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A possible process to destroy a black hole consists on throwing point particles with sufficiently large

angular momentum into the black hole. In the case of Kerr black holes, it was shown byWald that particles

with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon

is not destroyed. Here, we reconsider this gedanken experiment for a variety of black hole geometries,

from black holes in higher dimensions to black rings. We show that this particular way of destroying a

black hole does not succeed and that cosmic censorship is preserved.
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I. INTRODUCTION

Black holes can be formed through the collapse of
matter, through sufficiently high-energy collisions of par-
ticles or quantum fluctuations in the early universe.
Basically any process capable of confining a large portion
of matter in a small enough space. Once formed, black
holes are hard to kill. Quantum processes aside, no known
classical mechanism can destroy a black hole. One of such
processes was considered by Wald [1] many years ago and
revisited recently [2–6]. It consists in throwing a point
particle at a (four-dimensional) Kerr black hole with just
the right angular momentum to spin the black hole up in
such a way that eventually the horizon is disrupted. Indeed,
the angular momentum of Kerr black holes is bounded by
J � M2, thus if it was possible for the black hole to capture
particles of high enough angular momenta, then one might
exceed this bound, possibly creating a naked singularity.
Wald showed this cannot happen, as the potentially danger-
ous particles (i.e., those with large enough angular mo-
mentum) are never captured by the black hole [1].

The purpose of this short letter is to extend Wald’s
analysis to other spacetimes, in particular, the Myers-
Perry family of rotating black holes in higher dimensions
[7] and a large class of black rings in five dimensions [8,9].
This analysis is interesting because it allows one to test
cosmic censorship in a very simple, yet realistic scenario.
The four-dimensional result indicates that no point particle
thrown into a Kerr black hole can overcome the Kerr
bound. The analogous process for the case of equal-mass
black holes was studied recently. In Ref. [10] the authors
studied the collision at close to the speed of light of two
equal-mass black holes with an arbitrary impact parameter.
The end product of such a collision was invariably a Kerr

black hole, rotating at close to the maximum possible rate
for certain critical impact parameters. No naked singularity
was formed. Likewise, it might well be that the outcome of
throwing point particles at black holes in other scenarios,
for instance higher dimensions, provides some hints at
what will happen in the full nonlinear case. Thus, results
obtained with ‘‘point particles’’ could be used to under-
stand numerical results in four dimensions and even the on-
going efforts in higher dimensions [11].
The plan of the paper is as follows. In Sec. II, we review

rotating black holes of spherical horizon topology in gen-
eral D-dimensional spacetime. Then, we obtain the metric
along the equatorial plane and consider the cases with a
single rotation plane or with all angular momentum equal.
In Sec. III, we obtain the effective potentials that describes
the motion of a pointlike particle along the equatorial plane
in Myers-Perry (MP) geometry. We then study, in Sec. IV,
how the dimensionless spin of an MP black hole evolves
when it captures point particles. The analogous situation
for neutral and dipole black rings in five dimensions is
considered in Sec. V. We conclude with some thoughts on
possible extensions of our results.

II. HIGHER DIMENSIONAL BLACK HOLES

The geometries we are mainly concerned with describe
rotating black holes in general D-dimensional spacetimes.
In four dimensions, there is only one possible rotation axis
for a cylindrically symmetric spacetime, and there is there-
fore only one angular momentum parameter. In higher
dimensions there are several choices of rotation axis and
there is a multitude of angular momentum parameters,
each referring to a particular rotation plane [7]. The solu-
tion is described by a slightly different form depending on
whether the spacetime dimension is even or odd. We
briefly summarize the main results in the following.
Additional details can be found in the original work [7]
(see also [12] where this discussion is taken from). We use
geometrical units with G ¼ c ¼ 1.

*mariam.bouhmadi@ist.utl.pt
†vitor.cardoso@ist.utl.pt
‡andrea.nerozzi@ist.utl.pt
xjorge.v.rocha@ist.utl.pt

PHYSICAL REVIEW D 81, 084051 (2010)

1550-7998=2010=81(8)=084051(10) 084051-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.084051


A. Even dimensions [D ¼ 2ðdþ 1Þ]
The metric in even dimensions is given by

ds2 ¼ �dt2 þ r2d�2 þXd
i¼1

ðr2 þ a2i Þðd�2
i þ�2

i d�
2
i Þ

þ Mr

�F

�
dt�Xd

i¼1

ai�
2
i d�i

�
2 þ �F

��Mr
dr2; (1)

where

F ¼ 1�Xd
i¼1

a2i �
2
i

r2 þ a2i
; � ¼ Yd

i¼1

ðr2 þ a2i Þ; (2)

and
Pd

i¼1 �
2
i þ �2 ¼ 1, with d � D=2� 1. The parame-

ters M and ai are related to the mass M and angular
momenta J i as

M ¼ D� 2

16�
AðD�2ÞM; (3)

J i ¼ 1

8�
AðD�2ÞMaiði ¼ 1; . . . ; dÞ; (4)

where AðD�2Þ is the area of a unit (D� 2) sphere, which is

given by

AðD�2Þ ¼ 2�ðD�1Þ=2

�ððD� 1Þ=2Þ : (5)

The event horizon is located at the zeroes of

grr ¼ ��Mr

�F
: (6)

If at least one rotation parameter is set to zero, for example
a1 ¼ 0, the equation for the horizon is given by

��Mr ¼ r2
�Yd
i�2

ðr2 þ a2i Þ �
M

r

�
¼ 0: (7)

In the case of d � 2, i.e. D � 6, Eq. (7) always has a
positive root, independently of the magnitude of ai. We
then find a regular black hole solution albeit with arbi-
trarily large angular momenta. This is one of the typical
features of higher dimensional black holes.

B. Odd dimensions (D ¼ 2dþ 1)

In odd dimensions, the metric of a rotating black hole is
slightly changed from Eq. (1). It is now given by

ds2 ¼ �dt2 þXd
i¼1

ðr2 þ a2i Þðd�2
i þ�2

i d�
2
i Þ

þMr2

�F

�
dt�Xd

i¼1

ai�
2
i d�i

�
2 þ �F

��Mr2
dr2; (8)

with
P

d
i¼1 �

2
i ¼ 1. The definitions of � and F remain the

same as in even dimensions while d ¼ ðD� 1Þ=2. We also

find that if at least two angular momenta are set to zero, the
remaining angular momenta can be arbitrarily large for
d � 3, i.e. D � 7 as in the case of even dimensions.

C. The five-dimensional rotating black hole

The five-dimensional black hole is exceptional, because
there is an upper bound for the angular momenta. In Boyer-
Lindquist coordinates, we can write down the five-
dimensional black hole solution with two rotation parame-
ters a and b as

ds2 ¼ �dt2 þ �2r2

�
dr2 þ �2d�2

þ M

�2
ðdt� asin2�d’� bcos2�dc Þ2

þ ðr2 þ a2Þsin2�d’2 þ ðr2 þ b2Þcos2�dc 2; (9)

where

�2 ¼ r2 þ a2cos2�þ b2sin2�; (10)

� ¼ ðr2 þ a2Þðr2 þ b2Þ �Mr2: (11)

This can be obtained from (8) by setting

�1 ¼ sin�; �1 ¼ ’; a1 ¼ a;

�2 ¼ cos�; �2 ¼ c ; a2 ¼ b:
(12)

The horizon appears where � ¼ 0, which gives the loca-
tion of the horizons, i.e.

r2� �M� ða2 þ b2Þ
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M� ðaþ bÞ2�½M� ða� bÞ2�

q
:

(13)

A sign change of rotation parameters a, b simply reverses
the direction of rotation. The condition for the existence of
an event horizon is

M � ðjaj þ jbjÞ2: (14)

The outer and inner horizons coincide when M ¼ ðjaj þ
jbjÞ2. The area of the event horizon is given by

A H ¼ 2�2

rþ
ðr2þ þ a2Þðr2þ þ b2Þ: (15)

The horizon vanishes if one of the spin parameters is set to
zero and the other approaches the extreme value (e.g. b ¼
0 and a2 ! M), which corresponds to the appearance of a
naked singularity. When ðjaj þ jbjÞ2 ! M with a � 0 and
b � 0, this corresponds to the extremal black hole with
nonzero surface area and vanishing temperature.

D. The metric along the equatorial plane

We focus exclusively on the intuitively most dangerous
process: particles falling in along the equator. In this case,
the metric and equations of motion simplify considerably.
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We will also consider two special subcases of the geome-
tries discussed so far: (i) black holes with a single rotation
parameter and (ii) black holes with all rotation parameter
equal. For simplicity, we will only discuss the motion of
point particles in the ‘‘equatorial plane,’’ which we now
turn to.

The coordinates �i and � in the metric (1) are written
explicitly by colatitude angles �i as follows:8>>>>>>>><

>>>>>>>>:

�1 ¼ sin�1;

�2 ¼ cos�1 sin�2;

..

.

�d ¼ cos�1 cos�2 � � � sin�d;
� ¼ cos�1 cos�2 � � � cos�d:

(16)

For the case of odd dimensionality, the coordinate�d plays
the role of � and the above expression changes accord-
ingly. We then suppose that the orbits of particles are
constrained on the equatorial plane �1 ¼ �2 ¼ � � � ¼
�d ¼ �=2. Note however that since each coordinate �i is
on equal footing, we can exchange the numbering of �i,
and find d equatorial planes, on which the orbits of parti-
cles are confined.

E. A single rotation plane

In this case, the metric along the equator is the same for
even or odd D and is given by

ds2 ¼ ��D � a2

r2
dt2 � 2aðr2 þ a2 � �DÞ

r2
dtd’

þ ðr2 þ a2Þ2 ��Da
2

r2
d’2 þ r2

�D

dr2; (17)

where

�D ¼ r2 þ a2 �Mr5�D: (18)

For D ¼ 4, we recover the Kerr metric along the Equator.
The horizon is located at the zeroes of �D.

F. All angular momenta equal

The other extreme is when ai ¼ a for all i. In this case,
we get

ds2 ¼ �
�
1�Mr

f

�
dt2 � 2

aMr

f
dtd’

þ
�
r2 þ a2 þ a2Mr

f

�
d’2 þ f

ðr2 þ a2Þd �Mr
dr2;

for even D and

ds2 ¼�
�
1�Mr2

f

�
dt2 � 2

aMr2

f
dtd’

þ
�
r2 þa2 þa2Mr2

f

�
d’2 þ f

ðr2 þa2Þd �Mr2
dr2;

for odd D, with f � r2ðr2 þ a2Þd�1. The horizon, for odd
D, is located at the zeroes of ðr2 þ a2Þd �Mr2. In this case
we find that the horizon radius and rotation parameters are
limited as

rþ � affiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p ; (19)

a �
�ðd� 1Þd�1

dd

�
1=ð2ðd�1ÞÞ

M1=ð2ðd�1ÞÞ: (20)

III. EFFECTIVE POTENTIAL FOR RADIAL
MOTION

With the use of the effective ‘‘2þ 1’’ dimensional met-
ric along the equatorial plane, it is very simple to write
down the geodesic equations. The conserved energy and
angular momentum (per unit test-particle mass m0 in the
case of timelike geodesics [13]) associated to the timelike
and rotational Killing vectors are defined by

E � �g��ð@=@tÞ� _x�; L � g��ð@=@c Þ� _x�; (21)

where the dot indicates derivation with respect to proper
time. Equation (21) can be inverted to express _t and _c as
linear combinations of E and L. To determine the ‘‘radial’’
motion, one simply uses g�� _x

� _x� ¼ ��1, where �1 ¼ 1,

0 for timelike and null geodesics, respectively.

A. A single rotation plane

Equatorial motion in the geometry (17) can be reduced
to the following radial equation [14]:

_r2 ¼ Vr;

r2Vr ¼
�
r2E2 þ M

rD�3
ðaE�LÞ2 þða2E2 �L2Þ��1�D

�
:

(22)

We also have

_’ ¼ 1

�D

�
aM

rD�3
Eþ

�
1� M

rD�3

�
L

�
; (23)

_t ¼ 1

�D

��
r2 þ a2 þ a2M

rD�3

�
E� aM

rD�3
L

�
: (24)

The radial motion is completely governed by the potential
Vr. If there are turning points outside the event horizon,
then a particle coming from infinity can not reach the event
horizon. Thus, the analysis we want to make is to study the
maximum value of L for which there are either no turning
points, or all of them lie inside the event horizon.

B. All angular momenta equal

Similar equations can be written when all angular mo-
menta are equal. For instance, for even D we find
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r3Vr ¼ Mðr2 þ a2Þð4�DÞ=2½r2�1 þ ðL� aEÞ2�
þ r½ðr2 þ a2ÞðE2 � �1Þ � L2�; (25)

while for odd D we obtain

r2Vr ¼ Mðr2 þ a2Þð3�DÞ=2½r2�1 þ ðL� aEÞ2�
þ ½ðr2 þ a2ÞðE2 � �1Þ � L2�: (26)

Specializing to the case of D ¼ 5, the above equation
reduces to

r2ðr2 þ a2ÞVr ¼ Mr2�1 þMðL� aEÞ2
þ ðr2 þ a2Þ2ðE2 � �1Þ � ðr2 þ a2ÞL2:

(27)

IV. SPINNING UPA BLACK HOLE BY THROWING
POINT PARTICLES

Let us try to spin up a black hole (BH) with mass M0

and angular momentum J 0 in generalD spacetime dimen-
sions. For that, we throw in a particle of mass m0 with
angular momentum �J ¼ m0L and energy �M ¼ m0E,
such that �M � M0 and �J � J 0. Upon absorption of
this particle, the dimensionless spin of the BH [15]

j � J

MðD�2Þ=ðD�3Þ (28)

changes to

j ¼ j0 þ �j; (29)

where the subscript stands for initial parameters of the BH
and

�j ¼ m0

M0

�
L

M1=ðD�3Þ
0

� Ej0
D� 2

D� 3

�
: (30)

A. Single rotation parameter

We start with the D ¼ 5 case, which is simple enough
that it allows an explicit solution [14]. Let us focus on
corotating geodesics, since these are the only ones of
significance here. For capture to occur, we find that the
angular momentum has to be smaller than the critical value

Lcrit ¼ E
ffiffiffiffiffi
M

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
ð ffiffiffiffiffi

M
p � aÞ: (31)

For large E it tends to Lcrit

E ! 2
ffiffiffiffiffi
M

p � a, which also corre-

sponds to the values of the null circular geodesic, as could
be expected [14]. Equation (30) yields

ð�jÞmax ¼ m0

M0

�
E

ffiffiffiffiffi
M

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
ð ffiffiffiffiffi

M
p � aÞffiffiffiffiffiffiffiffiffi

M0

p � 3E

2
j0

�
:

(32)

For D ¼ 5, we also have

M ¼ 3�M=8; J ¼ 2Ma=3: (33)

Thus we can write j0 ¼ 2a=ð3 ffiffiffiffiffiffiffiffiffi
M0

p Þ and

ð�jÞmax ¼ m0

M3=2
0

ð ffiffiffiffiffi
M

p � aÞðEþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
Þ

¼ 4m0

�M
ð

ffiffiffiffiffiffiffiffiffi
32

27�

s
� j0ÞðEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
Þ: (34)

Therefore, for a <
ffiffiffiffiffi
M

p
, or equivalently for j20 <

32
27� , the

BH can be spun up by the capture of particles. This

spinning-up process ceases when the rotation reaches a ¼ffiffiffiffiffi
M

p
. As in four dimensions, in D ¼ 5 we can also spin the

BH to the extremal limit and no further [16].
What about general D? Unfortunately, an exact analysis

such as the previous one for D ¼ 5 does not seem to be
possible. We have numerically searched for the critical
angular momentum and computed �j in Eq. (30). The
results, which are summarized in Fig. 1, are clear: neutral
black holes in four and five spacetime dimensions with a
single rotation cannot be spun up past extremality. For
larger D, there is no extremal limit, and the black holes
can be spun up to an arbitrarily high rotation.
One can obtain analytic expressions in the limit that both

the rotation of the hole and the energy of the incoming
particle are large. In this case, it is sufficient to focus
attention on the (corotating) circular null geodesic with
r ¼ rc as the geodesic with maximum possible impact
parameter that can still be captured. This geodesic has [14]

FIG. 1 (color online). This figure shows the maximum increase
in spin, M

m0
ð�jÞmax caused by a particle with E=m0 ¼ 100 falling

into a Myers-Perry black hole with a single rotation parameter.
The dimensionless rotation parameter a	 is defined as a	 �

a
M1=ðD�3Þ . Notice that it is not possible to spin up an extremal

black hole (for D ¼ 4, 5, the extremal value is marked with a
dotted line).
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L

E
¼ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rD�1

c

ðD� 3ÞM

s
; (35)

and for large a we get LE 
 a [14]. Thus, from Eq. (30) we

get

�j ¼ m0

M0

�
Ea

M1=ðD�3Þ
0

� Ej0
D� 2

D� 3

�

¼ m0ðD� 2Þj0E
M0

�
1

2
� 1

D� 3

�
: (36)

In agreement with the numerical results, �j is always
positive, in this limit.

Our results also show that the variation in dimensionless
spin depends sensitively on the energy of the point particle.
For instance, Fig. 2 depicts how the spin of aD ¼ 6Myers-
Perry black holes depends on the energy of the captured
particle. We find a qualitative change in the behavior of �j
for low energy. More specifically, there is a critical energy
Ecrit above which the dimensionless spin parameter is a
growing function of the dimensionless rotation parameter
a	 � a

M1=ðD�3Þ (at large a	), while for values of E< Ecrit, �j

is a decreasing function of a	 � a
M1=ðD�3Þ . Indeed, in this

case �j eventually becomes negative. The value of Ecrit

depends on the spacetime dimension:

D ¼ 6: 1:34< Ecrit < 1:35;

D ¼ 7: 1:15< Ecrit < 1:16;

D ¼ 8: 1:09< Ecrit < 1:10:

As noticed, Ecrit gets smaller as the spacetime dimension
increases.

B. All angular momenta equal

As for the singly spinning case, the situation in which all
angular momenta are equal can be solved analytically in
D ¼ 5. Again, we focus on timelike corotating geodesics.
For capture to occur, we find that the angular momentum
has to be smaller than the critical value

Lcrit ¼ E
ffiffiffiffiffi
M

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1ÞðM� 2a

ffiffiffiffiffi
M

p Þ
q

: (37)

For large E, it tends to Lcrit

E ! ffiffiffiffiffi
M

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� 2a

ffiffiffiffiffi
M

pp
, which

also corresponds to the values of the null circular geodesic,
as should be expected. Equation (30), together with
Eq. (33), yields

ð�jÞmax ¼ m0

M3=2
0

½Eð ffiffiffiffiffi
M

p � aÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1ÞðM� 2a

ffiffiffiffiffi
M

p Þ
q

�:

(38)

Notice that for D ¼ 5, the extremal value of the spin

parameter is a ¼ ffiffiffiffiffi
M

p
=2, as can be easily seen from

Eq. (20). In this case, even when we take the extremal
limit, we obtain a positive maximum increment in the
dimensionless spin of the BH:

ð�jÞmax ! m0

M3=2
0

E
ffiffiffiffiffi
M

p
2

: (39)

Nevertheless, this does not imply that the cosmic censor-
ship conjecture is violated for five-dimensional (5D)
Myers-Perry with both angular momenta equal. We are
changing the angular momentum J 1 by throwing in a
massive particle with angular momentum �J 1. The mass
of the BH also increases by �M, and we have shown that
�j1 can be positive. However, in the process �j2 decreases
and so we are left with a BH with different angular mo-
menta for which the extremal bound (20) no longer applies.
Instead, it is replaced by

jj1j þ jj2j �
ffiffiffiffiffiffiffiffiffi
32

27�

s
()ja1j þ ja2j �

ffiffiffiffiffi
M

p
: (40)

In fact, from Eq. (30) we find �j2 ¼ �m0M
�3=2
0 Ea, so

that

�j1 þ �j2 ¼ m0

M3=2
0

½Eð ffiffiffiffiffi
M

p � 2aÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1ÞðM� 2a

ffiffiffiffiffi
M

p Þ
q

�: (41)

This shows that, taking the extremal limit, the change in
angular momenta produced by throwing one test particle
into a 5D Myers-Perry BH with two equal angular mo-
menta still yields an extremal configuration, albeit with
different spin parameters.

FIG. 2 (color online). This figure shows the maximum increase
in spin, M

m0
ð�jÞmax=E caused by a particle with energy E ¼ 100,

1.5, 1.2 falling into a Myers-Perry black hole with D ¼ 6 and for
a single rotation parameter. The dimensionless rotation parame-
ter a	 is defined as a	 � a

M1=ðD�3Þ . For E ¼ 1:2, M
m0

�j becomes

negative at a	 ¼ 3:3.
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The study just performed is hard to generalize to higher
dimensions, because the surface of extremal solutions
becomes more complicated as the dimension increases.
However, one can avoid this by the following trick: instead
of throwing in one test particle, consider d particles follow-
ing similar geodesics along the d orthogonal rotation
planes. The final black hole will also have all angular
momenta equal. For the 5D case, it is easy to reproduce
this situation—the only difference relative to the previous
calculation is that, since we are throwing in two particles,
the increment in mass is doubled. Therefore,

ð�j1Þmax ¼ ð�j2Þmax

¼ m0

M3=2
0

½Eð ffiffiffiffiffi
M

p � 2aÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1ÞðM� 2a

ffiffiffiffiffi
M

p Þ
q

�; (42)

which vanishes in the extremal limit, a ! ffiffiffiffiffi
M

p
=2.

The same rationale can be applied for higher dimen-
sions, i.e.

�j ¼ m0

M0

�
L

M1=ðD�3Þ
0

� dEj0
D� 2

D� 3

�
; (43)

and the results are presented in Fig. 3. In full analogy with
the singly spinning case in D ¼ 4, 5 in which the spin is
bounded, we cannot exceed the extremal limit by throwing
in test particles.

V. SPINNING-UP BLACK RINGS

In this section we consider the case of singly spinning
black rings (see [17] for a review). The neutral black ring
was obtained by Emparan and Reall [8] and is a solution of

vacuum gravity in five dimensions featuring a horizon with
spatial topology S1 � S2. We shall also consider the more
general case of the dipole black ring discovered in [9]
(however, note that we restrict to the nondilatonic
solution).
It is well known that the neutral ring has no upper bound

on its dimensionless angular momentum j. However, there
are two families of black rings that coexist in a certain
range of parameters, the ‘‘fat’’ and the ‘‘thin’’ rings, and for
the fat ring branch there is an upper bound on j.
Reference [16] has shown that it is not possible to over
spin a fat ring with massless particles. We first extend this
result, in Sec. VA, to the case of absorption of a massive
particle by the neutral black ring.
Then, we consider the case of the dipole ring in Sec. VB.

For our purposes, the main novel feature of the dipole ring
with respect to its neutral counterpart is that it possesses
both lower and upper bounds on the spin. In this case the
distinction between fat and thin rings still holds, but it is
determined by the dipole charge parameter.
Let us first collect here the necessary results. The metric

can be expressed in the following form [9]:

ds2 ¼ �FðyÞ
FðxÞ

HðxÞ
HðyÞ

�
dt� CR

1þ y

FðyÞ dc
�
2

þ R2FðxÞHðxÞH2ðyÞ
ðx� yÞ2

�
� GðyÞ
FðyÞH3ðyÞdc

2

þ GðxÞ
FðxÞH3ðxÞd�

2

�
þ R2FðxÞHðxÞH2ðyÞ

ðx� yÞ2

�
�
� dy2

GðyÞ þ
dx2

GðxÞ
�
; (44)

where

FIG. 3 (color online). This figure shows the maximum increase in spin, M
m0

ð�jÞmax caused by d particles with E=m0 ¼ 100 falling
into a Myers-Perry black hole with all rotation parameters equal. The left panel considers even D; the right panel refers to odd
spacetime dimensions D. It is not possible to spin up an extremal black hole, marked with a dotted line. The dimensionless rotation
parameter a	 � a

M1=ðD�3Þ .
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Fð	Þ ¼ 1þ 
	; (45)

Gð	Þ ¼ ð1� 	2Þð1þ �	Þ; (46)

Hð	Þ ¼ 1��	; (47)

and

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
� �Þ 1þ 


1� 


s
: (48)

In general, the metric (44) is plagued with conical
singularities, but these are absent when the parameters
satisfy

1� 


1þ 


�
1þ�

1��

�
3 ¼

�
1� �

1þ �

�
2
: (49)

This situation, which we shall assume from now on, cor-
responds to a balanced ring in the sense that the centrifugal
force compensates for the tension and self-attraction of the
ring. Therefore, this solution has three free parameters,
which can be taken to be R, �, and �, but the former has
dimensions of length and drops out of all dimensionless
ratios. The parameter R measures the radius of the ring;
whereas, R� can be viewed as the radius of the S2 at the
horizon. Finally, � is associated to the dipole charge.
Setting� ¼ 0 one obtains the neutral black ring, for which
the regularity condition (49) becomes


 ¼ 2�

1þ �2
: (50)

Restricting to the neutral ring, the coordinate y takes
values in the interval (�1;�1]; whereas, x is restricted to
x 2 ½�1; 1�. Surfaces of constant y are ring shaped. The
surface y ¼ �1 is identified with the axis of rotation in the
c direction. The coordinate x can be viewed as a polar
coordinate on the S2. The axis of rotation along the angle�
corresponds to x ¼ �1. The þ sign yields the central disk
bounded by the ring, and the � sign gives the � axis
outside the ring. The dimensionless parameters � and 

take values in the range

0< � � 
 < 1: (51)

The outer horizon lies at y ¼ �1=� and there is an ergosur-
face at y ¼ �1=
. Finally, at y ¼ �1 the solution reveals
a spacelike singularity.

In the presence of a finite dipole charge, the coordinate y
can be extended across jyj ¼ 1 to the interval (1=�;þ1).
The dipole parameter varies in the range

0 � �< 1; (52)

and a curvature singularity appears only as y ! 1=�þ,
while there is an inner horizon at y ¼ �1. When � ! 0,
the outer and inner horizons become degenerate and this
corresponds to the extremal limit [9].

The mass and angular momentum of the singly spinning
balanced dipole ring are given by

M 0 ¼ 3�R2

4

ð1þ�Þ3
1� �

�

þ�ð1� 
Þ

1þ�

�
; (53)

J 0 ¼ �R3

2

ð1þ�Þ9=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
� �Þð1þ 
Þp

ð1� �Þ2 ; (54)

while the dipole charge is [9]

Q 0 ¼
ffiffiffi
3

p
R
ð1þ�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�þ �Þð1� 
Þp
ð1� �Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p : (55)

From the formulas for the mass and dipole charge given in
Eqs. (53) and (55), a dimensionless ratio can be obtained
by

q � Q

M1=2
: (56)

Geodesics in the background of a neutral black ring have
been analyzed in Ref. [18]. Here, we generalize to the
dipole ring but restrict our attention to geodesic motion
in the equatorial plane outside the ring, i.e., x ¼ �1. Thus,
the � angle drops out and we are left with the metric

ds2 ¼ �ð1þ�ÞFðyÞ
ð1� 
ÞHðyÞ dt

2 þ 2RCð1þ�Þð1þ yÞ
ð1� 
ÞHðyÞ dtdc

� R2ð1þ�Þ
HðyÞFðyÞ

�
C2

1� 

ð1þ yÞ2 þ ð1� 
ÞGðyÞ

ð1þ yÞ2
�
dc 2

� R2ð1� 
Þð1þ�ÞHðyÞ2
ð1þ yÞ2GðyÞ dy2: (57)

Equation (21) can be inverted to yield

_t¼ HðyÞ
ð1þ�Þð1�
ÞFðyÞGðyÞ
�
�
½ð1�
Þ2GðyÞþC2ð1þyÞ4�E�Cð1þyÞ3FðyÞL

R

�
;

_c ¼ HðyÞð1þyÞ2
Rð1þ�Þð1�
ÞGðyÞ

�
Cð1þyÞE�FðyÞL

R

�
; (58)

and the radial motion is governed by the following equa-
tion:

_y2 ¼ Vy;

R2Vy ¼ ð1þ yÞ3
ð1þ�ÞHðyÞ2

�
� HðyÞPðyÞ
ð1þ�Þð1� 
Þ3 E

2

þ 2Cð1þ yÞ2HðyÞ
ð1þ�Þð1� 
Þ2 E

L

R
� ð1þ yÞFðyÞHðyÞ

ð1þ�Þð1� 
Þ2
�
L

R

�
2

þ ð1� yÞð1þ �yÞ
1� 


�1

�
; (59)

where, for convenience, we have defined the quadratic
polynomial
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PðyÞ ¼ y2ð1þ 
Þð
� �Þ þ y½
2ð3þ �Þ þ 2
ð1� 3�Þ
� ð1� �Þ� þ ½
2ð4� �Þ � 
ð3þ �Þ þ 1�: (60)

Finding the critical value of the angular momentum such
that geodesics with L < Lcrit are captured by the BH (and
bounce back to infinity otherwise) is equivalent to requir-
ing the existence of degenerate roots of the potential Vy.

Since this is the expression for the potential cubic in y, this
calculation normally requires a numerical approach.
However, we will consider below specific cases where
simplifications occur and an analytical approach is there-
fore conceivable.

A. The neutral black ring

For dipole charge parameter � ¼ 0, we recover the
neutral black ring solution. It is possible to see from
Eq. (59) that the potential becomes in this case

_y2 ¼ Vy;

R2Vy ¼ ð1þ yÞ3
�
� PðyÞ

ð1� 
Þ3 E
2 þ 2Cð1þ yÞ2

ð1� 
Þ2 E
L

R

� ð1þ yÞFðyÞ
ð1� 
Þ2

�
L

R

�
2 þ ð1� yÞð1þ �yÞ

1� 

�1

�
: (61)

By setting the discriminant of the second order equation in
y equal to zero, we find the equation for Lcrit, whose
solution is given by

Lcrit ¼ Rffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ½2E ffiffiffi
�

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1Þð1þ �Þð1þ 3�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ �Þ

p
Þ

q
�: (62)

Together with the expressions for the mass and angular
momentum of the singly spinning balanced black ring
given in Eqs. (53) and (54) (in the limit � ¼ 0), Eq. (62)
can be inserted into Eq. (30) to yield the maximum addi-
tion of angular momentum obtained by throwing a massive
particle into the black ring. Also note that, for the neutral
ring,

j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ �Þ3
27��

s
: (63)

The results are presented in Figs. 4 and 5. The thin ring
branch (0< �< 1=2) is visible in both figures; whereas,
the fat ring branch (1=2< �< 1) is only apparent in Fig. 4
[19]. We observe that it is possible to spin up black rings in
the fat branch, but the maximum increase in angular mo-
mentum vanishes in the singular limit � ! 1. This can be
shown by using Eqs. (62) and (30) and is in accordance
with the results of [16]. Therefore, fat black rings cannot be
over spun. Another interesting feature is that, for suffi-
ciently low particle energies (more specifically, E<

ffiffiffi
2

p
),

black rings with large spins always see their angular mo-
mentum reduced if they absorb the particle.

FIG. 4 (color online). This figure shows the maximum increase
in spin, R

2

m0
ð�jÞmax caused by a massive particle with energies per

unit mass E ¼ 1:1, 1.15, 1.2 falling into a singly spinning neutral

black ring. For 1=
ffiffiffiffi
�

p � j0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32=27�

p
, there are two distinct

black rings with the same charges. In this range the lower (upper)
curve corresponds to the fat (thin) black ring. Notice that it is not
possible to over spin a fat black ring. The vertical line (at j0 ¼
1=

ffiffiffiffi
�

p
) marks the minimum spin that (regular) black rings can

possess.

FIG. 5 (color online). This figure shows the maximum increase
in spin, R

2

m0
ð�jÞmax caused by a massive particle with energies per

unit mass E ¼ 1:3, 1.35, 1.38, 1.45 falling into a singly spinning
neutral black ring. The fat black ring branch is not visible in this
plot. Thin black rings with very large spins j0 always lose
dimensionless angular momentum when absorbing a massive
particle with E<

ffiffiffi
2

p
.
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B. The dipole black ring

We will now consider the more general case of dipole
black rings. As for the neutral ring, these have two
branches—fat and thin—governed by the parameter �,
and the extremal limit � ! 0 provides an upper bound
for both of them. It is therefore interesting to study what
happens in this specific limit.

From the expression of the potential in Eq. (59), it is
possible to solve numerically for the value of Lcrit, which
can be inserted into Eq. (30) to obtain the maximum
addition of angular momentum of a massive particle into
the dipole black ring. We show the result in Fig. 6 for a
particle of energies E ¼ 1:2, 1.5 and dipole � ¼ 0:01.

Let us consider more in detail the extremal limit � ! 0.
This limit is hard to tackle and so we consider throwing in
massless particles. This amounts to a simplification, be-
cause when �1 ¼ 0, finding the turning points in the radial
potential becomes a quadratic equation:

R2Vy ¼ ð1þ yÞ3
ð1þ�ÞHðyÞ

�
� PðyÞ
ð1þ�Þð1� 
Þ3 E

2

þ 2Cð1þ yÞ2
ð1þ�Þð1� 
Þ2 E

L

R
� ð1þ yÞFðyÞ

ð1þ�Þð1� 
Þ2
�
L

R

�
2
�
:

(64)

Thus, we can obtain explicitly an expression for the critical
angular momentum Lcrit. Nevertheless, the formula is in-
tractable and so we proceed in the manner we now
describe.

Assume an initial dipole ring already at extremality and
with some dipole parameter �. One can then easily com-
pute the initial quantities j0 and q0. Next, we determine
ð�jÞmax and �q using Eq. (30) and the expression for �q
given by

�q ¼ � m0

M0

Eq0
2

; (65)

setting m0 ¼ 1 in these expressions since we are now
considering massless particles. After absorption of this
particle, the black ring will be characterized by the quan-
tities

jfin ¼ j0 þ ð�jÞmax; (66)

qfin ¼ q0 þ �q: (67)

But for the final dimensionless dipole charge thus obtained,
qfin, we can compute the corresponding upper bound on the
dimensionless angular momentum, jbound. These results are
presented in Fig. 7 for a range of initial dipole parameters
�. Also shown is the upper (extremal) bound on j consid-
ering the final ring has dipole charge qfin. We find that
jfin < jbound, independently of �. This provides a clear
indication that the dipole ring cannot be spun above
extremality.

FIG. 6 (color online). This figure shows the maximum increase
in spin, R

2

m0
ð�jÞmax caused by a massive particle with energies per

unit mass E ¼ 1:2 and E ¼ 1:5 falling into a dipole black ring.
The dipole parameter is set to � ¼ 0:01 while in the horizontal
axis the parameter �, which spans the interval [0,1), is shown.

FIG. 7 (color online). This figure shows the final dimension-
less angular momentum, jfin, caused by a massless particle with
energy E ¼ 1:5 falling into an extremal dipole black ring. The
horizontal axis corresponds to the dipole parameter � of the
initial ring. The value R ¼ 10 was employed to ensure that E �
M0 is always satisfied, therefore avoiding backreaction effects.
Also shown is the upper (extremal) bound on j considering the
final ring has dipole charge qfin. It is apparent that the dipole ring
is never over spun.
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VI. DISCUSSION

We have shown that several different black hole geome-
tries are immune to the throwing of point particles: in the
geodesic approximation employed here, particles which
are captured by the black hole have an angular momentum
which is sufficiently low so as to be harmless; in fact
sufficiently low that they are never able to spin up the
geometry past the extremal value. It seems unlikely that
taking radiation reaction into account will alter these con-
clusions. Our results should be taken together with full-
blown numerical evolutions in four-dimensional space-
times, where it was shown that the collision of equal-
mass black holes at generic velocities never produces a
naked singularity [10]. It is thus tempting to conjecture that
this is a general result, and that black hole–black hole
collisions at arbitrary velocity are governed by some kind
of cosmic censor.

We have only dealt with asymptotically flat spacetimes.
It would surely be interesting to generalize the present
results to say, (anti-)de Sitter backgrounds. More interest-
ing yet would be to understand how geodesics convey
information about the event horizon: clearly the maximum
impact parameter for capture ‘‘conspires’’ with the prop-
erties of the black hole in such a way as to never allow

singularities to form. Is this really just a coincidence, or
is it forced on us by the field equations? Whatever the
answer, cosmic censorhip remains a fascinating topic in
gravitation.
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