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Kaluza-Klein two-brane-worlds cosmology at low energy
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We study two (4 + n)-dimensional branes embedded in (5 + n)-dimensional spacetime. Using the
gradient expansion approximation, we find that the effective theory is described by (4 + n)-dimensional
scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-
Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions.
In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann
equation depends on the equations of state of the brane matter, and the dark radiation term naturally
appears. In the nonstatic case we take a relation between the external and internal scale factors of the form
b(t) = a”(¢) in which the brane world evolves with two scale factors. In this case, the induced Friedmann
equation on the brane is modified in the effective gravitational constant and the term proportional to a ~*2.
For dark radiation, we find y = —2/(1 + n). Finally, we discuss the issue of conformal frames which
naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame

may become nonstatic in the Einstein frame.
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L. INTRODUCTION

One of the most interesting and surprising aspects of
string theory or M theory is the fact that it can only be
correctly formulated in a higher-dimensional spacetime.
On the other hand, our observed Universe is a four-
dimensional spacetime. Therefore we need a mechanism
of compactification of the extra dimensions, so that they
become invisible at least at low energy scales. Moreover,
investigations of nonperturbative string theory have led to
the discovery that string theory must contain higher-
dimensional extended objects called branes. The existence
of these branes has inspired a new method of compactifi-
cation of extra dimensions, so that they become invisible at
least at low energy scales. Previously, the preferred method
was Kaluza-Klein compactification, in which the extra
dimensions are compact and extremely small. This method
of compactification has further inspired a group of classical
models of the Universe, in which extra dimensions can be
included in general relativity, and their possible implica-
tions for classical cosmology can be investigated phenom-
enologically without any dependence on a particular model
of string theory. This is known as the brane-world scenario,
in which the standard particles or fields are confined to a
brane, while the graviton can propagate into the bulk as
well as into the brane. Much effort has been put into
revealing the cosmology on the brane in the context of
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five-dimensional spacetime, especially after the stimulat-
ing proposals by Randall and Sundrum (RS) [1,2]. The RS
model is a five-dimensional realization of the Horava-
Witten solution [3], in which the hierarchy problem can
be solved by introducing an appropriated exponential warp
factor in the metric. The various properties and character-
istics of the RS model have been extensively analyzed: the
cosmology framework [4-8], the low energy effective
theory [9-20], black hole physics [21-26], the Lorentz
violation [27-37], etc. However, the RS model with a
codimension-one brane world is insufficient to reconcile
a higher-dimensional theory with the observed four-
dimensional spacetime as suggested by string theory.

Recently, the hybrid construction of the Kaluza-Klein
and brane-world compactifications, i.e., a Kaluza-Klein
compactification on the brane, has been investigated [38—
45]. Such a construction is called a Kaluza-Klein brane
world. A basic equation was derived by Yamauchi and
Sasaki [43] for the study of Kaluza-Klein brane worlds in
which some dimensions on the brane are compactified or
for a regularization scheme for a higher codimension brane
world. In order to analyze the Kaluza-Klein cosmology
some authors have used the Shiromizu-Maeda-Sasaki
equation [4] or tried to solve the bulk geometry.
However, it difficult to solve the bulk geometry in most
cases.

In this paper, our main purpose is to study low energy
two-brane cosmological models in higher-dimensional
spacetime. We generalize the case of four-dimensional
two-brane models to (4 + n)-dimensional two-brane mod-
els, where n represents internal dimensions of the brane.
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We derive the effective equations of motion for higher-
dimensional two-brane models using a low energy expan-
sion method [13]. This perturbative method solves the full
(5 + n)-dimensional equations of motion using an approxi-
mation, and after imposing the junction conditions, one
obtains the (4 + n)-dimensional effective equations of mo-
tion. The effective equations can be solved without know-
ing the bulk geometry. Based on this theory we discuss the
cosmological two-brane models at low energy, which we
study in both static and nonstatic internal dimensions.

This paper is organized as follows. In Sec. II, we study a
higher brane-world model in a (5 + n)-dimensional space-
time bulk with a cosmological constant. We solve the (5 +
n)-dimensional Einstein equations at low energy using the
gradient expansion approximation. We see that the effec-
tive theory is described by the (4 + n)-dimensional quasi-
scalar-tensor gravity with a specific coupling function. In
Sec. III, the Kaluza-Klein two-brane-worlds cosmology is
presented. We derive the effective Friedmann equations in
both static and nonstatic internal dimensions. Section IV is
devoted to the conclusions. In the Appendix, we present
detailed calculations.

II. LOW ENERGY EFFECTIVE THEORY FOR
HIGHER-DIMENSIONAL TWO-BRANE WORLDS

In this section, we derive the low energy effective theory
for higher-dimensional two-branes systems, formally solv-
ing the bulk geometry in the gradient expansion approxi-
mation developed by Kanno and Soda [13] (see also [12]).
We consider that the two branes represent a (4 +
n)-dimensional  spacetime embedded in a (5+
n)-dimensional spacetime. We assume that there is no

matter in the bulk and the energy-momentum tensor of
|
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the bulk is proportional to the (5 + n)-dimensional cosmo-
logical constant, —2As,, = (4 + n)(3 + n)/[%>. Then the
higher-dimensional brane-world model is described by the
action

S=2L,<2[d5+”x\/:§|:R+(4+n;§3+n)]

- 3 [ - L ()
i=A,B

where R, g™, [, and «* are the (5 + n)-dimensional
scalar curvature, the induced metric on branes, the scale of
the bulk curvature radius, and the gravitational constant in
(5 + n) dimensions, respectively. Because we will consider
the matter terms in (1), the branes will not, in general, be
flat. Consequently, we cannot put both branes at y = 0 and
y = [ and use Gaussian normal coordinates. Therefore, we
use the following coordinate system to describe the ge-
ometry of the brane model,

ds? = 20" gy? + 8y, X#)dxt dx”. 2

The proper distance between the A-brane and B-brane with
fixed x coordinates can be written as

1
d(x) = [ e dy, 3)
0

The extrinsic curvature is defined as

19 1
_Eg,u,v,y' (4)

nv _Ea_yg,u,v

In the coordinate system (2) and using the extrinsic
curvature (4), we can write down the components of the
Einstein equations in (5 + n) dimensions as

1
CHIGE, = GH, + e ?(e ?K*, — 8%, ?K), — (e ?K)(e ?K*,) + Eb‘",,[(e_‘/’l()(e_"sl() + (e ?K*P)(e” K )]

— ViV, = ViV, + 6#,(VV,h + VIV, ¢)

@4+ n@B+n)
B 212

1 1
(5+n)ny — _ ER + E(e,¢K)(e,¢K)
s +)
2P ’
(6)

1
- i(efd’KaB)(é’ﬂﬁKaﬁ) =

(5+n)Gy,u, — _vy(e—tﬁK’uV) + Vﬂ(e”/’K) =0, @)

where G#*, = R*, — 6*,R/2 is the (4 + n)-dimensional
Einstein tensor and V . denotes the covariant derivative
with respect to the metric g,,. T#, is the energy-
momentum tensor of the brane matter other than the ten-

8*, + KH(— o8, + TA ))e ¢8(y) + K2(—aB8r, + TB* )e ¢8(y — 1), ()

sion. The junction conditions are obtained by collecting
together the terms in the field equations which contain a §
function; then we obtain

2
e~ P[KY — 84K]l,—y = %(—m’; +TAR,),  (8)

2
K ~

€7¢[K;f - 6/;K]|y=l = _7(_0'35'[; + TB’MV), (9)

where K} = g*“K,,. Note that the junction conditions

constrain the induced metrics on both branes; they natu-

rally give rise to the effective equations of motion for the

gravity on the branes. In order to solve the bulk field
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equations, we use the gradient expansion scheme. The
basic idea of the approximation is the assumption that
the energy density of matter p on the brane is smaller
than the brane tension o. Equivalently, the bulk curvature
scale [ is much smaller than the characteristic length scale
of the curvature L on the brane. Then, the small expansion
parameter is given by € = (I/L)?> < 1. This allows us to
expand the metric in perturbative series starting from the
induced metric on the A-brane wv 88 the first term,

g,u,v(yr x,u.) = az(y)[hw,(x“) + (1)g/“}(y’ x:“) + .. .]’
(10)

where the boundary conditions on the A-brane are given by

i=0

. h,,(x*)
(i) = = v
g,y =0, x%) {0“ i=123.. (D

For the extrinsic curvature tensor we expand this as
KMV=(0)KMV+(1)KMV+(2)K,U«V+ (12)

where VK# = O(€').

Applying the above scheme (see the Appendix for more
details), we write down the (4 + n)-dimensional effective
Einstein equations on the branes in closed form, subject to
the low energy expansion, as follows:

2 + n)k? 2+
G",,(h) = %TAMV — %XMV’ (13)
(2 + n)k? 2+n) x*,
GMV(.f) = _TTBMV - i g4+n! (14)

where the A-brane metric is defined as h,, = gﬁ',,bm“e,
while the B-brane metric is f,, = g&,”. A conformal
factor () relates the metric on the A-brane to that on the
B-brane, ghrane = ()2 gdbrane The terms proportional to
x» are (5 + n)-dimensional Weyl tensor contributions,
which describe the nonlocal (5 + n)-dimensional effect.

A. Effective theory on the A-brane
Eliminating x4 from Egs. (13) and (14), the (4 +
n)-dimensional field equations on the A-brane can be writ-
ten as
2+ n)k? 1
21 v
1
+ @(\le — 8 wle )

GMV(h) = [TA'uV + (1 - \I'r)TB'U'V]

I
+ %(‘I"“‘I’w -3 55\1f|w|a), (15)

where | denotes the covariant derivative with respect to the
A-brane metric h,, and the new scalar field ¥ =
1 — Q2*". The coupling function w, is defined as

3+n ¥

T (16)

AW =5 T
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We can also determine x4 by eliminating G, from
Egs. (13) and (14). Then, we obtain

2 (1 —
(2 -il- n) Y = — 2 +2;’1)K (1 \P\I’) (TAR 4+ TP )

1
- (P, — st )

1
+ %(\ylwly - 555‘1"“‘1’|a)- (17)

Note that y*, is expressed through the quantities on the
branes, y*, = x*,(x*). Since y*, is traceless, Eq. (17)
leads to an equation of motion for the scalar field WV,

1 (2 + n)k?
lw = A 4 TB
Y = GraraT el o T
de
e (1)

where we have taken Eq. (16) into account. The conserva-
tion laws for the A-brane and B-brane matter with respect
to the A-brane metric s, are given by

TAR =,
_ \PLU« 1

W, (19)
= Bu v
de 1w Y 241"

TB,u, B

One can see that Egs. (15) and (19) do not include the term
x*,, but they include the energy-momentum tensor of the
B-brane. For this reason Kanno and Soda called this theory
“‘quasi-scalar-tensor” gravity.

The effective action on the A-brane can be derived from
the original (5 + n)-dimensional action by substituting the
solution of the equations of motion in the bulk and inte-
grating out over the bulk coordinate. Up to the first order,
we obtain the effective action for the A-brane as

l 4+n _ [ _ﬂ | ]
Ry fd /T WR() = A,
+ /d‘””x\/—hﬁA

+ f d*Txy/—h(1 — W) @+m/@tn LB, (20)

SA=

Notice that the action (20) represents the action of the
general (4 + n)-dimensional scalar-tensor theory with a
specific form of the coupling function (16) and an extra
matter term from the B-brane.

B. Effective theory on the B-brane

In order to obtain the effective equations of motion on
the B-brane, we simply reverse the role of the A-brane and
that of the B-brane. Solving Eq. (14) for G4 (f), the (4 +
n)-dimensional field equations on the B-brane can be
written as
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2 +
GH(f) = % G784+ (1 + O,
+ —(QW;,, — 8, DY)
PHrP., 65(13;“@. , 21
ror(one, - Lotona,), o
where “‘;”” denotes the covariant derivative with respect to

the B-brane metric f,, and ® = Q~(@+m — 1. Here, the
coupling function wp is defined as

3+n @
24+nl1+d°

wp(P) = — (22)

The equation of motion for the scalar field ® becomes

) 1 (2 + n)k?
Ok, = TA + T8
H (3+n)+(2+n)w3[ 21 ( )
dQ)B
OVl 2
‘e, | 3)

The conservation laws of the A-brane and B-brane matter
with respect to the B-brane metric f,, are as follows:
o P, Ap 1 @, TA

S ) 24+ 1+d (24)

=0.

T4k

B
r 'MV;M

Finally, the corresponding effective action for the B-brane
is
# [d4+n [— I:(I)R(f) qu)aq) ]
(2 + n)k?

n [ Ay F LB

+ fd4+nx /_f(l + @)(4+n)/(2+n)£A‘ (25)

SB=

In the derivation of the equations of motion above, we
first need to know the dynamics on one brane. Then we
know the gravity on the other branes. Therefore, the dy-
namics on both branes are not independent. The trans-
formation rules for scalar radion and the metric in
(4 + n) dimensions are given by

O=— (26)

gﬁ-ybrane — (1 _ \I})Z/(2+n)

T.,y=0L @7
The bulk metric can be determined if we know the energy-
momentum tensors on both branes, the induced metric on
the A-brane, and the scalar field W. Since (4 +
n)-dimensional fields allow us to construct the (5 +
n)-dimensional bulk geometry, the quasi-scalar-tensor the-
ory works as a holographic at low energy.

v, T4

(l)(l’l o

>< [h,ull Mmvr

PHYSICAL REVIEW D 81, 084058 (2010)

In the following section, for the realization at the first
order expansion, we study the cosmological consequences
of the model. We solve the effective equations without
knowing the bulk geometry. Then, we can determine the
Friedmann equation on the brane. Here we focus on the
positive tension brane, the A-brane.

III. KALUZA-KLEIN TWO-BRANE-WORLDS
COSMOLOGY AT LOW ENERGY

A. Effective Friedmann equation

In this section, we discuss the cosmological consequen-
ces of the higher-dimensional brane worlds. We take the
induced metric on the A-brane of the form

ds? = —di* + a*(1)8;;dx'dx) + b*(1)8 ,pdz*dzP, (28)

where §;; represents the metric of three- d1mens1onal ordi-
nary spaces with the spatial coordinates x' (i = 1, 2, 3),
while 8,4 represents the metric of n-dimensional compact
spaces with the coordinates z“ (a = 1, ..., n). The scale
factor b denotes the size of the internal dimensions, while
the scale factor « is the usual scale factor for the external
space. We choose the energy-momentum tensors of the
A-brane and B-brane of the following form:

Tﬁ,, = (pas PAazaij; QAb26aﬁ): (29)

Tﬁv = QZ(PB, PBaZEijr QBszaﬁ): (30)

where p; is the energy density, P; the external pressure, and
Q; the internal pressure, where i = A, B. The 0?2 factor
results from the fact that the B-brane metric is f,, =
O%h uv- The symmetries imply that W only depends on
time.

Using the metric (28) and the energy-momentum tensors
(29) and (30) in the effective Einstein equations (15), one
finds

-1
3HZ + 3nHaHb + %H%
= %[PA + pp(1 — W)rn/Crm]
n+3 ¥ .
— —3H V — nH 1
‘I’[Z(n+2)(]—‘lf) 3HN = nH, ] D
. . +1
—2H, — 3H? — 2nH, H, — nH, — %Hﬁ
887G

=222 1Py + Py(l — W)/ en]

1T. (+3) ¥
ol

+—| ¥+ +2H,V + nH, ¥
201 +2) (1 — W) a TS ]

(32)
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—3H, — 6H?> —3(n— 1)H,H, — (n — 1)H,,
n(n—1)
_ 5 HI%
8

G
= T[QA + Qp(1 — W)drn/2en]

1[\.1.,+ (n+3) ¥

Ty vy a— FHY

v
+ (n —»l)libﬂ?], (33)

where we have defined the Hubble parameters H, = a/a
and H, = b/b and

_ (2 + n)k?

877G
7 20

(34)

In the case n = 0, the above equations reduce to a five-
dimensional brane world. For n = 0, ¥ = 1, ¥ = 0, the
above equations reduce to the general relativistic

Friedmann-Lemaitre-Robertson-Walker equations with
barotropic perfect fluid.
The equation of motion for the scalar field W is
. 8mG
V=_—— — 3P, — 1-¥
+(pp — 3Pp — nQp)(1 — W)@Fm/@tm)]
1 . :
—=———3H,V — nH,V. 35
2 (1 — \P) a niiy, ( )

In addition, the conservation laws for the matter with
respect to the A-brane metric (19) are given by

pat3H(ps+ Py)+nHy(ps +04) =0 (36)

pp+3H,(pg + Pp) + nHy(ps + Op)

:3(pB+PB)+n(pB+QB) v
2+n 1—v

(37)

Equation (35) can be used to eliminate ¥ in Egs. (32) and
(33), and then we have

. . +1 W
—2H, — 3H2 — 2nH,H, — nH, — %Hg +Hog
877G (1 - 3WA - I’lUA)
= o7y + 1w
v [WAPA G +n) pal )
(1 + nwg — nvp)
1 - (4+n)/(2+n)]
G+ n) ps( )
1 P2

T v =y (38)
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—3H,—6H:—3(n— 1)H,H, — (n — 1)H,

nin—1) g
387G (1 = 3wy — nvy)
= “+ —
N7 [UAPA G+ n) pa(l — W)
(1 = 3wg + 3vp)
1 - (4+n)/(2+n)]
1 P2

+ . 39

2 +2) V(1 =) (39
Here, we have assumed that the matter distribution on the
branes is given by the equations of state P; = w;p; and
Q; = v;p; (i = A, B). From Egs. (31), (38), and (39), we
eliminate the ¥? term to obtain

) 34+n) ,  nO+2n) .
2Ha+m a WHaHb‘}'ng
nn*+50+2) ., n B ¥
Gan Ty By
~87G[(1 — (B + n)wa)pa
v [ 3+ n)
_ (1 = 3wy —nvy)ps(1 —¥) _ n(wg — vg)
3+ n) 3+ n)
X py(l =y | (40)

H,+3H2+ (n—3)H,H, — H, — nH} + (H, — Hb)ﬁ

887G
= T[(WA — v )ps + (wg —vp)pp(l — \If)(4+n)/(2+n)]_
(41)

Combining Egs. (40) and (41) we get the dynamical equa-
tion for the Hubble parameters in (4 + n) dimensions,

. 1+ .
H, +2H> + nH, H, + %Hﬁ + gHb
87G (1 — 3wy — nvy)
= : 42

The conservation laws reduce to

pat3H,(1+wipy+nH,(1+vy)py =0, (43)

pp+3H,(1+wg)pg + nHy(l + vp)pp

_ B+ wp) + n(1 + vp)lps
2+n 1-v

In general, Eq. (42) is a second order differential equation
for scale factors a(r) and b(z). In the case of a four-
dimensional brane world (n = 0), Eq. (42) can be solved
analytically, and this results in the Friedmann equation on

(44)
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the brane with the dark radiation term as an integration
constant. In our case Eq. (42) cannot be integrated analyti-
cally, and therefore, the usual form of the Friedmann
equation on the brane cannot be extracted. In the following
two subsections we consider two cases: static and nonstatic
internal dimensions.

B. Friedmann equation with static internal dimensions

In the case of static internal extra dimensions, the dy-
namical A-brane is described by the following equations:
¥ (n+3) Jr2

H2+H,— —
“o6(n+2) V(1 -V

8

= W[m +pp(1 = W] (45)
) 87G (1 — 3w, — nvy)
H,+2H?= 3 a j: 3 N (46)
1 P2 87G
W+ 3H,¥ + - 1 — 3w, —
( q,) (3 T n) [( Wy nUA)

— nvp)pp(l — W)n/2in],
47)

Here we have assumed that the compact dimensions are
stabilized, b(r) = 1 [44]. We see that the above equations
do not contain any additional term compared with five-
dimensional brane-world cosmology. However, the differ-
ences from the usual two-brane models are concealed in
the gravitational constant and also in the form of the
constraint equation (45).

The conservation laws for the matter with respect to the
A-brane metric reduce to

pat3H(+wips =0, (48)

3(1 + wg)pp + n(1 + vg)pg

pp + 3H,(1+wp)pg =

2+n
¥
X , 49
—v (49)
and we obtain
pa a73(1+wA)) (50)
pp a—3(1+w3)(1 _ \P)(S(l+wB)+n(1+v3))/(2+n)' (51)

A relation between the energy densities on both branes can
be obtained by eliminating a,
Py p(1+WB)/(1+WA)(1 _ \I})(3(1+w3)+n(1+v3))/(2+n) (52)

In the case w, # 1/3,leaving v, as a free parameter and
using the matter conservation equation (48), we can write

PHYSICAL REVIEW D 81, 084058 (2010)

(46) as
i(a“Hz 837G 2(1 — 3wy
dt “ 3

Then, we obtain an expression for the effective Hubble
parameter on the A-brane as

87G C
H; = 3 Lpa+ e

- I’lUA) a4

pa)=0. ()

(54)

where C is an integration constant which can be interpreted
as dark radiation. We have defined the effective gravita-
tional constant as

2(1 - 3WA - I’lUA)

Gegr = G. (55)

Forwy, <1/3,nv, <1—3wyand wy > 1/3, nvy >1—
3w,, the effective gravitational constant becomes positive.

In the case of a radiation dominated universe, w, = 1/3,
we have

87TGnvA

H,+2H?=
a a 32 +n) n)

(56)

Using the matter conservation equation, we can write
Eq. (56) as

d{( 4,0  87G 2nv, )
—\a*"H; + —— 1 =0, 57
o+ G o oD
with
87G 2nv loga K
H? = — AT o+ 58
“ 3 (2+n) a* (58)

where K is an integration constant which can be redefined
as a sum of the initial value of radiative matter density and
the initial value of the dark radiation density C. Then
Eq. (58) becomes

8’7TG(1_ 2n

H2 =
¢ 3 2+ n)

C
vy log— )PA + pE (59)

where a, is a constant corresponding to the dark radiation
component C. Defining the effective gravitational constant

Gup = [1 - s 1og3]G, (60)
a

2n

(2+n)
then we have the effective Friedmann equation (54). As
expected, the expression for the effective Friedmann equa-
tion on the A-brane coincides with the Kaluza-Klein brane-
world cosmology with one-brane model in the low energy
approximation, where the term of quadratic energy density
is neglected [44]. In contrast to the usual four-dimensional
two-brane model, the effective gravitational constant de-
pends on the equation of state and the external scale factor
explicitly, and may become positive or negative.
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C. Friedmann equation with nonstatic internal
dimensions

Let us now consider the case of nonstatic internal di-
mensions, in which the brane world evolves with two scale
factors. We take a simple relation between the scale factors
on the A-brane of the form

b(t) = a”(z), (61)

where 7 is a constant. For the internal scale factor b(r) to be
small compared to the external scale factor a(z), the con-
stant 7y should be negative.

For nonstatic internal dimensions, the dynamical
A-brane is described by the following equations:

[6(1 + ny) + n(n — 1)y?

A0
:IH(% + Q3 +nyH,—

2 W
— 320 o+ pal1 — s+ R
X \P(IL_Q\P) (62)
o 6(2 + nzgiz(yl)jt n)y? 2
- 8”8(12{2? i;;l)vA)”A’ (63)
¥+ 3+ ny)H, ¥ = (38:7_—(;’1)[(1 — 3w, — nvy)

X pa(1 =)+ (1 —3wg — nvg)
X pB(l _ \Ir)(4+n)/(2+n)]

1 ¥
_ 2 ) 4
20 =) ©4)
The conservation laws become
patBUA+wy +ny(l+wvy)lH,py =0, (65
pp+[3(1+wp) +ny(l +vg)]H,pp
_ B+ wp) + n(1 + vp)lps 4 66)

2+n 1—¥

Using the matter conservation equation (65),

[43 - 3(1 + WA) - ”’)’(1 + UA)]HaPA = p + 4BHapA

1 d
= 4B E(GL‘BPA)r
(67)
and so we can write Eq. (63) as
d 48 172 87TGeff 4 )
—(a*PH2 — —=a*fp, | =0, 68
4 S, (68)
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where

6(2 + ny) + n(l + n)y?

p= 43 + ny)

(69)

Then the effective Friedmann equation for nonstatic inter-
nal dimensions on the A-brane is given by

_ 87TGeff C

2 —
Ha 3 Pa + a4[3)

(70)

where C is a constant of integration and we have defined
the effective gravitational constant as follows:

6(1 — 3wy — nvy)G
Q+nB+nyd4B —3(1 +w,) —ny(l + vyl
(71)

Notice that for n» = 3 and nonstatic internal dimensions,
the setup is symmetric under the exchange of internal and
external pressures (w; < v;), and a(t) < b(r).

The above results also include the well-known five-
dimensional brane world, corresponding to n = 0 and for
which B8 =1, G4 = G. For y = 0 the above results re-
duce to the static internal dimensions. If y = 1, the internal
scale factor b(z) is related to a(t) as b(t) = a(t), and we
obtain the Friedmann equation of the generalized Randall-
Sundrum model in (5 + n) dimensions describing a (4 +
n)-dimensional universe.

8Gy, c
2 eff
Ha - 3 Pa g’

Ger =

(72)

where the effective gravitational constant is now given by

6

Cet = G+m

(73)
In the case n = 0, the above Friedmann equation reduces
to the usual Friedmann equation on a four-dimensional
brane.

Leaving 3 as a free parameter, we can solve Eq. (69) for
v. We obtain

4BB+np)=3(4+n)

3-28+
- i n . (74)

Y 1+n

The negative values of 7y indicate that the internal scale
factor b(z) is small compared to the external scale factor
a(t). Taking B =1 such that the second term of the
Friedmann equation (70) contributes the ‘“‘dark” radiation,
we have

2
1+n

v = or y=0, (75)
where y = 0 corresponds to the static internal dimensions.
Therefore, the dark radiation component in the Friedmann
equation can also be realized in the Kaluza-Klein brane

worlds with nonstatic internal dimensions.
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D. Hubble parameters in conformal frames

The action on the A-brane is written in the Jordan frame,
for which the gravitational sector has a noncanonical form.
We can, however, perform a conformal transformation in
the Einstein frame: /1, = W¥@*p . In the Einstein
frame, the metric (28) is

ds* = h,,dx*dx"
= W[ —ar + a*(t)5;;dx'dx/
+ ()8 4 pdz%dzP]
= —di* + @*(D)8;;dx'dx’ + b*(7)8 ,pdz"dzP, (76)
and the Hubble parameters satisfy
A, — A, =V, — H,), (77)

where H, = a~'(da/di) and H, = b~"(db/di). One can
see that the static internal dimensions (in the Jordan frame)
may become dynamical in the Einstein frame. In this case
we have

- - - 1 av
H,—H,=v" ety H=———.
a b “ P+ n) di
(78)
In the case b(t) = a”(t), we have
A,—H,= (01— ¥ Wy, (79)

Dynamics of the Hubble parameters H, and H, in the
Jordan frame are also dynamics in the Einstein frame.

IV. CONCLUSION

In this paper we have derived the low energy effective
equations for higher-dimensional two-brane models by
using the gradient expansion approximation. As expected,
the effective theory is described by the (4 +
n)-dimensional quasi-scalar-tensor gravity with a specific
coupling function. The effective equations presented can
be used as the basic equations for higher-dimensional two-
brane-worlds cosmology, in which some spatial dimen-
sions on the brane are Kaluza-Klein compactified.

We can see already from the Friedmann equations that
the Kaluza-Klein brane world can be realized at low en-
ergies. Because of their complicated structure, the field
equations appearing in the theories are very difficult to
solve analytically; we have restricted our discussions to the
following special cases: static internal dimensions and
nonstatic internal dimensions, where a relation between
the external and internal scale factors is given by b(z) =
a”(1). In the case of static internal dimensions, y = 0, our
results coincide with the Kaluza-Klein brane-world cos-
mology with one brane model in the low energy approxi-
mation, where the term of quadratic energy density is
neglected [44]. In the case of nonstatic internal dimen-
sions, the induced Friedmann equation on the brane is
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modified in the effective gravitational constant and the
term proportional to a *5.

Another important result of this work is the dynamics of
the internal Hubble parameter in conformal frames. Both
the static and nonstatic internal dimensions in the Jordan
frame are always dynamics in the Einstein frame.
However, the physical interpretation and equivalence of
these two frames are a problem in the case of static internal
dimensions in the Jordan frame. We plan to investigate the
correspondence between the Jordan and the Einstein frame
descriptions, including the dynamical scalar field.
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APPENDIX: DETAILED CALCULATIONS

Let us decompose the extrinsic curvature into the trace-
less part and the trace part,

- 1
e QSK;LV = 2/1,1/ + mg,u.VQ!
d
0= _€_¢a— log/=¢,
y

which allows us to write the field equations (5)—(7) in the
bulk as follows:

(AL)

e_¢2#1/,y - QEMV = _I:R'uv - 8MVR - vaV¢

4+n

_ 1 M a
vﬂ(ﬁvvd) + 4 + naV (v va¢
£V, (A2)
340 5 va vp (4 +n)3+n)
T 0F X3P — [R] e (AY)
1
€_¢Q‘y - sz - Eaﬁzaﬂ
4+
= VeV, + VgV, — (a9
3+n
VAEMA_mv#QZO. (AS)

The junction conditions determine the dynamics of the
induced metric and provide the effective theory of gravity
on the brane, reduced to

[2’; —%5#Q]

[ 5—%5;@]

2

S (o8t + 1),
y=0

(A6)

K2 -
= =5 (copdl + T%,). (A])

y=I

084058-8



KALUZA-KLEIN TWO-BRANE-WORLDS COSMOLOGY AT ...

1. Zeroth order

At zeroth order, the gradient terms and matter on the
brane can be ignored. We find

oxt—o  0g-t2" (A8)
The junction conditions (A6) and (A7) yleld
2(3 + n) 23 +n)
Oyp = 2l , Op = — T (Ag)

Using the definition of the extrinsic curvature, we get the
zeroth order metric as

ds? = 2?00y’ + a*(y, x)h,, ,dx*dx”, (A10)

1
a(y, x) = exp[— 7 fy dye?tx) ] (A11)
0
where the tensor /1, is the induced metric on the A-brane.
To proceed, we will assume ¢(y, x) = ¢(x), and thus

a(y, x) = exp[—ye?™/I].

2. First order

In the first order, the curvature term that has been
ignored in the zeroth order calculation comes into play.
Substituting the solutions at zeroth order, the field equa-
tions (A2)—(A5) can be written as follows:

Y ”(1)2 [Ru SV
vy Yo44pn "
— (VAV, ¢ + VLGV )
1
+——55(Ve
4+n 8y (V*Vad
(1)
+ va¢va¢)] . (A12)
23 ;’ n) Do =[R]V, (A13)
e 00, =200 [V, + VegT, 410, (Al4)
+
V05, — S—HVM(I)Q —0. (A15)
n
And the junction conditions are given by
2
[(”E“ 5#(1)Q:| = K_TA#V, (A16)
=0 2
2
[(1)2# _ 5#«(1)Q:| K_TB,U«V, (A17)
y=I 2

where the superscript (1) represents the order of the gra-
dient expansion. Now one can express the Ricci tensor
[R*,(g)]V in terms of the Ricci tensor of the A-brane
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metric h,, = g4."™™ [denoted by R*,(h)] and ¢:

2+ n)ye

[Re (1 = [ Re,(h) +

(¢, + ¢ y,)

¢
&amla + ¢leg,)

2+ n)y262¢
+ e,
2+ n)yzezd’

; (A18)

5ff¢|a¢|ai|,
where | denotes the covariant derivative with respect to the
A-brane metric h,,. Taking the trace of Eq. (A18) and
using Eq. (A13), the trace part of the extrinsic curvature
can be obtained without solving the bulk geometry,

WO(y, x) = 2(3+ _ ————[R(3)]
Z%[z(si R+ _(d’la + g
2 24
N % ¢>'“¢|a]. (A19)

The second derivatives of ¢ are given by
9,10 = L[ g, + 22 glugy,

—5’;¢'“¢|a]. (A20)

It is easy to see that the Hamiltonian constraint equation

(A14) is trivially satisfied now. Then, Eq. (A12) can be
integrated to give

3,00 = gy (R~ g5 06%)

L(qgluly — 4T3M¢Ia )
N (y2;2¢ N ye;ﬁ)
(8, - ot oo )|
+ );49) (A21)

where y*,(x) is an integration constant whose trace van-
ishes: x4, = 0, and Eq. (A15) requires that XMV',U« = 0.

Substituting Eqs. (A19) and (A21) into the junction
condition at the A-brane (A16), we obtain

l K2

_ K a4
o+ )G »(h) + x*, 2T“w (A22)

and the junction condition at the B-brane (A17) yields
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! GH +ﬂ(¢lu —8hple, + plrg
v QZ v 4 |a lv

2+ n)Q?
le*? (1+n)
— gl + gy (e + st
w 2
Q’fgn - - ﬁﬂmw (A23)

where Q(x) = a(y = I, x) = exp[—e?] and the index of
TB~ , is the energy-momentum tensor with the index raised
by the induced A-brane metric h,,,, while TB# , is the one
raised by the induced metric on the B-brane, f,, =

ghbrane Using f,, = O%h,, =exp[—2¢?]h,,, Eq. (A23)
can be rewritten as
l x* K
—G* + Y = —__TBr A24
(2 + l’l) V(f) Q4+n 2 v ( )

We now solve the metric in the bulk. The definition (A1)
gives

PHYSICAL REVIEW D 81, 084058 (2010)

et ) W LYY
—Wh Ma—y Sav = Eﬂy+may 0. (A25)

Integrating Eq. (A25), we obtain the metric in the bulk:

2 1 1
g px)=-——(=—1)|Ry) —=—=——h R:I
8un (), %) 2+ n) <a2 )[ w3+ )

2 ¢
ey

2 \a? [ a?
1
X <¢|/.LV + Ehﬂud)la(ﬁm)
e

(G 3t )

21 1
RETAva A
where we have imposed the boundary condition (g (Y =

0, x*) = 0. We can use a schematic iteration [13] for the
solutions at higher orders.

(A26)
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