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Many interesting models incorporate scalar fields with nonminimal couplings to the spacetime Ricci

curvature scalar. As is well known, if only one scalar field is nonminimally coupled, then one may perform

a conformal transformation to a new frame in which both the gravitational portion of the Lagrangian and

the kinetic term for the (rescaled) field assume canonical form. We examine under what conditions the

gravitational and kinetic terms in the Lagrangian may be brought into canonical form when more than one

scalar field has nonminimal coupling. A particular class of two-field models admits such a transformation,

but models with more than two nonminimally coupled fields, in general, do not.
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I. INTRODUCTION

Scalar fields with nonminimal couplings to the space-
time Ricci curvature scalar are ubiquitous in particle phys-
ics and cosmology. Such nonminimal couplings are fairly
generic [1,2]: they appear in scalar-tensor theories such as
Jordan-Brans-Dicke gravity [3] and induced-gravity mod-
els [4]; in the low-energy effective actions arising from
higher-dimensional theories such as supergravity, string
theory, and other Kaluza-Klein models [5,6]; and in fðRÞ
models of gravity following a conformal transformation
[7]. More generally, as has been established for some time,
nonminimal couplings necessarily arise as counterterms
when considering the renormalization of scalar fields in
curved background spacetimes [8,9]. Indeed, in many
models the nonminimal coupling strength � grows without
bound under renormalization-group flow [9].

Many models have been studied of cosmic inflation
driven by a nonminimally coupled scalar field [10], includ-
ing extended inflation [11] and induced-gravity inflation
[12]. (For reviews, see [2,13].) Recent work suggests the
exciting possibility that the Higgs sector from the electro-
weak standard model could support a viable early-universe
phase of inflation as well, provided the Higgs sector is
nonminimally coupled [14]. This recent model has been
dubbed ‘‘Higgs inflation’’ [15–17].

Nearly all of the analyses of ‘‘Higgs inflation’’ have
tacitly adopted the unitary gauge, in which only the (real)
Higgs scalar field survives and no Goldstone fields remain
in the spectrum. The model then reduces to a single-field
case, akin to those reviewed in [2,13]. One may perform a
familiar conformal transformation on the spacetime met-
ric, g�� ! ĝ��, to bring the gravitational portion of the

Lagrangian into the Einstein-Hilbert form. One may also

rescale the scalar field, � ! �̂, so that the kinetic term for

�̂ in the transformed Lagrangian appears in canonical

form. Then the system in the transformed frame behaves
just like a minimally coupled scalar field in ordinary
(Einsteinian) gravity [1,2,8,18–20].
Yet the unitary gauge is not renormalizable, and thus it is

inappropriate for studies of Higgs-sector dynamics far
above the symmetry-breaking scale. To study inflationary
dynamics in ‘‘Higgs inflation,’’ one must instead use a
renormalizable gauge, in which the Goldstone scalar fields
remain explicit [21]. We are forced, in other words, to
consider a multifield model involving four real scalar fields
(the Higgs scalar plus three Goldstone scalars), each of
which is nonminimally coupled to the Ricci curvature
scalar. As recently noted [16,17], for the model of
‘‘Higgs inflation,’’ no combination of conformal transfor-
mation and rescaling of the scalar fields exists that could
bring both the gravitational portion of the Lagrangian and
the kinetic terms for each scalar field into canonical form.
Building on this important observation, we consider

under what conditions a combination of conformal trans-
formation and field rescalings could bring both the gravi-
tational and kinetic terms of a Lagrangian into canonical
form, for arbitrary numbers of nonminimally coupled sca-
lar fields. (See also [22] on post-Newtonian parameters for
tensor-multiscalar models.) Because nonminimal cou-
plings are generic for scalar fields in curved space-
times—and because realistic models of particle physics
(including generalizations of the standard model) contain
many scalar fields that could play important roles in the
early universe [23]—it is important to understand the trans-
formation properties of arbitrary models.
As we will see, only a particular class of models involv-

ing two nonminimally coupled scalar fields admits the
desired transformation; models involving more than two
nonminimally coupled scalar fields, in general, do not. One
may of course always perform a conformal transformation
on the spacetime metric to work in a convenient frame.
What one cannot do, in general, is find such a transformed
frame in which both the gravitational sector and the scalar
fields’ kinetic terms assume canonical form.*dikaiser@mit.edu
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In Sec. II we consider the single-field case, to review the
usual transformation and clarify notation. In Sec. III we
consider N scalar fields with nonminimal couplings, dis-
tinguishing between the cases of N ¼ 2 and N > 2.
Conclusions follow in Sec. IV.

II. SINGLE-FIELD CASE

We will work in D spacetime dimensions (only one of
which is timelike); our metric has signature
ð�;þ;þ;þ;þ; . . .Þ. We take the Christoffel symbols to be

��
�� ¼ 1

2g
��½@�g�� þ @�g�� � @�g���; (1)

and the Riemann tensor to be

R�
��� ¼ @��

�
�� � @��

�
�� þ �

�
����

�� � �
�
����

��: (2)

The Ricci tensor and Ricci curvature scalar follow upon
contractions of the Riemann tensor:

R�� ¼ R�
���; R ¼ g��R��: (3)

In the single-field case the action is given by

S ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
fð�ÞR� 1

2
g��r��r��� Vð�Þ

�
:

(4)

Covariant derivatives are denoted by r. We will assume
that fð�Þ is positive definite. Minimal coupling corre-
sponds to fð�Þ ! ð16�GDÞ�1, where GD is the value of
the gravitational constant (akin to Newton’s constant) in D
dimensions. The frame in which fð�Þ � constant appears
in the action, as in Eq. (4), is often referred to as the Jordan
frame.

We will assume natural units (c ¼ @ ¼ 1) and take the
metric tensor g�� to be dimensionless. Then in D dimen-

sions, times and lengths have dimensions of ðmassÞ�1, and
the covariant volume element in the action integral,
dDx

ffiffiffiffiffiffiffi�g
p

, assumes dimensions of ðmassÞ�D. The Ricci

scalar Rðg��Þ has dimensions ½ð@xgÞ2� � ðmassÞ2. In order

for the integrand to remain dimensionless, meanwhile, the
kinetic term for the scalar field requires that � have

dimensions ½�� � ðmassÞðD�2Þ=2. We may further parame-
trize

MD�2
ðDÞ � 1

8�GD

(5)

in terms of a (reduced) Planck mass in D dimensions.
WhenD ¼ 4, we haveMð4Þ ¼ Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8�G4

p ¼ 2:43�
1018 GeV.

Many families of models have an action in the form of
Eq. (4), in which the scalar field enters with a canonical
kinetic term but the gravitational sector departs from the
Einstein-Hilbert form. For example, the nonminimal cou-
pling associated with the renormalization counterterm
takes the form

fð�Þ ¼ 1
2½MD�2

0 þ ��2�; (6)

where � is the nonminimal coupling strength and M0 is
some mass scale. In the sign conventions of Eq. (6), a
conformally coupled field has � ¼ � 1

4 ðD� 2Þ=ðD� 1Þ.
The mass scale M0 need not be identical with MðDÞ. If the
scalar field’s potential Vð�Þ admits symmetry-breaking
solutions with some nonzero vacuum expectation value
v, then the measured strength of gravity following sym-
metry breaking would be MD�2

ðDÞ ¼ MD�2
0 þ �v2. One

could even have M0 ¼ 0, as in induced-gravity models
[4,12].
Another common model is Jordan-Brans-Dicke gravity

[3], the action for which is often written as

SJBD ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
�R� !

�
g��r��r��

�
: (7)

Rescaling the field, � ! �2=ð8!Þ, puts the action in the
form of Eq. (4), with a canonical kinetic term for � and
nonminimal coupling fð�Þ, as in Eq. (6), withM0 ¼ 0 and
� ¼ 1=ð8!Þ.
We may make a conformal transformation of the metric,

defined as

ĝ �� ¼ �2ðxÞg��: (8)

We assume that �ðxÞ is real and therefore that �2ðxÞ is
positive definite. Note that we have not made a coordinate
transformation; the coordinates x� remain the same in each
frame. We have instead mapped one metric into another, in
a manner that depends on space and time [24]. We will use
a caret to indicate quantities in the transformed frame.
From Eq. (8), we immediately see that

ĝ �� ¼ 1

�2ðxÞg
��;

ffiffiffiffiffiffiffi�ĝ
p ¼ �DðxÞ ffiffiffiffiffiffiffi�g

p
: (9)

Upon making the transformation of Eq. (8), one may
compute the Christoffel symbols and the Ricci curvature
scalar in the new frame. One finds [1,2,8,19,24]

�̂	

� ¼ �	


� þ 1

�
½�	


r��þ �	
�r
�� g
�r	��;

R̂ ¼ 1

�2

�
R� 2ðD� 1Þ

�
h�� ðD� 1ÞðD� 4Þ

� 1

�2
g��r��r��

�
; (10)

where

h� ¼ g��r�r�� ¼ 1ffiffiffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
g��@���: (11)

One must be careful to specify whether one is taking
derivatives with respect to the original metric g�� or

the transformed metric ĝ��, because the Christoffel sym-

bols (and hence covariant derivatives) transform in
�-dependent ways under the transformation of Eq. (8).
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Using Eqs. (8)–(11), we may rewrite the first term in the
action, involving R:

Z
dDx

ffiffiffiffiffiffiffi�g
p

fð�ÞR ¼
Z

dDx

ffiffiffiffiffiffiffi�ĝ
p
�D fð�Þ

�
�
�2R̂þ 2ðD� 1Þ

�
h�

þ ðD� 1ÞðD� 4Þ
�2

g��r��r��

�
:

(12)

Let us look at each of these terms in turn. The first term on
the right-hand side becomes

Z
dDx

ffiffiffiffiffiffiffi�ĝ
p ��

f

�D�2

�
R̂

�
: (13)

To obtain the canonical Einstein-Hilbert gravitational ac-
tion in the transformed frame, we identify

�D�2ðxÞ ¼ 2

MD�2
ðDÞ

f½�ðxÞ�: (14)

We may integrate the second term on the right-hand side
of Eq. (12) by parts. Note that theh operator acting on� is
defined in terms of the original metric g�� rather than the

transformed metric. Using Eqs. (9), (11), and (14), we find

Z
dDx

ffiffiffiffiffiffiffi�ĝ
p 2ðD� 1Þ

�Dþ1
fh�

¼ �
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p ðD� 1ÞðD� 3ÞMD�2
ðDÞ

1

�2
ĝ��r̂��r̂��:

(15)

Recall that x� is unaffected by the conformal transforma-

tion, so that @̂� ¼ @�. Because the covariant derivatives in

Eq. (15) act only on scalar functions, we have r�� ¼
@��, and hence r̂�� ¼ r��.

The last term on the right-hand side of Eq. (12) is

Z
dDx

ffiffiffiffiffiffiffi�ĝ
p ðD� 1ÞðD� 4Þ

�
f

�Dþ2

�
g��r��r��

¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p 1

2
ðD� 1ÞðD� 4ÞMD�2

ðDÞ
1

�2
ĝ��r̂��r̂��;

(16)

where we have again used Eqs. (9) and (14). Combining
Eqs. (12), (15), and (16) (and noting a simple algebraic

relationship among the coefficients in front of the r̂��

terms), we find

Z
dDx

ffiffiffiffiffiffiffi�g
p

fð�ÞR ¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p MD�2
ðDÞ
2

�
�
R̂� ðD� 1ÞðD� 2Þ 1

�2

� ĝ��r̂��r̂��

�
: (17)

The gravitational portion of the action now includes a
canonical Einstein-Hilbert term. For this reason, the frame
corresponding to ĝ�� is often referred to as the Einstein

frame.
We may next consider how the scalar field’s kinetic and

potential terms in the action transform under g�� ! ĝ��.

We have

Z
dDx

ffiffiffiffiffiffiffi�g
p �

� 1

2
g��r��r��� Vð�Þ

�

¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p �
� 1

2

1

�D�2
ĝ��r̂��r̂��� V̂

�
; (18)

where we have introduced a transformed potential,

V̂ � V

�D
: (19)

The full action of Eq. (4) may then be written

Z
dDx

ffiffiffiffiffiffiffi�g
p �

fð�ÞR� 1

2
g��r��r��� V

�

¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p �MD�2
ðDÞ
2

R̂� 1

2
ðD� 1ÞðD� 2ÞMD�2

ðDÞ
1

�2

� ĝ��r̂��r̂��� 1

2

1

�D�2
ĝ��r̂��r̂��� V̂

�
: (20)

Upon substituting f for � using Eq. (14), the action in the
transformed frame becomes

Z
dDx

ffiffiffiffiffiffiffi�ĝ
p �MD�2

ðDÞ
2

R̂� 1

2

ðD� 1Þ
ðD� 2ÞM

D�2
ðDÞ

1

f2
ĝ��r̂�fr̂�f

� 1

4f
MD�2

ðDÞ ĝ��r̂��r̂��� V̂

�
: (21)

In the single-field case, we may next rescale the field,

� ! �̂, so that the new scalar field in the transformed
frame has the canonical kinetic term in the action of

Eq. (21). We define �̂ such that

� 1

2
ĝ��r̂��̂r̂��̂ ¼ �MD�2

ðDÞ
4f

ĝ��

�
r̂��r̂��

þ 2ðD� 1Þ
ðD� 2Þ

1

f
r̂�fr̂�f

�
: (22)

In the single-field case, we may assume a one-to-one

mapping between �̂ and �; in particular, we assume that

�̂ ! �̂ð�Þ, or
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d�̂

d�
¼ Fð�Þ; (23)

in terms of some as-yet unspecified function F. In the
single-field case, we also have f ¼ fð�Þ, so that Eq. (22)
yields

Fð�Þ ¼
�
d�̂

d�

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MD�2

ðDÞ
2f2ð�Þ

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð�Þ þ 2ðD� 1Þ

ðD� 2Þ ½f
0ð�Þ�2

s
;

(24)

where primes denote derivatives with respect to�. In terms
of the rescaled field, the action of Eq. (21) may be writtenZ

dDx
ffiffiffiffiffiffiffi�g

p �
fð�ÞR� 1

2
g��r��r��� Vð�Þ

�

¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p �MD�2
ðDÞ
2

R̂� 1

2
ĝ��r̂��̂r̂��̂� V̂ð�̂Þ

�
:

(25)

The action in the second line now has both the canonical
Einstein-Hilbert form for the gravitational portion and the
canonical kinetic term for the scalar field.

Because we are only considering models in which fð�Þ
is positive definite and real, the combination on the right-
hand side of Eq. (24) is always nonzero. Under these
conditions, models with a single nonminimally coupled
scalar field may be related, via conformal transformation
and field rescaling, to an equivalent model involving ordi-
nary gravity and a minimally coupled scalar field. [If one
relaxes the conditions on fð�Þ, and/or considers models
with noncanonical kinetic terms in the Jordan frame, then
one may find models for which Fð�Þ in Eq. (24) vanishes.
Following a conformal transformation, such models are
equivalent to Einstein gravity with a cosmological constant
[20].]

III. MULTIFIELD CASE

Let us now consider the case of multiple scalar fields,
each with its own nonminimal coupling to R. We will use
Latin indices to label directions in field space:�i, with i ¼
1; . . . ; N. Working again in D spacetime dimensions, the
action in the Jordan frame takes the formZ

dDx
ffiffiffiffiffiffiffi�g

p �
fð�1; . . . ; �NÞR� 1

2
�ijg

��r��
ir��

j

� Vð�1; . . . ; �NÞ
�
: (26)

Just as in Eq. (8), we may make a conformal transforma-
tion g�� ! ĝ�� in terms of some conformal factor �2ðxÞ.
All of the steps that led from Eq. (9) to Eq. (16) depended
only on the fact that the terms �ðxÞ and fðxÞ depended on
x�; we did not use their functional dependence on the
scalar field, �ðxÞ. Those steps therefore proceed in pre-
cisely the same way in the multifield case, and we again

arrive at the gravitational portion of the action in the new
frame:

Z
dDx

ffiffiffiffiffiffiffi�g
p

fð�iÞR ¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p �MD�2
ðDÞ
2

R̂� 1

2

� ðD� 1Þ
ðD� 2ÞM

D�2
ðDÞ

1

f2
ĝ��r̂�fr̂�f

�
;

(27)

upon using Eq. (14) to substitute f for �. The kinetic and
potential terms for the scalar fields transform similarly to
Eq. (18), and we findZ

dDx
ffiffiffiffiffiffiffi�g

p �
� 1

2
�ijg

��r��
ir��

j � Vð�iÞ
�

¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p �
� 1

4f
MD�2

ðDÞ �ijĝ
��r̂��

ir̂��
j � V̂

�
;

(28)

in terms of V̂ as defined in Eq. (19).
Combining terms, we find the action in the transformed

frameZ
dDx

ffiffiffiffiffiffiffi�g
p �

fð�iÞR� 1

2
�ijg

��r��
ir��

j � V

�

¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p �MD�2
ðDÞ
2

R̂� 1

2

ðD� 1Þ
ðD� 2Þ

MD�2
ðDÞ
f2

ĝ��r̂�fr̂�f

�MD�2
ðDÞ
4f

�ijĝ
��r̂��

ir̂��
j � V̂

�
: (29)

In the multifield case we have f ¼ fð�1; . . . ; �NÞ, and thus
r̂ �f ¼ ðr̂��

iÞf;i; (30)

where f;i ¼ @f=@�i. We may therefore rewrite the deriva-

tive terms in the bottom line of Eq. (29) in terms of a metric
in field space, Gij:

Z
dDx

ffiffiffiffiffiffiffi�ĝ
p �MD�2

ðDÞ
2

R̂� 1

2
Gijĝ

��r̂��
ir̂��

j � V̂

�
;

(31)

with

G ij ¼
MD�2

ðDÞ
2f

�ij þ ðD� 1Þ
ðD� 2Þ

MD�2
ðDÞ
f2

f;if;j: (32)

Note that since scalar fields have dimensions ½�� �
ðmassÞðD�2Þ=2, then ½f;i� � ½@�f� � ðmassÞðD�2Þ=2 � ½��.
A necessary condition for the existence of some confor-

mal transformation that would bring the field-space metric

into the desired form, Gij ! ~Gij ¼ �ij, is if the Riemann

tensor constructed from the metric vanishes identically,
~Ri

jkl ¼ 0 [25]. Naturally the number of nontrivial compo-

nents of the Riemann tensor grows rapidly with increasing
N. We will therefore consider the Ricci curvature scalar

DAVID I. KAISER PHYSICAL REVIEW D 81, 084044 (2010)

084044-4



constructed from the field-space metric, ~R ¼ ~Gij ~Rk
ikj. In

general, there could exist some metric, ~Gij, for which
~R ¼

0 even though not all components of ~Ri
jkl ¼ 0; that is, ~R

could vanish because of cancellations among various non-
zero terms within the full Riemann tensor. But the converse

is not true: there is no way in which ~R � 0 if ~Ri
jkl ¼ 0. In

other words, ~R � 0 if and only if ~Ri
jkl � 0. For our

purposes—to demonstrate that no conformal transforma-

tion exists that could bring ~Gij ¼ �ij—it is therefore suf-

ficient to demonstrate that ~R � 0.
The Ricci curvature scalar corresponding to the metric

Gij in Eq. (32) is rather complicated, involving many

factors of f, f;i, and f;ij ¼ @2f=@�i@�j. Our concern is

whether the target field space is conformally flat, a condi-
tion that is itself conformally invariant. Hence we may
reduce some of the clutter by making a conformal trans-
formation in field space, rescaling the metric as

G ij ! ~Gij ¼ 2f

MD�2
ðDÞ

Gij ¼ �ij þ 2ðD� 1Þ
ðD� 2Þ

1

f
f;if;j: (33)

For N > 1, the curvature scalar corresponding to ~Gij takes

the form

~RðNÞ ¼ 2ðD� 1Þ
Lð�iÞ ½ðD� 2ÞAijklðff;ijf;kl � f;if;jf;klÞ

þ 2ðD� 1ÞBijklmnðf;if;jf;klf;mnÞ�; (34)

where

Lð�iÞ ¼
�
ðD� 2Þfþ 2ðD� 1ÞX

i

f2;i

�
2

(35)

and

Aijkl � ½�ij�kl � �ik�jl�;
Bijklmn � ½�ijAklmn þ 2�ikAjmln�:

(36)

In general, each of the terms involving f and its derivatives
depends on �i. In order for there to exist a conformal

transformation that could bring ~Gij ¼ �ij, we would

need to have ~Ri
jkl (and hence ~R) vanish everywhere in

field space, independent of particular values of the fields
�i. Thus we can see why, in general, such a conformal
transformation is unlikely to exist. However, the properties

of ~RðNÞ differ between N ¼ 2 and N > 2, and they are

worth considering separately.
Before proceeding, note that if only one among the N

fields has a nonminimal coupling, while the remaining
ðN � 1Þ fields remain minimally coupled, then there will
always exist some combination of conformal transforma-
tion and field rescalings such that in the new frame both
gravitational and kinetic terms in the action assume ca-
nonical form. This result follows from the structure of
Aijkl: the terms in which all indices take the same value

vanish, so that every remaining term includes derivatives of
fð�iÞ along at least two directions in field space. If fð�iÞ
depends only on a single field, then every term within ~RðNÞ
will vanish (and one can show that the same holds for the

full ~Ri
jkl). Thus multifield models with only one non-

minimally coupled field behave much like the usual
single-field case. One important difference is that the scalar
potential Vð�iÞ will acquire new interactions between the
nonminimally coupled field and the minimally coupled

fields, owing to the scaling V ! V̂ ¼ ��DV ¼
½2fð�Þ=MD�2

ðDÞ ��D=ðD�2ÞVð�iÞ. Now let us consider the

case in which more than one field has a nonminimal
coupling.

A. N ¼ 2

For N ¼ 2, Eq. (34) for ~R simplifies considerably. The
term involving Bijklmn vanishes identically, leaving

~Rð2Þ ¼ 2ðD� 1ÞðD� 2Þ
Lð�iÞ ½2ff;11f;22 � f2;1f;22 � f2;2f;11

� 2f;12ðff;12 � f;1f;2Þ�: (37)

Furthermore, for N ¼ 2, we also find that ~Ri
jkl / ~Rð2Þ. In

particular, we have (no sum on repeated indices)

~Ri
iji ¼ �ðD� 1Þ

ðD� 2Þ
f;if;j
f

~Rð2Þ;

~Ri
jij ¼

�
1

2
þ ðD� 1Þ

ðD� 2Þ
f2;j
f

�
~Rð2Þ:

(38)

The relationship ~Ri
jkl / ~R will not generalize for N > 2.

Let us consider a typical form for fð�iÞ in the case N ¼
2. We may label the fields �1 ¼ � and �2 ¼ 
. Then the
nonminimal couplings in the action typically take the form

fð�;
Þ ¼ 1
2½MD�2

0 þ ���
2 þ �



2�; (39)

where the coupling strengths �� and �
 need not coincide.

For this typical form for f, the cross-term derivatives
vanish, f;12 ¼ f;�
 ¼ 0, leaving

Lð�;
Þ ~Rð2Þ ¼ 2ðD� 1ÞðD� 2Þ
� ½2ff;��f;

 � f2;�f;

 � f2;
f;���

¼ 2ðD� 1ÞðD� 2Þ���
M
D�2
0 : (40)

In a model with two scalar fields, each of them nonmini-
mally coupled to the spacetime curvature as in Eq. (39), we
therefore see that no conformal transformation exists that
can bring both the gravitational sector and the scalar fields’
kinetic terms into canonical form. Even in the Einstein
frame, in other words, the fields would not behave as they
would in a genuine minimally coupled model.
On the other hand, in the case ofN ¼ 2, one could find a

conformal transformation that would bring both the gravi-
tational and kinetic terms into canonical form ifM0 ¼ 0. In
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fact, forN ¼ 2 andM0 ¼ 0, ~Ri
jkm ¼ 0 even if �� � �
, a

relationship that does not generalize to models withN > 2.
Examples include Jordan-Brans-Dicke gravity with two
scalar fields, or induced-gravity models in which one or
both of the fields has a nonzero vacuum expectation value,
vi, leading to MD�2

ðDÞ ¼ P
i�iv

2
i below the symmetry-

breaking scale.

B. N > 2

For arbitrary nonminimal coupling with N > 2, the

Bijklmn term in Eq. (34) for ~RðNÞ does not vanish. The

Bijklmn term typically introduces terms in ~RðNÞ that depend
on the fields�i and not just their couplings �i. Generically,
therefore, models with more than two nonminimally
coupled scalar fields do not admit any conformal trans-

formation that could bring ~Gij ¼ �ij.

Consider, for example, the N > 2 generalization of the
typical nonminimal couplings of Eq. (39), namely,

fð�iÞ ¼ 1

2

�
MD�2

0 þXN
i¼1

�ið�iÞ2
�
: (41)

For this family of models, f;i ¼ �i�
i (no sum) and f;ij ¼

�i�ij, and the Ricci scalar becomes

~RðNÞ ¼ ðD� 1Þ
Lð�iÞ

�
ðD� 2ÞMD�2

0

X
ijkl

�
�ij�kl � 1

N2
�ik

�
�i�k

þX
i

ðD� 2þ 4ðD� 1Þ�iÞ

� X
jklm

�
�jm�kl � 1

N2
ð�jk þ �ij þ �ik � 2�ij�ikÞ

�

� �i�j�kð�iÞ2
�
: (42)

One might be tempted to search for particular combina-
tions of the coupling constants �i that would yield exact

cancellations and hence make ~RðNÞ ¼ 0. However, for

N > 2, it is no longer the case that ~Ri
jkl / ~RðNÞ. The

full Riemann tensor contains components such as

~R i
ijk ¼ 2ðD� 1Þ2 f

2
;if;jf;k

fL
ðf;jj � f;kkÞ (43)

for i � j � k (no sum on i). The requirement that these
components vanish is more stringent than requiring
~RðNÞ ¼ 0 alone. For the family of models with fð�iÞ as
in Eq. (41), terms like Eq. (43) will only vanish if all
coupling constants are equal to each other: �i ¼ � for all
i, that is, if there exists an OðNÞ symmetry among the N
nonminimally coupled fields. Under that requirement,

Eq. (42) for ~RðNÞ simplifies even further:

~RðNÞ ¼ ðD� 1ÞðN � 1Þ
Lð�iÞ

�
ðD� 2ÞN�2MD�2

0

þ ½D� 2þ 4ðD� 1Þ��ðN � 2Þ�3
X
i

ð�iÞ2
�
: (44)

For N > 2, ~RðNÞ � 0 even for models in which M0 ¼ 0.
Thus the Riemann tensor does not vanish, and no confor-

mal transformation exists that could make ~Gij ¼ �ij.

Although one cannot bring the action in the transformed
frame into canonical form for arbitrary values of the fields,
the Einstein-frame action will approach canonical form in
the low-energy limit. For fð�iÞ as in Eq. (41), with M0 �
0, we have

fð�iÞ ! 1
2M

D�2
0 þOð�ið�iÞ2=MD�2

0 Þ: (45)

From Eqs. (31) and (32), the kinetic terms in the Einstein
frame would then become

� 1

2

�
MðDÞ
M0

�
D�2

�ijĝ
��r̂��

ir̂��
j

� 2ðD� 1Þ
ðD� 2Þ

�
MðDÞ
M2

0

�
D�2

�2
i ð�ir̂�iÞ2 þ . . . : (46)

Equation (46) generalizes a result found in [16,17] for the
specific case of ‘‘Higgs inflation’’ in D ¼ 4. In models for
which M0 �MðDÞ, we would then recover the canonical

kinetic terms plus corrections suppressed by �2
i =M

D�2
ðDÞ . In

the regime in which �i � MðD�2Þ=2
ðDÞ =�i, the effective ac-

tion would then behave close to canonical form for mini-
mally coupled fields, plus �i-dependent corrections. Yet
inflation in models like ‘‘Higgs inflation’’ occurs for values

�i � MðD�2Þ=2
ðDÞ =

ffiffiffiffiffi
�i

p
, with �i ¼ �� 104 [14]. Thus in the

regime of interest, we are far from the limit in which
Eq. (46) applies, and Eq. (44) implies that no combination
of conformal transformation and field rescalings can re-
store canonical kinetic couplings for all of the fields.

IV. CONCLUSIONS

Scalar fields with nonminimal couplings are difficult to
avoid. Such terms arise from a variety of model-building
efforts, as well as from more formal requirements of re-
normalization. Of course, such models are tightly con-
strained by solar-system tests of gravitation as well as
big bang nucleosynthesis [26,27]. At some time in the
history of our observable Universe, in other words, the
nonminimally coupled fields must have stopped varying
appreciably, producing fð�iÞ ! ð16�GDÞ�1 ’ constant.
In this way, the Jordan frame must have evolved smoothly
to an effectively Einsteinian one.
On the other hand, scalar fields with nonminimal cou-

plings likely dominate the dynamics at very high energies
or very early times, such as during early-universe inflation.
To understand physics in these regimes, one cannot avoid
the differences between the Jordan frame and the Einstein
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frame. In general, when more than two nonminimally
coupled scalar fields are involved, we are not free to trans-
form to a frame in which both gravitation and the fields’
kinetic terms assume canonical form.

We may come close if either the fields �i or their
couplings �i behave in specific ways. We already noted
in Eq. (46) that there are low-energy limits in which the
transformed action relaxes toward canonical form, up to

corrections that scale as �2
i ð�iÞ2=MðD�2Þ

ðDÞ . Even at higher

energies, there might exist a particular point in field space,

�i
0, that would make ~Ri

jkl vanish [16,17,22], even though
~Ri

jkl were nonzero in most regions of field space; then for

particular applications, in which the special point �i
0 were

relevant to the question of interest, one could move to an
effectively canonical action. Likewise, if all but one of the
nonminimally coupled fields became effectively frozen or
varied slowly in the Jordan frame, then one could trans-
form to a frame in which the action approximated the case
of a single nonminimally coupled field with ðN � 1Þ mini-
mally coupled fields. However, the existence of such a
special location in field space should be demonstrated
and not assumed; and to do that, one should study the
coupled dynamics of the N-field system in the Jordan
frame.

Meanwhile, if all the couplings �i but one were small (or
became small under renormalization-group flow), then the

nonzero terms in ~RðNÞ and ~Ri
jkl—which typically scale as

products of the coupling constants, �i�j, �i�j�k, and

�i�j�k�l—could become arbitrarily small, as can be seen

from Eq. (42). In that case one could again transform to a
frame in which the gravitational and kinetic terms in the
action assume canonical form, up to corrections suppressed

by �2
i =M

ðD�2Þ
ðDÞ . If all but one of the �i were small, these

correction terms could remain negligible even for high-
energy interactions, such as during an inflationary phase.

In this analysis we have focused on models in which the
nonminimally coupled scalar fields have canonical kinetic
terms in the Jordan frame. One could broaden the inves-
tigation by considering general scalar-tensor models by
replacing, for example, the constant Brans-Dicke parame-
ter, ! in Eq. (7), by !ð�iÞ. Such a move would introduce
new terms involving !, !;i, and !;ij into the expressions

for ~Gij, ~Ri
jkl, and

~RðNÞ, which, like the corresponding

terms involving fð�iÞ and its derivatives, would depend
on �i. Unless one chose the form of !ð�iÞ in a highly ad
hoc manner, the new Riemann tensor would still contain
components akin to Eq. (43) which vanish when all �i ¼ �,
that is, for models with an OðNÞ symmetry among the
nonminimally coupled fields. Since such target field spaces
are not flat for N > 2, the addition of noncanonical kinetic
terms in the Jordan frame would not, in general, produce

the needed cancellations that might bring ~Gij ¼ �ij. Thus

the conclusions of this investigation should hold for gen-
eral scalar-tensor models as well. Or, put another way, the
burden would be to find a particular (ad hoc) model in

which ~Ri
jkl happened to vanish because of arranged can-

cellations between the!ð�iÞ and fð�iÞ terms. Absent such
a model, one may choose to work in any frame that is
convenient for a given problem, accepting either a non-
canonical gravitational sector, noncanonical kinetic terms,
or both.
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