is
quite technical, and the reader is advised to skip it on the
first reading. As in the case of gravity, we start by perform-
ing the space plus time split of the kinetic BF part.

BF part.—From (144) our Lagrangian density is

LHiggs
BF ¼ 2

ffiffiffi
2

p
3

ðð@b5Þ�ð@b6Þ��þ
�� � ð@b4Þ�ð@b7Þ���

��Þ

� 2

3
ðð@b4Þ�ð@b5Þ�ð2��� þ �z

��Þ
þ ð@b6Þ�ð@b7Þ�ð2��� ��z

��ÞÞ: (169)

Now, denoting the indices 4, 5, 6, 7 collectively by�, we
have

ð@b�Þ0 ¼ �@bt
�b; ð@b�Þa ¼ @0t

�a � 2	abc@bb
�
0c;

(170)

where we have introduced the configurational variables

t�a :¼ 	abcb�bc: (171)

We do not need an expression for the expanded
Lagrangian (169) because a more compact expression in
terms of the conjugate momenta will be obtained below.
For now let us compute the momenta conjugate to the
configurational variables t�a. It is sufficient to compute
just one of the momenta to see the pattern. We have

�4a :¼ @LHiggs
BF

@@0t
4a

¼ � 2
ffiffiffi
2

p
3

ð��
abð@0t7b � 2	bef@eb

7
0fÞ þ ��

0a@bt
7bÞ

� 4

3
ð@0t5a � 2	efa @eb

5
0fÞ

� 2

3
ð�z

abð@0t5b � 2	bef@eb
5
0fÞ þ�z

0a@bt
5bÞ: (172)

Comparing it to (140), we see that �4a ¼ 2ia5a. This is
precisely analogous to the relation (104) we had in the case
of gravity. Indeed, the above relation can be rewritten as
�4a ¼ �2ig4�a

�
a , which generalizes (104). The other mo-

menta are obtained as follows:

��a ¼ �2ig�
a


a : (173)

We now need to solve for the velocities in terms of the
momenta and substitute the result into the Lagrangian.
Similar to the case of gravity, the velocities can be obtained
by taking the spatial component of the Eqs. (137). We get
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@0t
4
a � 2	a

bc@bb
4
0c ¼ i

ffiffiffi
2

p
�þ

0aa
6
0 þ

1ffiffiffi
2

p �þb
a �7b þ i�z

0aa
4
0

þ 1

2
�z

a
b�5b;

@0t
5
a � 2	a

bc@bb
5
0c ¼ �i

ffiffiffi
2

p
��

0aa
7
0 �

1ffiffiffi
2

p ��b
a �6b � i�z

0aa
5
0

� 1

2
�z

a
b�4b;

@0t
6
a � 2	a

bc@bb
6
0c ¼ i

ffiffiffi
2

p
��

0aa
4
0 þ

1ffiffiffi
2

p ��b
a �5b � i�z

0aa
6
0

� 1

2
�z

a
b�7b;

@0t
7
a � 2	a

bc@bb
7
0c ¼ �i

ffiffiffi
2

p
�þ

0aa
5
0 �

1ffiffiffi
2

p �þb
a �4b þ i�z

0aa
7
0

þ 1

2
�z

a
b�6b: (174)

The time projections of Eqs. (137) are then the Gauss
constraints.

For the last step we start from a convenient expression
for the Lagrangian. This is given by an analog of (107),
which reads:

L Higgs
BF ¼ �2gab�

a��fb�
a
�
�a



�

¼ �2
ffiffiffi
2

p
�þ��a5�a

6
� þ 2

ffiffiffi
2

p
����a4�a

7
�

þ 2�z��a4�a
5
� � 2�z��a6�a

7
�; (175)

where fa�
 are the structure constants. Expanding it and

converting the spatial components of the connection into
momenta, we get

LHiggs
BF ¼ 1ffiffiffi

2
p �þab�4a�7b � 1ffiffiffi

2
p ��ab�5a�6b

� 1

2
�zab�5a�4b þ 1

2
�zab�7a�6b

� i
ffiffiffi
2

p
�þa

0 ða50�7a � �4aa
6
0Þ

þ i
ffiffiffi
2

p
��a

0 ða40�6a � �5aa
7
0Þ

þ i�za
0 ða40�4a � �5aa

5
0Þ � i�za

0 ða60�6a � �7aa
7
0Þ:

We can now compute the Hamiltonian:

H Higgs
BF ¼ ��a@0t

�a �LHiggs
BF

¼ 2��a	
abc@bb

�
0c

þ 1
2gabg

��g
�fa�
�
bef��e��f: (176)

The obtained expression is not the full Hamiltonian. To
obtain the latter we need to add four Gauss constraints that
are obtained as the time components of the compatibility
Eqs. (137). We will not need an explicit form of the Gauss

constraints since we already know from (161) what is
generated by them.
The BB part.—Let us now consider the potential part

(159). The corresponding Lagrangian density reads:

L Higgs
BB ¼ ��P�

����g�
b
���b
��: (177)

Expanding the spacetime index we get

L Higgs
BB ¼ �g�
ðb�a0 b
0a � 1

4t
�at
a Þ þ i�g�
b

�
0at


a: (178)

Total Hamiltonian.—We now form the total

Hamiltonian H Higgs ¼ H Higgs
BF �LHiggs

BB and integrate
out the nondynamical fields b�0a. We get the following

expressions for these fields by solving their field equations:

b�0a ¼ 1

�
g�
	abc@

b�c

 � i

2
t�a : (179)

This should be compared with (114) that we have in the
gravitational sector. We now substitute this back to get the
Hamiltonian with second-class constraints solved for

H Higgs ¼ 1

2
gabg

��g
�fa�
�
bef��e��f � ið	abc@b��cÞt�a

þ 1

�
g�
ð	abc@b��cÞð	aef@e�
fÞ; (180)

plus Gauss constraints with their corresponding Lagrange
multipliers. Note also that the Hamiltonian we have ob-
tained is analogous to the one in the case of gravity (116).
Indeed, there is similarly the �2 term and a ð	@�Þt term
with an imaginary unit in front. There is also a @2�2 term
with a parameter of dimensions 1=M2 as a coefficient. Note
that for any value of the parameter � this Hamiltonian
describes modes that are massless. To rewrite this
Hamiltonian in terms of physical propagating modes, we
need to understand the gauge fixing.
Gauge fixing.—To choose a convenient gauge fixing that

eliminates the gauge transformation freedom, let us discuss
what the two-forms �
, �z become after they get pro-
jected onto the spatial hypersurface. Thus, let us find
analogs of relations (97) and (96). Let us introduce the
following three spatial vectors:

�þ
0a

:¼ ma; ��
0a

:¼ �ma; �z
0a

:¼ na: (181)

Then, taking various projections of (126), it is easy to
check that the following relations hold:

mama ¼ �ma �ma ¼ 0; mana ¼ �mana ¼ 0;

ma �ma ¼ 1; nana ¼ 1:
(182)

Taking different projections of (126), one finds the spatial
pullbacks of the two-forms in terms of the vectors intro-
duced:
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�þ
ab ¼ namb �manb ¼ �i	abcm

c;

��
ab ¼ �manb � na �mb ¼ �i	abc �m

c;

�z
ab ¼ ma �mb � �mamb ¼ �i	abcn

c:

(183)

We now use (161) to fix the gauge as in (162). In terms of
the configurational variables t�a the gauge conditions read:

t4� ¼ 0; t5þ ¼ 0; t6þ ¼ 0; t7� ¼ 0;

(184)

where our convention is that t�þ :¼ mat�a , t
�� ¼ �mat�a ,

and t�z ¼ nat�a .
Let us now find the consequences of the Gauss con-

straints. In terms of the introduced vectors ma, �ma, and na

these read:

@at
4a � 1ffiffiffi

2
p ma�

a
7 �

1

2
na�

a
5 ¼ 0;

@at
5a þ 1ffiffiffi

2
p �ma�

a
6 þ

1

2
na�

a
4 ¼ 0;

@at
6a � 1ffiffiffi

2
p �ma�

a
5 þ

1

2
na�

a
7 ¼ 0;

@at
7a þ 1ffiffiffi

2
p ma�

a
4 �

1

2
na�

a
6 ¼ 0:

(185)

Introducing more compact notations �þ
� :¼ ma�

a
�, �

�
� ¼

�ma�
a
�, and �z

� ¼ na�
a
� and passing to the momentum

space, we have

ijkjt4z � 1ffiffiffi
2

p �þ
7 � 1

2
�z

5 ¼ 0;

ijkjt5z þ 1ffiffiffi
2

p ��
6 þ 1

2
�z

4 ¼ 0;

ijkjt6z � 1ffiffiffi
2

p ��
5 þ 1

2
�z

7 ¼ 0;

ijkjt7z þ 1ffiffiffi
2

p �þ
4 � 1

2
�z

6 ¼ 0:

(186)

We now use these constraints to find the components of the
momenta that are conjugate to the gauge-fixed variables
(184). We have

�þ
4 ðkÞ ¼ �i

ffiffiffi
2

p jkjt7z þ 1ffiffiffi
2

p �z
6;

��
5 ðkÞ ¼ i

ffiffiffi
2

p jkjt6z þ 1ffiffiffi
2

p �z
7;

��
6 ðkÞ ¼ �i

ffiffiffi
2

p jkjt5z � 1ffiffiffi
2

p �z
4;

�þ
7 ðkÞ ¼ i

ffiffiffi
2

p jkjt4z � 1ffiffiffi
2

p �z
5:

(187)

Let us now substitute these expressions into the �2 part of
the Hamiltonian. Thus, we have for the first term in (180)

� 3

4
ð�z

4ð�kÞ�z
5ðkÞ þ �z

7ð�kÞ�z
6ðkÞÞ �

1

2
ð��

4 ð�kÞ�þ
5 ðkÞ

þ ��
7 ð�kÞ�þ

6 ðkÞÞ þ
ijkj
2

ð�z
4ð�kÞt4zðkÞ þ �z

7ð�kÞt7zðkÞ
� �z

5ð�kÞt5zðkÞ � �z
6ð�kÞt6zðkÞÞ � jkj2ðt5zð�kÞt4zðkÞ

þ t6zð�kÞt7zðkÞÞ: (188)

Let us now work out the second term in (180). We use

�i	abc ¼ naðmb �mc � �mbmcÞ þmað �mbnc � nb �mcÞ
þ �maðnbmc �mbncÞ; (189)

which can be easily derived from (183) to write the second
term in (180) as

i jkjð��
� ð�kÞt�þðkÞ � �þ

� ð�kÞt��ðkÞÞ: (190)

Here we again passed to the momentum space and used

@aðeikxt�b ðkÞÞ ¼ ikae
ikxt�b ðkÞ; (191)

where ka ¼ jkjna is a vector in the direction of na. This
makes only two of the terms from (189) survive.
Expanding and using the gauge-fixing conditions (184),
we get for this term

ijkjð��
4 ð�kÞt4þðkÞ þ ��

7 ð�kÞt7þðkÞ � �þ
5 ð�kÞt5�ðkÞ

� �þ
6 ð�kÞt6�ðkÞÞ: (192)

The total Hamiltonian in the E2 � � low-energy limit is
given by the sum of two terms, i.e., (188) and (192).
Reality conditions.—Let us now discuss the reality con-

ditions that are appropriate in the E2 � � low-energy
limit. It is clear that they can be determined by ‘‘complet-
ing the square,’’ similar to what we have seen in the
Hamiltonian formulation of the gravitational sector (in
the low-energy limit). Thus, let us write the total
Hamiltonian as
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H Higgs ¼ � 3

4

�
�z

4ð�kÞ � 2ijkj
3

t5zð�kÞ
��
�z

5ðkÞ �
2ijkj
3

t4zðkÞ
�
� 4

3
jkj2t5zð�kÞt4zðkÞ

� 3

4

�
�z

7ð�kÞ � 2ijkj
3

t6zð�kÞ
��

�z
6ðkÞ �

2ijkj
3

t7zðkÞ
�
� 4

3
jkj2t6zð�kÞt7zðkÞ

� 1

2
ð��

4 ð�kÞ � 2ijkjt5�ð�kÞÞð�þ
5 ðkÞ � 2ijkjt4þðkÞÞ � 2jkj2t5�ð�kÞt4þðkÞ

� 1

2
ð��

7 ð�kÞ � 2ijkjt6�ð�kÞÞð�þ
6 ðkÞ � 2ijkjt7þðkÞÞ � 2jkj2t6�ð�kÞt7þðkÞ: (193)

The form of the reality conditions is now obvious.
Indeed, we introduce new momenta variables:

~�z
4ðkÞ ¼ �z

4ðkÞ þ
2ijkj
3

t5zðkÞ;

~�z
5ðkÞ ¼ �z

5ðkÞ �
2ijkj
3

t4zðkÞ;

~�z
6ðkÞ ¼ �z

6ðkÞ �
2ijkj
3

t7zðkÞ;

~�z
7ðkÞ ¼ �z

7ðkÞ þ
2ijkj
3

t6zðkÞ;
~��
4 ðkÞ ¼ ��

4 ðkÞ þ 2ijkjt5�ðkÞ;
~�þ
5 ðkÞ ¼ �þ

5 ðkÞ � 2ijkjt4þðkÞ;
~�þ
6 ðkÞ ¼ �þ

6 ðkÞ � 2ijkjt7þðkÞ;
~��
7 ðkÞ ¼ ��

7 ðkÞ þ 2ijkjt6�ðkÞ;

(194)

and then require the following reality conditions:

~�z
4ð�kÞ ¼ �ð ~�z

5ðkÞÞ�; ~�z
7ð�kÞ ¼ �ð ~�z

6ðkÞÞ�;
~��
4 ð�kÞ ¼ �ð ~�þ

5 ðkÞÞ�; ~��
7 ð�kÞ ¼ �ð ~�þ

6 ðkÞÞ�
t5zð�kÞ ¼ �ðt4zðkÞÞ�; t6zð�kÞ ¼ �ðt7zðkÞÞ�;
t5�ð�kÞ ¼ �ðt4þðkÞÞ�; t6�ð�kÞ ¼ �ðt7þðkÞÞ�:

(195)

It is not hard to see that these conditions are the same as we
have derived earlier in the Lagrangian framework; see
(165). Indeed, the extra minus present in (195) is due to
the following transformation properties of the basic two-
forms:

ð�þ
abÞ� ¼ ���

ab; ð�z
abÞ� ¼ ��z

ab (196)

that directly follow from (183). The obtained real positive-
definite Hamiltonian is that of four complex massless
scalar fields, so we have full agreement with our
Lagrangian analysis above. Reality conditions and the
Hamiltonian for the full finite � theory can be obtained
via precisely the same method as in the gravitational sector
case treated in the Appendix. We refrain from giving such
an analysis in this work, as it becomes even more technical.

H. Yang-Mills sector

In this subsection we work out the Lagrangian for the
remaining part of the theory, which lives in the part of the
gauge group that commutes with the background suð2Þ.
The total Lagrangian we start with is a sum of kinetic term
(147) and the potential term (159), with an extra sign in the
potential term coming from the metric component g88 ¼
�1. This gives

L YM ¼ 2i	����b8��@�a
8
� þ �P�����b8��b

8
��: (197)

The further analysis is greatly simplified by making use of
the reality condition for the b8�� two-form from the outset.

Thus, as we will also confirm by the Hamiltonian analysis
in the next subsection, the two-form b8�� needs to be purely

imaginary:

b8�� :¼ �i ~b8��; ð~b8��Þ� ¼ ~b8��: (198)

This immediately leads to simplifications as the real part of
the Lagrangian (197) is then given simply by

L YM
real ¼ 2	���� ~b8��@�a

8
� � �

2
~b8�� ~b8��: (199)

Taking a variation with respect to ~b8��, we learn that

~b 8
�� ¼ 1

�
	����F

��; (200)

where F�� ¼ @�a
8
� � @�a

8
� is the curvature of our U(1)

gauge field, which is therefore, for real �, real. Substituting
the result back into the Lagrangian, we get

L YM ¼ � 2

�
ðF��Þ2: (201)

This is the standard YM Lagrangian with the coupling
constant:

g2YM ¼ �

8
: (202)

To convert this into a physical coupling constant, we recall
that we need to multiply the Lagrangian by 1=ð32�GÞ, as
this is exactly the prefactor that converts the canonically
normalized graviton Lagrangian (94) into the Einstein-
Hilbert one. Thus, the physical coupling constant in our
arising YM theory is given by

g2YM ¼ 4�G�: (203)
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Realistic particle physics coupling constants are of the
order of unity (and smaller), so we learn that the parameter
� must be of the order M2

p, which is what we have been

using in the previous subsections.

I. Reality conditions for the YM sector

In this subsection we perform the Hamiltonian analysis
of the YM sector with the main aim being to obtain the
reality conditions used above. As in all other cases consid-
ered, the reality conditions become obvious once the
Hamiltonian is written down.

We start from the Lagrangian (197). Expanding

	����b8��@�a
8
� ¼ �2	abcb80a@ba

8
c � t8að@0a8a � @aa

8
0Þ;

(204)

where t8a :¼ 	abcb8bc, we see that the momentum conju-

gate to the connection a8a is

�8a :¼ @LYM

@@0a
8
a

¼ �2it8a: (205)

The Hamiltonian is then

H YM ¼ 4i	abcb80a@ba
8
c � a80@a�

8a

þ �

�
b8a0 b80a þ

1

16
�8a�8

a

�
� �

2
b80a�

8a: (206)

We find the nondynamical fields b80a via their field equa-

tions and get

b80a ¼ � 2i

�
	abc@

ba8c þ 1

4
�8

a: (207)

Substituting this back into (206), we get the ‘‘physical’’
Hamiltonian

H YM
phys ¼

4

�

�
	abc@ba

8
c þ i�

8
�8a

�
2 þ �

16
�8a�8

a: (208)

It is now clear that the ‘‘correct’’ reality conditions that
give rise to a real positive-definite Hamiltonian is

Im ð	abc@ba8cÞ þ �

8
Reð�8aÞ ¼ 0; Imð�8aÞ ¼ 0:

(209)

From (207) and (205) it is easy to see that these reality
conditions are equivalent to the condition that the b8�� two-

form is purely imaginary, which is what we have used in
the previous subsection.

Passing to the real phase space and imposing the Gauss
constraint @a�

8a ¼ 0 as well as the transverse gauge con-
dition @aa8a ¼ 0, we get the following simple expression
for the real Hamiltonian:

H YM
real ¼

4

�
ð@aa8 realb Þ2 þ �

16
ð�8aÞ2; (210)

which again confirms that the parameter �=8 plays the role
of g2YM.

VIII. INTERACTIONS

In this section we work out (some of the) cubic order
interactions for our theory. Our main goal is to verify that
the YM and Higgs sectors interact with the gravitational
field in the usual way, and that the YM-Higgs interaction is
also standard. We start with general considerations on the
cubic order expansion of our theory.

A. General considerations

The third variation of the BF term is

�3SBF ¼ 4i
Z

3�BI ^ ½�A; �A�I; (211)

and the third variation of the BB term is

�3SBB ¼ 4i
Z

d4x

�
4

@3Vð~hÞ
@~hMN@~hKL@~hIJ

� ðB0�BÞIJðB0�BÞKLðB0�BÞMN

þ 6
@2Vð~hÞ

@~hKL@~hIJ
ðB0�BÞIJð�B�BÞKL

�
: (212)

As in the case of the quadratic order expansion, it is most
laborious to compute the derivatives of the potential. We
have already computed the second derivative above. The

third derivative of Vð~hÞ is given by

@3Vð~hÞ
@~hMN@~hKL@~hIJ

¼ gIJ
n

@2f

@~hMN@~hKL
þ gKL

n

@2f

@~hMN@~hIJ

þ gMN

n

@2f

@~hKL@~hIJ

þ Tr~h

n

@3f

@~hKL@~hKL@~hIJ
; (213)

where the third derivative of the function of the ratios is
given by
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@3f

@~hMN@~hKL@~hIJ
¼ Xn

p¼2

Xn
q¼2

Xn
p¼2

f000pqr
@

@~hIJ

�
Tr~hp

ðTr~hÞp
�

@

@~hKL

�
Tr~hq

ðTr~hÞq
�

@

@~hMN

�
Tr~hr

ðTr~hÞr
�

þ Xn
p¼2

Xn
q¼2

f00pq
@

@~hIJ

�
Tr~hp

ðTr~hÞp
�

@2

@~hMN@~hKL

�
Tr~hq

ðTr~hÞq
�
þ Xn

p¼2

Xn
q¼2

f00pq
@

@~hKL

�
Tr~hp

ðTr~hÞp
�

@2

@~hMN@~hIJ

�
Tr~hq

ðTr~hÞq
�

þ Xn
p¼2

Xn
q¼2

f00pq
@

@~hMN

�
Tr~hp

ðTr~hÞp
�

@2

@~hKL@~hIJ

�
Tr~hq

ðTr~hÞq
�
þ Xn

p¼2

f0p
@3

@~hMN@~hKL@~hIJ

�
Tr~hp

ðTr~hÞp
�
; (214)

where f000pqr stands for the derivative of f00pq with respect to its r argument and

@3

@~hKL@~hKL@~hIJ

�
Tr~hp

ðTr~hÞp
�
¼ p

ðTr~hÞp
@2 ~hp�1

IJ

@~hMN@~hKL
� p2

ðTr~hÞpþ1

�
gIJ

@~hp�1
KL

@~hMN
þ gKL

@~hp�1
IJ

@~hMN
þ gMN

@~hp�1
IJ

@~hKL

�

þ p2ðpþ 1Þ
ðTr~hÞpþ2

ðgIJgKL
~hp�1
MN þ gIJgMN

~hp�1
KL þ gKLgMN

~hp�1
IJ Þ

� pðpþ 1Þðpþ 2ÞTr~hp
ðTr~hÞpþ3

gIJgKLgMN: (215)

The first derivative of a power of ~hIJ is given by (61). We
have not found a sufficiently simple general expression for
the second derivative of ~hp�1

IJ with respect to ~hMN ~hKL, but
the expression (61) can be easily differentiated for any
given p. The above expressions can be used to obtain the
third derivatives of the potential for our background. The
results are given in the next subsection.

B. Interactions with gravity

In this paper we shall not consider gravitational sector
self-interactions. They are easily computable, but since the
main emphasis of this work is on unification, it is of much
more interest to compute the interactions of other fields
with gravity and their self-interactions. In this subsection
we consider the coupling of nongravitational fields to
gravity.

Thus, at least one of the perturbation fields �BI is to be
taken to lie in the gravitational sector. It is then easy to see
that this is the only interaction in the cubic order. Indeed,
where two of the three perturbation fields lie in the gravi-
tational sector and there is only one nongravitational per-
turbation, there is no interaction coming from the potential
part since

@2Vð~hÞ
@~ha�@~hbc

��������0
¼ 0;

@3Vð~hÞ
@~he�@~hcd@~hab

��������0
¼ 0; (216)

where � stands for the nongravitational part of the Lie
algebra. There is also no interaction coming from the
kinetic part of the action for the structure constant fIJK is
zero when two of the indices are in the suð2Þ part and only
one index is in the nongravitational part. Thus we need to
consider only the interaction that is linear in the graviton
perturbation. It is natural to expect that this coupling is that
to the stress-energy tensor of our nongravitational fields,
and this will be confirmed below.

The interaction coming from the kinetic term is non-
trivial only for the Higgs sector fields (since the structure
constant with two of its indices in the YM part of the Lie
algebra and one in suð2Þ is zero since the YM and the
gravitational parts commute). This interaction is of the
schematic type hð@bÞ2, which is as expected for scalar
fields coupled to gravity. We are not going to work out
this term, even though it is not hard to do it using the
explicit formulas for the connections worked out above.
Let us concentrate on the interactions coming from the

potential part of the action as being the most interesting
one. The relevant derivatives of the potential are as fol-
lows:

@2Vð~hÞ
@~h�
@~hab

��������0
¼ 0;

@2Vð~hÞ
@~hb
@~ha�

��������0
¼ �

4i
g�
gab;

@3Vð~hÞ
@~hd
@~hc�@~hab

��������0
¼ g�


2ð2iÞ2
�
ð�� gÞ

�
gaðcgdÞb � 1

3
gabgcd

�

� �

3
gabgcd

�
: (217)

Note that the fact that the first quantity is zero is not
completely trivial, as it involves a precise cancellation of
two otherwise nonzero terms.
We can now compute the relevant interaction terms

using (212). We need to divide this expression by 3! to
remove the extra multiplicity introduced by taking the third
variation of the action. An additional simplification comes
from the fact that in the first term in the third derivative in
(217) we have a matrix projecting onto the trace-free part
of the gravitational two-form perturbation matrix
�

a��
0 bb��. This part is zero when the parameter g ! 1,

which is the limit of the usual GR that we are considering.
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Thus, this part drops out, and we have for the gravity-
nongravity interaction term coming from the potential

Lð3Þ ¼ 4i

3!

�
4 � 3 1

2ð2iÞ2
�
��

3

��
i

2

�
3ð�a��

0 ba��Þð�c��
0 b���Þ

� ð�d��
0 b
��Þgcdg�
 þ 6 � 2 �

4i

�
i

2

�
ð�a��

0 b���Þ 14
� ð	���
bb��b
�
Þgabg�


�
: (218)

Here the extra factors of 2 in the first term and 2 in the
second come from expanding the general Lie-algebra in-
dices in (212), and the factors of i=2 come by using the
self-duality of the background forms �a

0��. To understand

this expression, it is useful to separate the coupling to the
trace of the graviton perturbation and to the trace-free part.
Let us consider the trace first. Thus, we take

ba�� ¼ h

3
�a

0��; (219)

with the field h being proportional to the trace of the metric
perturbation h��. It is then easy to see that the expression

(218) vanishes on such gravitational perturbations. This is,
of course, as expected, for both our YM and Higgs sectors
are expected to be conformally invariant (classically).
Indeed, this is standard for the YM fields, and for the
Higgs sector this expectation follows from the fact that
the fields are (up to now) massless. Using (218) it is not
hard to check that there is indeed no coupling to the trace
part of the metric, which confirms our expectation. Note
that this also provides quite a nontrivial check of our
scheme, for the whole scheme would be invalidated if we
had found that our YM fields couple to the trace of the
metric.

We now confirm that the coupling to the trace-free part
of the metric perturbation is also as expected. We need to
consider only the second term in (218), as the first term
involves only the trace part of the metric perturbation. Let
us consider the YM sector first. We now substitute

ba�� ¼ �a �
0½� h���; (220)

and use the anti-self-duality of this two-form to get

L ð3Þ
grav-YM ¼ ��

2
�

a��
0 b8���

a�

0 h�
b

8
��

¼ �2�Pþ���
b8��b
8
��h

�

 : (221)

Here an extra minus is due to the metric on the Lie algebra.
The physical Lagrangian is obtained from here by taking
the real part. This makes only the term in the self-dual
projector Pþ���
 that contains the metric to survive.
Substituting (200) we get

L ð3Þ
grav-YM ¼ 1

�
	

��
� F��	

���
F�
h
�: (222)

Expanding the product of two 	’s here we get

L ð3Þ
grav-YM ¼ 4

�
F��F��h

�����; (223)

in which expression we recognize precisely the coupling
to the stress-energy tensor that arises from the YM
Lagrangian (201). The sign in front is different from that in
(201) because the variation of the metric with two upper
indices is given by�h��. Thus, the arising coupling of our
YM fields to the gravitational sector is correct.
Let us now discuss the coupling of the Higgs sector to

gravity. It is easy to see that in the low-energy approxima-
tion in which E2 � � and the two-forms b��� are self-dual

there is no coupling coming from the potential term.
Indeed, we have already discussed that there is no coupling
to the trace part of the metric perturbation. Thus, there is
only the second term in (218) that can contribute. However,

it contains a factor of ð	���
bb��b
�
Þ, which is the contrac-
tion of a self-dual Higgs two-form and an anti-self-dual
gravitational one. So, it is zero, and the only interaction
term in the Higgs sector comes from the kinetic term of the
action. As we have already discussed, it is of the hð@bÞ2
form, which is just the coupling of the metric perturbation
to the stress-energy tensor of our set of massless fields. We
are not going to work out the details as they are slightly
messy, but we hope that the discussion given is sufficient to
show that the interaction is as expected.

C. Interactions in the nongravitational sector

Let us now concentrate on the interactions in the non-
gravitational sector, most interestingly those between the
YM and Higgs sectors.
First, we note that there are no cubic interactions in the

nongravitational sector that come from the potential term.
Indeed, such an interaction term involves three perturba-
tion two-forms b��� with the Lie-algebra index outside of

suð2Þ. It is not hard to see that the corresponding deriva-
tives of the potential vanish:

@2Vð~hÞ
@~h
�@~ha�

��������0
¼ 0;

@3Vð~hÞ
@~hc�@~hb
@~ha�

��������0
¼ 0: (224)

Thus, at cubic order we need to consider only the
interactions coming from the kinetic term. It is not hard
to see that there are no self-interactions in the Higgs or YM
sectors, but there are two possible types of interaction
between these sectors. One of them comes from the term

g�
b
�f
�8a

�a8, the other comes from b8f8�
a
�a
, where

� now stands for the Higgs sector index. The second of this
is an interaction of the type ð1=�ÞFð@bÞ2 and is thus sup-
pressed at low energies by E2=�. However, the first inter-
action is nontrivial and important even at low energies. In
fact, it is not hard to show that this is the standard interac-
tion of the gauge field a8 with the conserved U(1) current
of the Higgs sector that is charged under the YM subgroup.
We are not going to spell out the details that are again
slightly messy, but the important point is that the YM-
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Higgs sectors’ interaction is also as expected for a set of
scalar fields charged under the YM gauge group (Higgs
fields).

IX. MORE GENERAL POTENTIALS: MASS
GENERATION

Up to now we have for simplicity considered a very
special class of potentials that depend only on the invari-

ants constructed from the internal metric ~hIJ using the
Killing-Cartan metric gIJ. It is not hard to show that due

to the fact that the rank of ~hIJ is at most six, there are at
most six such independent invariants, and thus only at most
five ratios, to be considered as the arguments of the func-
tion fð�Þ in (53). However, it is clear that these are not the
only possible invariants. Indeed, the most general gauge-

invariant function of ~hIJ can also involve invariants con-
structed using the structure constants fIJK. For instance, let
us consider

ff~h ~h ~h :¼ fPQRfSTU ~hPS ~hQT
~hRU; (225)

where the indices on the structure constants are raised
using the metric on the group. More generally, one can
construct a matrix

ðff~h ~hÞIJ :¼ fIQRfJTU ~hQT
~hRU; (226)

and build more complicated invariants from traces of

powers of ~hIJ and ðff~h ~hÞIJ. This leads to a much more
general set of gauge-invariant functions. In this section we
shall study implications of much more general potentials.
Our main point in this section is that these more general
potential functions lead naturally to Higgs fields becoming
massive. This is very important for phenomenology, for
massless Higgs fields interacting with the ‘‘visible’’ YM
sector in the standard way are obviously inconsistent with
observations.

A. Potential with an extra invariant

For simplicity, in this paper we shall consider only one
additional invariant given by (225). We shall see that such a

potential is sufficient to generate masses for the Higgs
sector particles. It is not hard to consider even more general
potentials, but we refrain from doing it in this already
lengthy paper.
Thus, let us consider the potential depending on one

more invariant:

Vð~hÞ ¼ Tr~h

n
F

�
Tr~h2

ðTr~hÞ2 ; . . . ;
Tr~hn

ðTr~hÞn ;
ff~h ~h ~h

ðTr~hÞ3
�
; (227)

where we have divided (225) by ðTr~hÞ3 to make the poten-
tial homogeneous degree one. Then, the first derivative

with respect to ~h is

@Vð~hÞ
@~hIJ

¼ gIJ
n

Fþ Tr~h

n

@F

@~hIJ
; (228)

with ð@F=@~hIJÞ given by

@F

@~hIJ
¼ Xn

p¼2

F0
p

@

@~hIJ

�
Tr~hp

ðTr~hÞp
�
þ F0

nþ1

@

@~hIJ

�
ff~h ~h ~h

ðTr~hÞ3
�
;

(229)

where F0
p is the derivative of F with respect to its argument

ðTr~hp=ðTr~hÞpÞ, F0
nþ1 is the derivative of F with respect to

its last argument, and

@

@~hIJ

�
ff~h ~h ~h

ðTr~hÞ3
�
¼ 3fPQðI fRSJÞ ~hPR ~hQS

ðTr~hÞ3 � 3ff~h ~h ~h

ðTr~hÞ4 gIJ:

(230)

Now, let us compute the second derivative of V with

respect to ~h. We get

@2Vð~hÞ
@~hKL@~hIJ

¼ gIJ
n

@F

@~hKL
þ gKL

n

@F

@~hIJ
þ Tr~h

n

@2F

@~hKL@~hIJ
;

(231)

with ð@2F=@~hKL@~hIJÞ given by

@2F

@~hKL@~hIJ
¼ Xn

p¼2

F0
p

@2

@~hKL@~hIJ

�
Tr~hp

ðTr~hÞp
�
þ F0

nþ1

@2

@~hKL@~hIJ

�
ff~h ~h ~h

ðTr~hÞ3
�

þ Xn
p¼2

Xn
q¼2

�
F00
pq

@

@~hKL

�
Tr~hq

ðTr~hÞq
�
þ F00

pðnþ1Þ
@

@~hKL

�
ff~h ~h ~h

ðTr~hÞ3
��

@

@~hIJ

�
Tr~hp

ðTr~hÞp
�

þ Xn
p¼2

�
F00
ðnþ1Þp

@

@~hKL

�
Tr~hp

ðTr~hÞp
�
þ F00

ðnþ1Þðnþ1Þ
@

@~hKL

�
ff~h ~h ~h

ðTr~hÞ3
��

@

@~hIJ

�
ff~h ~h ~h

ðTr~hÞ3
�
; (232)

where F00
pq stands for the derivative of F

0
p with respect to its q argument and similar for F00

pðnþ1Þ and F
00
ðnþ1Þðnþ1Þ. It is easy to

show that
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@2ðff~h ~h ~hÞ
@~hIJ@~hKL

¼ �6fPKÞðIfJÞðL
Q ~hPQ: (233)

Using the equations above, we obtain the following ex-
pressions:

@V

@~hab

��������0
¼ 0; (234)

@V

@~h�


��������0
¼ �

�
�þ 2


3

�
g�
; (235)

@2V

@~hb
@~ha�

��������0
¼ �

4i
gabg�
 þ 


6i
gcdf

c
abf

d
�
; (236)

where we have set ðFÞ0 ¼ 0 and defined


 ¼ ðF0
nþ1Þ0
8

: (237)

The parameter � is as before [see (152)] with the function
Fð�Þ of one more invariant in place of fð�Þ.

B. Higgs sector masses

In this subsection we show that the new parameter 

introduced above receives the interpretation of mass
squared of the Higgs sector scalar fields. To this end, let
us work out the quadratic part of the action that comes from
the potential, concentrating only on the 
-dependent part.
The �-dependent part was already taken care of by setting
the Higgs sector perturbation two-forms b��� to be self-

dual, and this is unchanged for our more general potential.
Dividing (51) by 2, using the self-duality of b��� in the

second term, and simplifying, we get

Sð2Þ
 ¼ � 2


3

Z 1

4
gcdf

c
abf

d
�
ð�a��

0 b���Þð�b��
0 b
��Þ

� g�
b
���b
��: (238)

We now substitute in this expression the expansions (163)
for our two-forms (in a specific gauge). It is not hard to see
that only the term fzabf

z
�
 contributes and we get

Sð2Þ
 ¼ 

Z

b4�b5þ þ b6þb7� þ b4zb5z þ b6zb7z

¼ �m2
Higgshby;bi; (239)

where

m2
Higgs ¼ �
: (240)

Thus, as all other physical parameters arising in our theory,
the mass of the Higgs sector particles also comes from the
defining potential.

X. DISCUSSION

In view of the length of this paper it is probably appro-
priate to recap our logic and emphasize the main results

that we have obtained. Thus, we have started with a gen-
erally covariant gauge theory for a groupG, with the action
given by (1). At this stage all fields are complex and reality
conditions are later imposed to select the physical, real
sector of the theory. We then perform the Legendre trans-
form and pass to the two-form field formulation (6). Our
phase space analysis in Sec. IV is only needed to get a
better idea of what should be expected for the number of
propagating DOF of the theory. It does not form an essen-
tial part of our argument. The main analysis starts in
Sec. VI where we analyze the simplest case G ¼ SUð2Þ
and show how it describes the usual gravity in the limit
when a certain parameter of the potential is taken to be
large, or, alternatively, for low energies. For a finite value
of the parameter (or for Planckian energies) one gets a
modified gravity theory with two propagating DOF.
However, as the low-energy limit of our theory is still
given by GR, we do not need to understand the nature of
this modification for purposes of this paper.
We start with the analysis of the pure gravity case by

describing how the Minkowski spacetime looks in the
language of two-forms; see (65). The action is then ex-
panded to quadratic order, and the field equations for the
connection field are solved for, with the solution given by
(76). After the solution is substituted into the action, one
gets the linearized kinetic term (79) as a functional of only
the two-form perturbation. This is supplemented with the
potential term part (83). After the parameter g is taken to
infinity, one gets GR written in terms of two-forms, with a
very compact linearized action (79). This action is consid-
erably simpler than the one in terms of the metric pertur-
bation, and the relation between the two arises via (90). We
also perform the Hamiltonian analysis of the linearized
theory, to show how the usual two polarizations of the
graviton arise in this language. In the g ! 1 limit this
analysis reproduces Ashtekar’s Hamiltonian formulation
of GR, in its linearized version. The main purpose of this
analysis is to select the reality conditions for the gravita-
tional sector. These are particularly clear in the Hamil-
tonian formulation, and later in the paper the same strategy
of deducing the reality conditions from the form of the
Hamiltonian is used for other fields. In this section we
discuss only the rather simple reality conditions appropri-
ate in the GR limit g ! 1. The finite g case reality con-
ditions are deduced in the Appendix, for completeness.
Once the SU(2) case is understood, we enlarge the gauge

group to G ¼ SUð3Þ. We take the same set of two-forms
(65) for the background, which thus selects in the suð3Þ Lie
algebra a preferred gravitational suð2Þ subalgebra. The
analysis of the gravitational part is unchanged, but we
have carried it out once more using a different basis in
the Lie algebra (root basis), in preparation for the analysis
of the nongravitational sectors. These split into a part that
commutes with suð2Þ and that will later be identified with
the YM sector, and a part that does not commute with suð2Þ
and becomes the Higgs sector.
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Let us start with the Higgs sector. As in the case of
gravity, we first solve the equations for the connections a��
in terms of the perturbation two-forms b��� and then sub-

stitute the result back into the action. The resulting kinetic
part of the action as a functional of the two-forms b��� is

given by (146). There is also the part (159) coming from
the potential. Similar to the case of gravity, the role of the
potential part, in the low-energy limit, is to set certain
components of the two-form field b��� to zero. After this

is done, the perturbation two-forms b��� becomes self-dual

and can be expanded in the basis of self-dual two-forms
(65). The coefficients in this expansion become our Higgs
fields. They can be seen to be charged under the gravita-
tional SU(2) subgroup, comprising two irreducible repre-
sentations of spin 1=2 of SU(2). They also transform
nontrivially under the part of the gauge group that does
not commute with SU(2), and so they are not all physical.
A convenient gauge is given by (163). Finally, our Higgs
fields are charged under the part of the gauge group that
commutes with SU(2), i.e. under the YM subgroup, which
in the case of G ¼ SUð3Þ is U(1). After a gauge is fixed,
one obtains a Lagrangian for the physical fields, and this is
found to be just the usual one for a set of eight massless
fields. We then determined the reality conditions needed to
make it into a real Lagrangian with positive-definite
Hamiltonian. These can be read off either from the
Lagrangian we have obtained or from the Hamiltonian
formulation that is also developed. The end result is a set
of four complex (and at this stage massless) scalar fields
with the usual real Lagrangian (168). These fields are later
made massive by considering a slightly more general set of
defining potentials.

We then analyze the YM sector, both in the Lagrangian
and Hamiltonian frameworks. As usual in this paper, the
Hamiltonian framework considerations are most useful for
determining the reality conditions that need to be imposed.
After these are deduced, the derivation of the Lagrangian
becomes straightforward, with the result given by (201).
The YM coupling constant arises as (203), with the pa-
rameter � related to the first derivatives of the potential
function via (152).

We then discuss (cubic) interactions between the various
sectors of our theory and confirm that they are as expected
for such fields. Namely, the interactions of all fields with
gravity are via their stress-energy tensor, and interactions
of the Higgs sector with the YM fields are via the Higgs
conserved current.

Finally, we consider potentials more general than has
been the case before and show how the first derivative
(237) of the potential with respect to the new invariant
becomes (minus) the mass squared (240) of the Higgs
sector fields. The parameter 
 ¼ �m2

Higgs can be both

positive and negative, so we have the possibility of the
Higgs potential pointing both up and down, depending on
the form of the defining potential. For negative m2

Higgs and

thus positive 
 the configuration b ¼ 0 is unstable and a
new vacuum to expand about should be chosen, as in the
standard Higgs mechanism. This finishes our demonstra-
tion of the fact that the content of the theory expanded
around the Minkowski spacetime background is as desired.
Let us now discuss whether the unification scheme

described in this paper can be deemed ‘‘natural’’ in the
sense that it naturally produces ‘‘realistic’’ values of the
parameters such as masses and coupling constants. To this
end let us see what dimensionful parameters are present in
our theory. When the action is written in the form (1), the
integrand has the mass dimension 4 (assuming that the
connection has the mass dimension 1), and there are no
dimensionful parameters in the theory at all. After the
Legendre transform to (6) the two-form field has the
mass dimension 2, and there are still no dimensionful
parameters. However, since a part of this field is to be
interpreted as the spacetime metric, it needs to be made
dimensionless, and this is when a dimensionful parameter
is introduced into the story. Rescaling the two-form field to
give it the mass dimension 0 introduces a parameter of the
mass dimension 2 in front of the action (interpreted as 1=G,
where G is the Newton’s constant), as well as makes the
potential function to have the mass dimension 2. This
introduces a length (or mass) scale into the theory, and it
is clear that there is only one natural mass scale given by
Mp.

Various parameters of the theory are then obtained as
derivatives of the potential function evaluated at the back-
ground. These have mass dimension 2, or, after being
multiplied by G, are dimensionless as in the case of YM
coupling (203). It is thus clear that the natural values for
mass parameters arising in our theory are Mp, and for the

dimensionless parameters such as the coupling constant
gYM � 1. However, these are precisely the values that are
realistic. Indeed, as our Higgs fields interact with the
visible YM sector, we need to explain why they are not
observed. This is explained by their very high mass that
makes them essentially irrelevant for the low-energy phys-
ics. Second, the realistic values of the YM coupling con-
stants of particle physics are order one, and precisely such
values are natural in our unification scheme. Overall, our
unification model is realistic in the sense that it reproduces
everything that could be desired from such a simple setup.
An important ingredient that is missing from our sim-

pleminded model is that of the usual symmetry breaking
mechanism of particle physics. Such a breaking, if present,
would introduce additional mass scales into the theory and
make it much richer. The model considered in this paper in
which the background broke only theG symmetry down to
the gravitational and YM ones did not break the YM gauge
group. However, it is clear that our model naturally allows
for such further breaking of symmetry. Indeed, we could
take the background to be more nontrivial and give to some
of our Higgs fields a nontrivial vacuum expectation value.
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Since our Higgs fields interact with the YM sector in the
standard way, the effect of such a nontrivial vacuum ex-
pectation value (VEV) is also going to be standard—the
YM symmetry is going to be broken, with some of the
gauge fields becoming massive. It is then very interesting
that in our scheme this standard particle physics symmetry
breaking mechanism receives a new interpretation. Indeed,
a nontrivial VEV for the Higgs is now on the same footing
as a nonzero value for the metric. In other words, in our
unification scenario the Higgs fields and the metric are just
different parts of a single two-form field multiplet BI

��.

Details of, for example, Hamiltonian analysis of the gravi-
tational and Higgs sectors also confirm a very close anal-
ogy between the two. Thus, in a sense, it is the Higgs fields
and the metric that become truly unified in our scenario. It
is of considerable interest to study such more involved
symmetry breaking scenarios. The goal would be to see
if a truly realistic unification that puts together some GUT
gauge group, a set of Higgs fields required to break it to the
gauge group of the standard model, as well as gravity is
possible. This question is, however, beyond the scope of
this paper.

Yet another very important ingredient that is missing
from our scenario is fermions. These are usually unpro-
blematic for any scenario that operates in Minkowski
spacetime. However, we start with a generally covariant
theory with no metric in it, so it is not at all clear how and if
fermions can be added. At the moment, this is probably the
most serious objection against our scenario, but we remain
hopeful that fermions can be described in our framework.
The only possibility for this seems to be to further enlarge
the connection field in (1) and make it ‘‘fermionic.’’ This
might also require a ‘‘generalized’’ connection that is no
longer a one-form, as fermions that we would like to obtain
are not forms. We leave investigation of all these difficult
but very interesting questions to further research.

Finally, let us briefly touch on the question of quantiza-
tion. The theory we have considered was classical, but, of
course, it has to be quantized. It is then clear that our action
(1) is nonrenormalizable in the usual sense of the word.
Indeed, expanding the theory around Minkowski space-
time, we have obtained a Lagrangian consisting of some
renormalizable pieces—in the Higgs and YM sectors—as
well as gravity with its nonrenormalizable interactions.
However, there are also higher order interactions that are
nonrenormalizable, and the full action is given by an
expansion containing an infinite number of nonrenorma-
lizable terms. Thus, the full theory is nonrenormalizable.
This is, of course, as expected, for we cannot hope to bring
together a nonrenormalizable theory (gravity) with renor-
malizable other interactions in a renormalizable unified
theory. At best, we can hope for a nonrenormalizable
unified theory, and this is what is happening in our
scenario.

At the same time, what our starting action (1) describes
is just the most general generally covariant gauge theory.
For this reason it can be expected that the class of theories
(1) obtained by considering all possible potentials fð�Þ is
closed under renormalization. Indeed, all terms that could
arise as counterterms are already included in (1), and so the
only effect of renormalization should be in renormalization
of the defining function fð�Þ. If this expectation is realized
and the sole effect of renormalization is a flow in the space
of potentials, the nonrenormalizability of our theory be-
comes much less of a problem. Indeed, it is then possible to
invoke the asymptotic safety scenario and hope that in the
UV the theory flows to some nonproblematic UV fixed
point (corresponding to some very special potential) and
that the dimension of the corresponding critical surface is
finite. A Lagrangian with this potential would then provide
a UV completion of our theory.
In this context it is interesting to remark that, since the

gauge coupling is known to flow to zero value in the UV
(asymptotic freedom), and such coupling in our scheme is
on the same footing with e.g. the parameter g describing
the strength of gravity modifications, it is possible that g
flows to zero in the UV as well. However, it is not hard to
see that this corresponds to the defining potential Vð�Þ
flowing toward the one of the topological BF theory.
Thus, at least prior to any concrete analysis, it seems that
the sought UV completion may be given by the topological
BF theory, something that in the past has been suggested in
the literature in other contexts. All in all, the absence of the
usual ‘‘finite number of counterterms’’ renormalizability of
our theory may not be a problem as the theory may
possibly be renormalizable in the sense of Weinberg [32]
as containing all possible counterterms; see also [33] for a
more modern exposition of the notion of ‘‘effective
renormalizability.’’
To summarize, there are many open problems of our

scenario, notably questions of whether a realistic grand
unification is possible, whether fermions can be described
in the same framework, and whether the expectation of
effective renormalizability is realized. However, it appears
to us that in spite of all the open problems the scenario
described already suggests some very interesting new in-
terpretations and is thus worthy of further exploration.
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APPENDIX: REALITY CONDITIONS FOR
MODIFIED GRAVITY

The correct reality conditions for the full modified grav-
ity theory can be worked out from the condition Bi ^
ðBjÞ� ¼ 0. In linearized theory this becomes
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�a ^ ðbbÞ� ¼ ��b ^ ba; or

�a��ðbb��Þ� þ ��b��ba�� ¼ 0;
(A1)

where ðbaÞ� is the complex conjugate two-form perturba-

tion and �� is given by (67). We now rewrite this reality
condition using the space plus time split. We get

i ðtab � ðtbaÞ�Þ þ 2ðbab0 þ ðbba0Þ�Þ ¼ 0: (A2)

To get this condition we have used ��a
bc ¼ 	abc,

��a
0b ¼ i�a

b

and recalled the definition (99) of the configurational vari-
able. We should now analyze this condition together with
the already known solution (115) and (114) for the com-
ponents bab0.

Let us first consider the trace and antisymmetric parts of
(A2). Then in the trace-free symmetric gauge for tab these
conditions simply state that the lapse and shift functions N
and Na are real. This explains why the factor of i was
introduced in (115) in front of the lapse.

Consider now the symmetric trace-free part of (A2). The
corresponding components of bab0 are known from (114),

and we arrive at the following condition on the phase space
variables:

1

2g
Reð	efða@e�bÞ

f Þtf ¼ ImðtabÞtf: (A3)

In the case g ! 1 that corresponds to GR this implies that
ðtabÞtf is real, but in the modified case the situation is more

interesting.
In addition to (A3), there is another condition that is

obtained by requiring that (A3) is preserved under the
evolution. Thus, we need to compute the Poisson bracket of
(A3) with the Hamiltonian and impose the resulting con-
dition as well. The computation is a bit technical, but at this
phase space level there is no way to avoid it. Indeed, even
in the case of GR it is clear from the form of the
Hamiltonian (116) that the relevant condition cannot be
that the momentum is real, for the Hamiltonian would be
complex due to the presence of the second term in the
second line. The computation of the Poisson bracket can be
done as follows. First, we introduce the real and imaginary
parts of the phase space variables:

tab ¼ tab1 þ itab2 ; �ab ¼ �ab
1 þ i�ab

2 : (A4)

Second, we substitute this decomposition into the action
written in the Hamiltonian form. The resulting action has
real and imaginary parts. It is not hard to convince oneself
that any one of these two parts can be used as an action for
the system, the resulting equations are the same due to
Riemann-Cauchy equations that follow from the fact that
the original action was holomorphic. We choose to work
with the real part of the action. The relevant Poisson
brackets are easily seen to be

f�ab
1 ðxÞ; t1cdðyÞg ¼ �ða

c �
bÞ
d �

3ðx� yÞ;
f�ab

2 ; ðxÞt2cdðyÞg ¼ ��ða
c �

bÞ
d �

3ðx� yÞ;
(A5)

with all the other ones being zero. The real part of the
Hamiltonian (with the constraint part already imposed and
dropped) reads:

H real ¼ 1

2
ð�ab

1 Þ2 � 1

2
ð�ab

2 Þ2 � 	efa@e�bf
1 tab2

� 	efa@e�bf
2 tab1 þ 1

2g
ð@a�bc

1 Þ2 � 1

2g
ð@a�bc

2 Þ2:

We can now compute the Poisson bracket with the reality
condition (A3) that becomes

1

2g
	efa@e�

fb
1 ¼ tab2 : (A6)

The Poisson bracket with the left-hand side is�
H real;

1

2g
	efa@e�bf

1

�
¼ � 1

2g
��ab

2 : (A7)

The Poisson bracket with the right-hand side is

fH real; tab2 g ¼ �ab
2 þ 	efa@etbf1 � 1

g
��ab

2 : (A8)

Thus, the sought condition that guarantees the consistency
of (A6) is

�ab
2 þ 	efa@etbf1 � 1

2g
��ab

2 ¼ 0: (A9)

We now need to solve this for �ab
2 , which gives

�ab
2 ¼ � 	efa@etbf1

1� �=2g
; (A10)

where the denominator should be understood as a formal
power series in powers of �=g. When g ! 1, we repro-
duce the GR result reviewed in the beginning of this
subsection.
We now have to substitute this, as well as the expression

(A6) for tab2 into the action. This is a simple exercise with
the result being

Sreal ¼
Z

dtd3x

�
�ab

GR@0t
ab
GR � 1

2
ðð�ab

GRÞ2 þ ð@atbcGRÞ2Þ
�
;

(A11)

where we have defined

�ab
GR ¼ �ab

1 ; tabGR ¼ tab1
1� �=2g

: (A12)

These are the phase space variables in terms of which the
Hamiltonian takes the standard GR form. This shows how
an explicitly real formulation with a positive definite
Hamiltonian can be obtained. We also see that for any
finite value of g the graviton is unmodified.
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