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We compute in linearized gravity all the contributions to the gravitational effective action due to a

virtual Dirac fermion, related to the conformal anomaly. This requires, in perturbation theory, the

identification of the gauge-gauge-graviton vertex off mass shell, involving the correlator of the energy-

momentum tensor and two vector currents (TJJ), which is responsible for the generation of the gauge

contributions to the conformal anomaly in gravity. We also present the anomalous effective action

expanded in the inverse mass of the fermion as in the Euler-Heisenberg case.
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I. INTRODUCTION

Investigations of conformal anomalies in gravity (see [1]
for an historical overview and references) [2] and in gauge
theories [3–5] as well as in string theory, have been of
remarkable significance along the years. In cosmology, for
instance [6], (see also [7] for an overview) the study of the
gravitational trace anomaly has been performed in an
attempt to solve the problem of the ‘‘graceful exit’’ (see
for instance [8–11]). In other analysis it has been pointed
out that the conformal anomaly may prevent the future
singularity occurrence in various dark energy models
[12,13].

In the past the analysis of the formal structure of the
effective action for gravity in four dimensions, obtained by
integration of the trace anomaly [14,15], has received a
special attention, showing that the variational solution of
the anomaly equation, which is nonlocal, can be made
local by the introduction of extra scalar fields. The gauge
contributions to these anomalies are identified at 1-loop
level from a set of diagrams—involving fermion loops with
two external gauge lines and one graviton line—and are
characterized, as shown recently by Giannotti and Mottola
in [16], by the presence of anomaly poles. Anomaly poles
are familiar from the study of the chiral anomaly in gauge
theories and describe the nonlocal structure of the effective
action. In the case of global anomalies, as in QCD chiral
dynamics, they signal the presence of a nonperturbative
phase of the fundamental theory, with composite degrees
of freedom (pions) which offer an equivalent description of
the fundamental Lagrangian, matching the anomaly, in
agreement with ’t Hooft’s principle. Previous studies of
the role of the conformal anomaly in cosmology concern-
ing the production of massless gauge particles and the
identification of the infrared anomaly pole are those of

Dolgov [17,18], while a discussion of the infrared pole
from a dispersive derivation is contained in [19].
In a related work [20] we have shown that anomaly poles

are typical of the perturbative description of the chiral
anomaly not just in some special kinematical conditions,
for instance in the collinear region, where the coupling of
the anomalous gauge current to two (on shell) vector
currents (for the AVV diagram) involves a pseudoscalar
intermediate state (with a collinear and massless fermion-
antifermion pair) but under any kinematical conditions.
They are the most direct—and probably also the most
significant—manifestation of the anomaly in the perturba-
tive diagrammatic expansion of the effective action. On a
more speculative side, the interpretation of the pole in
terms of composite degrees of freedom could probably
have direct physical implications, including the condensa-
tion of the composite fields, very much like Bose Einstein
(BE) condensation of the pion field, under the action of
gravity. Interestingly, in a recent paper, Sikivie and Yang
have pointed out that Peccei-Quinn axions (PQ) may form
BE condensates [21]. With these motivations in mind, in
this work, which parallels a previous investigation of the
chiral gauge anomaly [20], we study the perturbative struc-
ture of the off-shell effective action showing the appear-
ance of similar singularities under general kinematic
conditions. Our investigation is a first step towards the
computation of the exact effective action describing the
coupling of the standard model to gravity via the conformal
anomaly, that we hope to discuss in the future.
In our study we follow closely the work of [16]. There

the authors have presented a complete off-shell classifica-
tion of the invariant amplitudes of the relevant correlator
responsible for the conformal anomaly, which involves the
energy-momentum tensor (T) and two vector currents (J),
TJJ, and have thoroughly investigated it in the QED case,
drawing on the analogy with the case of the chiral anomaly.
The analysis of [16] is based on the use of dispersion
relations, which are sufficient to identify the anomaly poles
of the amplitude from the spectral density of this correlator,
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but not to characterize completely the off-shell effective
action of the theory and the remaining nonconformal con-
tributions, which will be discussed in this paper. The poles
that we extract from the complete effective action include
both the usual poles derived from the spectral analysis of
the diagrams, which are coupled in the infrared (IR) and
other extra poles which account for the anomaly but are
decoupled in the same limit. These extra poles appear
under general kinematic configurations and are typical of
the off-shell as well as of the on-shell effective action, both
for massive and massless fermions.

We also show, in agreement with that analysis, that the
pole terms which contribute to the conformal anomaly are
indeed only obtained in the on-shell limit of the external
gauge lines, and identify all the mass corrections to the
correlator in the general case. This analysis is obtained by
working out all the relevant kinematical limits of the
perturbative corrections. We present the complete anoma-
lous off-shell effective action describing the interaction of
gravity with the photons, written in a form in which we
separate the nonlocal contribution due to the anomaly pole
from the rest of the action (those which are conformally
invariant in the massless fermion limit). Away from the
conformal limit of the theory we present a 1=m expansion
of the effective action as in the Euler-Heisenberg approach.
This expansion, naturally, does not convey the presence of
nonlocalities in the effective action due to the appearance
of massless poles.

The computation of similar diagrams, for the on-shell
photon case, appears in older contributions by Berends and
Gastmans [22] using dimensional regularization, in their
study of the gravitational scattering of photons and by
Milton using Schwinger’s methods [23]. The presence of
an anomaly pole in the amplitude has not been investigated
nor noticed in these previous analysis, since it does not
appear explicitly in their results, nor the 1=m expansion of
the three form factors of the on-shell vertex, contained in
[22], allows its identification in the S-matrix elements of
the theory. Two related analysis by Drummond and
Hathrell in their investigation of the gravitational contri-
bution to the self-energy of the photon [24] and the renor-
malization of the trace anomaly [25] included the same on-
shell vertex. Later, this same vertex has provided the
ground for several elaborations concerning a possible
superluminal behavior of the photon in the presence of
an external gravitational field [26].

II. THE CONFORMAL ANOMALYAND GRAVITY

In this section we briefly summarize some basic and well
known aspects of the trace anomaly in quantum gravity
and, in particular, the identification of the nonlocal action
whose variation generates a given trace anomaly.

We recall that the gravitational trace anomaly in 4 space-
time dimensions generated by quantum effects in a classi-
cal gravitational and electromagnetic background is given

by the expression

T�
� ¼ � 1

8

�
2bC2 þ 2b0

�
E� 2

3
hR

�
þ 2cF2

�
; (1)

where b, b0 and c are parameters that for a single fermion in
the theory result b ¼ 1=320�2, b0 ¼ �11=5760�2, and
c ¼ �e2=24�2; furthermore C2 denotes the Weyl tensor
squared and E is the Euler density given by

C2 ¼ C����C
���� ¼ R����R

���� � 2R��R
�� þ R2

3
(2)

E ¼ �R����
�R���� ¼ R����R

���� � 4R��R
�� þ R2:

(3)

The effective action is identified by solving the follow-
ing variational equation by inspection

� 2ffiffiffi
g
p g��

��

�g��

¼ T
�
�: (4)

Its solution is well known and is given by the nonlocal
expression

Sanom½g; A� ¼ 1

8

Z
d4x

ffiffiffiffiffiffiffi�gp Z
d4x0

ffiffiffiffiffiffiffiffiffi
�g0

q �
E� 2

3
hR

�
x

�G4ðx; x0Þ
�
2bC2 þ b0

�
E� 2

3
hR

�

þ 2cF��F
��

�
x0
: (5)

Notice that we are omitting
ffiffiffi
g
p

R2 terms which are not

necessary at one-loop level. The notation G4ðx; x0Þ denotes
the Green’s function of the differential operator defined by

�4 � r�

�
r�r� þ 2R�� � 2

3
Rg��

�
r�

¼ h2 þ 2R��r�r� þ 1

3
ðr�RÞr� � 2

3
Rh (6)

and requires some boundary conditions to be specified.
This operator is conformally covariant, in fact under a
rescaling of the metric one can show that

g�� ¼ e� �g�� ! �4 ¼ e�2� ��4: (7)

Notice that the general solution of (4) involves, in princi-
ple, also a conformally invariant part that is not identified
by this method. As in Ref. [16], we concentrate on the
contribution proportional to F2 and perform an expansion
of this term for a weak gravitational field and drop from
this action all the terms which are at least quadratic in the
deviation of the metric from flat space

g�� ¼ ��� þ 	h�� 	2 ¼ 16�G; (8)

with G the gravitational constant. The nonlocal action
reduces to

ARMILLIS, CORIANÒ, AND DELLE ROSE PHYSICAL REVIEW D 81, 085001 (2010)

085001-2



Sanom½g; A� ¼ � c

6

Z
d4x

ffiffiffiffiffiffiffi�gp Z
d4x0

ffiffiffiffiffiffiffiffiffi
�g0

q
Rð1Þx h�1x;x0

� ½F
�F

��x0 ; (9)

valid for a weak gravitational field. In this case

Rð1Þx � @x�@
x
�h

�� �hh; h ¼ ���h
��: (10)

The presence of the Green’s function of the h operator in
Eq. (9) is the clear indication that the solution of the
anomaly equation is characterized by an anomaly pole.
In the next sections we are going to perform a direct
diagrammatic computation of this action and reobtain
from it the pole contribution identified in the dispersive
analysis of [16] and the conformal invariant extra terms
which are not present in (9). We start with an analysis of
the correlator following an approach which is close to that
followed in Ref. [16]. The crucial point of the derivation
presented in that work is the imposition of the Ward
identity for the TJJ correlator [see Eq. (42) below] which
allows to eliminate all the Schwinger (gradients) terms
which otherwise plague any derivation based on the ca-
nonical formalism and are generated by the equal-time
commutator of the energy-momentum tensor with the vec-
tor currents. In reality, this approach can be bypassed by
just imposing at a diagrammatic level the validity of an
operatorial relation for the trace anomaly, evaluated at a
nonzero momentum transfer, together with the conserva-
tion of the vector currents on the other two vector vertices
of the correlator.

III. THE CONSTRUCTION OF THE FULL
AMPLITUDE �����ðp; qÞ

We consider the standard QED Lagrangian

L ¼ � 1

4
F��F

�� þ i �c��ð@� � ieA�Þc �m �c c ;

(11)

with the energy-momentum tensor split into the free fer-
mionic part Tf, the interacting fermion-photon part Tfp and

the photon contribution Tph which are given by

T��
f ¼ �i �c�ð�@

$�Þ
c þ g��ði �c��@

$
�c �m �c c Þ; (12)

T��
fp ¼ �eJð�A�Þ þ eg��J�A�; (13)

and

T��
ph ¼ F��F�

� �
1

4
g��F��F��; (14)

where the current is defined as

J�ðxÞ ¼ �c ðxÞ��c ðxÞ: (15)

In the coupling to gravity of the total energy-momentum
tensor

T�� � T��
f þ T��

fp þ T��
ph (16)

we keep terms linear in the gravitational field, of the form
h��T

��, and we have introduced some standard notation

for the symmetrization of the tensor indices and left-right

derivatives Hð��Þ � ðH��þH��Þ=2 and @
$
� � ð ~@� �

@
 
�Þ=2. It is also convenient to introduce a partial energy-

momentum tensor Tp, corresponding to the sum of the

Dirac and interaction terms

T
��
p � T

��
f þ T

��
fp (17)

which satisfies the inhomogeneous equation

@�T
��
p ¼ �@�T��

ph : (18)

Using the equations of motion for the e.m. field @�F
�� ¼

J�, the inhomogeneous equation becomes

@�T
��
p ¼ F��J�: (19)

There are twoways to identify the contributions of T�� and
T��
p in the perturbative expansion of the effective action. In

the formalism of the background fields, the TpJJ correlator

can be extracted from the defining functional integral

hT��
p ðzÞiA �

Z
DcD �cT��

p ðzÞei
R

d4xLþ
R

J�AðxÞd4x

¼ hT��
p ei

R
d4xJ�AðxÞi (20)

expanded through second order in the external field A. The
relevant terms in this expansion are explicitly given by

hT��
p ðzÞiA ¼ 1

2!
hT��

f ðzÞðJ � AÞðJ � AÞi þ hT��
fp ðJ � AÞi

þ . . . ; (21)

with ðJ � AÞ � R
d4xJ � AðxÞ. The corresponding diagrams

are extracted via two functional derivatives respect to the
background field A� and are given by

���
�ðz; x; yÞ � �2hT��
p ðzÞiA

�A
ðxÞ�A�ðyÞ
��������A¼0

¼ V��
� þW��
�

(22)

V��
� ¼ ðieÞ2hT��
f ðzÞJ
ðxÞJ�ðyÞiA¼0 (23)

W��
� ¼ �2hT��
fp ðzÞðJ � AÞi

�A
ðxÞ�A�ðyÞ
��������A¼0

¼ �4ðx� zÞg
ð���Þ�ðz; yÞ
þ �4ðy� zÞg�ð���Þ
ðz; xÞ
� g��½�4ðx� zÞ � �4ðy� zÞ��
�ðx; yÞ: (24)

These two contributions are of Oðe2Þ. Alternatively, one
can directly compute the matrix element

M ��¼h0jT��
p ðzÞ

Z
d4wd4w0J �AðwÞJ �Aðw0Þj��i;

(25)
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which generates the diagrams (b) and (c) shown in Fig. 1,
respectively, called the ‘‘triangle’’ and the ‘‘t-p-bubble’’
(‘‘t-’’ stays for tensor), together with the two ones obtained
for the exchange of p with q and 
 with �.

The conformal anomaly appears in the perturbative ex-
pansion of Tp and involves these four diagrams. The

electromagnetic contribution is responsible for other two
diagrams whose invariant amplitudes are well-defined and
will be used to fix the ill-defined amplitudes present in the
tensor expansion of T

��
p by using a Ward identity.

The lowest order contribution is obtained, in the back-
ground field formalism, fromMaxwell’s e.m. tensor, and is
given by

S��
� ¼ �2hT��
ph ðzÞi

�A
ðxÞ�A�ðyÞ
��������A¼0

: (26)

Equivalently, it can be obtained from the matrix element

h0jT��
ph j��i (27)

which allows to identify the vertex in momentum space.
Using (26) we easily obtain

S��
�ðz;x;yÞ¼2g
�@ð��xz@�Þ�yz�2g�ð�@�Þ�xz@
�yz

�2g
ð�@�Þ�yz@��xzþg
�g��@��yz@
��xz

þg
�g��@��yz@
��xzþg��@��xz@
�yz

�@��yz@��xzg
�g��; (28)

where @��xz � @=@x��ðx� zÞ and so on. In momentum

space this lowest order vertex is given by

S��
� ¼ ðp�q�þp�q�Þg
�þp � qðg
�g��þ g
�g��Þ
� g��ðp � qg
�� q
p�Þ � ðg��p�þ g��p�Þq

� ðg
�q�þ g
�q�Þp�: (29)

The corresponding vertices which appear, respectively,
in the triangle diagram and on the t-bubble at Oðe2Þ are
given by

V 0��ðk1; k2Þ ¼ 1

4
½��ðk1 þ k2Þ� þ ��ðk1 þ k2Þ��

� 1

2
g��½��ðk1 þ k2Þ� � 2m�; (30)

W 0��
 ¼ � 1

2
ð��g�
 þ ��g�
Þ þ g���
; (31)

where k1ðk2Þ is outcoming (incoming). Using the two
vertices V 0��ðk1; k2Þ andW 0��
 we obtain for the diagrams
(b) and (c) of Fig. 1

V��
�ðp; qÞ ¼ �ð�ieÞ2i3
Z d4l

ð2�Þ4
trfV 0��ðlþ p; l� qÞðl6 � q6 þmÞ��ðl6 þmÞ�
ðl6 þ p6 þmÞg

½l2 �m2�½ðl� qÞ2 �m2�½ðlþ pÞ2 �m2� ; (32)

and

W��
�ðp; qÞ ¼ �ðie2Þi2
Z d4l

ð2�Þ4

� trfW 0��
ðl6 þmÞ��ðl6 � q6 þmÞg
½l2 �m2�½ðl� qÞ2 �m2� ;

(33)

so that the one-loop amplitude in Fig. 1 results

���
�ðp; qÞ ¼ V��
�ðp; qÞ þ V���
ðq; pÞ
þW��
�ðp; qÞ þW���
ðq; pÞ: (34)

The bare Ward identity which allows to define the diver-
gent amplitudes that contribute to the anomaly in � in
terms of the remaining finite ones is obtained by reexpress-

=

(a)

k

p

q

(b)

p + l

l − q

l

q

p

k

+ exch.

(c)

l l − q

k p

q

++ exch.

FIG. 1. The complete one-loop vertex (a) given by the sum of the 1PI contributions called V��
�ðp; qÞ (b) and W��
�ðp; qÞ (c).
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ing the classical equation

@�T
��
ph ¼ �F��J� (35)

as an equation of generating functionals in the background
electromagnetic field

@�hT��
ph iA ¼ �F��hJ�iA; (36)

which can be expanded perturbatively as

@�hT��
ph iA ¼ �F��

�
J�

Z
d4wðieÞJ � AðwÞ

�
þ
. . . : (37)

Notice that we have omitted the first term in the Dyson’s
series of hJ�iA, shown on the right-hand side (rhs)of (37)
since hJ�i ¼ 0. The bare Ward identity then takes the form

@��
��
� ¼ �2ðF��ðzÞhJ�ðzÞiAÞ

�A
ðxÞ�A�ðyÞ
��������A¼0

(38)

which takes contribution only from the first term on the rhs
of Eq. (37). This relation can be written in momentum
space. For this we use the definition of the vacuum polar-
ization

�
�ðx; yÞ � �ie2hJ
ðxÞJ�ðyÞi; (39)

or

�
�ðpÞ ¼ �i2ð�ieÞ2
Z d4l

ð2�Þ4

� trf�
ðl6 þmÞ��ðl6 þ p6 þmÞg
½l2 �m2�½ðlþ pÞ2 �m2�

¼ ðp2g
� � p
p�Þ�ðp2; m2Þ (40)

with

�ðp2; m2Þ ¼ e2

36�2p2
½6A0ðm2Þ þ p2 � 6m2

� 3B0ðp2; m2Þð2m2 þ p2Þ�; (41)

which obviously satisfies the Ward identity p
�

�ðpÞ ¼

0. The expressions of the A0 and B0 contributions are
given in Appendix A.

Using these definitions, the unrenormalized Ward iden-
tity which allows to completely characterize the form of

the correlator in momentum space becomes

k��
��
�ðp; qÞ ¼ ðq�p
p� � q�g
�p2 þ g��q
p2

� g��p
p � qÞ�ðp2Þ
þ ðp�q
q� � p�g
�q2 þ g�
p�q2

� g�
q�p � qÞ�ðq2Þ: (42)

A. Tensor expansion and invariant amplitudes of �

The full one-loop amplitude � can be expanded on the
basis provided by the 43 monomial tensors listed in Table I

���
�ðp; qÞ ¼X43
i¼1

Aiðk2; p2; q2Þl��
�
i ðp; qÞ: (43)

Since the amplitude ���
�ðp; qÞ has total mass dimension
equal to 2 it is obvious that not all the coefficients Ai are
convergent. They can be divided into 3 groups:
(1) A1 � Ai � A16—multiplied by a product of four

momenta, they have mass dimension �2 and there-
fore are UV finite;

(2) A17 � Ai � A19—these have mass dimension 2
since the four Lorentz indices of the amplitude are
carried by two metric tensors

(3) A20 � Ai � A43—they appear next to a metric ten-
sor and two momenta, have mass dimension 0 and
are divergent.

The way in which the 43 invariant amplitudes in Eq. (43)
will be managed in order to reduce them to the 13 ones
named Fiðk2; p2; q2Þ is the subject of this section. The
reduction is accomplished in 4 different steps and has as
a guiding principle the elimination of the divergent ampli-
tudes Ai in terms of the convergent ones after imposing
some conditions on the whole amplitude. We require
(a) the symmetry in the two indices � and � of the

symmetric energy-momentum tensor T��;
(b) the conservation of the two vector currents on p


and q�;
(c) the Ward identity on the vertex with the incoming

momentum k defined above in Eq. (42).
Condition (a) becomes

���
�ðp; qÞ ¼ ���
�ðp; qÞ; (44)

TABLE I. The 43 tensor monomials named l
��
�
i ðp; qÞ in Eq. (43) built up from the metric tensor and the two independent momenta

p and q into which a general fourth rank tensor can be expanded.

p�p�p
p� p�p�p
q� p�p�q
q� p�q�q
p� p�q�q
q� g��g
�

q�q�q
q� p�p�q
p� p�q�p
q� q�p�q
p� q�p�q
q� g
�g��

p�q�p
p� q�p�p
q� q�q�p
p� q�q�p
q� g
�g��

q�p�p
p� q�q�q
p�

p�p�g
� p�p�g
� p�p�g
� p
p�g�� p�p
g�� p
p�g��

p�q�g
� p�q�g
� p�q�g
� p
q�g�� p�q
g�� p
q�g��

q�p�g
� q�p�g
� q�p�g
� q
p�g�� q�p
g�� q
p�g��

q�q�g
� q�q�g
� q�q�g
� q
q�g�� q�q
g�� q
q�g��
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giving a linear system of 43 equations; 15 of them being
identically satisfied because the tensorial structures are
already symmetric in the exchange of � and �, while the
remaining 14 conditions are

A5 ¼ A6; A8 ¼ A9; A10 ¼ A11;

A13 ¼ A14; A18 ¼ A19; A21 ¼ A22;

A24 ¼ A28; A25 ¼ A29; A26 ¼ A30;

A27 ¼ A31; A32 ¼ A36; A34 ¼ A37;

A33 ¼ A38; A35 ¼ A39;

(45)

where all Ai are thought as functions of the invariants k2,
p2, q2. After substituting (45) into ���
�ðp; qÞ the 43
invariant tensors of the decomposition are multiplied by
only 29 invariant amplitudes. Condition (b), which is vec-
tor current conservation on the two vertices with indices 

and �, allows to reexpress some divergent Ai in terms of
other finite ones. The constraint

p
�
��
�ðp; qÞ ¼ q��

��
�ðp; qÞ ¼ 0 (46)

generates two sets of 14 independent tensor structures
each, so that in order to fulfill (46) each coefficient is
separately set to vanish. The first Ward identity leads to a
linear system composed of 10 equations

p
�
��
�ðp; qÞ ¼ 0

)

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

A19 þ A36p � pþ A37p � q ¼ 0;
A38p � pþ A39p � q ¼ 0;
A17 þ A40p � pþ A42p � q ¼ 0;
A41p � pþ A43p � q ¼ 0;
A20 þ 2A28 þ A1p � pþ A4p � q ¼ 0;
2A30 þ A3p � pþ A7p � q ¼ 0;
A22 þ A29 þ A6p � pþ A11p � q ¼ 0;
A31 þ A9p � pþ A14p � q ¼ 0;
A23 þ A12p � pþ A16p � q ¼ 0;
A15p � pþ A2p � q ¼ 0;

(47)

we choose to solve it for the set
fA15; A17; A19; A23; A28; A29; A30; A31; A39; A43g in which
only the first one is convergent and the others are UV
divergent. The set cannot contain indeed only divergent
amplitudes, since last equation in the system in Eq. (47)
involves two Ai, named A15 and A2, which are both con-
vergent. So one of them has to be included in the set.
Following our choice the result is

A15 ¼ �A2

p � q
p � p ; A17 ¼ �A40p � p� A42p � q;

(48)

A19 ¼ �A36p � p� A37p � q;
A23 ¼ �A12p � p� A16p � q;

(49)

A28 ¼ 1

2
½�A20 � A1p � p� A4p � q�;

A29 ¼ �A22 � A6p � p� A11p � q;
(50)

A30 ¼ � 1

2
½A3p � pþ A7p � q�;

A31 ¼ �A9p � p� A14p � q;
(51)

A39 ¼ �A38

p � p
p � q ; A43 ¼ �A41

p � p
p � q : (52)

In an analogous way we go on with the second Ward
identity (WI) after replacing the solution of the previous
system in the original amplitude. The new one is indicated

by �
��
�
b ðp; qÞ, where the subscript b is there to indicate

that we have applied condition (b) on �. The constraint
gives

q��
��
�
b ðp; qÞ ¼ 0

)

8>>>>>>><
>>>>>>>:

A40p � qþ A41q � q ¼ 0;
A1p � qþ A3q � q ¼ 0;
A20 þ A4p � qþ A7q � q ¼ 0;
A36 þ A6p � qþ A9q � q ¼ 0;
A22 þ A37 þ A11p � qþ A14q � q ¼ 0;
2A38 þ A12p � q� A2

p�qq�q
p�p ¼ 0:

(53)

We solve these equations determining the amplitudes in the
set fA1; A20; A22; A36; A38; A40g in terms of the remaining
ones, obtaining

A38 ¼ �A12p � pp � q� A2p � qq � q
2p � p ;

A40 ¼ �A41q � q
p � q ;

(54)

A1 ¼ �A3q � q
p � q ; A20 ¼ �A4p � q� A7q � q; (55)

A22 ¼ �A37 � A11p � q� A14q � q;
A36 ¼ �A6p � q� A9q � q:

(56)

The manipulations above have allowed a reduction of the
number of invariant amplitudes from the initial 43 to 13
using the f�;�g symmetry (14 equations), the first WI on
p
 (10 equations) and the second WI on q� (6 equations).

The surviving invariant amplitudes in which the amplitude

�
��
�
c ðp; qÞ can be expanded using the form factors are
fA2; A3; A4; A6; A7; A9; A11; A12; A14; A16; A37; A41; A42g.
This set still contains 3 divergent amplitudes,

ðA37; A41; A42Þ. The amplitude ���
�
c ðp; qÞ is indeed ill-

defined until we impose on it condition (c) written in
Eq. (42) which results in the following system
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� A3½1þ p � p
2p � q� þ A6 þ 1

2
A7 � A9 � A41

p � q ¼ 0; (57)

A37 þ A42 þ A4½p � pþ p � q� þ A11p � qþ 1

2
A7q � qþ A11q � qþ 1

2
A3

p � pq � q
p � q ¼ 0; (58)

1

2
A2

p � qq � q
p � p � A41

p � pþ q � q
p � q � 1

2
A3p � pþ A7ðp � pþ 1

2
p � qÞ þ A6p � q

þ A12ð12p � qþ q � qÞ þ A14ðp � qþ 2q � qÞ þ 2A37 ��ðp2Þ ��ðq2Þ ¼ 0: (59)

The system can be solved for A37, A41 and A42

A37 ¼ �A2

4

p � qq � q
p � p þ 1

4
A3p � p� 1

4
A7ð2p � pþ p � qÞ

þ 1

2
A41

�
p � pþ q � q

p � q
�
� 1

2
A6p � q

� 1

4
A12ðp � qþ 2q � qÞ � 1

2
A14ðp � qþ 2q � qÞ

þ 1

2
½�ðp2Þ þ�ðq2Þ� (60)

A41 ¼ �A3

2
p � p� ðA3 � A6 � A7 þ A9Þp � q (61)

A42 ¼ A3

2
p � p

�
p � p
p � q þ 1� q � q

p � q
�

þ 1

2
A7ðp � pþ p � q� q � qÞ � A4ðp � pþ p � qÞ

� ðA6 � A9Þp � pþ ðA14 � A11Þðq � qþ p � qÞ:
(62)

After these steps we end up with an expression for �
written in terms of only 10 invariant amplitudes, that are
X � fA2; A3; A4; A6; A7; A9; A11; A12; A14; A16g, signifi-
cantly reduced respect to the original 43. Further reduc-
tions are possible (down to 8 independent invariant
amplitudes), however, since these reductions just add to
the complexity of the related tensor structures, it is conve-
nient to select an appropriate set of reducible (but finite)
components characterized by a simpler tensor structure and
present the result in that form. The 13 amplitudes intro-
duced in the final decomposition are, in this respect, a good
choice since the corresponding tensor structures are rather
simple. These tensors are combinations of the 43 mono-
mials listed in Table I.

The set X is very useful for the actual computation of
the tensor integrals and for the study of their reduction to
scalar form. To compare with the previous study of
Giannotti and Mottola [16] we have mapped the computa-
tion of the components of the setX into their structures Fi

(i ¼ 1; 2; . . . ; 13). Also in this case, the truly independent
amplitudes are 8. One can extract, out of the 13 reducible

amplitudes, a consistent subset of 8 invariant amplitudes.
The remaining amplitudes in the 13 tensor structures are, in
principle, obtainable from this subset.

B. Reorganization of the amplitude

Before obtaining the mapping between the amplitudes in
X and the structures Fi, we briefly describe the tensor
decomposition introduced in [16] which defines these 13
structures. We define the rank-2 tensors

u
�ðp; qÞ � ðp � qÞg
� � q
p�; (63)

w
�ðp; qÞ � p2q2g
� þ ðp � qÞp
q� � q2p
p�

� p2q
q�; (64)

which are Bose symmetric,

u
�ðp; qÞ ¼ u�
ðq; pÞ; (65)

w
�ðp; qÞ ¼ w�
ðq; pÞ; (66)

and conserve vector current,

p
u

�ðp; qÞ ¼ q�u


�ðp; qÞ ¼ 0; (67)

p
w

�ðp; qÞ ¼ q�w


�ðp; qÞ ¼ 0: (68)

These two tensors are used to build the set of 13 tensors
catalogued in Table II. They are linearly independent for
generic k2, p2, q2 different from zero. Five of the 13
tensors are Bose symmetric, namely,

t
��
�
i ðp; qÞ ¼ t

���

i ðq; pÞ; i ¼ 1; 2; 7; 8; 13; (69)

while the remaining eight tensors form four pairs which are
overall related by Bose symmetry

t��
�
3 ðp; qÞ ¼ t���


5 ðq; pÞ; (70)

t��
�
4 ðp; qÞ ¼ t���


6 ðq; pÞ; (71)

t��
�
9 ðp; qÞ ¼ t���


10 ðq; pÞ; (72)

t��
�
11 ðp; qÞ ¼ t���


12 ðq; pÞ: (73)
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The amplitude in (34) can be expanded in this basis com-
posed as

���
�ðp; qÞ ¼X13
i¼1

Fiðs; s1; s2; m2Þt��
�
i ðp; qÞ; (74)

where the invariant amplitudes Fi are functions of the
kinematical invariants s ¼ k2 ¼ ðpþ qÞ2, s1 ¼ p2, s2 ¼
q2 and of the internal mass m. In [16] the authors use the
Feynman parametrization and momentum shifts in order to
identify the expressions of these amplitudes in terms of
parametric integrals, which was the approach followed also
by Rosenberg in his original identification of the 6 invari-
ant amplitudes of the AVVanomaly diagram. If we choose
to reorganize all the monomials into the simpler set of 13
tensor groups shown in Table II, then we need to map the Ai

included in the 
 set into the Fi (i ¼ 1; . . . ; 13). The
mapping is given by

F1 ¼ 1

3k2

�
A4ð4p � qþ 3p � pÞ þ 2A11ðp � qþ 2q � qÞ

þ 2A6p � pþ 2A7q � q� 2A14q � q
� A16q � qþ 2A3

p � pq � q
p � q

�
; (75)

F2 ¼ 1

3k2

�
�2A3

�
p � p
p � q þ 2

�
þ 4A6 þ A7 � 2A9 � A12

�
;

(76)

F3 ¼ 1

12k2

�
A4ð2p � qþ 3q � qÞ � 2A11ðp � qþ 2q � qÞ

� 2A6p � p� 2A7q � qþ 2A14q � q
þ A16q � q� 2A3

p � pq � q
p � q

�
(77)

F4 ¼ A7

4p � pþ
1

12k2

�
2A3

�
p � p
p � q þ 2

�
� 4A6

� A7 þ 2A9 þ A12

�
(78)

F5 ¼ A16

4
þ 1

12k2

�
�2A6p � p� 2A3

q � qp � p
p � q

þ A4ð�3p � p� 4p � qÞ � 2A11ðp � qþ 2q � qÞ
� 2A7q � qþ 2A14q � qþ A16q � q

�
; (79)

F6 ¼ A12

4q � qþ
1

12k2

�
�4A6 � A7 þ 2A9 þ A12

þ 2A3

�
p � p
p � q þ 2

��
; (80)

F7 ¼ A11

2
þ 1

p � q2
�
A9q � qp � pþ A6

2
p � pp � q

þ A14

2
q � qp � q

�
þ 1

6k2

�
A4ð�4p � q� 3p � pÞ

� 2A11ðp � qþ 2q � qÞ � 2A6p � p� 2A7q � q
þ 2A14q � qþ A16q � q� 2A3

p � pq � q
p � q

�
; (81)

F8 ¼ 1

6k2

�
2A3

�
p � p
p � q þ 2

�
� 3

A9

p � q ðp � pþ q � qÞ

� 4A6 � A7 � 4A9 þ A12

�
(82)

F9 ¼ A6

p � qþ A9

q � q
p � q2 ; (83)

F10 ¼ A9

p � p
p � q2 þ

A14

p � q ; (84)

TABLE II. Basis of 13 fourth rank tensors satisfying the vector current conservation on the external lines with momenta p and q.

i t
��
�
i ðp; qÞ

1 ðk2g�� � k�k�Þu
�ðp � qÞ
2 ðk2g�� � k�k�Þw
�ðp � qÞ
3 ðp2g�� � 4p�p�Þu
�ðp � qÞ
4 ðp2g�� � 4p�p�Þw
�ðp � qÞ
5 ðq2g�� � 4q�q�Þu
�ðp � qÞ
6 ðq2g�� � 4q�q�Þw
�ðp � qÞ
7 ½p � qg�� � 2ðq�p� þ p�q�Þ�u
�ðp � qÞ
8 ½p � qg�� � 2ðq�p� þ p�q�Þ�w
�ðp � qÞ
9 ðp � qp
 � p2q
Þ½p�ðq�p� þ p�q�Þ � p � qðg��p� þ g��p�Þ�
10 ðp � qq� � q2p�Þ½q
ðq�p� þ p�q�Þ � p � qðg
�q� þ g
�q�Þ�
11 ðp � qp
 � p2q
Þ½2q�q�q� � q2ðg��q� þ g��q�Þ�
12 ðp � qq� � q2p�Þ½2p
p�p� � p2ðg
�p� þ g
�p�Þ�
13 ðp�q� þ p�q�Þg
� þ p � qðg
�g�� þ g
�g��Þ � g��u
� � ðg��p� þ g��p�Þq
 � ðg
�q� þ g
�q�Þp�
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F11 ¼ A12

2q � q�
A2

2p � p ; (85)

F12 ¼ A3

2p � qþ
A7

2p � p ; (86)

F13 ¼ 1

2
A6ðp �pþp � q� q � qÞ

þ 1

4
A7ðp �pþp � q� q � qÞ þA2p � qq � q

4p �p
þA14

�
p � q
2
þ q � q

�
þ 1

4
A12ðp � qþ 2q � qÞ

þ A3

4p � q ðp �p
2þ ðp � qþ q � qÞp �pþ 2p � qq � qÞ

þ 1

2
A9

�
q � qþp �p

�
2q � q
p � q þ 1

��

� 1

2
½�ðpÞ þ�ðqÞ�: (87)

We have shown how to obtain the 13 Fi’s, starting from our
derivation of the one-loop full amplitude ���
�ðp; qÞ lead-
ing to the ten invariant amplitudes of the set X. Since we
know the analytical expression of the Ai involved, we can
go one step further and give all the Fi’ s in their analytical
form in the most general kinematical configuration.

IV. TRACE CONDITION IN THE
NONCONFORMAL CASE

Similarly to the chiral case, we can fix the correlator by
requiring the validity of a trace condition on the amplitude,
besides the two Ward identities on the conserved vector

currents and the Bose symmetry in their indices. This
approach is alternative to the imposition of the Ward
identity (42) but nevertheless equivalent to it. At a dia-
grammatic level we obtain

g���
��
�ðp; qÞ ¼ �
�ðp; qÞ � e2

6�2
u
�ðp; qÞ: (88)

We comment below on this equation, in relation to the
scales present in the perturbative expansion of the correla-
tor, which are, besides the fermion mass m, the energy at
which we probe the correlator (s) and the subtraction point
after renormalization (� or M). We have also defined

�
�ðp; qÞ ¼ �mðieÞ2
Z

d4xd4yeip�xþiq�yh �c c J
ðxÞJ�ðyÞi

¼ �me2
Z d4l

ð2�Þ4 tr

	
i

l6 þ p6 �m
�
 i

l6 �m

� �� i

l6 � q6 �m



þ exch: (89)

A direct computation gives

�
�ðp; qÞ ¼ G1ðs; s1; s2; m2Þu
�ðp; qÞ
þG2ðs; s1; s2; m2Þw
�ðp; qÞ; (90)

with

3sF1ðs; s1; s2; m2Þ ¼ G1ðs; s1; s2; m2Þ � e2

6�2
(91)

3sF2ðs; s1; s2; m2Þ ¼ G2ðs; s1; s2; m2Þ (92)

and

G1ðs; s1; s2; m2Þ ¼ e2�m2

�2�
þ e2D2ðs; s2; m2Þs2m2

�2�2
½s2 þ 4s1s� 2s2s� 5s21 þ s22 þ 4s1s2�

� e2D1ðs; s1; m2Þs1m2

�2�2
½�ðs� s1Þ2 þ 5s22 � 4ðsþ s1Þs2� � e2C0ðs; s1; s2; m2Þ

�
�

m2�

2�2�2
½ðs� s1Þ3 � s32 þ ð3sþ s1Þs22 þ ð�3s2 � 10s1sþ s21Þs2� �

2m4�

�2�

�
; (93)

G2ðs; s1; s2; m2Þ ¼ � 2e2m2

�2�
� 2e2D2ðs; s2; m2Þm2

�2�2
½ðs� s1Þ2 � 2s22 þ ðsþ s1Þs2�

� 2e2D1ðs; s1; m2Þm2

�2�2
½s2 þ ðs1 � 2s2Þs� 2s21 þ s22 þ s1s2� � e2C0ðs; s1; s2; m2Þ

�
�
4m4

�2�
þ m2

�2�2
½s3 � ðs1 þ s2Þs2 � ðs21 � 6s2s1 þ s22Þsþ ðs1 � s2Þ2ðs1 þ s2Þ�

�
; (94)

where � � s� s1 � s2, � � s2 � 2ðs1 þ s2Þsþ ðs1 � s2Þ2 and the scalar integrals D1ðs; s1; m2Þ, D2ðs; s1; m2Þ,
C0ðs; s1; s2; m2Þ for generic virtualities and masses are defined in Appendix A. We have checked that the final expressions
of the form factors in the most general case, obtained either by imposing the trace condition on the whole amplitude in
Eq. (88) or the Ward identity in the form given by Eq. (42) exactly coincide. In Appendix B we discuss this equivalence in
the simpler case of a massless fermion in the loop.
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V. THE OFF-SHELL MASSIVE hTJJi
CORRELATOR

To obtain the explicit expression of the parametric in-
tegrals which describe the form factors, we follow an
approach similar to that of [20], for the case of the chiral
gauge anomaly. These have been obtained by recomputing
the anomaly diagrams by dimensional reduction together
with the tensor-to-scalar decomposition of the Feynman
amplitudes. For instance, in [20] we have given the explicit
expressions of the parametric integrals of Rosenberg using
this trick. The correctness of the result can be checked
numerically by comparing the parametric forms to the
explicit computation. In this case the procedure is identi-
cal, though the computations are very involved. By com-
paring the two approaches we extract, indirectly, an
explicit expression of the parametric forms of these inte-
grals, introduced in [16]. We have checked that indeed
there is perfect numerical agreement between our compu-
tation and the parametric result, as discussed in
Appendix C.

We introduce in this section the main results of our
computation which will be used in the next sections for
further analysis. The complete expressions of the form
factors Fi (i ¼ 1; . . . ; 13) in the massive and then in the
massless case are contained in Appendix D and E respec-
tively, whereas the master integrals are collected in
Appendix A. In both cases the virtualities of the external
lines are generic and denoted by s1, s2. After presenting the
complete expressions, we discuss several kinematical lim-
its of the result, in particular, the on-shell limit for the two
vector lines (s1 ! 0, s2 ! 0) in order to better understand
the structure of the whole correlator. The appearance of
generalized anomaly poles in the correlator and their IR
decoupling under the most general conditions will be dis-
cussed thoroughly.

Notice that F13 contains two vacuum polarization dia-
grams with the two photon momenta which are divergent
and we are bond to define a suitable renormalization of the
2-point function which will affect the running of the cou-
pling. In the next section we will address the explicit
relation between renormalization schemes and running of
the coupling in the context of the renormalization of the
correlator.

A. Anomaly poles and their UV/IR significance

There are close similarities between the effective action
in the case of the chiral gauge anomaly and the conformal
case, due to the presence of massless poles. In [20] we have
analyzed the fact that in the chiral case the anomaly is
entirely generated by the longitudinal component wL,
which is indeed isolated for any configuration of the pho-
ton momenta. This is somehow unexpected since the dis-
persive analysis shows that the pole in wL is coupled only
under a specific kinematic condition, and is usually inter-
preted as an infrared effect. Nevertheless there is a com-

plete equivalence between the representation of the
anomaly diagram in the Rosenberg representation—where
the pole is not extracted as an independent component—
and the L/T representation in which the pole is isolated
under any kinematical configuration (and even in the mas-
sive case). This is apparent from the broken anomalous
Ward identities satisfied by the AVV diagram where the
mass corrections and the anomaly term can be separately
identified [20].
To illustrate the emergence of a similar behavior in the

case of the conformal anomaly, it is sufficient to notice in
the expression of the massive F1 given in Eq. (D1) the
presence of the isolated contribution (F1pole �
�e2=ð18�2sÞ) which only accounts for the massless F1

in Eq. (E1). This component, indeed, is responsible for the
trace anomaly also in the massive case, even though there
appear extra corrections with mass-dependent terms.
Obviously also in this case, which is generic from the
kinematical point of view, one can clearly show that the
pole does not couple in the infrared if we compute the
residue of the entire amplitude. The anomaly pole, in fact,
appears in the spectral function only in a special kinematic
configuration, i.e. when the fermion-antifermion pair of the
anomaly diagram is collinear. However both in the case of
the AVV diagram and in the conformal case, as evident
from the expression of F1, it reappears as an extra contri-
bution and is responsible for the trace anomaly. It is rather
easy to show the pole dominance of the anomaly away
from the conformal point (massive case) at high energy,
since the non anomalous terms present in F1 and F2 are
subleading at large s. We are entitled to separate the pole
contribution, which describes the nonlocal contribution to
the trace anomaly, from the rest, and rewrite the F1 form
factor and effective action, respectively, as

F1 ¼ F1pole þ ~F1 (95)

and

S ¼ Spole þ ~S: (96)

The reminder (S) includes all the remaining contributions
coming from the several form factors of the expansion,
while the pole part gives

S pole ¼ � e2

36�2

Z
d4xd4yðhhðxÞ

� @�@�h
��ðxÞÞh�1xy F
�ðxÞF
�ðyÞ: (97)

As we have just mentioned, it is not difficult to show that
the anomaly pole in F1, in the general kinematical case
(e.g. for off-shell photons and a massive fermion in the
loop) decouples in the infrared (i.e. its residue vanishes)
while it remains coupled in the massless on-shell limit. In
other configurations (for any of the two photons off-shell)
is also decoupled. This behavior is in perfect analogy with
the chiral case [20].
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B. Massive and massless contributions to anomalous
Ward identities and the trace anomaly

Anomalous effects are associated with massless fermi-
ons, and for this reason, when we analyze the contribution
to the anomaly for a massive correlator, we need to justify
the distinction between massless and massive contribu-
tions. The latter contribute to the anomalous Ward identity,
in our approach, via terms of Oðm2=s2Þ, where s ¼ k2 is
the virtuality of the graviton vertex. At nonzero momentum
transfer (k � 0) the second term on the right-hand side of
Eq. (88) is interpreted as an anomalous contribution, pro-
portional to an asymptotic � function (�as) of the theory,
coming from the residue of the anomaly pole which ap-
pears in the form factor F1. While the appearance of the
asymptotic � function of the theory (which coincides with

the � function of the MS scheme) is expected at large s,
where all the remaining scales of the theory ðs1; s2; mÞ can
be dropped, corrections to the asymptotic description in the
ultraviolet (UV) are expected. At the same time, in the far
infrared (IR) region, below the fermion mass, the anoma-
lous contribution should approach zero in a certain fashion,
which will be specified below.

A complete quantitative understanding of this point for a
general kinematics (e.g. for s � 0) remains, in a way, an
open issue, but much more can be said for the simpler case
of zero momentum transfer, where a consistent pattern of
separation between massless and massive contributions to
the correlator emerge in the UV region. In this case the
virtuality of the two photons and the fermion mass m (plus
a renormalization scale � or M) are the scales which
appear in the renormalized perturbative expansion.
Related analysis have been presented in [16,27] and our
conclusions do not differ from these previous investiga-
tions. We summarize the main points.

Respect to the case of the chiral anomaly, the trace
anomaly is connected with the regularization procedure
involved in the computation of the diagrams. In our analy-
sis we have used dimensional regularization (DR) and we
have imposed conservation of the vector currents, the
symmetry requirements on the correlator and the conser-
vation of the energy-momentum tensor. As we move from
4 to d spacetime dimensions (before that we renormalize
the theory), the anomaly pole term appears quite naturally
in the expression of the correlator. This is not surprising,
since QED in d � 4 dimensions is not even classically
conformal invariant and the trace of the energy-momentum
tensor in the classical theory involves both a F2 term (�
ðd� 4ÞF2) beside, for a massive correlator, a �c c contri-
bution. Let us summarize the basic features concerning the
renormalization property of the correlator as they emerge
from our direct computation.

1) The anomalous Ward identity obtained by tracing the
correlator (���
�) with g�� involves only the F1 and F2

form factors in the massive case; in the massless case the
scale breaking appears uniquely due to F1 via the term

e3=ð12�2Þu
�ðp; qÞ, as pointed out before. The finiteness
of the two form factors involved in the trace of the corre-
lator is indeed evident. 2) The residue of the pole term
(e3=ð12�2Þ) in F1 is affected by the renormalization of the
entire correlator (the form factor F13 is the only one
requiring renormalization) only by the redefinition of the
bare coupling (e2) in terms of the renormalized coupling
(e2R) through the renormalization factor Z3. At this point,
the interpretation of the residue at the pole as a contribution
proportional to the � function of the theory is, in a way,
ambiguous [28], since the � function is related to a given
renormalization scheme. We stress once more that Eq. (88)
does not involve a renormalization scheme—which at this
point has not yet been defined—but just a regularization.
We have regulated the infinities of the theory but we have
not specified a subtraction of the infinities. For this reason,
the substitution

ðe3=ð12�2ÞÞ ! 2�asðeÞ=e (98)

which attributes the mass-independent term in F1 to a
specific � function, the asymptotic one (�as), as we are
going to elaborate below, requires some clarification.
To fully appreciate this point, it is convenient to go back

to the unrenormalized Ward identity (42) and differentiate
it with respect to the momentum q and then set p ¼ �q
(k ¼ 0) by going to zero momentum transfer. One obtains
the derivative Ward identity

g���
��
�ðp;�pÞ ¼ 2p2 d�

dp2
ðp2Þðp2g
� � p
p�Þ:

(99)

The appearance of the derivative of the scalar self-energy
of the photon on the right-had side of the previous equation
is particularly illuminating, since it allows to relate this
expression to a particular� function of the theory, which is
not the asymptotic �as considered in Eq. (98). This �
function is useful for describing the IR running of the
coupling.
To illustrate this point we start from the expression of the

scalar amplitude appearing in the photon self-energy in DR

�ðp2; mÞ ¼ e2

2�2

�
1

6�
� �

6
�

Z 1

0
dxxð1� xÞ

� log
m2 � p2xð1� xÞ

4��2

�
(100)

whose renormalization at zero momentum gives

�Rðp2; mÞ ¼ �ðp2; mÞ ��ð0; mÞ

¼ � e2

2�2

Z 1

0
xð1� xÞ logm

2 � p2xð1� xÞ
m2

:

(101)
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Using this expression, we can easily compute

2p2 d�

dp2
¼ 2p2 d�R

dp2

¼ � e2

6�2
þ e2m2

�2

Z 1

0
dx

xð1� xÞ
m2 � p2xð1� xÞ :

(102)

Notice that this result does not depend on the renormaliza-
tion scheme due to the presence of the derivative respect to
p2. Notice also that the � function of the theory evaluated
in the zero momentum subtraction scheme is exactly given
by the right-hand side of the previous expression

2p2 d�R

dp2
¼ ��ðe2; p2Þ

e2
; (103)

(where �ðe2; p2Þ ¼ 2e�ðe; p2Þ), but this result does not
hold, generically, in any scheme. The identification of
anomalous (massless) effects in the theory, as exemplified
by these simpler Ward identity, should then be obtained by
extracting the appropriate � function of the theory, whose
running should be driven by the effective massless degrees
of freedoms (fermions, in our case) at the relevant obser-
vation scale (p2).

Clearly, in the case of Eq. (103) all the mass contribu-
tions have been absorbed into the very definition of the �
function. Notice that if p2 	 m2 this � function, after a
rearrangement gives

� �ðe2; p2Þ
e2

¼ e2

�2

Z 1

0
dx

p2x2ð1� xÞ2
m2 � p2xð1� xÞ (104)

and therefore it vanishes as ��Oðp2=m2Þ for p2 ! 0.
Equivalently, by taking the m! 1 limit we recover the
expected decoupling of the fermion (due to a vanishing �)
since we are probing the correlator at a scale (p2) which is
not sufficient to resolve the contribution of the fermion
loop. On the contrary, as p2 ! 1, with m fixed, the run-
ning of the � function is the usual asymptotic one
�asðe2Þ � e4=ð6�2Þ modified by corrections Oðm2=p2Þ.
The UV limit is characterized by the same running typical
of the massless case, as expected.

Notice that the right-hand side of Eq. (99), as we have
already remarked, does not depend on the renormalization
scheme, while the � function does and Eq. (103) should be
understood as a definition. For this reason, �ðe2; p2Þ cor-
rectly describes the IR running of the coupling as p2 	
m2, and in this case it is obvious that massless anomalous
effects of scale breaking are not present in this specific
limit.

In the case of regularization scheme different from zero
momentum subtraction, there are some differences which
should be taken into consideration. For instance, in a mass-
dependent scheme one subtracts the value of the graph at a
Euclidean momentum point p2 ¼ �M2, redefining the
scalar self-energy as

�Rðp2; m;MÞ ¼ �ðp2; mÞ ��ðp2 ¼ �M2; mÞ

¼ e3

2�2

�Z 1

0
dxxð1� xÞ

� log
m2 � p2xð1� xÞ
m2 þM2xð1� xÞ

�
(105)

which gives, respect to the previous (M ¼ 0) scheme, a �
function now of the form

�ðeÞ ¼ � e

2
M

d

dM

e2

2�2

Z 1

0
dxxð1� xÞ

� log
m2 � p2xð1� xÞ
m2 þM2xð1� xÞ

¼ e3

2�2

Z 1

0
dxxð1� xÞ M2xð1� xÞ

m2 þM2xð1� xÞ : (106)

For large values of M, this � function describes the usual
UV running since

�ðeÞ � e3

2�2

Z 1

0
dxxð1� xÞ ¼ �ðeÞas ¼ e3

12�2
: (107)

In this second scheme, the (regularization independent)
right-hand side of Eq. (99) can be interpreted as due to
an anomalous contribution coming from the pole plus some
explicit mass corrections, as obvious from the first and
second term of (102). We conclude with some consider-
ations on a third (mass-independent) scheme.

In the MS scheme, the renormalization of the photon
self-energy is performed via the subtraction

�Rðp2; m;�Þ ¼ �ðp2; m;�Þ � e2

12�2

�
1

�
þ �� log4�

�
(108)

which gives directly an asymptotic � function since

�ðeÞ ¼ e

2
�

d

d�
�Rðp2; m;�Þ

¼ e3

2�2

Z 1

0
dxxð1� xÞ ¼ e3

12�2
: (109)

It is clear, from these considerations, that a judicious
definition of the � function allows a correct interpretation

of the right-hand side of (96) and (99). In the MS scheme,
the breaking of scale invariance can be attributed to a UV
running of the coupling (for p2 
 m2) plus mass correc-
tions which are suppressed asOðm2=p2Þ. Notice that in this
case the renormalization scale (�2) should be Oðp2Þ, since
we should not allow large logarithms to be present in the
perturbative expansion. In this sense, the extrapolation of

theMS result to p2 ��2 	 m2 should be forbidden by the
same criterion, since large logs of the relevant scales
( logðm=�Þ) would otherwise be generated. In the far in-
frared region p2 	 m2 the use of the same � function is
indeed not appropriate, since the same scheme does not
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correctly describe the decoupling of the anomaly, which
instead should occur, since there is no massless fermion in
the theory.

To conclude this discussion we just mention that theMS
scheme can be used, obviously, both to describe the far IR
and the far UV regions of the theory, with the condition that
we are bound to choose a vanishing� function at p2 	 m2

and an asymptotic one for p2 
 m2 and assuring continu-
ity of the gauge coupling across the fermion mass scale
though the �-function is discontinuous. This is the stan-

dard procedure followed in theMS scheme as, for instance,
in QCD factorization, improved with the inclusion of
threshold effects at the crossing scales (see for instance
[29,30]) where the number of massless flavors change.

C. The off-shell massless hTJJi correlator
Clearly, as we perform the massless limit on the ampli-

tude, the residue of the same anomaly pole—identified
above in the contribution F1pole—is still present, but will

now be decoupled in the infrared.
In the massless case the scalar functions Fi depend only

on the kinematic invariants s, s1, s2 but we still retain the
last entry of these functions and set it equal to 0 for clarity,
using the notation Fi � Fiðs; s1; s2; 0Þ. These new func-
tions are computed starting from the massive ones and
letting m! 0 and A0ðm2Þ ! 0, i.e. eliminating all the
massless tadpoles generated in the zero fermion mass limit.

The off-shell massless invariant amplitudes
Fiðs; s1; s2; 0Þ are here given in terms of a new set of master
integrals listed in Appendix A. We give here only the
simplest invariant amplitudes, leaving the remaining ones
to the Appendix E. The anomaly pole is clearly present in
F1, which is given by

F1ðs; s1; s2; 0Þ ¼ � e2

18�2s
; (110)

while

F2ðs; s1; s2; 0Þ ¼ 0: (111)

The complete hTJJi correlator is very complicated in this

case as the long expressions of the form factors show, but a
deeper analysis of its poles by computing the residue in
s ¼ 0 can be useful to draw some conclusions. The single
pieces of ���
�ðs; s1; s2; 0Þ indeed contribute as

lim
s!0

sF1ðs; s1; s2; 0Þt��
�
1 ¼ � e2

18�2
t��
�
1 js¼0; (112)

lim
s!0

sF3ðs; s1; s2; 0Þt��
�
3 ¼ e2

72�2
t��
�
3 js¼0; (113)

lim
s!0

sF5ðs; s1; s2; 0Þt��
�
5 ¼ e2

72�2
t
��
�
5 js¼0; (114)

lim
s!0

sF7ðs; s1; s2; 0Þt��
�
7 ¼ e2

36�2
t
��
�
7 js¼0; (115)

while F2 is absent in the massless case. The residues of the
Fiðs; s1; s2; 0Þ not included in the equation above are all
vanishing. Combining the results given above one can
easily check that the entire correlator is completely free
from anomaly poles as

lim
s!0

s���
�ðs; s1; s2; 0Þ ¼ 0 (116)

in this rather general configuration. A similar result holds
for the correlator responsible for the chiral anomaly and
shows the decoupling of polar contributions in the infrared.

D. The on-shell massive hTJJi correlator
A particular case of the hTJJi correlator is represented

by its on-shell version with a massive fermion in the loop.
If we contract u
�ðp; qÞ and w
�ðp; qÞ with the polariza-
tion tensors �
ðpÞ and ��ðqÞ requiring �
ðpÞp
 ¼ 0,

��ðpÞp� ¼ 0 , the first tensor u
�ðp; qÞ remains un-

changed while w
�ðp; qÞ becomes ~w
�ðp; qÞ ¼ s1s2g

�.

This will be carefully taken into account when computing
the s1 ! 0, s2 ! 0 limit of the product of the invariant

amplitudes Fi with their corresponding tensors t��
�
i (i ¼

1; . . . ; 13). The invariant amplitudes reported below de-

scribe Fiðs; 0; 0; m2Þ whose tensors t��
�
i are also finite

and nonvanishing. They are

F1ðs; 0; 0;m2Þ ¼ � e2

18�2s
þ e2m2

3�2s2
� e2m2

3�2s
C0ðs; 0; 0; m2Þ

�
1

2
� 2m2

s

�
; (117)

F3ðs; 0; 0;m2Þ ¼ � e2

144�2s
� e2m2

12�2s2
� e2m2

4�2s2
Dðs; 0; 0; m2Þ � e2m2

6�2s
C0ðs; 0; 0; m2Þ

�
1

2
þm2

s

�
; (118)

F5ðs; 0; 0;m2Þ ¼ F3ðs; 0; 0;m2Þ; (119)

F7ðs; 0; 0;m2Þ ¼ �4F3ðs; 0; 0;m2Þ (120)

F13Rðs; 0; 0;m2Þ ¼ 11e2

144�2
þ e2m2

4�2s
þ e2C0ðs; 0; 0; m2Þ

�
m4

2�2s
þ m2

4�2

�
þ e2Dðs; 0; 0; m2Þ

�
5m2

12�2s
þ 1

12

�
: (121)
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where the on-shell scalar integrals Dðs; 0; 0; m2Þ and
C0ðs; 0; 0; m2Þ are computed in Appendix A; here F13R

denotes the renormalized amplitude, obtained by first re-
moving the UV pole present in the photon self-energy by
the usual renormalization of the photon wave function
and then taking the on-shell limit. The remaining
invariant amplitudes Fiðs; 0; 0; m2Þ are zero or multiply
vanishing tensors in this kinematical configuration so
they do not contribute to the correlator. The limit from
the massive on-shell form factors to the massless ones is
clearer by looking at the series expansion of the scalar
integrals around m ¼ 0

C0ðs; 0; 0; m2Þ ¼ 1

2s

�
log

�
� s

m2

��
2 � 2m2

s2
log

�
� s

m2

�

þOðm3Þ (122)

and from this we obtain for F01

F01ðs; 0; 0; m2Þ ¼ e2m2

3�2s2

	
1� 1

4

�
log

�
� s

m2

��
2


; (123)

where the notation F01 denotes the first form factor after the
subtraction of the pole in 1=s.

Using the results given above, the full massive on-shell
amplitude is given by

���
�ðs; 0; 0; m2Þ ¼ F1ðs; 0; 0; m2Þ~t��
�
1 þ F3ðs; 0; 0; m2Þ

� ð~t��
�
3 þ ~t

��
�
5 � 4~t

��
�
7 Þ

þ F13;Rðs; 0; 0; m2Þ~t��
�
13 ; (124)

so that the invariant amplitudes reduce from 13 to 3 and the
three linear combinations of the tensors can be taken as a
new basis

~t ��
�
1 ¼ lim

s1;s2!0
t��
�
1 ¼ ðsg�� � k�k�Þu
�ðp; qÞ (125)

~t��
�
3 þ~t��
�

5 � 4~t��
�
7 ¼ lim

s1;s2!0
ðt��
�
3 þ t��
�

5 � 4t��
�
7 Þ

¼�2u
�ðp;qÞðsg��þ 2ðp�p�

þq�q�Þ� 4ðp�q�þq�p�ÞÞ
(126)

~t
��
�
13 ¼ lim

s1;s2!0
t
��
�
13

¼ ðp�q� þ p�q�Þg
� þ s

2
ðg
�g�� þ g
�g��Þ

� g��

�
s

2
g
� � q
p�

�
� ðg��p� þ g��p�Þq


� ðg
�q� þ g
�q�Þp�; (127)

as previously done in the literature [22]. If we extract the
residue of the full amplitude we realize that even though
some functions Fiðs; 0; 0; m2Þ have kinematical singular-
ities in 1=s this polar structure is no longer present in the

complete massive correlator

lim
s!0

s���
� ¼ 0 (128)

showing that in the massive case the hTJJi correlator
exhibits no poles. In a following section we will comment
on the interpretation of these massless poles exploiting the
analogy with a similar situation encountered in the case of
the gauge anomaly.

VI. THE GENERAL EFFECTIVE ACTION AND ITS
VARIOUS LIMITS

In this section we present results for the correlator in
various kinematical limits. We start from its expression in
the on-shell massive case and then perform its expansion in
1=m which will be used in a next section to extract the
corresponding effective action. As a final step we show the
on-shell structure of the invariant amplitudes in the con-
formal limit.
It is possible to identify from them the structure of the

effective action in its most general form. If we denote by Si

the contribution to the effective action due to each form
factor Fi, then we can write it in the form

Si ¼
Z

d4xd4yd4zt̂
��
�
i ðz; x; yÞh��ðzÞA
ðxÞA�ðyÞ

�
Z d4pd4q

ð2�Þ8 e�ip�ðx�zÞ�iq�ðy�zÞFiðk; p; qÞ (129)

where k � pþ q. We have introduced the operatorial

version of the tensor structures t��
�
i , denoted by t̂i that

will be characterized below. Defining

p̂ 

x � i

@

@x

; q̂
y � i

@

@y

; k̂
z � �i @

@z

(130)

and using the identity

F̂ iðk̂z; p̂x; q̂yÞ�4ðx� zÞ�4ðy� zÞ

¼
Z d4pd4q

ð2�Þ8 e�ip�ðx�zÞ�iq�ðy�zÞFiðk; p; qÞ (131)

where formally F̂i is the operatorial version of Fi, we can
arrange the anomalous effective action also in the form

Si ¼
Z

d4xd4yd4zF̂iðk̂z; p̂x; q̂yÞ½�4ðx� zÞ

� �4ðy� zÞ�t̂��
�
i ðz; x; yÞh��A
ðxÞA�ðyÞ: (132)

For instance we get

t̂
��
�
1 ðz; x; yÞh��A
ðxÞA�ðyÞ

¼ 1

2
ðhzhðzÞ � @z�@

z
�h

��ðzÞÞF
�ðxÞF
�ðyÞ; (133)
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t̂ ��
�
2 ðz; x; yÞh��A
ðxÞA�ðyÞ
¼ ðhzhðzÞ � @z�@

z
�h

��ðzÞÞ@�F�
� ðxÞ@�F��ðyÞ; (134)

t̂
��
�
3 ðz; x; yÞh��A
ðxÞA�ðyÞ

¼ 1

2
h��ðzÞðhxg�� � 4@x�@

x
�ÞF
�ðxÞF
�ðyÞ; (135)

t̂
��
�
4 ðz; x; yÞh��A
ðxÞA�ðyÞ
¼ h��ðzÞðhxg�� � 4@x�@

x
�Þ@�F�

� ðxÞ@�F��ðyÞ; (136)

t̂ ��
�
5 ðz; x; yÞh��A
ðxÞA�ðyÞ

¼ 1

2
h��ðzÞðhyg�� � 4@y�@

y
�ÞF
�ðxÞF
�ðyÞ; (137)

t̂ ��
�
6 ðz; x; yÞh��A
ðxÞA�ðyÞ
¼ h��ðzÞðhyg�� � 4@y�@

y
�Þ@�F�

� ðxÞ@�F��ðyÞ; (138)

t̂
��
�
7 ðz; x; yÞh��A
ðxÞA�ðyÞ

¼ 1

2
h��ðzÞð@x�@y�g�� � 2ð@y�@x�
þ @y�@x�ÞÞF
�ðxÞF
�ðyÞ; (139)

t̂ ��
�
8 ðz; x; yÞh��A
ðxÞA�ðyÞ
¼ h��ðzÞð@x�@y�g�� � 2ð@y�@x�
þ @y�@x�ÞÞ@�F�

� ðxÞ@�F��ðyÞ (140)

and similar expressions for the remaining tensor structures.
However, the most useful forms of the effective action
involve an expansion in the fermions mass, as in the 1=m
formulation (the Euler-Heisenberg form) or for smallm. In
this second case the nonlocal contributions obtained from
the anomaly poles appear separated from the massive
terms, showing the full-fledged implications of the anom-
aly. This second formulation allows a smooth massless
limit, where the breaking of the conformal anomaly is
entirely due to the massless fermion loops.

In the 1=m case, for on-shell gauge bosons, the result
turns out to be particularly simple. We obtain

F1ðs; 0; 0; m2Þ ¼ 7e2

2160�2

1

m2
þ e2s

3024�2

1

m4
þO

�
1

m6

�
;

(141)

F3ðs; 0; 0; m2Þ ¼ F5ðs; 0; 0; m2Þ

¼ e2

4320�2

1

m2
þ e2s

60480�2

1

m4
þO

�
1

m6

�
;

(142)

F7ðs; 0; 0; m2Þ ¼ �4F3ðs; 0; 0; m2Þ (143)

F13;Rðs; 0; 0; m2Þ ¼ 11e2s

1440�2

1

m2
þ 11e2s2

20160�2

1

m4
þO

�
1

m6

�
;

(144)

which can be rearranged in terms of three independent
tensor structures. Going to configuration space, the line-
arized expression of the contribution to the gravitational
effective action due to the TJJ vertex, in this case, can be
easily obtained in the form

STJJ ¼
Z

d4xd4yd4z���
�ðx; y; zÞA
ðxÞA�ðyÞh��ðzÞ

¼ 7e2

4320�2m2

Z
d4xðhh� @�@�h��ÞF2

� e2

4320�2m2

Z
d4xðhhF2 � 8@�F
�@�F
�h��

þ 4ð@�@�F
�ÞF
�h��Þ

þ 11e2

1440�2m2

Z
d4xT��

ph hh��: (145)

which shows three independent contributions linear in the
(weak) gravitational field.

VII. THE MASSLESS (ON-SHELL) hTJJi
CORRELATOR

The nonlocal structure of the effective action, as we have
pointed out in the previous sections, is not apparent within
an expansion in 1=m, nor this expansion has a smooth
match with the massless case.
The computation of the correlator ���
�ðs; 0; 0; 0Þ hides

some subtleties in the massless fermion limit (with on-shell
external photons), as the form factors Fi and the tensorial
structures ti both contain the kinematical invariants s1, s2.
For this reason the limit of both factors (form factor and

corresponding tensor structure) Fit
��
�
i has to be taken

carefully, starting from the expression of the massless
Fiðs; s1; s2; 0Þ listed in Appendix E and from the tensors

t
��
�
i contracted with the physical polarization tensors. In
this case only few form factors survive and in particular

F1ðs; 0; 0; 0Þ ¼ � e2

18�2s
; (146)

F3ðs; 0; 0; 0Þ ¼ F5ðs; 0; 0; 0Þ ¼ � e2

144�2s
; (147)

F7ðs; 0; 0; 0Þ ¼ �4F3ðs; 0; 0; 0Þ; (148)

F13;Rðs; 0; 0; 0Þ ¼ � e2

144�2

�
12 log

�
� s

�2

�
� 35

�
;

(149)

and hence the whole correlator with two on-shell photons
on the external lines is
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���
�ðs; 0; 0; 0Þ ¼ F1ðs; 0; 0; 0Þ~t��
�
1 þ F3ðs; 0; 0; 0Þ

� ð~t��
�
3 þ ~t

��
�
5 � 4~t

��
�
7 Þ

þ F13;R~t
��
�
13

¼ � e2

48�2s
½ð2p�q
 � sg
�Þð2p�p�

þ 2q�q� � sg��Þ� þ F13;R~t
��
�
13 ;

(150)

where ~t��
�
i are the tensors defined in Eqs. (125)–(127).

The study of the singularities in 1=s for this correlator
requires a different analysis for F1 and the remaining form
factors, as explicitly shown in Eq. (150), whereF1 has been
kept aside from the others, even if it is proportional to F3.
Indeed F1 is the only form factor multiplying a nonzero

trace tensor, ~t
��
�
1 , and responsible for the trace anomaly.

If we take the residue of the on-shell correlator for physical
polarizations of the photons in the final state we see how
the 4 form factors and their tensors combine in such a way
that the result is different from zero as

lim
s!0

s���
�ðs; 0; 0; 0Þ ¼ � e2

12�2
p�q
ðp�p� þ q�q�Þ;

(151)

where clearly each singular part in 1=s present in F1, F3,
F5, F7 added up and the logarithmic behavior in s of F13

has been regulated by the factor s in front when taking the
limit. The result shows that the pole, in this case, is coupled
in the IR, as shown by the dispersive analysis.

VII. CONCLUSIONS

We have presented a computation of the TJJ correlator,
responsible for the appearance of gauge contributions to
the conformal anomaly in the effective action of gravity.
We have used our results to present the general form of the
gauge contributions to this action, in the limit of a weak
gravitational field. One interesting feature of this correlator
is the presence of an anomaly pole [16].

Usually anomaly poles are interpreted as affecting the
infrared region of the correlator and appear only in one
special kinematical configuration, which requires massless
fermions in the loop and on-shell conditions for the exter-
nal gauge lines. In general, however, the anomaly pole
affects the UV region even if it is not coupled in the
infrared. This surprising feature of the anomaly is present
both in the case of the chiral anomaly [20] and in the
conformal anomaly. Here we have extracted explicitly
this behavior by a general analysis of the correlator, ex-
tending our previous study of the chiral gauge anomaly.

Indeed anomaly poles are the most interesting feature, at
perturbative level, of the anomaly, being it conformal or
chiral, and are described by mixed diagrams involving
either a scalar (gravitational case) [16] or a pseudoscalar

(chiral case) [20,31]. The connection between the infrared
and the ultraviolet, signalled by the presence of these
contributions, should not be too surprising in an anomalous
context. The polelike behavior of an anomalous correlator
is usually ‘‘captured’’ by a variational solution of a given
anomaly equation, which implicitly assumes the presence
of a pole term in the integrated functional [32]. By redis-
covering the pole in perturbation theory, obviously, one can
clearly conclude that variational solutions of the anomaly
equations are indeed correct, although they miss homoge-
neous solutions to the Ward identity, that indeed must
necessarily be identified by an off-shell perturbative analy-
sis of the correlators. This is the approach followed here
and in [20].
We have also seen that the identification of the massless

anomaly pole allows to provide a ‘‘mixed’’ formulation of
the effective action in which the pole is isolated from the

remaining mass terms, extracted in the ~Spole part of the

anomalous action, which could be used for further studies.
We have also emphasized that a typical 1=m expansion of
the anomalous effective action fails to convey fully the
presence of scaleless contributions.
There are various applications of our analysis which can

be of interest for further studies. The first concerns the
possible implication of these types of effective actions in
cosmology, especially in inflationary scenarios where the
coupling of gravity to matter via gauge interactions and the
conformal anomaly plays an interesting phenomenological
role. As we have stressed in the introduction, the local
description of an anomalous effective action involves addi-
tional degrees of freedom which can be identified in the
case of the gauge anomaly [31] as well as in the conformal
case [16]. In [16] the authors describe the role of the
corresponding scalar degrees of freedom in the effective
action emphasizing their meaning as possible composite.
In the case of an anomalous gauge theory the derivative
coupling of the anomaly pole to the anomalous gauge
current indicates that its nature is that of a quasi Nambu-
Goldstone mode. If the parallel with chiral theories holds,
one should be able to characterize the physical property of
this state, including its BE condensation under the action
of gravity. Similar features could be shared by the scalar
state(s) described by the conformal anomaly. Of particular
interest are the extensions of these analysis to the case of
supersymmetric theories, in particular, to N ¼ 1 supercon-
formal theories, where the R-current, the supersymmetry
current and the energy-momentum tensor belong to the
same supermultiplet, as are their corresponding anomalies.
Clearly our computation is the first step in this direction,
and can be extended with the inclusion of other types of
fields in the perturbative expansion, reaching, as a starting
point, all the relevant fields of the standard model. In
general, one could also use our approach to come with a
complete description of the interplay between supersym-
metry and the conformal anomaly, acting as a mediator of

ARMILLIS, CORIANÒ, AND DELLE ROSE PHYSICAL REVIEW D 81, 085001 (2010)

085001-16



the gravitational interaction, which is of phenomenological
interest. Finally, we mention that our analysis could be
useful in order to test, in a specific realization, perturbative
results of conformal field theories in four spacetime di-
mensions. These studies of the TJJ correlator have been
performed on rather general grounds, using conformal
invariance as a unique assumption in order to infer the
structure of the operator product expansion [33]. We hope
to return to these points in the near future.
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APPENDIX A: DEFINITIONS AND CONVENTIONS
FOR THE SCALAR INTEGRALS

We collect in this appendix all the scalar integrals in-
volved in this computation. To set all our conventions, we
start with the definition of the one-point function, or mas-
sive tadpole A0ðm2Þ, the massive bubble B0ðs;m2Þ and
the massive three-point function C0ðs; s1; s2; m2Þ

A 0ðm2Þ ¼ 1

i�2

Z
dnl

1

l2 �m2

¼ m2

�
1

��
þ 1� log

�
m2

�2

��
; (A1)

B 0ðk2;m2Þ ¼ 1

i�2

Z
dnl

1

ðl2�m2Þððl� kÞ2�m2Þ

¼ 1

��
þ 2� log

�
m2

�2

�
� a3 log

�
a3þ 1

a3� 1

�
; (A2)

C0ðs; s1; s2; m2Þ
¼ 1

i�2

Z
dnl

1

ðl2 �m2Þððl� qÞ2 �m2Þððlþ pÞ2 �m2Þ

¼ � 1ffiffiffiffi
�
p X3

i¼1

�
Li2

bi � 1

ai þ bi
� Li2

�bi � 1

ai � bi

þ Li2
�bi þ 1

ai � bi
� Li2

bi þ 1

ai þ bi

�
; (A3)

with

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

si

s
bi ¼

�si þ sj þ skffiffiffiffi
�
p ; (A4)

where s3 ¼ s and in the last equation i ¼ 1, 2, 3 and j, k �
i. The one-point and two-point functions written before in
n ¼ 4� 2� dimensions are divergent with the singular
parts given by

A 0ðm2Þsing ! 1

��
m2; B0ðs;m2Þsing ! 1

��
; (A5)

with

1

��
¼ 1

�
� �� ln�: (A6)

We use two finite combinations of scalar functions given
by

B 0ðs;m2Þm2 �A0ðm2Þ ¼ m2

�
1� a3 log

a3 þ 1

a3 � 1

�
;

(A7)

Di �Diðs; si; m2Þ ¼ B0ðs;m2Þ �B0ðsi; m2Þ
¼

�
ai log

ai þ 1

ai � 1
� a3 log

a3 þ 1

a3 � 1

�
i ¼ 1; 2: (A8)

The scalar integrals C0ðs; 0; 0; m2Þ and Dðs; 0; 0; m2Þ are
the fs1 ! 0; s2 ! 0g limits of the generic functions
C0ðs; s1; s2; m2Þ and D1ðs; s1; m2Þ

C 0ðs; 0; 0; m2Þ ¼ 1

2s
log2

a3 þ 1

a3 � 1
; (A9)

D ðs; 0; 0; m2Þ ¼D1ðs; 0; m2Þ ¼D2ðs; 0; m2Þ

¼
�
2� a3 log

a3 þ 1

a3 � 1

�
: (A10)

The master integrals denoted by B0ðs; 0Þ, Diðs; si; 0Þ (i ¼
1, 2) and C0ðs; s1; s2; 0Þ are consistently redefined for m ¼
0 (and s < 0) as

B 0ðs; 0Þ ¼
�
1

��
� log

�
� s

�2

�
þ 2

�
; (A11)

Diðs; si;0Þ ¼B0ðs;0Þ �B0ðsi;0Þ ¼ log

�
si
s

�
; i¼ 1;2

(A12)

C 0ðs; s1; s2; 0Þ ¼ 1

s
�ðx; yÞ; (A13)

where � is the renormalization scale and the function
�ðx; yÞ is defined as [34]

�ðx; yÞ ¼ 1

�

	
2½Li2ð��xÞ þ Li2ð��yÞ� þ ln

y

x
ln
1þ �y

1þ �x

þ lnð�xÞ lnð�yÞ þ �2

3



; (A14)

with

�ðx; yÞ ¼
ffiffiffiffi
�
p

; � ¼ ð1� x� yÞ2 � 4xy; (A15)

�ðx; yÞ ¼ 2ð1� x� yþ �Þ�1; x ¼ s1
s
; y ¼ s2

s
:

(A16)

The singularities in 1= �� and the dependence on the renor-
malization scale� cancel out when taking into account the
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difference of two functions B0, so that the Di’s are well-
defined; the three-point master integral is convergent.

APPENDIX B: ALTERNATIVE CONDITIONS ON
THE CORRELATOR IN THE MASSLESS CASE

As we have mentioned, one can follow an entirely differ-
ent approach in order to fix the expression of the correlator.
This is based on the requirement that the trace anomaly
satisfies a well known operatorial relation which is im-
posed on the matrix elements at nonzero momentum.
Specifically we proceed as follows and illustrate this point
in the massless limit. We impose the value of the trace
anomaly as a defining condition on the whole amplitude, so

that the (new) request c0Þ replacing the (old) cÞ in Sec. III A
will be
c0) the nonzero anomaly trace in the massless limit.

As the first two conditions (a) and (b), respectively, the
f�$ �g symmetry and the vector current conservation,
remain the same as in Sec. III A, we continue illustrating
the modifications due to this approach from this point on.
The third condition is given by

g���
��
�ðp; qÞ ¼ cu
�ðp; qÞ; (B1)

where c is related to the usual QED �-function as c ¼
� 2�

e . The resulting system is

Eq : ðB1Þ )
	
4 A41

p�q� A7 þ 2A9 � A12 ¼ 0;
cþ 4A37 þ 4A42 þ A4p � p� 2A6p � pþ 2A11p � qþ 2A14q � qþ A16q � q ¼ 0;

(B2)

whose solutions for A41 and A37 read as

A41 ¼ p � q
4
ðA7 � 2A9 þ A12Þ (B3)

A37 þ A42 ¼ 1

4
½�c� A4p � pþ 2A6p � p� 2A11p � q
� 2A14q � q� A16q � qÞ�: (B4)

As seen from the last equation, the second solution returns
the sum of two UV divergent amplitudes, A37 and A42.
However, an explicit computation shows that in the map-
ping between the two sets of Ai and Fi these two ampli-
tudes appear in such a way that their divergences cancel.
Therefore, reinserting the expressions of A41 and A37 ex-
tracted from Eq. (B4) into the expression of ���
�ðp; qÞ
one finds another mapping between the form factors Ai and
Fi, as previously done in Eqs. (75)–(87)

F1 ¼ c

3k � k ; (B5)

F2 ¼ 0; (B6)

F3 ¼ A4

4
� c

12k � k ; (B7)

F4 ¼ A7

4p � p ; (B8)

F5 ¼ A16

4
� c

12k � k ; (B9)

F6 ¼ A12

4q � q ; (B10)

F7 ¼ � c

6k � kþ
A11

2
þ ðA9p � pþ A14p � qÞq � q

2p � q2

þ p � pðA6p � qþ A9q � qÞ
2p � q2 ; (B11)

F8 ¼ � A9

2p � q ; (B12)

F9 ¼ A6

p � qþ A9

q � q
p � q2 ; (B13)

F10 ¼ A9

p � p
p � q2 þ

A14

p � q ; (B14)

F11 ¼ A12

2q � q�
A2

2p � p ; (B15)

F12 ¼ A3

2p � qþ
A7

2p � p ; (B16)

F13 ¼ 1

4p � q ½2A11p � q2 þ cp � qþ 4A42p � q
þ A4p � pp � qþ 2A6p � pp � qþ 2A14q � qp � q
þ A16q � qp � qþ 4A9p � pq � q�: (B17)

This new mapping leaves the invariant amplitudes from F9

to F12 the same as before, so the condition c), i.e. the WI
derived from Eq. (36) and c0) are perfectly equivalent in
determining these 4 form factors.

APPENDIX C: COMPARISON WITH THE
PARAMETRIC APPROACH AND NUMERICAL

CHECKS

The parametric approach of [16] allows, by combining
the denominators of the various tensor amplitudes, to give
parametric expressions for the form factors Fi starting
from a set of scalar parametric integrals. Our results cor-
respond to an explicit computation of these integrals. We
will not give each integral separately, since they are rather
lengthy. The mapping between the Fi’s in the parametric
form and our expressions allow to perform numerical
checks of our result. We have perfect agreement between
the parametric forms derived in [16], computed numeri-
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cally, and our explicit expressions in all the euclidean
regions of the external momenta. We briefly clarify this
point.

Explicit formulas for all twelve finite coefficient func-
tions may be given in the Feynman parametrized form,

Cjðk2;p2; q2Þ

¼ e2

4�2

Z 1

0
dx

Z 1�x

0
dy

� cjðx; yÞ
p2xð1� xÞ þ q2yð1� yÞ þ 2xyp � qþm2

; (C1)

where the polynomials ciðx; yÞ for i ¼ 1; . . . ; 12 are listed
in Table III.

F1 ¼ C7 þ C8 þ C9

3
þ p2

3k2
ð�C1 þ C3 þ C8 � C9Þ

þ q2

3k2
ð�C7 þ C8 þ C10 � C12Þ; (C2)

F3 ¼ 2C7 � C8 � C9

12
þ p2

12k2
ðC1 � C3 � C8 þ C9Þ

þ q2

12k2
ðC7 � C8 � C10 þ C12Þ; (C3)

F5 ¼ �C7 � C8 þ 2C9

12
þ p2

12k2
ðC1 � C3 � C8 þ C9Þ

þ q2

12k2
ðC7 � C8 � C10 þ C12Þ; (C4)

F7 ¼ �C7 þ 2C8 � C9

6
þ p2

6k2
ðC1 � C3 � C8 þ C9Þ

þ q2

6k2
ðC7 � C8 � C10 þ C12Þ

þ p2q2

ðp � qÞ2 C5 þ p2C2 þ q2C11

2ðp � qÞ : (C5)

F2 ¼ C1

3q2
þ C12

3p2
þ�C1 þ 2C2 � 2C5 þ 2C11 � C12

3k2
;

(C6)

F4 ¼ � C1

12q2
þ 3C10 � C12

12p2

þ C1 � 2C2 þ 2C5 � 2C11 þ C12

12k2
; (C7)

F6 ¼ �C1 þ 3C3

12q2
� C12

12p2

þ C1 � 2C2 þ 2C5 � 2C11 þ C12

12k2
; (C8)

F8 ¼ � C5

2p � q�
C1

6q2
� C12

6p2

þ C1 � 2C2 þ 2C5 � 2C11 þ C12

6k2
: (C9)

F9 ¼ C2

p � qþ
q2C5

ðp � qÞ2 ; (C10)

F10 ¼ p2C5

ðp � qÞ2 þ
C11

p � q ; (C11)

F11 ¼ C3

2q2
� C12

2p2
; (C12)

F12 ¼ C10

2p2
� C1

2q2
: (C13)

Finally, numerical checks on F13 are performed on the
UV convergent amplitude

TABLE III. The twelve tensors with four free indices (��
�) on p, q used in Ref. [16]) for
the construction of the form factors Fi. At each coefficient functions Cjðk2;p2; q2Þ correspond a

polynomial cj in the Feynman parametrized form, as given in Eq. (C1).

j Cj ¼ coefficient of cjðx; yÞ
1 p�p�p
p� �4x2ð1� xÞð1� 2xÞ
2 ðp�q� þ q�p�Þp
p� �xð1� xÞð1� 4xþ 8xyÞ þ xy
3 q�q�p
p� 2xð1� 2yÞð1� x� yþ 2xyÞ
4 p�p�p
q� �2xð1� xÞð1� 2xÞð1� 2yÞ
5 ðp�q� þ q�p�Þp
q� xð1� xÞð1� 2yÞ2 þ yð1� yÞð1� 2xÞ2
6 q�q�p
q� �2yð1� yÞð1� 2xÞð1� 2yÞ
7 p�p�q
p� 2xyð1� 2xÞ2
8 ðp�q� þ q�p�Þq
p� �2xyð1� 2xÞð1� 2yÞ
9 q�q�q
p� 2xyð1� 2yÞ2
10 p�p�q
q� 2yð1� 2xÞð1� x� yþ 2xyÞ
11 ðp�q� þ q�p�Þq
q� �yð1� yÞð1� 4yþ 8xyÞ þ xy
12 q�q�q
q� �4y2ð1� 2yÞð1� yÞ
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F13¼�Rðp2Þþ�Rðq2Þ
2

þp2q2

p �q C5þp4C4þq4C6

4p �q þp �q
4

�ð2C2þC3þC10þ 2C11Þþp2

4
ð2C2þC4þ 2C5

þC10Þþq2

4
ðC3þ 2C5þC6þ 2C11Þ (C14)

where the scalar two-point functions have been renormal-

ized by the subtraction of the UV 1=� pole.

APPENDIX D: THE MASSIVE INVARIANT
AMPLITUDES

The off-shell massive form factors Fi, with
(i) s � 0 s1 � 0 s2 � 0 m � 0

and with � � s� s1 � s2,��s2�2ðs1þs2Þsþðs1�s2Þ2
are given by1

F1ðs; s1; s2;m2Þ ¼ e2�m2

3�2s�
þ e2D2ðs; s2; m2Þs2½s2 þ 4s1s� 2s2s� 5s21 þ s22 þ 4s1s2�m2

3�2s�2
� e2

18�2s

� e2D1ðs; s1; m2Þs1½�ðs� s1Þ2 þ 5s22 � 4ðsþ s1Þs2�m2

3�2s�2
� e2C0ðs; s1; s2; m2Þ

�
�
m2�½ðs� s1Þ3 � s32 þ ð3sþ s1Þs22 þ ð�3s2 � 10s1sþ s21Þs2�

6�2s�2
� 2m4�

3�2s�

�
; (D1)

F2ðs; s1; s2;m2Þ ¼ � 2e2m2

3�2s�
� 2e2D2ðs; s2; m2Þ½ðs� s1Þ2 � 2s22 þ ðsþ s1Þs2�m2

3�2s�2
� 2e2D1ðs; s1; m2Þm2

3�2s�2

� ½s2 þ ðs1 � 2s2Þs� 2s21 þ s22 þ s1s2� � e2C0ðs; s1; s2; m2Þ

�
�

4m4

3�2s�
þ m2

3�2s�2
½s3 � ðs1 þ s2Þs2 � ðs21 � 6s2s1 þ s22Þsþ ðs1 � s2Þ2ðs1 þ s2Þ�

�
; (D2)

F3ðs;s1;s2;m2Þ ¼ F5ðs;s2;s1;m2Þ

¼� e2

144�2s�3
½s6� 3ðs1� 4s2Þs5þ 6ð3s1� 7s2Þs2s4þ 2ð5s31� 69s2s

2
1þ 117s22s1þ 23s32Þs3

� 3ð5s41� 62s2s
3
1þ 72s22s

2
1þ 50s32s1þ 7s42Þs2þ 3ðs1� s2Þ2ð3s31� 24s2s

2
1� 33s22s1þ 2s32Þs

� 2ðs1� s2Þ6�� e2�m2

6�2s�2
½s2� 2ðs1� 3s2Þsþðs1� s2Þ2�� e2�

12�2s�2
½s2þð5s2� 2s1Þsþðs1� s2Þ2�

� ½B0ðs;m2Þm2�A0ðm2Þ�� e2m2

12�2s�3
D1ðs;s1;m2Þ½ð2sþ s1Þðs� s1Þ4� 12ðsþ s1Þs22ðs� s1Þ2

þ s1ð41sþ 2s1Þs2ðs� s1Þ2�ð6sþ 5s1Þs42þð16s2� 41s1sþ 14s21Þs32��
e2s1

48�2�4
D1ðs;s1;m2Þ

� ½ðs� s1Þ6þ 2ð14sþ 11s1Þs2ðs� s1Þ4�ð23s2� 214s1sþ 19s21Þs22ðs� s1Þ2þ 2� 21s62þð5s1� 2sÞs52
þð107s2� 318s1sþ 71s21Þs42þ 8ð�11s3þ 18s1s

2þ 17s21s� 8s31Þs32��
e2s2m

2

12�2s�3
D2ðs; s2;m2Þ

� ½s42þð19sþ 2s1Þs32� 2ð12s2� 23s1sþ 6s21Þs22�ðs� s1Þð13s2� 49s1sþ 14s21Þs2þðs� s1Þ3

�ð17sþ 5s1Þ�� e2s2
48�2�4

D2ðs;s2;m2Þ½s62� 2ðs� 14s1Þs52þðs2þ 120s1s� 37s21Þs42� 4ðs3þ 49s1s
2

� 69s21sþ 13s31Þs32þðs� s1Þð11s3� 69s1s
2þ 309s21s� 83s31Þs22� 2ðs� s1Þ3ð5s2� 49s1s� 4s21Þs2

þ 3ðs� s1Þ5ðsþ 5s1Þ�� e2C0ðs;s1; s2;m2Þ
�

�m4

3�2s�2
½s2þð7s2� 2s1Þsþðs1� s2Þ2�þ m2

24�2s�3

�½�s62þð2s1� 9sÞs52þð12s2� 65s1sþ s21Þs42þ 2ð13s3� 54s1s
2þ 55s21s� 2s31Þs32�ðs� s1Þð45s3

� 133s1s
2þ 15s21sþ s31Þs22þðs� s1Þ3ð15s2þ 47s1s� 2s21Þs2þðs� s1Þ5ð2sþ s1Þ�þ s1s2

8�2�4

�½2s6þ 3ðs2� 3s1Þs5þð15s21þ 6s2s1� 13s22Þs4þ 2ð�5s31� 19s2s
2
1þ 29s22s1þ s32Þs3þ 12s2ð4s31

� 4s2s
2
1� 3s22s1þ s32Þs2þðs1� s2Þ2ð3s31� 15s2s

2
1� 31s22s1� 5s32Þs�ðs1� s2Þ4ðs1þ s2Þ2�

�
; (D3)

1We use boldfaced notation to facilitate their identification in the lengthier expressions

ARMILLIS, CORIANÒ, AND DELLE ROSE PHYSICAL REVIEW D 81, 085001 (2010)

085001-20



F4ðs; s1; s2;m2Þ ¼ F6ðs; s2; s1;m2Þ

¼ e2m2

6�2s�2s1
½3s3 � 2ð2s1 þ 3s2Þs2 þ ð�s21 þ 6s2s1 þ 3s22Þsþ 2s1ðs1 � s2Þ2�

þ e2

12�2s�2s1
½B0ðs;m2Þm2 �A0ðm2Þ�½3s3 � 2ð2s1 þ 3s2Þs2 þ ð�s21 þ 4s2s1 þ 3s22Þs

þ 2s1ðs1 � s2Þ2� þ e2

24�2�3s1
½�s52 þ ð6sþ 11s1Þs42 � ð14s2 þ s1sþ 5s21Þs32

þ ð16s3 � 35s1s
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where as previously done the master integrals are collected in Appendix A. These expressions have been analyzed in the
text in various kinematical limits to show the appearance of anomaly poles and of all the other poles in the off-shell
formulation.

Notice that F13 contains two vacuum polarization diagrams with different momenta on the external lines and has been
renormalized by a subtraction at zero momentum
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where �ðs;m2Þ is defined in Eq. (41), a3 ¼
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with 1= �� defined in (A6).

APPENDIX E: THE MASSLESS INVARIANTAMPLITUDES

We present here the expressions of the invariant amplitudes in the massless limit. We obtain
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as already noticed above for the case of the massive form factors the last one, i.e. F13;Rðs; s1; s2; 0Þ, has been affected by the
renormalization procedure for which the one-loop transverse photon propagator with a virtual pair of massless fermions is
given by
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where the dependence on the renormalization scale � remains explicit.

APPENDIX F: THE ASYMPTOTIC BEHAVIOR OF THE OFF-SHELL MASSLESS hTJJi CORRELATOR

We present here the asymptotic expression of the form factor in the high energy limit. The leading contributions to the
expansion in each expression come from the pole singularities (conformal or anomalous) except for F13 which has a
constant asymptotic term.
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APPENDIX G: THE ASYMPTOTIC BEHAVIOR OF THE ON-SHELL MASSIVE hTJJi CORRELATOR

This appendix contains the asymptotic expansion of the relevant on-shell massive form factors, that is their dominant
contributions as s! 1 with s > 0 after taking into account the suitable analytic continuation. They result
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