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The numerical evolution of Einstein’s field equations in a generic background has the potential to

answer a variety of important questions in physics: from applications to the gauge-gravity duality, to

modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions,

and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to

more general space-times than those investigated hitherto, by developing a framework to study the

numerical evolution ofD dimensional vacuum space-times with an SOðD� 2Þ isometry group forD � 5,

or SOðD� 3Þ for D � 6. Performing a dimensional reduction on a (D� 4) sphere, the D dimensional

vacuum Einstein equations are rewritten as a 3þ 1 dimensional system with source terms, and presented

in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3þ 1

dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D

dimensions and a procedure to match them to our 3þ 1 dimensional evolution equations is given. We

have implemented our framework by adapting the LEAN code and perform a variety of simulations of

nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which

facilitates long-term stable simulations in D ¼ 5. We further demonstrate the internal consistency of the

code by studying convergence and comparing numerical versus analytic results in the case of geodesic

slicing for D ¼ 5, 6.
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I. INTRODUCTION

Numerical relativity is an essential tool to study many
processes involving strong gravitational fields. In four
space-time dimensions, processes of this sort, such as black
hole (BH) binary evolutions, are of utmost importance for
understanding the main sources of gravitational waves,
which are expected to be detected by the next generation
of ground based [Laser Interferometer Gravitational-Wave
Observatory (LIGO), VIRGO] and space based [Laser
Interferometer Space Antenna (LISA)] interferometers.
Long-term stable numerical evolutions of BH binaries
have finally been achieved after four decades of efforts
[1–3]. The numerical modeling of generic spinning BH
binaries in vacuum Einstein gravity is an active field of

research, with important consequences for gravitational
wave detection in the near future.
Numerical relativity in a higher-dimensional space-

time, instead, is an essentially unexplored field, with tre-
mendous potential to provide answers to some of the most
fundamental questions in physics. Recent developments in
experimental and theoretical physics make this a pressing
issue. We refer, in particular, to the prominent role of BHs
in the gauge-gravity duality, in TeV-scale gravity, or even
on their own as solutions of the field equations. These are
some of the most active areas of current research in gravi-
tational and high energy physics.

A. Motivation

(i) AdS/CFTand holography. In 1997–1998, a powerful
new technique known as the AdS/CFT correspon-
dence or, more generally, the gauge-string duality
was introduced and rapidly developed [4]. This holo-
graphic correspondence provides an effective de-
scription of a nonperturbative, strongly coupled
regime of certain gauge theories in terms of higher-
dimensional classical gravity. In particular, equilib-
rium and nonequilibrium properties of strongly
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coupled thermal gauge theories are related to the
physics of higher-dimensional BHs, black branes,
and their fluctuations. These studies revealed intri-
guing connections between the dynamics of BH
horizons and hydrodynamics [5] and offer new per-
spectives on notoriously difficult problems, such as
the BH information loss paradox, the nature of BH
singularities, or quantum gravity.
Numerical relativity in anti–de Sitter backgrounds is
bound to contribute enormously to our understand-
ing of the gauge-gravity duality and is likely to have
important applications in the interpretation of obser-
vations [6–9]. For instance, in the context of the
gauge-gravity duality, high energy collisions of
BHs have a dual description in terms of (a) high
energy collisions with balls of deconfined plasma
surrounded by a confining phase and (b) the rapid
localized heating of a deconfined plasma. These are
the type of events that may have direct observational
consequences for the experiments at Brookhaven’s
Relativistic Heavy Ion Collider [8,9]. Numerical
relativity in anti–de Sitter is notoriously difficult,
and so far only very special situations have been
handled [10,11]. The phenomenologically most in-
teresting case is a five dimensional space-time,
AdS5, and therefore the higher-dimensional exten-
sion of numerical relativity is necessary.

(ii) TeV-scale gravity scenarios. An outstanding prob-
lem in high energy physics is the extremely large
ratio between the four dimensional Planck scale,
1019 GeV, and the electroweak scale, 102 GeV. It
has been proposed that this hierarchy problem can
be resolved if one adopts the idea that the standard
model is confined to a brane in a higher-dimensional
space, such that the extra dimensions are much
larger than the four dimensional Planck scale (they
may be large up to a submillimeter scale) [12–14].
In a different version of the model, the extra dimen-
sions are infinite, but the metric has an exponential
factor introducing a finite length scale [15,16].
In such models, the fundamental Planck scale could
be as low as 1 TeV. Thus, high energy colliders, such
as the Large Hadron Collider (LHC), may directly
probe strongly coupled gravitational physics [17–
22]. In fact, such tests may even be routinely avail-
able in the collisions of ultrahigh energy cosmic
rays with the Earth’s atmosphere [23–25], or in
astrophysical BH environments [26–28] (for re-
views see [29–31]). From Thorne’s hoop conjecture
it follows that, in this scenario, particle collisions
could produce BHs [19,20]. Moreover, the produc-
tion of BHs at trans-Planckian collision energies
(compared to the fundamental Planck scale) should
be well described by using classical general relativ-
ity extended to D dimensions [18–25,29–33]. The

challenge is then to use the classical framework to
determine the cross section for production and, for
each initial setup, the fractions of the collision
energy and angular momentum that are lost in the
higher-dimensional space by emission of gravita-
tional waves. This information will be of paramount
importance to improve the modeling of microscopic
BH production in event generators such as
TRUENOIR, CHARYBDIS2, CATFISH, or BLACKMAX

[20,34–37]. The event generators will then provide
a description of the corresponding evaporation
phase, which might be observed during LHC
collisions.
The first models for BH production in parton-parton
collisions used a simple black disk approach to
estimate the cross section for production [19,20].
Improved bounds have been obtained using either
trapped surface methods to estimate the cross sec-
tion for BH production [38–41] or approximation
schemes [42–47] to evaluate the gravitational en-
ergy loss. Only recently exact results for highly
relativistic collisions were obtained in four dimen-
sions, using numerical relativity techniques [48–
50]. No such exact results are yet available in the
higher-dimensional case. To obtain them is one of
our main goals, and the present paper introduces a
formalism to achieve that.

(iii) Higher-dimensional black holes. Asymptotically
flat higher-dimensional black objects have a much
richer structure than their four dimensional coun-
terparts. For instance, spherical topology is not the
only allowed topology for objects with a horizon.
One can also have, e.g., black rings, with a donut-
like topology. Remarkably, these two different ho-
rizon topologies coexist for certain regions in phase
space [51]. The stability of general higher-
dimensional BHs is now starting to be explored.
Generically it has been conjectured that for D � 6
ultraspinning Myers-Perry BHs will be unstable
[52]. This instability has been confirmed by an
analysis of linearized axisymmetric perturbations
in D ¼ 7, 8, 9 [53]. Clearly, the study of the non-
linear development of these instabilities requires
numerical methods, such as the ones presented
herein. A study of this type was very recently
presented for a non-axisymmetric perturbation in
D ¼ 5 [54], where it was found that a single spin-
ning five dimensional Myers-Perry BH is unstable,
for a sufficiently large rotation parameter (thereby
confirming previous conjectures [55–57]).
Not much is known about general equilibrium
states in anti–de Sitter backgrounds. The gauge-
gravity duality and the hydrodynamic limit have
been used to predict the existence of larger classes
of BHs in anti–de Sitter backgrounds, including
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non-axisymmetric solutions [56,57]. However,
these have not yet been found.

Finally, there are issues of principle, as, for example,
testing Cosmic Censorship in BH collisions [48,50] which
require state-of-the-art numerical simulations.

B. Space-times with symmetries

From what has been said, the extension of four dimen-
sional numerical relativity is mandatory. Some pioneering
works have been concerned with the nonlinear develop-
ment of the Gregory-Laflamme instability [58] of cosmic
strings [59] and gravitational collapse, with spherical sym-
metry [60], axial symmetry [61], or even static situations
[62]. Another numerical code, based on the cartoon
method [63], was developed and tested for five space-
time dimensions in Ref. [65]. See also Ref. [64] for a
discussion of slicings of D dimensional black holes. The
(phenomenologically) most interesting large extra dimen-
sions models are, however, in higher than five space-time
dimensions (see, for instance, [30]). Moreover, the ultra-
spinning instabilities of Myers-Perry BHs should occur in
D � 6. Thus, our approach here is to develop a framework
and a numerical code that can, in principle, be applied to
different space-time dimensions with little adaptations.
This may be achieved by taking theD dimensional vacuum
space-time to have an isometry group fit to include a large
class of interesting problems. If this isometry group is
sufficiently large, it allows a dimensional reduction of the
problem to 3þ 1 dimensions, wherein it appears as (four
dimensional) general relativity coupled to some quasimat-
ter terms.1 Thus, the different space-time dimension mani-
fests itself only in the different quasimatter content of the
four dimensional theory. We emphasize, in this context,
that full blown 4þ 1, 5þ 1, etc., numerical simulations
without symmetry are currently not possible due to the
computational costs, so that our approach pushes numeri-
cal relativity in higher dimensions to the outmost practical
limits of the present time. Moreover, an obvious advantage
of this approach is that we can use existing codes with
small adaptations: the four dimensional equations need to
be coupled to the appropriate quasimatter terms and some
issues related to the chosen coordinates must be addressed,
as we shall see. Finally, the lessons learned in treating our
effective gravity plus quasimatter systemmight be of use in
dealing with other four dimensional numerical relativity
problems with sources.

C. Axial symmetry SOðD� 2Þ and SOðD� 3Þ
We consider two classes of models, which are general-

izations of axial symmetry to higher-dimensional space-
times: a D � 5 dimensional vacuum space-time with an

SOðD� 2Þ isometry group, and a D � 6 dimensional
vacuum space-time with an SOðD� 3Þ isometry group.
The former class allows studies of head-on collisions of
nonspinning BHs. In order to end up with a 3þ 1 dimen-
sional model we use, however, only part of this symmetry:
we perform a dimensional reduction by isometry on a (D�
4) sphere which has an SOðD� 3Þ � SOðD� 2Þ isometry
group. The latter class allows one to model BH collisions
with impact parameter and with spinning BHs, as long as
all the dynamics take place on a single plane.2 In this case
we perform a dimensional reduction by isometry on the
entire SOðD� 3Þ isometry group. This class includes the
most interesting physical configurations relevant to accel-
erator—and cosmic ray—physics (in the context of TeV-
scale gravity), and to the theoretical properties of higher-
dimensional black objects (such as stability and phase
diagrams).
We formulate the evolution equations in the Baumgarte,

Shapiro, Shibata, and Nakamura (BSSN) formulation
[66,67], together with the moving puncture approach
[2,3]. This is known to provide a stable evolution scheme
for vacuum solutions in four dimensions, and therefore it is
the natural framework for our Einstein plus quasimatter
system. The quasimatter terms, however, exhibit a problem
for numerical evolution, well known from other numerical
studies using coordinates adapted to axial symmetry, which
is sourced by the existence of a coordinate singularity at
the axis. In our formulation, this problem appears when a
certain 3þ 1 dimensional Cartesian coordinate vanishes,
y ¼ 0. We present a detailed treatment of this problem,
introducing first regular variables, then analyzing one by
one all potentially pathological terms in our evolution
equations and finally presenting a method to heal all of
them. The resulting equations have no further (obvious)
problems for numerical evolution and could, in principle,
be implemented in any working 3þ 1 dimensional nu-
merical relativity code.
Here we present numerical results using the LEAN code

[68], developed by one of us. We stress that the formalism
developed here is valid in general D. However, long-term
stable evolutions typically require some experiments with
free parameters in the gauge conditions and also possibly
with constraint damping. For D ¼ 5 we show that, if
appropriate gauge conditions are chosen, the numerical
evolution for Brill-Lindquist initial data describing a single
BH is stable and the constraints are preserved in the
evolution, within numerical error. As another test, we
evolve the same initial data in a geodesic slicing gauge.
This gauge is inappropriate for a long-term evolution; but it
allows us to compare the numerical evolution with the
analytic solution for a single Tangherlini BH in D ¼ 5.

1Hereafter, we dub the source terms of the lower dimensional
Einstein equations as quasimatter, since its energy-momentum
tensor is not that of canonical matter.

2This follows from the fact that the angular momenta of the
black holes are parallel to the orbital angular momentum.
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We find excellent agreement between the two. We also
present some preliminary results for D ¼ 6.

This paper is organized as follows. In Sec. II, we discuss
the D dimensional ansatz, perform the dimensional reduc-
tion by isometry, perform the Arnowitt-Deser-Misner
(ADM) split, and present the BSSN formulation of our
equations. In Sec. III, the construction of Brill-Lindquist
initial data in D dimensions is discussed, and a procedure
to match it to our 3þ 1 formulation is given. In Sec. IV we
present the numerical treatment and results. We draw our
conclusions and discuss implications of our results for
future work in Sec. V. A considerable part of the technical
details for the numerical treatment is organized into three
appendices. In Appendix A we motivate and discuss the
introduction of regular variables at y ¼ 0 and present all
relevant equations in terms of these variables. In
Appendix B we explain how to tackle all the problematic
terms at y ¼ 0 in these equations. Finally, in Appendix C,
we discuss the construction of the geodesic slicing, which
is used to compare analytical with numerical results.

II. THE EFFECTIVE 3þ 1 DIMENSIONAL
SYSTEM

The starting point of the formalism used here is a
dimensional reduction from D dimensional general rela-
tivity in vacuum to a four dimensional model. The isometry
group of D dimensional Minkowski space-time is
ISOð1; D� 1Þ; solutions of general relativity (or of other
metric theories of gravity) generically break this symmetry
into a subgroup. For instance, the isometry group of a
Schwarzschild (or, for D> 4, Tangherlini [69]) BH is
SOðD� 1Þ � R, whereas for a head-on collision of two
nonrotating BHs it is SOðD� 2Þ: indeed, neither the time
direction nor the direction of the collision correspond to
symmetries, but a rotation of the remaining D� 2 spatial
directions leaves the space-time invariant. The total space-
time can then be considered as the semidirect product of a
three dimensional space-time N with the sphere SD�3 ¼
SOðD� 2Þ=SOðD� 3Þ. A coordinate system for N can
be given, for example, in the case of a head-on collision of
two BHs, by the time t, the coordinate z along the collision
axis, and the distance from that axis.

One can take advantage of this symmetry to reduce the
space-time dimensionality. This can be accomplished by
writing Einstein’s equations in D dimensions in a coordi-
nate system, which makes the symmetry manifest, allow-
ing for a lower dimensional interpretation of the D
dimensional Einstein’s equations (in the spirit of Kaluza-
Klein reduction). We remark, however, that we are not
performing a compactification; rather, we perform a di-
mensional reduction by isometry, as first proposed by
Geroch [70]. The extra dimensions manifest themselves
in the lower dimensionality as a source of Einstein’s equa-
tions, defined on the lower dimensional manifold.

In principle, one could use the symmetry in a more naı̈ve
way, assuming that the solution does not depend on the
coordinates parametrizing the sphere and simply evolving
the relevant components of the D dimensional Einstein’s
equations. The perspective provided by dimensional reduc-
tion, however, has two advantages: (i) all quantities have a
geometrical interpretation, and this allows for a deeper
understanding of the problem and a better control of the
equations; (ii) it is possible to use, with minor modifica-
tions, the numerical codes that have already been written to
implement Einstein’s equations in a four dimensional
space-time. Therefore, we do not use the entire SOðD�
2Þ symmetry of the process, but only a SOðD� 3Þ sub-
group. This reduces the space-time on a (D� 4) sphere
and yields a four dimensional manifold.
In the original proposal of Geroch [70] the symmetry

space was SOð2Þ. This approach has been applied to nu-
merical relativity (see, for instance, [71–73]); a five di-
mensional extension, with the same symmetry space, has
been derived in [74]. A generalization to coset manifolds
(like the sphere Sn) was given by Cho in [75,76], but in
these papers the complete form of Einstein’s equations was
not presented. Here we provide the explicit form of
Einstein’s equations for symmetry spaces Sn together
with their numerical implementation.

A. 4þ ðD� 4Þ split
We now describe in detail the reduction from D to four

dimensions. In order to highlight the particular classes of
BH binaries we are able to study with this framework, it is
convenient to begin this discussion with the isometry group
of the SD�3 sphere, i.e. with the 3þ ðD� 3Þ split.
A general D dimensional space-time metric may be

written in the form

dŝ2 ¼ ĝMNdx
MdxN

¼ g �� ��ðxMÞdx ��dx �� þ��i �jðxMÞðdx�i � A
�i
��ðxMÞdx ��Þ

� ðdx �j � A
�j
��ðxMÞdx ��Þ; (2.1)

where we have split the space-time coordinates as xM ¼
ðx ��; x

�iÞ; M, N ¼ 0; . . . ; D� 1 are space-time indices, ��,
�� ¼ 0, 1, 2 are three dimensional indices, and �i, �j ¼
3; . . . ; D� 1 are indices in the remaining D� 3 dimen-
sions. We may think of the space-time as a fiber bundle;

fx�ig are coordinates along the fiber, and fx ��g are coordi-
nates on the base space.
We are interested in studying D dimensional space-

times with an SOðD� 2Þ isometry group. This is the
isometry group of the SD�3 sphere, which justifies why
we are performing a 3þ ðD� 3Þ splitting of the D dimen-
sional space-time. Thus, we assume that �a, a ¼
1; . . . ; ðD� 3ÞðD� 2Þ=2, are Killing vector fields,

L �a
ĝMN ¼ 0; (2.2)

MIGUEL ZILHÃO et al. PHYSICAL REVIEW D 81, 084052 (2010)

084052-4



with Lie algebra

½�a; �b� ¼ �ab
c�c; (2.3)

where �ab
c are the structure constants of SOðD� 2Þ.

Because the fiber has the minimal dimension necessary
to accommodate ðD� 3ÞðD� 2Þ=2 independent Killing
vector fields, we may assume without loss of generality
that the Killing vector fields have components exclusively

along the fiber: �a ¼ �
�i
a@�i. Furthermore, we may normal-

ize the Killing vectors so that they depend only on the

coordinates of the fiber, i.e. @ ���
�i
a ¼ 0. Then Eq. (2.2) gives

the following conditions:

L �a
��i �j ¼ 0; (2.4)

L �a
A
�i
�� ¼ 0; (2.5)

L �a
g �� �� ¼ 0: (2.6)

These expressions can be interpreted either as Lie deriva-
tives of rank-2 tensors defined on theD dimensional space-
time or as Lie derivatives of a rank-2 tensor, a vector, and a
scalar, which are defined on SD�3.

Conditions (2.4), (2.5), and (2.6) have the following
implications:

��i �j ¼ fðx ��ÞhSD�3

�i �j
; (2.7)

because, from (2.4), ��i �j admits the maximal number of

Killing vector fields and thus must be the metric on a
maximally symmetric space at each x ��. Because of (2.3)

this space must be the SD�3 sphere. hS
D�3

�i �j
denotes the

metric on an SD�3 with unit radius;

g �� �� ¼ g �� ��ðx ��Þ; (2.8)

because the Killing vector fields �a act transitively on the
fiber, and therefore the base space metric must be indepen-
dent of the fiber coordinates;

A
�i
�� ¼ 0; (2.9)

because Eq. (2.5) is equivalent to

½�a; A ��� ¼ 0; (2.10)

and there exist no nontrivial vector fields on SD�3 for D �
5 that commute with all Killing vector fields on the sphere.

We remark that (2.10) corresponds to the statement,
expressed in [75] in group theoretical language, that the
gauge group for a theory reduced on a coset space G=H is
the normalizer of H in G; in the case of a sphere, where
G ¼ SOðD� 2Þ andH ¼ SOðD� 3Þ, the normalizer van-
ishes and then there are no ‘‘gauge vectors,’’ i.e., no non-
vanishing metric components g �� �i. If the normalizer ofH in

G is nonvanishing, such metric components appear, and
with dimensional reduction they yield vector fields that
contribute to the stress-energy tensor in the reduced theory.

For example, in the case of head-on collision, ifD ¼ 4, the
isometry space is SOð2Þ and the quasimatter of the reduced
theory consists of a scalar field and of a vector field (as in
[70] and in [71–73]); if D> 4, the isometry space is
SOðD� 2Þ=SOðD� 3Þ, and the quasimatter of the re-
duced theory consists of a single scalar field. In the re-
mainder of this work we focus on this subclass of space-
times, which already contains a vast class of physically
relevant problems, and postpone a discussion of the general

case with A
�i
�� � 0 (i.e., with g �� �i � 0) to future work.

In practice, we are actually interested in performing a
4þ ðD� 4Þ split of the D dimensional space-time. This
may be done as follows. The metric on a unit SD�3 may
always be written in terms of the line element on a unit
SD�4, denoted by d�D�4, as follows:

hS
D�3

�i �j
dx

�idx
�j ¼ d�2 þ sin2�d�D�4; (2.11)

where � is a polarlike coordinate, � 2 ½0; ��. Now we
introduce four dimensional coordinates, x� ¼ ðx ��; �Þ,
� ¼ 0, 1, 2, 3, and define a four dimensional metric

g��dx
�dx� ¼ g �� ��dx

��dx �� þ fðx ��Þd�2; (2.12)

as well as a new conformal factor

�ðx�Þ ¼ sin2�g��: (2.13)

Then, the most general D dimensional metric compatible
with SOðD� 2Þ isometry is, for D � 5

dŝ2 ¼ g��dx
�dx� þ �ðx�Þd�D�4: (2.14)

Without specifying (2.12) and (2.13), the geometry
(2.14) has only a manifest SOðD� 3Þ symmetry. We
now perform a dimensional reduction on a (D� 4) sphere.
This yields, from the D dimensional vacuum Einstein
equations, a set of 3þ 1 dimensional Einstein equations
coupled to quasimatter. If SOðD� 2Þ is the full isometry
group, the quasimatter terms do not contain independent
degrees of freedom; rather, they may be completely deter-
mined by the 3þ 1 dimensional geometry, via (2.13). In
this case, we could perform a dimensional reduction on a
(D� 3) sphere, which has the full isometry group SOðD�
2Þ. This would yield a 2þ 1 dimensional system. The
former method allows, however, the use of existing nu-
merical codes, with small changes, which justifies our
choice.
The equations derived with dimensional reduction on a

(D� 4) sphere can be applied, of course, to describe also
space-times in which the full isometry group is SOðD� 3Þ.
This is the isometry group of a class of BH collisions with
impact parameter and with spin: the collisions in which the
two BHs always move on the same 2-plane and the only
nontrivial components of the spin 2-form are on that same
2-plane—see Fig. 1. With our framework we are able,
therefore, to describe not only head-on collisions of spin-
less BHs but also a class of collisions for spinning BHs
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with impact parameter. As follows from the discussion of
(2.9), the ansatz (2.14) describes general space-times with
SOðD� 3Þ isometry in D � 6. We remark that the models
with D � 6 are actually the most interesting for phenome-
nological studies of large extra dimensions models (see, for
instance, [30]).

B. Dimensional reduction on a (D� 4) sphere
and 3þ 1 split

In the following we take (2.14) as an ansatz, which has a
manifest SOðD� 3Þ isometry. The D dimensional pure
Einstein theory reduces then to a four dimensional theory
of gravity coupled to a scalar field �ðx�Þ. We remark that in
this theory � and g�� are viewed as independent degrees of

freedom; the relations (2.12) and (2.13) select a subset of
the solution space. The solutions belonging to this subset
have enhanced isometry SOðD� 2Þ and correspond to
some of the physical processes we want to study (for
instance, head-on collisions of spinless BHs).

The D dimensional Einstein-Hilbert action reduces to

S ¼ 1

16�G4

Z
d4x

ffiffiffiffiffiffiffi�g
p

�ðD�4Þ=2
�
Rþ ðD� 4Þ

�
�
ðD� 5Þ��1 � ��1h��D� 7

4
��2@��@

��

��
;

(2.15)

where the D dimensional Newton’s constant GD is related
to the four dimensional one G4 by the area of the unit D�
4 dimensional sphere: G4 ¼ GD=A

SD�4
. Explicitly, the D

dimensional Einstein’s equations in vacuum yield the fol-
lowing system of four dimensional equations coupled to a
scalar field:

R�� ¼ D� 4

2�

�
r�@��� 1

2�
@��@��

�
; (2.16)

r�@�� ¼ 2ðD� 5Þ �D� 6

2�
@��@

��: (2.17)

In these equations, all operators are covariant with
respect to the four dimensional metric g��. The energy-

momentum tensor is3

T�� ¼ D� 4

16��

�
r�@��� 1

2�
@��@��� ðD� 5Þg��

þD� 5

4�
g��@��@

��

�
: (2.18)

With this four dimensional perspective, the usual 3þ 1
split of space-time [77,78] can be performed (see, e.g.
[79,80]). For this purpose, we introduce the projection
operator 	�� and the normal to the three dimensional

hypersurface �, n� (n�n� ¼ �1),

	�� ¼ g�� þ n�n�; (2.19)

as well as the lapse � and shift 
�,

@t ¼ �nþ 
; (2.20)

where t is the time coordinate. The four dimensional metric
is then written in the form

ds2 ¼ g��dx
�dx�

¼ ��2dt2 þ 	ijðdxi þ 
idtÞðdxj þ 
jdtÞ;
i; j ¼ 1; 2; 3: (2.21)

As usual, we introduce the extrinsic curvature Kij ¼
� 1

2Ln	ij, which gives the evolution equation for the 3-

metric,

ð@t �L
Þ	ij ¼ �2�Kij: (2.22)

FIG. 1. D dimensional representation, using coordinates ðt; x1; x2; . . . ; xD�3; xD�2; zÞ, of two types of BH collisions: (left) head-on
for spinless BHs, for which the isometry group is SOðD� 2Þ; (right) non–head-on, with motion on a single 2-plane, for BHs spinning
in that same plane only, for which the isometry group is SOðD� 3Þ. The figures make manifest the isometry group in both cases.

3We use the standard form of the Einstein equations G�� ¼
8�T�� and choose geometrized units throughout.
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The time evolution for Kij is given by

ð@t �L
ÞKij ¼ �Di@j�þ �ðð3ÞRij þ KKij � 2KikK
k
jÞ

� �	�
i	

�
jR��; (2.23)

where Di is the covariant derivative on the hypersurface.
The last term, 	�

i	
�
jR��, vanishes for vacuum solutions.

In the present case, it is given by the projection of
Eq. (2.16),

	
�
i 	

�
jR�� ¼ D� 4

2�

�
	�

i	
�
jr�@��� 1

2�
@i�@j�

�
:

(2.24)

Using the formula

D�D
� ¼ �K�
n
�@��þ 	�

�	
�

r�@��; (2.25)

and defining the variable

K� � �1
2Ln� ¼ �1

2n
�@��; (2.26)

we obtain

	�
i	

�
jr�@�� ¼ Di@j�� 2KijK�: (2.27)

Thus, (2.23) becomes

ð@t �L
ÞKij ¼ �Di@j�þ �ðð3ÞRij þ KKij � 2KikK
k
jÞ

� �
D� 4

2�

�
Di@j�� 2KijK�

� 1

2�
@i�@j�

�
: (2.28)

To summarize, the evolution equations for the 3-metric and
extrinsic curvature are (2.22) and (2.28).

If the isometry group is SOðD� 3Þ, the quasimatter
field � represents an independent degree of freedom, and
we need to solve the evolution equations for � and K�.
Even in the case of the larger isometry SOðD� 2Þ, the
evolution equations for � and K� are useful as they enable
us to test Eq. (2.13) and thus provide a check of the
numerical evolution. The evolution equation for � is
(2.26)

ð@t �L
Þ� ¼ �2�K�: (2.29)

Equation (2.17) provides an evolution equation forK�. The
contraction of Eq. (2.25) with g�
, yields

h� ¼ 	ijDi@j�� 2KK� � n�n�r�@��: (2.30)

Noting that

L nK� ¼ n�@�K� ¼ �1
2n

�r�n
�@��� 1

2n
�n�r�@��;

(2.31)

and

n�r�n
� ¼ 1

�
D��; (2.32)

we obtain

� n�n�r�@�� ¼ 2LnK� þ 1

�
D��@��: (2.33)

Noticing also that D��@�� ¼ 	ij@i�@j�, we write

h� ¼ 	ijDi@j�� 2KK� þ 2LnK� þ 1

�
	ij@i�@j�:

(2.34)

Moreover, from equation

D�� ¼ 	�
�@�� ¼ @��� 2n�K�; (2.35)

we get

@��@
�� ¼ 	ij@i�@j�� 4K2

�; (2.36)

so that the evolution equation for K� is

1

�
ð@t �L
ÞK� ¼ � 1

2�
	ij@i�@j�þ ðD� 5Þ þ KK�

þD� 6

�
K2

� �
D� 6

4�
	ij@i�@j�

� 1

2
Dk@k�: (2.37)

Equations (2.29) and (2.37) are the evolution equations for
the quasimatter degrees of freedom.

C. BSSN formulation

For numerical implementation, let us now write the
evolution equations in the Baumgarte, Shapiro, Shibata,
and Nakamura formulation [66,67]. Instead of evolving the
variables 	ij and Kij, we introduce a conformal split of the

physical 3-metric 	ij as

	ij � 1

�
~	ij: (2.38)

The conformal factor

� ¼ ðdet	ijÞ�1=3 (2.39)

is chosen such that det~	ij ¼ 1 holds at all times. The

extrinsic curvature is split into a conformal traceless part,
~Aij, and its trace, K, as

~A ij � �

�
Kij �

	ij

3
K

�
: (2.40)

Moreover, we introduce the contracted conformal connec-
tion

~� i ¼ ~	jk~�i
jk; (2.41)

where
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�k
ij ¼ ~�k

ij � 1

2�
ð
i

k@j�þ 
j
k@i�� ~	ij ~	

kl@l�Þ )

�k ¼ �~�k þ 1

2
~	kl@l�; (2.42)

as an independent variable. In terms of the BSSN variables

�, ~	ij, ~Aij, and
~�k, the evolution equations are

ð@t �L
Þ~	ij ¼ �2� ~Aij; (2.43a)

ð@t �L
Þ� ¼ 2
3��K; (2.43b)

ð@t �L
ÞK ¼ ½� � �� þ 4��ðEþ SÞ; (2.43c)

ð@t �L
Þ ~Aij ¼ ½� � �� � 8��

�
�Sij � S

3
~	ij

�
; (2.43d)

ð@t �L
Þ~�i ¼ ½� � �� � 16����1ji; (2.43e)

where ½� � �� denotes the standard right-hand side of the
BSSN equations in the absence of source terms (see e.g.
[80]); the source terms are determined by

E � n�n
T�
; (2.44)

ji � �	i
�n
T�
; (2.45)

Sij � 	�
i	



jT�
; (2.46)

S � 	ijSij; (2.47)

where the energy-momentum tensor is given by Eq. (2.18).
A straightforward computation shows that

4�ðEþ SÞ
D� 4

¼ �ðD� 5Þ��1 þ 1

2
��1�3=2 ~	ij ~Dið��1=2@j�Þ þD� 6

4
��2�~	ij@i�@j�� ��1KK� � ðD� 5Þ��2K2

�;

(2.48a)

8��ðSij � S
3	ijÞ

D� 4
¼ 1

2
���1 ~Di@j�þ 1

4
��1ð@i�@j�þ @j�@i�� ~	kl ~	ij@k�@l�Þ � 1

4
���2@i�@j�� ��1K�

~Aij

� 1

6
~	ij�

�1�3=2 ~	kl ~Dkð��1=2@l�Þ þ 1

12
~	ij�

�2�~	kl@l�@k�; (2.48b)

16���1ji

D� 4
¼ 2��1 ~	ij@jK� � ��2K� ~	

ij@j�� ~	ik ~	lj ~Akl�
�1@j�� ~	ij

3
K��1@j�; (2.48c)

where ~Di is the covariant derivative with respect to ~	ij.
Finally, the evolution equations for � and K� are

ð@t �L
Þ� ¼ �2�K�; (2.49a)

ð@t �L
ÞK� ¼ �

�
ðD� 5Þ þ 6�D

4
½��1�~	ij@i�@j�� 4��1K2

�� þ KK� � 1

2
�3=2 ~	kl ~Dkð��1=2@l�Þ

�
� 1

2
�~	ij@j�@i�:

(2.49b)

As stated before, in the case of head-on collisions of
spinless BHs the full symmetry of the D dimensional
system we want to consider makes Eqs. (2.49) redundant,
by virtue of (2.13). This allows one to determine the
quasimatter degree of freedom in terms of the three dimen-
sional spatial geometry at each time slice. Indeed, we have
only used an SOðD� 3Þ subgroup in the dimensional
reduction we have performed. The extra symmetry mani-
fests itself in the fact that 	ij possesses, at all times, (at
least) one Killing vector field. If one chooses coordinates
adapted to this Killing vector field, @=@�, the metric can
then be written in the form (2.12), and then the quasimatter
degree of freedom can be determined from the spatial
geometry by (2.13). In the numerical implementation,
one can either determine, at each time step, the scalar field
through (2.13), or impose (2.13) only in the initial data, and
then evolve the scalar field using Eq. (2.49).

III. INITIAL DATA

Following the approach in [81,82], we now derive the
initial data of the evolution.

A. D dimensional Hamiltonian and momentum
constraints

Let �� be a (D� 1) dimensional spacelike hypersurface
with induced metric �	ab and extrinsic curvature �Kab in the
D dimensional space-time. The space-time metric has the
form

dŝ2 ¼ ĝMNdx
MdxN

¼ ��2dt2 þ �	abðdxa þ 
adtÞðdxb þ 
bdtÞ; (3.1)

where lowercase latin indices take values a ¼ 1; . . . ; D�
1. The constraint equations are
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�Rþ �K2 � �Kab
�Kab ¼ 0; (3.2)

�Dað �Kab � �	ab �KÞ ¼ 0; (3.3)

where �R is the Ricci scalar of the hypersurface ��, �K is the
trace of the extrinsic curvature, and �Da is the covariant
derivative with respect to �	ab.

We conformally decompose the spatial metric

�	 ab ¼ c 4=ðD�3Þ	̂ab; (3.4)

which introduces the conformal factor c , and split the
extrinsic curvature in trace and trace-free parts,

�K ab � �Aab þ
�K

D� 1
�	ab; (3.5)

where �	ab �Aab ¼ 0. Define �Aab � �	ac �	bd �Acd; define also
the quantity

Â ab � c 2ððDþ1Þ=ðD�3ÞÞ �Aab; (3.6)

and lower its indices with 	̂ab,

Â ab � 	̂ac	̂bdÂ
cd ¼ c 2 �Aab: (3.7)

Assuming that the ‘‘conformal metric’’ 	̂ab is flat, which is
a good approximation for the class of problems we want to
study, we impose the ‘‘maximal slicing condition’’ �K ¼ 0.
Then, the Hamiltonian and momentum constraints become

r̂ aÂ
ab ¼ 0; (3.8)

4̂c þ D� 3

4ðD� 2Þ c
�ðð3D�5Þ=ðD�3ÞÞÂabÂab ¼ 0; (3.9)

where r̂ is the covariant derivative with respect to 	̂ab and

4̂ is the flat space Laplace operator.

B. Brill-Lindquist initial data and matching to four
dimensions

The simplest way to solve the constraints (3.8) and (3.9)
is to require the extrinsic curvature to be zero

�K ab ¼ 0: (3.10)

This is sufficient to model the evolution of a single BH or
even of N nonspinning, nonboosted BHs. The constraints
reduce to a simple harmonic equation for the conformal

factor, 4̂c ¼ 0, which we solve in cylindrical coordinates
fxag ¼ ðz; �; �; . . .Þ, where ‘‘. . .’’ represent the coordinates
on the (D� 4) sphere,

	̂ abdx
adxb ¼ dz2 þ d�2 þ �2ðd�2 þ sin2�d�D�4Þ:

(3.11)

This choice of coordinates makes manifest the symmetries
we want to impose. Observe that � is a polar rather than an
azimuthal coordinate, i.e. � 2 ½0; ��. Next, we introduce
‘‘incomplete’’ Cartesian coordinates as

x ¼ � cos�; y ¼ � sin�; (3.12)

where �1< x <þ1 and 0 � y <þ1; we can then
write the D dimensional initial data as (3.10) together with

�	 abdx
adxb ¼ c 4=ðD�3Þ½dx2 þ dy2 þ dz2 þ y2d�D�4�;

(3.13)

where c is a harmonic function on (3.11).
If we compare the space-time metric (3.1) at the initial

time slice, for which the spatial metric is given by (3.4) and
(3.13), with the generic form that has an SOðD� 3Þ sym-
metry and is given by (2.14) and (2.21), we see that the
initial data for the four dimensional variables are

	ijdx
idxj ¼ c 4=ðD�3Þ½dx2 þ dy2 þ dz2�; (3.14)

and

� ¼ y2c 4=ðD�3Þ: (3.15)

It remains to determine the initial conditions for Kij and

K�. Using a set of D dimensional coordinates that make
manifest the SOðD� 3Þ isometry, such as the one used in
(3.13), the vanishing of the extrinsic curvature �Kij is

equivalent to

Kij ¼ 0; (3.16)

whereas the vanishing of the components of �Kab along the
(D� 4) sphere implies that

K� ¼ 0: (3.17)

Equations (3.14), (3.15), (3.16), and (3.17) represent the
Brill-Lindquist initial data in our framework.

1. Evolution of a single black hole

As one test of our framework we study the case of a
single, nonspinning BH. Even though the space-time is
static, the slicing evolves when using the puncture gauge.
The solution for the conformal factor, which shall be

used in the numerical tests to be presented below, is given
by

c � 1þ �D�3

4½x2 þ y2 þ ðz� zBHÞ2�ðD�3Þ=2 ; (3.18)

where the ‘‘puncture’’ [83] is placed at x ¼ y ¼ 0 and z ¼
zBH. In this formulation, there is an interesting signature
that the BH we wish to evolve is higher dimensional: the
falloff of c , which is that of a harmonic function in D� 1
spatial dimensions. Because the Tangherlini solution [69]
may be expressed, in the same coordinate system as used in
(3.13), as

dŝ2 ¼ �
�
4RD�3 ��D�3

4RD�3 þ�D�3

�
2
dt2 þ

�
1þ �D�3

4RD�3

�
4=ðD�3Þ

� ðdx2 þ dy2 þ dz2 þ y2d�D�4Þ; (3.19)
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where R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, we conclude that the parameter

� appearing in the initial condition (3.18) is the same that
appears in this form of the Tangherlini solution. It is related
to the ADM mass by

�D�3 ¼ 16�MADM

ðD� 2ÞASD�2 : (3.20)

Note, however, that this form of the Tangherlini solution is
not appropriate for a comparison with the numerical data.
Indeed, the evolution does not, in general, preserve the
conformally flat slicing of the initial condition, which is the
slicing used in this form of the Tangherlini solution. We
shall return to this issue in Sec. IVA.

2. Head-on collision of black holes

As another test of our formulation, and, in particular, of
the numerical code’s long-term stability, we also evolve a
head-on collision of nonspinning nonboosted BHs. In this
case, the initial data for the conformal factor are given by

c � 1þ �D�3
A

4½x2 þ y2 þ ðz� zAÞ2�ðD�3Þ=2

þ �D�3
B

4½x2 þ y2 þ ðz� zBÞ2�ðD�3Þ=2 : (3.21)

This conformal factor is used in Sec. IVA.

IV. THE NUMERICAL TREATMENT

Our numerical simulations have been performed by
adapting the LEAN code [68], initially designed for 3þ 1
vacuum space-times. The LEAN code is based on the
CACTUS computational toolkit [84]. It employs the BSSN

formulation of the Einstein equations [66,67], uses the
moving puncture method [2,3], the CARPET package for
mesh refinement [85,86], the spectral solver described in
[87] for 3þ 1 initial data, and Thornburg’s
AHFINDERDIRECT [88,89]. Details about LEAN may be

found in [68]. Here we focus on the numerical issues
generated by the quasimatter terms arising from the di-
mensional reduction by isometry.

We expect that the quasimatter field � has a y2 falloff as
y ! 0, that is, on the xz plane. This leads to divisions by
zero on the right-hand side of the BSSN evolution equa-
tions; cf. (2.48). Since we expect all variables to remain
regular on the xz plane, all divisions by y need to be
canceled by a corresponding falloff behavior of the numer-
ators. At y ¼ 0, however, in order to implement this be-
havior numerically, we need to isolate the irregular terms
and evaluate expressions such as

lim
y!0

f

y
; (4.1)

where f is some example function that behaves like yn with
n � 1 near the xz plane. It is necessary, for this purpose, to

formulate the equations in terms of variables that are
manifestly regular at y ¼ 0. We also prefer to apply a
conformal rescaling of � and use the evolution variable

� � �

y2
�: (4.2)

As in (2.49), in order to obtain a first order evolution
system in time, we introduce an auxiliary variable (see
Appendix A):

K� � � 1

2�y2
ð@t �L
Þð�y2Þ

¼ � 1

2�

�
@t� � 
m@m� þ 2

3
�@m


m � 2�

y

y

�
: (4.3)

The third term on the right-hand side arises from the fact
that � is not a scalar, but a scalar density of weight �2=3.
The inclusion of this term might not be necessary for a
stable numerical implementation. For consistency with the
rest of the BSSN variables, however, we decide to keep this
form of K� .

The quasimatter terms (2.48), the quasimatter evolution
Eqs. (2.49), and the constraints are recast in terms of � and
K� in Appendix A. In particular, we notice that

K� ¼ y2

�
K� þ 1

3

y2�

�
K: (4.4)

A detailed analysis of the equations in terms of the varia-
bles � and K� shows how all terms with an explicit depen-

dence on 1=yn, n � 1 may be treated for numerical
implementation. This is discussed in Appendix B.

A. Numerical results in D ¼ 5

We first address the question of longevity of our simu-
lations in D ¼ 5. It is also of interest in this context to test
the code’s capability to successfully merge a BH binary.
For this purpose we have evolved a head-on collision
starting from rest. The initial conditions are those from
Sec. III B 2 with

�2
A ¼ �2

B � �2

2
; (4.5)

zA ¼ �zB ¼ 3:185�; (4.6)

and we use the grid setup (cf. Sec. II E of Ref. [68])

fð512; 256; 128; 64; 32; 16; 8Þ � ð2; 1Þ; h ¼ 1=32g;
in units of �. The gauge variables � and 
i are evolved
according to the modified moving puncture conditions
(A5) and (A6) with parameters �K ¼ �K�

¼ 1:5 and � ¼
0:75. We employ fourth order discretization in space and
time and impose a floor value [2] for the variable � ¼
10�4.
In Fig. 2 we show the conformal factor � and the

momentum K� along the axis of collision at various times.
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At early times, the evolution is dominated by the adjust-
ment of the gauge (cf. the solid and short-dashed curves).
The two holes next start approaching each other (long-
dashed and dotted curves) and eventually merge and settle
down into a single stationary hole (dash-dotted curves). We
have not observed any signs of instability and decided to
stop the simulation at t ¼ 256�. It is reassuring to notice
that the framework can handle the merger in as robust a
fashion as has been demonstrated by various numerical
groups for BH binaries in 3þ 1 dimensions.

We have also used the head-on collision to test the
relation between the scalar field � and the 3þ 1 metric
discussed in Sec. I C for the case that SOðD� 2Þ is the full
isometry group. We have verified for this purpose that
Eq. (2.13) remains satisfied to within a relative error of
10�3 in the immediate vicinity of the puncture and at most
10�5 everywhere else.

In order to further test our numerical framework, we
have performed simulations of a single BH, using the
initial data described in Sec. III B 1 and the grid setup

fð512; 256; 128; 64; 32; 16; 8; 4; 2Þ � ð Þ; hg;
in units of�with resolutions hc ¼ 1=32 and hf ¼ 1=48. In
Fig. 3 we show the Hamiltonian constraint and the y
component of the momentum constraint at evolution time
t ¼ 28�. By this time there is hardly any more gauge
dynamics going on. One can see that there is some noise,
but the overall convergence is acceptable. For the
Hamiltonian constraint the convergence is essentially
fourth order and for the momentum constraint it decreases
slightly toward second or third order in patches. From
experience in 3þ 1 dimensional numerical relativity this
is perfectly acceptable, especially given the fact that pro-
longation in time is second-order accurate.
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FIG. 3 (color online). Constraints at time t ¼ 28�, for the evolution of a single Tangherlini BH in five dimensions.
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FIG. 2 (color online). The BSSN variable � (left) and the quasimatter momentum K� (right) are shown along the axis of collision for
a head-on collision at times t ¼ 0, 5, 20, 40, and 256�. Note that K� ¼ 0 at t ¼ 0.
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A different test of our numerical code was performed in
order to compare the analytical Tangherlini solution with
our numerical results. The challenge to do this comparison,
at the level of the line element, is to write the well known
analytical solution in the same coordinate system in which
the numerical evolution is occurring. One way around this
problem is to fix the numerical gauge as to match a known
coordinate system for the analytic solution. Following [65]
we fixed the gauge parameters to be

� ¼ 1; 
i ¼ 0; i ¼ 1; 2; 3; (4.7)

this corresponds to geodesic slicing. The D dimensional
Tangherlini solution may be expressed in a coordinate
system of type (3.1) with � ¼ 1, 
a ¼ 0, and a ¼
1; . . . ; D� 1. This coordinate system may be achieved by
setting a congruence of infalling radial timelike geodesics,
each geodesic starting from rest at radial coordinate r0,
with r0 spanning the interval ½�;þ1½, and using their
proper time � and r0 as coordinates (instead of the standard
t, r Schwarzschild-like coordinates). A detailed construc-
tion of the Tangherlini solution in these coordinates is
given in Appendix C. The line element becomes

ds2 ¼ �d�2 þ ðr0ðRÞ2 þ ð �
r0ðRÞÞ2�2Þ2

r0ðRÞ2 � ð �
r0ðRÞÞ2�2

dR2

R2

þ
�
r0ðRÞ2 �

�
�

r0ðRÞ
�
2
�2
�
d�3; (4.8)

where r0ðRÞ is given by Eq. (C5).
The numerical evolution in this gauge is naturally

doomed. Geodesics hit the physical singularity at finite
proper time. Thus, this slicing is inappropriate for a long-
term numerical evolution. As long as the evolution does
not break down, however, there is perfect control over the
slicing, and hence the numerical and analytical evolutions

can be compared with ease. This is shown in Fig. 4, where
we have plotted one metric component ~	xx along the x axis
(left) and �=� (right), for various values of � using both the
analytical solution and numerical data. The agreement is
excellent for ~	xx and good for �=�. The latter shows some
deviations very close to the puncture, but we believe that it
is not a problem for two reasons: (i) the agreement im-
proves for higher resolution; (ii) the mismatch does not
propagate outside of the horizon.
It is easy to interpret the behavior observed for ~	xx. The

geodesic that starts from r ¼ r0 (in Schwarzschild-like
coordinates) hits the physical singularity of the
Tangherlini solution within proper time � ¼ r20=�.

Moreover, this happens at

R ¼ �

2

1ffiffiffiffiffiffiffiffiffiffi
�=�

p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�� 1

p : (4.9)

The earliest time at which the slicing hits the singularity is
� ¼ �, which happens at R ¼ �=2. On the x axis R ¼ x,
and indeed one sees in Fig. 4 that ~	xx diverges at x ¼ �=2.
The divergence then extends to both larger and smaller
values of x, as expected from (4.9).

B. Preliminary numerical results in D ¼ 6

A quick glance at the evolution Eqs. (A7a) and (A7b) of
the scalar field � as well as the source terms (A8a)–(A8c)
indicates that D ¼ 5 may be a special case. In all these
expressions there exist terms that manifestly vanish for
D ¼ 5. In contrast, there exist no terms that manifestly
vanish for any dimension D � 6. The purpose of this
section is to extend the test of our framework to a case
that involves all source terms.
We have indeed noticed one fundamental difference

between simulations in D ¼ 5 and those using D � 6.
Whereas we have been able to obtain stable simulations

FIG. 4 (color online). Numerical values versus analytical plot (solid lines) for various values of �, for the single Tangherlini BH in
five dimensions. The horizontal axes are labeled in units of �.
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of single BHs lasting hundreds of � for the former case by
modifying the moving puncture gauge conditions, we have
not yet succeeded in doing so forD � 6. While the lifetime
of the simulations in D � 6 shows a dependence on the
exact nature of lapse and shift, all simulations developed
instabilities on a time scale of about 10�. Resolving this
issue requires an extensive study involving a large number
of experiments with gauge conditions, constraint damping,
and possibly other aspects of the formulation. Such a study
is beyond the scope of this work and is deferred to a future
publication. The results presented in this section still pro-
vide valuable information. Most importantly, they demon-
strate the internal consistency of the code for D � 6 and
thus minimize the possibility of a simple error in the
implementation. Furthermore they exhibit clearly that our
framework and, in particular, our regularization of the
variables as discussed in Appendix B are in principle
suitable for simulations in arbitrary dimensions.

We first consider the convergence of the constraints
analogous to the results displayed in Fig. 3 for D ¼ 5.
Compared to those simulations, the only change we have
applied in D ¼ 6 is to set the gauge parameters to �K ¼
�K�

¼ � ¼ 2. This choice enables us to evolve single BHs

to about 10� when instabilities cause the runs to abort.
In Fig. 5 we show the Hamiltonian and the y component

of the momentum constraint at t ¼ 8� along the y axis. As
for D ¼ 5, the high resolution result is amplified by a
factor 1:54 expected for fourth order convergence [80].
While the convergence appears to be closer to second order
in some patches of the momentum constraint, the results
are clearly compatible with the numerical discretization.
For the second test, we compare the numerical evolution

of a single D ¼ 6 Tangherlini BH with the analytic solu-
tion, using geodesic slicing. This comparison is more
difficult in the present case than in D ¼ 5, because the
line element analogous to (4.8) cannot be obtained in a
simple analytic form. In Appendix C we demonstrate how
a semianalytic solution can be obtained for the metric. In
Fig. 6 we compare this expression with the three dimen-
sional numerical values at times � ¼ 0:5�, 0:7�, and
0:72�. The agreement is excellent and demonstrates that
our code works well at least up to the point where insta-
bilities set in. As mentioned above, resolving these stability
problems will be of the highest priority in future extensions
of our work.

V. FINAL REMARKS

In this paper we present a framework that allows the
generalization of the present generation of 3þ 1 numerical
codes to evolve, with relatively minor modifications,
space-times with SOðD� 2Þ symmetry in five dimensions
and SOðD� 3Þ symmetry in D � 6 dimensions. The key
idea is a dimensional reduction of the problem along the
lines of Geroch’s [70] procedure that recasts the D dimen-
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FIG. 5 (color online). Constraints at time t ¼ 8�, for the evolution of a single Tangherlini BH in six dimensions.
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FIG. 6 (color online). Numerical values versus the semiana-
lytic expression of ~	xx (cf. Appendix C) along the x axis for the
single Tangherlini BH in six dimensions.
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sional Einstein vacuum equations in the form of the stan-
dard four dimensional equations plus some quasimatter
source terms. The resulting equations can be transformed
straightforwardly into the BSSN formulation that has
proved remarkably successful in numerical evolutions of
BH configurations in 3þ 1 space-times. We have isolated
several issues related to the regularization of the variables
used in our formulation and demonstrated how all difficul-
ties related to the coordinate singularity arising out of the
use of a ‘‘radiuslike’’ coordinate can be successfully ad-
dressed in a numerical implementation. We have further
illustrated how initial data for single, nonspinning BHs as
well as BH binaries with vanishing initial extrinsic curva-
ture can be adapted straightforwardly to the formulation
presented in this paper. More generally, the class of prob-
lems that may be studied with our framework includes
head-on collisions in D � 5 and a subset of BH collisions
with impact parameter and spin in D � 6.

As might be expected, stable evolutions of such space-
times require some modifications of the underlying meth-
ods of the so-called moving puncture technique, especially
with regard to the gauge conditions used therein. We have
successfully modified the slicing condition via incorpora-
tion of the canonical momentum of the quasimatter field in
order to obtain long-term stable simulations in D ¼ 5
dimensions. Unfortunately, these modifications do not ap-
pear sufficient to provide long-term stability for arbitrary
values of the dimensionality D. We will address this im-
portant issue in the form of a systematic study in future
work.

We have tested our framework by adapting the LEAN

code and performed a variety of single BH space-times.
Most importantly, we have demonstrated the internal con-
sistency of our numerical framework in D ¼ 5 and 6
dimensions by showing convergence of the Hamiltonian
and momentum constraints as well as comparing numerical
results with (semi)analytic expressions for a single
Tangherlini BH in geodesic slicing. We have further shown
for D ¼ 5 that the head-on collision of a BH binary suc-
cessfully merges into a single hole, which settles down into
a stationary state and can be evolved numerically for long
times, hundreds of � in the present example.

A complete study of such BH binary evolutions requires
the implementation of gravitational wave extraction in
arbitrary dimensions as well as the generalization of ap-
parent horizon diagnostics beyond D ¼ 4. Both are cur-
rently being implemented in the LEAN code and will be
discussed in detail in future work.

In spite of several open questions, we believe that our
formalism will open up a vast range of uncharted territory
in BH physics for contemporary numerical relativity. The
list of possible applications and extensions of our frame-
work is too large to be included here, and we merely
mention strong hyperbolicity studies of the BSSN formu-
lation with sources and systematic investigation of BH

binary dynamics in D dimensions. These studies are under
way and will be reported elsewhere.
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APPENDIX A: IMPLEMENTING REGULAR
VARIABLES

The numerical evolution faces a problem at the symme-
try axis, given the quasimatter terms in (2.48) and the
initial data discussed in Sec. III. The incomplete
Cartesian coordinate y vanishes at the symmetry axis; cf.
(3.12). Then, from (3.15), � vanishes at the axis (except,
possibly, at the puncture). Inspection of Eqs. (2.48) and
(2.49) immediately reveals various divisions by �, leading
to numerical problems.
From previous experience with polar and spherical co-

ordinates in simpler models involving, for example, neu-
tron stars (cf. [90,91]), we know that it is better to avoid the
use of singular variables such as �. We should use, instead,
regular functions. In our case, since � behaves as y2 near
the axis, this is simply achieved by introducing a variable �
via (4.2). The evolution of � is formulated in terms of a first
order in time system of equations. For this purpose we have
introduced in Eq. (4.3) the variable K� . We remark that if,

instead, we employ the standard definition for the momen-
tum associated with � , i.e.

K̂ � � � 1

2�
ð@t �L
Þ�

¼ � 1

2�

�
@t� � 
m@m� þ 2

3
�@m


m

�
; (A1)

we face problems in the numerical evolution for vanishing
lapse. This may be seen as follows. From (4.4)
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K� ¼ y2

�
K̂� þ 1

3

y2�

�
K þ 
y

�

y�

�
: (A2)

Acting on both sides of this equation with the derivative
operator,

@0 � @t � 
m@m;

results in the expression

@0K̂� ¼ �

y2
@0K� þ 4


y

y
K̂� þ 4

3
�KK̂� þ 4

3
�

y

y
K

þ 2

9
��K2 � �

3
@0K þ �

�

�

y

y

�
2 � 2

3
K̂�@m


m

� �

�

@0

y

y
þ �


y

y�2
@0�: (A3)

This is an evolution equation for K̂� . To obtain it explicitly,

one uses (2.37) to express @0K�, together with

@0K ¼ �Dm@m�þ �ð ~Amn ~Amn þ 1
3K

2Þ þ 4��ðEþ SÞ:
(A4)

Moreover we need gauge conditions. Throughout this work

we use the following coordinate choices:

@0� ¼ �2�ð�KK þ �K�
K� Þ; (A5)

@0

i ¼ 3

4
~�i � �
i: (A6)

Note the extra term involving K� in the slicing condition

compared with standard moving puncture gauge in 3þ 1
dimensions and the additional freedom we have introduced
in the form of the parameters �K and �K�

.

The problems in the case of a collapsed lapse become
clear if we consider the final two terms in (A3). These
terms do not change when BSSN variables are introduced
and diverge for the modified moving puncture gauge con-
ditions (A5) and (A6) as the lapse � ! 0. We have solved
this problem by expressing our equations in terms of the

variable K� (4.3), instead of K̂� .

In BSSN variables, the evolution equation for � and K�

[which replace the quasimatter evolution Eqs. (2.49)] be-
come

@t� ¼ �2�K� þ 
m@m� � 2

3
�@m


m þ 2�

y

y
; (A7a)

@tK� ¼ 
m@mK� � 2

3
K�@m


m þ 2

y

y
K� � 1

3
�@0K � ��

y
~	ym@m�� 1

2
~	mnð@m�Þð�@n� � �@n�Þ

þ �

�
ð5�DÞ �

y2
ð� ~	yy � 1Þ þ ð4�DÞ�

y
~	ym@m� þ 2D� 7

2

�

y
~	ym@m�þ 6�D

4

�

�
~	mnð@m�Þð@n�Þ

þ 2D� 7

4
~	mnð@m�Þð@n�Þ þ 1�D

4

�

�
~	mnð@m�Þð@n�Þ þ ðD� 6ÞK

2
�

�
þ 2D� 5

3
KK� þD� 1

9
�K2

þ 1

2
~	mnð� ~Dm@n�� � ~Dm@n�Þ þ ��

~�y

y

�
: (A7b)

These equations have no manifest problems as � ! 0.
In terms of the regular variables, � and K� , the quasimatter terms (2.48) read

4�ðEþ SÞ
D� 4

¼ ðD� 5Þ�
�

~	yy� � 1

y2
� 2D� 7

4~�
~	mnð@m�Þð@n�Þ � �

~�y

y
þD� 6

4

�

�2
~	mnð@m�Þð@n�Þ

þ 1

2�
~	mnð� ~Dm@n� � � ~Dm@n�Þ �

KK�

�
� 1

3
K2 þ ðD� 4Þ ~	

ym

y

�
�

�
@m� � @m�

�
� 1

2

~	ym

y
@m�

þD� 1

4
~	mn ð@m�Þð@n�Þ

�
� ðD� 5Þ

�
K�

�
þ K

3

�
2
; (A8a)

8��ðSij � 1
3	ijSÞ

D� 4
¼ 1

2

�
�

y�
ð
j

y@i� þ 
i
y@j� � 2�~�y

ijÞ þ
1

2�
ð@i�Þð@j�Þ þ �

�
~Di@j� � ~Di@j�

þ 1

2�
~	ij ~	

mn@n�

�
@m�� �

�
@m�

�
� ~	ij

~	ym

y
@m�� �

2�2
ð@i�Þð@j�Þ

�
TF �

�
K�

�
þ 1

3
K

�
~Aij; (A8b)

16�ji
D� 4

¼ 2

y

�

i

y
K�

�
� ~	ym ~Ami

�
þ 2

1

�
@iK� �

K�

�

�
1

�
@i�þ 1

�
@i�

�
þ 2

3
@iK � ~	nm ~Ami

�
1

�
@n� � 1

�
@n�

�
:

(A8c)
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Finally, the constraints are now given by

H � Rþ 2
3K

2 � ~	mn ~	kl ~Amk
~Anl � 16�E; (A9)

M i � ~	mn

�
~Dn

~Aim � 3

2
~Ami

@n�

�

�
� 2

3
@iK � 8�ji;

(A10)

where we also need to express E in terms of our funda-
mental variables. It is given by

16�E

D� 4
¼ ðD� 3Þ �

y�
~	ym@m� � ðD� 2Þ 1

y
~	ym@m�

þD� 7

4

�

�2
~	mnð@m�Þð@n�Þ

�D� 2

2�
~	mnð@m�Þð@n�Þ

þDþ 3

4�
~	mnð@m�Þð@n�Þ � ðD� 5ÞK

2
�

�2

� 2D� 4

3
K
K�

�
�Dþ 1

9
K2 þ �

�
~	mn ~Dm@n�

� ~	mn ~Dm@n�� 2�
~�y

y
þ ðD� 5Þ�

�

~	yy� � 1

y2
:

(A11)

APPENDIX B: ANALYSIS OF TROUBLESOME
TERMS AT y ¼ 0

The right-hand sides of Eqs. (A7)–(A10) contain various
terms that cannot be evaluated directly at y ¼ 0 because
they involve explicit division by y. Although these terms
are regular by virtue of a corresponding behavior of the
numerators, they need to be explicitly evaluated in the
numerical implementation. In this appendix we outline
how the regularity of these terms can be implemented in
a simple and efficient manner. For convenience we use a
special notation: late latin indices i; j; . . . run from 1 to 3,
covering x, y, and z, but early latin indices a; b; . . . take
values 1 and 3 but not 2; i.e. they cover x and z but not y.

We begin this discussion by describing a simple manipu-
lation that underlies most of our regularization procedure.
Consider for this purpose a function h that is linear in y
near y ¼ 0; i.e. its Taylor expansion is given by hðyÞ ¼
h1yþOðy2Þ. From this relation we directly obtain

lim
y!0

h

y
¼ h1 ¼ @yh: (B1)

This trading of divisions by y for partial derivatives extends
to higher orders in a straightforward manner and will be
used throughout the following discussion.

Next, we consider the right-hand sides of Eqs. (A7)–
(A10) and summarize the potentially troublesome terms as
follows:


y

y
;

~�y

y
; (B2)

~	ym

y
@mf; (B3)

~	yy� � 1

y2
; (B4)

1

y

�

i

y
K�

�
� ~	ym ~Ami

�
; (B5)

1

y
ð
j

y@i� þ 
i
y@j� � 2�~�y

ijÞ: (B6)

Here f stands for either of the scalars or densities � , �, and
�.
Regularity of the terms (B2) immediately follows from

the symmetry condition of the y component of a vector


yð�yÞ ¼ �
yðyÞ: (B7)

We can therefore use the idea illustrated in Eq. (B1) and
obtain

lim
y!0


y

y
¼ @y


y; (B8)

and likewise for ~�y=y. The terms (B3) are treated in a
similar manner because the derivative of a scalar (density)
behaves like a vector on our Cartesian grid. We thus obtain

lim
y!0

�
~	ym

y
@mf

�
¼ ð@y ~	yaÞð@afÞ þ ~	yy@y@yf: (B9)

Regularity of the expression (B4) is not immediately
obvious but can be shown to follow directly from the
requirement that there should be no conical singularity at
y ¼ 0. Specifically, this condition implies that ~	yy� ¼ 1þ
Oðy2Þ, so that

lim
y!0

�
~	yy� � 1

y2

�
¼ 1

2
ð�@y@y ~	yy þ ~	yy@y@y�Þ: (B10)

The discussion of the term (B5) requires us to distin-
guish between the cases i ¼ a � y and i ¼ y. The former
straightforwardly results in

lim
y!0

�
� ~	ym

y
~Ama

�
¼ � ~Aba@y ~	

yb � ~	yy@y ~Aya: (B11)

For the case i ¼ y, we first note that the limit y ! 0
implies ~	yy ¼ 1=~	yy þOðy2Þ, so that the condition

(B10), i.e. no conical singularities, can be written as

lim
y!0

ð� � ~	yyÞ ¼ Oðy2Þ: (B12)

Next we take the time derivative of this expression and
obtain after some manipulation

MIGUEL ZILHÃO et al. PHYSICAL REVIEW D 81, 084052 (2010)

084052-16



O ðy2Þ ¼ lim
y!0

@tð� � ~	yyÞ

¼ �2��

�
K�

�
� ~	ym ~Amy

�
þOðy2Þ; (B13)

and, consequently,

lim
y!0

�
1

y

�
K�

�
� ~	ym ~Amy

��
¼ 0: (B14)

Finally, we consider the term (B6). Expansion of the
Christoffel symbol, repeated use of the method illustrated
in Eq. (B1), and the condition for avoiding a conical
singularity enable us to regularize this term for all combi-
nations of the free indices i and j. We thus obtain

lim
y!0

�
1

y
ð2@y� � 2�~�y

yyÞ
�
¼ 2@y@y� � � ~	yy@y@y ~	yy

� �ð@y ~	ycÞð2@y ~	yc � @c ~	yyÞ;
(B15)

lim
y!0

�
1

y
ð@a� � 2�~�y

ayÞ
�
¼ 0; (B16)

lim
y!0

�
�2

�

y
~�y
ab

�
¼ �� ~	yyð@y@a ~	by þ @y@b ~	ya � @y@y ~	abÞ

� �ð@y ~	ycÞð@a ~	bc þ @b ~	ac � @c ~	abÞ:
(B17)

We conclude this discussion with a method to express
derivatives of the inverse metric in terms of derivatives of
the metric. For this purpose we use the condition that
det~	ij ¼ 1 by construction and explicitly invert the metric

components as, for example, in

~	 xy ¼ ~	xz ~	yz � ~	xy ~	zz: (B18)

A straightforward calculation gives us the derivatives of
the inverse metric components as follows:

@y ~	
xy ¼ ~	xz@y ~	yz � ~	zz@y ~	xy þOðy2Þ; (B19)

@y ~	
yz ¼ ~	xz@y ~	xy � ~	xx@y ~	yz þOðy2Þ; (B20)

@y ~	
yy ¼ ~	zz@y ~	xx þ ~	xx@y ~	zz � 2~	xz@y ~	xz; (B21)

@y@y ~	
yy ¼ ~	zz@y@y ~	xx þ ~	xx@y@y ~	zz � 2~	xz@y@y ~	xz

þOðy2Þ: (B22)

The benefit in using these expressions is purely numerical:
we do not need to store the inverse metric in grid
functions, which reduces the memory requirements of the
simulations.

APPENDIX C: GEODESIC SLICING

In standard Schwarzschild-like coordinates, the
Tangherlini metric reads

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�D�2;

fðrÞ ¼ 1�
�
�

r

�
D�3

:
(C1)

For a radially infalling massive particle, starting from rest

at r ¼ r0, the energy per unit mass is
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
. The geodesic

equation may then be written as

dt

d�
¼

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
fðrÞ ;

�
dr

d�

�
2 ¼ fðr0Þ � fðrÞ: (C2)

In four and five dimensions these equations have simple
solutions. In five dimensions the solutions are

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

q
�þ�

2
ln

��������
�þ ffiffiffiffiffiffiffiffiffiffiffi

fðr0Þ
p

r20=�

�� ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
r20=�

��������;
r2 ¼ r20 �

�
�

r0

�
2
�2:

(C3)

Then, performing a coordinate transformation ðt; rÞ !
ð�; r0Þ the line element becomes

ds2 ¼ �d�2 þ ðr20 þ ð�r0Þ2�2Þ2
r20 � ð�r0Þ2�2

dr20
r20fðr0Þ

þ
�
r20 �

�
�

r0

�
2
�2
�
d�3: (C4)

This coordinate system encodes a space-time slicing with
zero shift and constant (unit) lapse [i.e. of type (3.1) with
� ¼ 1, 
a ¼ 0] for all times. To compare it with a nu-
merical evolution, we must have the initial data for the
spatial metric written in a conformally flat form. Taking the
initial hypersurface to be � ¼ 0, we see that this is
achieved by a coordinate transformation r0 ! R with

dR

R
¼ dr0ffiffiffiffiffiffiffiffiffiffiffi

fðr0Þ
p

r0
) r0ðRÞ ¼ R

�
1þ �2

4R2

�
: (C5)

This actually coincides with the standard coordinate trans-
formation from Schwarzschild to isotropic coordinates in
five dimensions. The line element finally reads (4.8). At the
initial hypersurface � ¼ 0,

ds2�¼0 ¼
�
r0ðRÞ
R

�
2ðdR2 þ R2d�3Þ

¼
�
r0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
�
2

� ðdz2 þ d�2 þ �2d�2 þ �2sin2�d�1Þ; (C6)

where we have used the metric on the 3-sphere in the form
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d�3 ¼ d~�þ sin2 ~�ðd�2 þ sin2�d�1Þ; (C7)

and performed the coordinate transformation ðR; ~�Þ !
ð�; zÞ defined as

� ¼ R sin~�; z ¼ R cos~�: (C8)

Using (3.12) we get

ds2�¼0 ¼
�
r0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
�
2ðdx2 þ dy2 þdz2 þ y2d�1Þ:

(C9)

Thus the coordinate transformation from the spherical

coordinates used in (4.8), ðR; ~�; �Þ, to the incomplete
Cartesian coordinates used in the numerical evolution
ðx; y; zÞ is
x ¼ R sin~� cos�; y ¼ R sin~� sin�; z ¼ R cos~�;

(C10)

which resembles the usual coordinate transformation from
spherical polar coordinates to Cartesian coordinates in R3;

but note that ~� and � are both polar angles with range
½0; ��, which is the manifestation of the Cartesian coordi-
nates’ ‘‘incompleteness.’’

The coordinate change (C10) brings the five dimen-
sional Tangherlini metric in geodesic slicing to a confor-
mally flat form at � ¼ 0. This matches the initial data for
the numerical evolution. One may ask, however, if the
coordinate transformation evolves, in order to compare
the analytic formwith the numerical evolution. This cannot
be the case, since the existence of �-dependent terms in the
coordinate transformation would imply a drift away from
geodesic slicing. We are thus guaranteed that the coordi-
nate transformation (C10) is valid for all values of �. Then,
we can predict the value of the metric components that
should be obtained from the numerical evolution; say 	xx

should be, at time �

	xxð�; x; y; zÞ ¼ x2gRRð�; RÞ
R2

þ x2z2g~� ~�ð�; RÞ
R4ðx2 þ y2Þ

þ y2g��ð�; RÞ
ðx2 þ y2Þ2 ; (C11)

where R2 ¼ x2 þ y2 þ z2 and gRRð�; RÞ, g~� ~�ð�; RÞ, and
g��ð�; RÞ are readily obtained from (4.8) with (C7) and
(C10). The result for ~	xx along the x axis is plotted in Fig. 4
for various values of �.
For D � 6 the situation is more involved because

Eqs. (C2) can no longer be integrated straightforwardly,
but require a numerical treatment. First one notices that the
coordinate transformation ðt; rÞ ! ð�; r0Þ, with initial con-
ditions tð� ¼ 0Þ ¼ 0 and rð� ¼ 0Þ ¼ r0, brings the D di-
mensional Tangherlini metric to the form

ds2 ¼ �d�2 þ
�
@rð�; r0Þ

@r0

�
2 dr20
fðr0Þ þ r2ð�; r0Þd�D�2:

(C12)

Then, from the initial conditions, it follows that the coor-
dinate transformation to isotropic coordinates at � ¼ 0 is

dR

R
¼ dr0ffiffiffiffiffiffiffiffiffiffiffi

fðr0Þ
p

r0
)D¼6

r0ðRÞ ¼ R

�

�
1þ �3

4R3

�
2=3

: (C13)

Writing the metric on the (D� 2) sphere as in (C7) (re-
placing d�1 ! d�D�4), one concludes that the transfor-
mation to incomplete Cartesian coordinates is still (C10).
Thus (C11) is still valid, which reduces to, along the x axis
(R ¼ x),

	xxð�; x; 0; 0Þ ¼ gRRð�; xÞ ¼ r0ðxÞ2
x2

�
@rð�; r0Þ

@r0

�
2

r0¼r0ðxÞ
:

(C14)

This expression is valid for any D. For D ¼ 6, r0ðxÞ is
explicitly given by (C13). The derivative in (C14) has to be
computed numerically. The result for ~	xx is plotted, for
various values of �, in Fig. 6.
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