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Scale invariant (transverse) gravitational theories are introduced. They are invariant under pure metric

rescalings (i.e. the matter fields are inert under those). This symmetry forbids the presence of a

cosmological constant. Those theories are not invariant under the full set of diffeomorphisms, but only

with respect to those locally characterized by the fact that their generator is transverse @��
� ¼ 0.
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I. TRANSVERSE GRAVITYAND SCALE
INVARIANCE

The hope that scale invariance could shed some light on
the fact that the observed value of the cosmological con-
stant scale is much lower than expected from theWilsonian
viewpoint is certainly an old and cherished one. Let us
mention just a couple of recent works [1,2] where some
entries into the bibliography can be found.

The aim of the present work is to present a new twist of
this idea in the framework of transverse gravity, where the
full diffeomorphism invariance (Diff) is broken to those
(TDiff) that preserve the Lebesgue measure. Transverse
gravity has been studied in previous papers [3–6] where
references to the earlier literature are included.

Those transverse gravitational models that enjoy scale
invariance (that is, rigid Weyl invariance in the sense of [7]
which is dubbedWTDiff in [4]) are, naively as we shall see
in a moment, characterized by tracefree field equations.
This means that the actions must be scale invariant, at least
on shell, that is,

g��
�

�g��
S ¼ 0:

The big difference with Einstein’s diffeomorphism in-
variant gravity is that now we can sprinkle powers of g here
and there. Under a global (i.e. constant) Weyl rescaling

g�� ! �2g�� g � detg�� ! �2ng:

At the linear level with �� 1þ!, �g�� ¼ 2!g��.

Christoffel symbols are invariant, and so is the Riemann
tensor, so that

R ! ��2R:

This means that there is a purely gravitational (without

scalar fields) scale invariant1 action, i.e.,

SW � � 1

2�2

Z
dnxjgj1=nR:

The scaling behavior of matter is determined by the
kinetic term (including the power of jgj in front).
For example, in Einstein’s gravity, a scalar field with

kinetic part ffiffiffiffiffiffi
jgj

q
1
2g

��@��@��

implies that

� ! �1�n=2�

which coincides with the naive dimension of the field.
For Dirac fermions insteadffiffiffiffiffiffi

jgj
q

i �c e
�
a �a@�c

yields the naive dimension again

c ! �ð1�nÞ=2c :

Changing the power of jgj, for example, as in

jgja12g��@��@��;

implies that

� ! �1�na�:

It is plain that when a ¼ 1=n then the theory enjoys rigid
Weyl invariance with inert matter fields.
This means that with the measure

jgj1=ndnx
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1This action can be made Weyl gauge invariant, along the lines
of [7] by means of a gauge field W� that transforms as

�W� ¼ ��1@��

and adding a term proportional to

Z
dnxjgj1=n

�
r�W

� þ n� 2

2
W�W

�

�
:
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rigid Weyl invariance implies that no potential is allowed,
not even a mass term.

Interactions are, however, allowed, but must either be
dressed with some gravitational scalar of weight �2, for
example,

cp

Mðpðn�2Þþ4�2nÞ=2 R�
p

(where cp are dimensionless constants, and M is a mass

scale). When perturbing around a nontrivial constant cur-
vature background (such as de Sitter space), this gives rise
to masses

m2 � c2 �R

which are naturally tiny if the radius of curvature is very
large.

Interactions are also allowed when they are totally de-
coupled from gravitation [5], as in

dnxVð�iÞ:
Similarly for Dirac fermions,

jgjai �c e����@�c

yields

c ! �ð1�2anÞ=2c :

The new condition for invariance with inert Dirac fermions
is

a ¼ 1

2n
:

It is remarkable that this measure does not coincide with
the bosonic one.

II. LOW ENERGY EFFECTIVE LAGRANGIANS

It is expected that lowest dimension operators compat-
ible with the assumed symmetry (WTDiff) are bound to
dominate the physics at low energies. Let us classify
transverse scalars according to their dimension, writing
also the corresponding scale invariant combination.
(i) Dimension zero

Transverse dimension zero operators are

L0 � FðjgjÞ
so that the WTDiff cosmological constant is de-
coupled from gravity

�S0 � 	�
Z

dnxL0 ¼ 0;

where 	 is be a dimension n constant.
(ii) Dimension 2

Generic transverse dimension 2 operators are

Lð1Þ
2 ¼ FðjgjÞg��@�g@�g Lð2Þ

2 ¼ FðjgjÞR:
(2.1)

The WTDiff operator corresponding to the first one
is

Sð1Þ2 � � 1

2�2
1

jgjð1�2nÞ=ng��@�jgj@�jgj;

where �2
1 is a new gravitational constant of dimen-

sion 2� n a priori unrelated to Newton’s constant,

�Sð1Þ2 ¼ � 1

2�2
1

Z
dnx

�
� 1� 2n

n
jgjð1�2nÞ=ng��@�jgj@�jgjg���g�� þ jgjð1�2nÞ=n@�jgj@�jgj�g��

� 2jgjð1�2nÞ=ng��@�jgj@�ðjgjg���g��Þ
�

¼ � 1

2�2
1

Z
dnx

�
� 1� 2n

n
jgjð1�2nÞ=ng��@�jgj@�jgjg���g�� þ jgjð1�2nÞ=n@�jgj@�jgj�g��

þ 2jgj@�ðjgjð1�2nÞ=ng��@�jgjÞg���g��
�
: (2.2)

The gravitational equations of motion are now

�Sð1Þ2

�g��
¼ jgjð1�2nÞ=n@�jgj@�jgj

�
�
1� 2n

n
jgjð1�2nÞ=ng��@�jgj@�jgj

� 2jgj@�ðjgjð1�2nÞ=ng��@�jgjÞ
�
g��;

where the gravitational constant has been deleted
because it is not important in the absence of matter.

These equations are traceless up to a total derivative

g��
�Sð1Þ2

�g��
¼ þ2n@�ðjgjð1�nÞ=ng��@�jgjÞ:

This means that the Noether current associated to
WTDiff is

W� � jgjð1�nÞ=ng��@�jgj:

(iii) Dimension two (continued).—The second transverse
dimension 2 operator is just a generalization of the
usual Einstein-Hilbert Lagrangian
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Lð2Þ
2 ¼ FðjgjÞR:

In order to compute the variation of the correspond-
ing WTDiff operator

�Sð2Þ2 ¼ �

�
� 1

2�2

Z
dnxjgj1=nR

�
:

The variation of the curvature scalar is needed

�R ¼ �g�
R�
 þ ðg����rð�r�ÞÞ�g��:
It follows:

�Sð2Þ2 ¼
Z

dnxjgj1=n�g��
�

1

2�2n
g��R� 1

2�2
R��

�

�
Z

dnxjgj1=n 1

2�2
ðg����r�r�Þ�g��:

(2.3)

When

�g�� ¼ ��2g��

the action remains invariant, just because r�g�� ¼
0. We must be careful with the integration by parts. A
good place to start is the formula valid for any
contravariant vector [8]

r�V
� ¼ 1ffiffiffiffiffiffijgjp @�ð

ffiffiffiffiffiffi
jgj

q
V�Þ:

Let us integrate by parts the slightly more general
integral

Z
dnxfðgÞr�ðr�g���g

�� �r��g
��Þ � I1 � I2

I1 �
Z

@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q
r��g

�� ¼
Z

@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q
ð@��g�� þ ��

�
�g

� þ ��

�
�g

�Þ

¼
Z

@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q
ð��

�
�g

� þ ��

�
�g

�Þ � @�

�
@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q �
�g��

I2 �
Z

@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q
r�g���g

�� ¼
Z

@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q
g�	@	ðg���g��Þ ¼ �

Z
@	

�
@�

�
fffiffiffiffiffiffijgjp

� ffiffiffiffiffiffi
jgj

q
g�	

�
g���g

��:

(2.4)

In conclusion,2 calling �� ¼ @�ð fffiffiffiffiffi
jgj

p Þ

2It is worth checking that this still gives zero for a metric rescaling. This means that both integrals must vanish separately when

�g�� ¼ ��g��:

This is obvious for I2, which in this case reduces to the integral of a total derivative. With respect to the first integral, we shall employ
the well-known formulas [8]

��
�
 ¼ 1ffiffiffiffiffiffijgjp @


ffiffiffiffiffiffi
jgj

q
g���

�
�� ¼ � 1ffiffiffiffiffiffijgjp @	ð

ffiffiffiffiffiffi
jgj

q
g�	Þ (2.5)

relating the Christoffels and the determinant:

I1 ¼
Z

��

ffiffiffiffiffiffi
jgj

q �
� 1ffiffiffiffiffiffijgjp @	ð

ffiffiffiffiffiffi
jgj

q
g�	Þ þ 1ffiffiffiffiffiffijgjp g
�@


ffiffiffiffiffiffi
jgj

q �
� g��@�ð

ffiffiffiffiffiffi
jgj

q
��Þ

¼
Z ffiffiffiffiffiffi

jgj
q

��@�g
�� ���

ffiffiffiffiffiffi
jgj

q
@	g

�	 ���g
�	@	

ffiffiffiffiffiffi
jgj

q
þ��g


�@


ffiffiffiffiffiffi
jgj

q
¼ 0: (2.6)

That is, the integrand itself vanishes. Under an arbitrary variation

�I1
�g��

¼ ��

ffiffiffiffiffiffi
jgj

q
�
�
�� þ �	

	���

ffiffiffiffiffiffi
jgj

q
� @�ð

ffiffiffiffiffiffi
jgj

q
��Þ ¼ �

ffiffiffiffiffiffi
jgj

q
@��� þ��

ffiffiffiffiffiffi
jgj

q
�
�
�� � �

ffiffiffiffiffiffi
jgj

q
r���

�I2
�g��

¼ �@	ð��

ffiffiffiffiffiffi
jgj

q
g�	Þg�� � �

ffiffiffiffiffiffi
jgj

q
r	ð��g

�	Þg��;
(2.7)

where the covariant derivatives are defined as if�� were a tensor; which it is not, so that those constructions do not enjoy all properties
of covariant derivatives of tensors. Still, it is sometimes a useful abbreviation.
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�Sð2Þ2 ¼
Z

dnxjgj1=n�g��
�

1

2�2n
g��R� 1

2�2
R��

�
þ

Z
dnx

1

2�2

ffiffiffiffiffiffi
jgj

q
ðr��� �r	ð��g

�	Þg��Þ�g��

¼
Z

jgj1=n 1

2�2

��
1

n
g��R� R��

�
þ 2� n

2n
jgj�1

�
2� 3n

2n
g�1g�g� �r�g�

�
�
1� n

n
g�1g�g�g

�� þ @�ðg�g��Þ
�
g��

��
�g��dnx (2.8)

(where g� � @�g). It is remarkable that Einstein’s
1919 equations

R�� � 1

n
Rg�� ¼ �2

�
T�� � 1

n
Tg��

�

which are truly traceless [9] (cf. also [3]) do not
seem to be obtainable from a variational principle
of the sort we are studying which always yield
equations of motion which are traceless only up to
a total derivative.

III. CONCLUSIONS

We have studied in the body of the paper a gravitational
symmetry that forbids the presence of a cosmological
constant. We believe that this is some progress insofar as
we were not aware of any such symmetry previously
known.

It would be interesting to present our results in the
Einstein frame. In the case of the second dimension 2
operator, which is the only one resembling the Einstein-
Hilbert Lagrangian, this would stem from the redefinition
of a new spacetime metric such thatffiffiffiffiffiffiffiffi

jgej
q

R½ge� ¼ jgj1=nR:
It is quite simple to realize that

ge�� � g�ð1=nÞg��

such that ge � 1. The restricted variational principle would
then give true traceless equations of motion of the
Einstein’s 1919 sort [9], except that in Einstein’s mind
the metric was not restricted by any unimodularity
condition.

We can understand our results from a different view-
point. It is well known that transverse theories are equiva-
lent, in a given reference system, to scalar-tensor theories
[4,10]. Away of implementing this mapping is as follows:
our second dimension 2 Lagrangian is equivalent to

L ¼ � 1

2�2

ffiffiffiffiffiffi
jgj

q
�Rþ

ffiffiffiffiffiffi
jgj

q

ð�� jgjð2�nÞ=2nÞ;

where � and 
 are two auxiliary scalar densities. It is now
possible to find an unconstrained Einstein metric such thatffiffiffiffiffiffiffiffiffi

jgEj
q

R½gE� ¼
ffiffiffiffiffiffi
jgj

q
�R:

The answer is clearly

gE�� ¼ �2=ðn�2Þg��

(so that gE ¼ g�2n=ðn�2Þ) and the full scalar-tensor
Lagrangian reads

L¼� 1

2�2
�

ffiffiffiffiffiffi
jgj

q
Rþ

ffiffiffiffiffiffi
jgj

q

ð�� jgj2n=ð2�nÞÞ

¼ � 1

2�2

ffiffiffiffiffiffiffiffiffi
jgEj

q
RE þ

ffiffiffiffiffiffiffiffiffi
jgEj

q
��ð2=ðn�2ÞÞ
ð1� jgEj2n=ð2�nÞÞ

þ n� 1

2�2ðn� 2Þ
�
2@�

� ffiffiffiffiffiffi
gE

p
g��
E

@��

�

�

� ffiffiffiffiffiffi
gE

p
g��
E

@��@��

�2

�
; (3.1)

i.e., it is of the unimodular type. The Lagrangian multiplier

 enforces the constraint jgEj ¼ 1 on shell only, so that the
variations are not restricted by g��

E �gE�� ¼ 0, as in

Einstein’s 1919 theory.
Quantum effects would generically give a kinetic energy

to this field, which then becomes a propagating field.
It has however been stressed in the literature [3] that this

is subtly not equivalent to choosing the unimodular gauge
in general relativity, which is always allowed (and used
many times by Einstein himself). The coupling to matter is
independent of the scalar density �. For example, for a
scalar field� (not to be confused with the scalar density�
of gravitational origin),

LI ¼ jgEj1=ng��
E @��@��:

Under conformal transformations in the old frame

� ! �2�n�

and for consistency,


 ! ��2
;

whereas the unimodular Einstein metric is inert. What
looks like a purely gravitational symmetry in one frame,
looks like a matter symmetry in another. Potential energy
coupled to gravitation is again forbidden, because they
appear in the new frame as

��ð2=ðn�2ÞÞVð�Þ:
It is also interesting to follow the first dimension 2 term

under this change of frame. It is easy to check that, if the
equations of motion are used, it reduces to
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Lð1Þ
2 ¼ 4n2

ðn� 2Þ2 �
�2g

��
E @��@��

(if the equations of motion are not used, there are other
terms proportional to @�jgEj).

Nevertheless, transverse theories are most likely se-
verely constrained by experiment [6] and besides scale
invariance has to be broken, at least by the Weyl anomaly
[11,12] (which has yet to be computed for transverse
theories).

Actually WTDiff makes an overkill, in the sense that it
not only forbids a cosmological constant, but also any
potential energy whatsoever which is coupled to gravita-
tion. There is experimental evidence3 that potential energy

does couple to gravitation [13], which is again an indica-
tion that scale symmetry must be badly broken in nature.
The proper setting of the problem is most likely a

cosmological one, in which the universe goes through
different epochs characterized by different amounts of
symmetry in the gravitational sector. Work on concrete
models of this sort is in progress and we hope to report
on that in the future.
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