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We show that the black hole laser effect discovered by Corley and Jacobson should be described in

terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of

complex frequency modes, which appear in pairs and which encode the laser effect. In addition, it contains

real frequency modes that form a continuous set when space is infinite, and which are only elastically

scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the

calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is

small, our expressions differ from those given earlier. In particular, when the region between the horizons

shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is

emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in

electric fields, and we give the conditions to get this type of instability.

DOI: 10.1103/PhysRevD.81.084042 PACS numbers: 04.70.Dy, 43.35.+d

I. INTRODUCTION

In 1998, Corley and Jacobson made the following inter-
esting observation [1]: They noticed that the propagation of
a superluminal dispersive field in a stationary geometry
containing two horizons, as it is the case for nonextreme
charged black holes, leads to a self-amplified Hawking
radiation (for bosonic fields). The origin of this laser effect
can be attributed to the closed trajectories followed by the
negative Killing frequency partners of Hawking quanta.
Because of the superluminal character of the dispersion,
the partners indeed bounce from one horizon to the other.

Besides charged black holes, the acoustic geometries
associated with a moving fluid that crosses twice the speed
of sound also contain a pair of horizons. For one-
dimensional flows these geometries are of the form

ds2 ¼ �dt2 þ ðdx� vðxÞdtÞ2: (1)

One obtains this expression [2,3] when considering the
propagation of low frequency phonons in a moving fluid
of velocity vðxÞ. The sound velocity is assumed to be
constant and has been set to 1. This metric possesses a
black hole (BH) or a white hole (WH) horizon when the
gradient @xv at the horizon jvj ¼ 1 is positive or negative.
When the dispersion is superluminal (anomalous) all such
systems should experience a lasing effect. This should
apply, in particular, to the BH-WH pair realized in a
Bose Einstein condensate [4].

The original analysis and that of [5] were both carried
out using wave packets. In the present work we show that
there exists a more fundamental description based on
frequency eigenmodes, which are asymptotically bound
(in space). When vðxÞ is constant and subsonic for both
x ! �1, there is a discrete set of complex frequency

modes and a continuous family of real frequency modes.
(If instead the subsonic region is finite and periodic con-
ditions imposed, the situation is more complicated [6,7]
and will not be considered here.) In our case, the real
frequency modes are asymptotically oscillating and nor-
malized by a delta of Dirac. They are not subject to any
Bogoliubov transformation. In fact, the scattering matrix at
fixed ! only contains reflection and transmission coeffi-
cients mixing right and left moving (positive norm) modes.
This was not a priori expected since the matrix associated
with a single BH (or aWH) is 3� 3 and mixes positive and
negative norm modes in a nontrivial way [8,9].
The discrete set is composed of modes that vanish for

x ! �1. They form two modes subsets of complex con-
jugated frequencies, each containing a growing and a
decaying mode. The time dependence of the coefficients
in each subset corresponds to that of a complex upside
down and rotating harmonic oscillator. Both the real and
the imaginary part of the frequency play important roles in
determining the asymptotic properties of the fluxes. We
notice such modes were encountered in several other situ-
ations [10–15]. We also mention that a stability analysis of
BH-WH flows in Bose Einstein condensates was presented
in [16]. We reach different conclusions because we use
different boundary conditions.
In Sec. II, we present our settings. In Sec. III, we

demonstrate that the set of spatially bound modes contains
a continuous part and a discrete part composed of complex
frequency modes. In Secs. IV and V, we study the proper-
ties of the modes, and show how the complex frequency
modes determines the fluxes. We also relate our approach
to that based on wave packets [1,5], and explain why the
predictions differ in general, and, in particular, when the
number of discrete modes is small. In Sec. VI, we give the
conditions to get complex frequency modes in general
terms.
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II. THE SETTINGS

Wework in two space-time dimensions and consider the
stationary metrics of Eq. (1), which contain a BH-WH pair.
We restrict ourselves to flows that are asymptotically con-
stant, i.e. we consider velocity profiles such as

vðxÞ ¼ �1þD tanh

�
�Bðx� LÞ

D

�
tanh

�
�Wðxþ LÞ

D

�
;

(2)

see Fig. 1. The BH (WH) horizon is situated at x ¼ L (x ¼
�L). We suppose that the inequality �L=D � 1 is satis-
fied for both values of �, where D 2�0; 1�. In this case, the
two near horizon regions of width �x�D=� are well
separated, and the surface gravities of the BH and the
WH are, respectively, given by �B ¼ @xvjx¼L and �W ¼
�@xvjx¼�L. The minimal speed jv�j< 1 is reached for
x ! �1, whereas the maximal speed jvþj> 1 is found at
x ¼ 0 between the two horizons. When �L=D � 1, their
values are

v� ¼ �1�D: (3)

As emphasized in [8,9], when using nonlinear dispersion
relations, D fixes the critical frequency !max above which
no radiation is emitted by a single BH, or WH. Similarly
here, there will be no unstable mode above !max.

As in [1], we work with a real field � obeying a quartic
superluminal dispersion relation

�2 ¼ k2 þ k4=�2: (4)

The UV scale characterizing the dispersion is given by �,
and � is the frequency measured in the preferred frame,
that comoving with the fluid. Most of the results we shall
derive also apply to higher order superluminal dispersion
relations. They also apply to the Bogoliubov theory of
phonons in Bose condensates, which is a variant of the
present case, as can be verified by comparing [9] to [8]. The

action of � in the metric of Eq. (1) is

S ¼ 1

2

Z
dtdx

�
ð@t�þ v@x�Þ2 � ð@x�Þ2 � 1

�2
ð@2x�Þ2

�
;

(5)

and the wave equation is�
ð@t þ @xvÞð@t þ v@xÞ � @2x þ 1

�2
@4x

�
� ¼ 0: (6)

When the flow is stationary, one can look for solutions with
a fixed frequency � ¼ i@t. Inserting � ¼ e�i�t��ðxÞ in
Eq. (6) yields�

ð�i�þ @xvÞð�i�þ v@xÞ � @2x þ 1

�2
@4x

�
�� ¼ 0: (7)

Because of the quartic dispersion, the number of linearly
independent solutions is four. It would have been n if the
dispersion relation would have been �2 ¼ p2 þ pn=�n�2

rather than Eq. (4). However, when imposing that the
modes �� be asymptotically bound for x ! �1, the
dimensionality is reduced to two or one, depending on
whether � is real or complex, but irrespective of the value
of the power n. (To avoid confusion about the real/complex
character of � we shall write it as � ¼ !þ i�, with! and
� both real and positive. The other cases can be reached by
complex conjugation and by multiplication by �1.)
The necessity of considering only asymptotically bound

modes (ABM) comes from the requirement that the ob-
servables, such as the energy of Eq. (15), be well defined.
Returning to Eq. (5), the conjugate momentum is

� ¼ @t�þ v@x�; (8)

the scalar product is

ð�1j�2Þ ¼ i
Z 1

�1
dx½��

1�2 ��2�
�
1�; (9)

and the Hamiltonian is given by

H ¼ 1

2

Z
dx

�
ð@t�Þ2 þ ð1� v2Þð@x�Þ2 þ 1

�2
ð@2x�Þ2

�
:

(10)

In the subspace of ABM, the Hamiltonian is Hermitian, i.e.
ð�1jH�2Þ ¼ ðH�1j�2Þ.
We conclude with some remarks. First, when written in

the form Eq. (9), the scalar product is conserved in virtue of
Hamilton’s equations, and the Hermiticity of H. Second,
from Eq. (10), one sees that the Hamiltonian density is
negative where the flow is supersonic: v2 > 1. We shall
later see that the supersonic region should be ‘‘deep’’
enough so that it can sustain at least a bound mode, thereby
engendering a laser effect. Third, when considering ABM,
eigenmodes characterized by different frequencies are or-
thogonal in virtue of the identity [10,13]

ð�0 � ��Þð��j��0 Þ ¼ 0; (11)
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FIG. 1. Velocity profile vðxÞ as a function of �x, for �B ¼ �W ,
D ¼ 0:33, and �L ¼ 8. The horizons are located at �x ¼ �8,
where vðxÞ þ 1 ¼ 0.
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which follows from the Hermiticity of H. Finally, we
notice that complex frequency ABM can exist in the
present case because neither the scalar product Eq. (9),
nor the Hamiltonian Eq. (10) is positive definite, see [10],
p. 228. On the contrary, since fermionic fields are endowed
with a positive scalar product [17], no complex frequency
ABM could possibly be found in their spectrum [18].

III. THE SET OF ASYMPTOTICALLY BOUND
MODES

A. Main results

In the BH-WH flows of Eq. (2), the set of ABM contains
a continuous spectrum of dimensionality 2 labeled by a
positive real frequency !, and a discrete spectrum of N <
1 pairs of complex frequencies eigenmodes. We shall
suppose that this set is complete.1 That is, any solution of
Eq. (6) with ð�j�Þ<1 can be decomposed as

� ¼
Z 1

0
d!ðe�i!t½a!;u�

u
!ðxÞ þ a!;v�

v
!ðxÞ� þ H:c:Þ

þ�a¼1;Nðe�i�atba’aðxÞ þ e�i��
atcac aðxÞ þ H:c:Þ:

(12)

For flows that are asymptotically constant on both sides of
the BH-WH pair, we shall show that the real frequency
modes can be normalized according to

ð�i
!0 j�j

!Þ ¼ �ij�ð!�!0Þ; ð�i�
!0 j�j

!Þ ¼ 0; (13)

where the discrete index i takes two values u, v, and where
!, !0 > 0. The index u, v characterizes modes that are
asymptotically left (v) or right moving modes (u) with
respect to a stationary frame.

When � is complex, the situation is unusual. Yet it
closely corresponds to that described in the Appendix of
[10]. In fact, whenever a Hermitian Hamiltonian possesses
complex frequency ABM, one obtains a discrete set of two-
modes ð’a; c aÞ of complex conjugated frequency �a, �

�
a.

Their ‘‘normalization’’ can be chosen to be

ð’a0 j’aÞ ¼ 0; ðc a0 j’aÞ ¼ i�a;a0 ; (14)

with all the other (independent) products vanishing in
virtue of Eq. (11). Since the overlap between modes be-
longing to the continuous and discrete sectors, such as
ð�!j’aÞ, also vanish, eigenmodes of different frequency
never mix. Moreover, since the positive normmodes�i

! all
have !> 0, one cannot obtain Bogoliubov transforma-
tions as those characterizing the Hawking radiation asso-
ciated with a single BH (or WH). This implies that the (late
time) radiation emitted by BH-WH pairs entirely comes
from the discrete set of modes.

Using the above equations, the energy carried by � of
Eq. (12) is given by

E ¼ ð�jH�Þ
¼
Z 1

0
d!!ðja!;uj2 þ ja!;uj2Þ

þ �a¼1;Nð�i�abac
�
a þ H:c:Þ: (15)

Because of the complex frequency modes, it is unbound
from below. Notice also that the absence of terms such as
jbaj2 is necessary to have at the same time complex fre-
quency eigenmodes and real energies.

B. Asymptotic behavior and roots k�

The material presented below closely follows that of [8].
In fact, the lengthy presentation of that work was written
having in mind its applicability to the present case. The
novelties are related to the fact that, for the metrics of
Eq. (2), the supersonic region is bound (from�L to L), and
the velocity is subsonic for x ! �1.
Since the velocity v is asymptotically constant for

jx=Lj � 1, in both asymptotic regions, the solutions of
Eq. (7) are superpositions of four exponentials eik�x

weighted by constant amplitudes. To characterize a solu-
tion, one thus needs to know (on one side, say on the left)
the four amplitudes Ak associated to the corresponding
asymptotic wave vectors kð�Þ. These are the roots of

ð�� vðxÞkÞ2 ¼ k2 þ k4

�2
¼ �2ðkÞ; (16)

evaluated for vðx ! �1Þ ¼ v�. We shall not assume
a priori that � is real. Rather we shall look for all ABM.
Notice that when considering complex frequencies � ¼
!þ i�, the roots of Eq. (16) are continuous functions of �.
In addition, when the scales are well separated, i.e. when
�=� 	 1, the relevant values of � will obey �=� 	 1. It
is therefore appropriate to start the analysis with � ¼ !
real, and then to study how the roots migrate when �
increases.
When !> 0, since the flow is subsonic for x ! �1,

there exist two real asymptotic roots: ku! > 0 and kv! < 0,
which correspond to a right and a left mover, respectively.
There also exist a pair of complex conjugated roots, since
Eq. (16) is real. Thus, on each side of the BH-WH pair
there is a growing and a decaying mode. As in [8] we define
them according to the behavior of the mode when moving
away from the BH-WH horizons.
In preparation for what follows, we study the roots in the

supersonic region between the horizons. For ! smaller
than a critical frequency !max, whose value is discussed
below, the four roots are real. For flows to the left, v < 0,
the two new real roots correspond to two right movers
(with respect to the fluid). Indeed, they live on the u branch
of the dispersion relation Eq. (16), that with @k�> 0, see
Fig. 2. When ! increases at fixed jvj> 1, these roots
approach to each other. Thus, for flows characterized by
a maximal velocity vþ, there is a frequency !max above
which they no longer exist as real roots. It is given by the1We are currently trying to demonstrate this assumption.
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value of ! where they merge for v ¼ vþ. When the two
horizons are well separated, vþ is given in Eq. (3), up to
exponentially small terms. As shown in [8], !max is of the
form !max ¼ �fðDÞ, where D is defined in Eq. (2). For

D 	 1, one finds fðDÞ / D3=2. Thus, for a given disper-
sion scale �, !max can be arbitrarily small. This will be
important when considering the appearance of the laser
effect in parameter space.

C. The continuous spectrum

We now have all the elements to show that the continu-
ous part of the spectrum of ABM is labeled by positive real
frequencies !, and that, for a fixed !, its dimensionality is
two.

The general solution of Eq. (7) with ! real can be
characterized by the four amplitudes, which multiply the
four exponentials evaluated in the asymptotic left region.
When imposing that the growing mode is absent on that
side, only three independent solutions remain. However,
when propagating these solutions in the asymptotic region
on the right side of the BH-WH pair, the growing modewill
be generally present on that side. Thus, when requiring that
it be also absent imposes to take particular combinations,
and this reduces the dimensionality of ABM to two.

One can then take appropriate linear combinations to
construct the in (out) modes describing the left and right
movers propagating toward (escaping from) the BH-WH
pair. The in right moving solution �u;in

! is the combination
which on the left is asymptotically proportional to eik

u
!x,

where ku! is the asymptotic real positive root of Eq. (16).
Similarly, one can identify the in left moving mode �vin

! ,
and the two out modes �uout

! and �vout
! .

More precisely, because of the infinite and flat character
of the space on either side of the BH-WH pair, the two in
and the two out modes can be normalized as in a constant
velocity flow (by considering a series of broad wave pack-

ets localized in one asymptotic region and whose spread in
frequency progressively vanishes). Considering �uin

! for
x ! �1, Eq. (13) and (9) imply that it asymptotes to

�uin
! ðxÞ !

ffiffiffiffiffiffiffiffiffi
dku!
d!

s
expiku!xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��ðku!Þ

p : (17)

A similar expression valid for x ! 1 gives �vin
! . These

two inmodes are orthogonal to each other, establishing the
Kronecker �ij in Eq. (13). For !> 0, these modes have a
positive Klein-Gordon norm. For !< 0, they have a nega-
tive norm. Therefore, negative norm modes can all be
described as superpositions of complex conjugated posi-
tive norm modes.
When propagated across the BH-WH geometry, the in

modes are scattered by the gradients of vðxÞ. When the
variation of v is slow, i.e. @x lnv 	 @x lnk!, the exact
solutions are globally well approximated by the WKB
solutions of Eq. (7). For the u mode, one finds, see
Eq. (17),

’u
!ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ku!ðxÞ
@!

s
expðiRx

�L dx
0ku!ðx0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��ðku!ðxÞÞ
p : (18)

We use the symbol ’u
! (’v

!) to differentiate the WKB
solution from the exact one �u

! (�v
!). At high frequency,

!=� � 1, the inequality @x lnv 	 @x lnk! is satisfied, and
u and v modes do not mix. At lower frequency, they do.
Nevertheless, far away from the BH-WH pair, since vðxÞ is
asymptotically constant, exact solutions decompose into
superpositions of ’u

! and ’v
! with constant amplitudes.

This applies for both the real and the complex frequency
modes of Eq. (12). We shall use this fact several times to
characterize the properties of the exact solutions.
Introducing the out modes as in Eq. (17), this scattering

is described by

FIG. 2. Graphical resolution of Eq. (16). On the left, the straight lines represent !� kvþ in the supersonic regime vþ <�1 for
three different values of !. The middle one, which is tangent to �ðkÞ, determines the critical frequency !max. For !<!max, the two
extra negative roots correspond to right moving modes with respect to the fluid since @k�> 0. On the right, ku is the positive root
describing the right moving mode, see Eq. (18), kð1Þ the most negative root, kð2Þ that with the smallest norm, see Eq. (22).
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�u;in
! ¼ T!�

u;out
! þ R!�

v;out
! ;

�v;in
! ¼ ~T!�

v;out
! þ ~R!�

u;out
! :

(19)

Unitarity imposes jT!j2 þ jR!j2 ¼ 1 ¼ j ~T!j2 þ j ~R!j2,
and R!

~T�
! þ T!

~R�
! ¼ 0. For all values of !, one thus

has an elastic scattering, without spontaneous pair creation.
For frequencies !>!max, Eq. (19) coincides with what is
found in single horizon scatterings [8]. Instead, for fre-
quencies 0<!<!max, this radically differs from the
scattering on a single because, in that case, the matrix
was 3� 3 and mixed �u

!, �
v
! with the negative frequency

umode ð�u�!Þ�. The presence of the second horizon there-
fore ‘‘removes’’ these modes. As we shall later see, they
shall be ‘‘replaced’’ by a finite and discrete set of complex
frequency modes. This is not so surprising since the clas-
sical trajectories associated with the negative frequency
modes are closed (hence the discretization), and since these
trapped modes mix with the continuous spectrum through
each horizon (hence the imaginary part of the frequency).
In fact, this is reminiscent, but not identical, to quasinormal
modes [19] or resonances. The main difference is that
quasinormal modes are not asymptotically bound. Thus,
they should not be used in the mode expansion of Eq. (12).

It should be also mentioned that both in and out modes
contain a trapped component in the supersonic region,2

which plays no role as far as their normalization is con-
cerned since the modes are everywhere regular, and the
supersonic domain is finite. The case where the subsonic
domain is also finite should be analyzed separately. If
periodic conditions are imposed at the edges of the con-
densate, one obtains discrete frequencies and resonances
effects [6,7]. If instead absorptive conditions are used, the
frequencies are continuous and the situation is closer to the
case we are studying.

D. The discrete spectrum

On general grounds we explain why, when considering
Eq. (7) in BH-WH flows of Eq. (2), there exists a discrete
and finite set of complex frequency modes. To this end, we
first show that for a generic complex frequency � ¼ !þ
i�, there exists no ABM.When � 	 �, the four roots have
not crossed each other with respect to the case where � ¼ 0
since the imaginary part of the two complex roots k�! with
! real is proportional to �. Thus, in this regime, one can
still meaningfully talk about the two ‘‘propagating’’ roots
ku�, k

v
�, and the growing and decaying roots k

�
� . Then, as in

the former subsection, when imposing that the growing

mode be asymptotically absent on both sides of the BH-
WH pair, the space of solutions is still two. However when
�> 0, the u root ku acquires a positive imaginary contri-
bution, which means that the u mode of Eq. (17) diverges
for x ! �1. To get a bound mode, its amplitude should be
set to 0. For similar reasons, on the right, the incoming v
mode diverges for x ! 1. Hence, for a general value of �,
the set of ABM is empty. The above reasoning applies to
flat backgrounds with v constant, and establishes that in
that case, complex frequency modes should not be consid-
ered in Eq. (12).
We should now explain why when v is supersonic in a

finite region, some complex frequency ABM exist. The
basic reason is the same as that which gives rise to a
discrete set of bound modes when considering the
Schroedinger equation in a potential well (or the propaga-
tion of light through a cavity). In the supersonic region, (in
the well), there exist two additional real roots k! when � ¼
! real. The classical trajectories associated with them are
closed, and, as in a Bohr-Sommerfeld treatment, the dis-
crete set of modes is related to the requirement that the
mode be single valued and bound. The complex character
of the frequency � is due to the finite tunneling amplitude
across the horizons. Indeed, as we shall later see, the
imaginary part of �a is proportional to some quadratic
expression in the � Bogoliubov coefficients characterizing
the scattering through the horizons. Were these coefficients
equal to zero, �a would have been real. When ‘‘turning on’’
these coefficients, the frequency �a migrates in the com-
plex plane, and the bound modes are continuously
deformed.
These ABM appear in pairs with complex conjugated

frequencies. This stems from the Hermiticity of H, which
guarantees that there exists an ABM of frequency ��

a

whenever there is one of frequency �a. At this point it
should be re-emphasized that the existence of these com-
plex frequency ABM is due to the fact that the scalar
product is not definite positive. Indeed, these modes all
have a vanishing norm in virtue of Eq. (11).
We can also conclude that the discrete set of complex

frequencies ABM is finite. In fact, there are no closed
orbits for !<�!max, since the extra real roots k! no
longer exist and since there is a gap between the
eigenfrequencies.

E. The quantization

The canonical quantization of the field � is straightfor-
ward since each eigenfrequency sector evolves indepen-
dently from the others. Indeed, when decomposing the field
as in Eq. (12), with the coefficients a, b, c promoted
operators, the equal time commutation ½�ðt; xÞ; �ðt; x0Þ� ¼
i�ðx� x0Þ and the orthonormality conditions Eq. (13) and
(14) entirely fix their commutation relations. For real
frequency modes, the operators a!;i ¼ ð�i

!j�Þ obey the

standard commutation relations

2Because of this trapped wave, the in (and out) modes are not
asymptotic modes in a strong sense since a wave packet made
with �u;in

! will have a double spatial support for t ! �1: the
standard incoming packet coming from x ¼ �1, and the un-
usual trapped piece. This additional component, see Eq. (22),
ensures that �u;in

! is orthogonal to the complex frequency modes
of Eq. (12).
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½a!;i; a
y
!;j� ¼ �ij�ð!�!0Þ: (20)

Instead, for complex frequency modes, one gets

½ba; cya0 � ¼ i�aa0 : (21)

All the other commutators vanish.
Because of this disconnection, the ground state of the

real frequency modes is stable and in fact subject to no
evolution. Hence the number of quanta of these modes is
constant. The evolution of the states associated with the
complex frequency modes is also rather simple and de-
scribed in the Appendix. What remains to be done is to
determine the properties of the asymptotic fluxes. To this
end we need a better understanding of the modes.

IV. THE PROPERTIES OF THE MODES

From Eq. (7), it is not easy to determine the complex
frequencies �a and the properties of the modes. Several
routes can be envisaged. One can adopt numerical tech-
niques. We are presently modifying [20] the code used in
[8,9] to address this problem. One can also bypass the
calculation of the eigenmodes and directly compute the
propagation of coherent states, or the density-density cor-
relation function [21], using the techniques of [22]. This is
currently under study [23]. One can also envisage to use
analytical methods by choosing the flow vðxÞ as in [16].
This method is also currently under study [24].

In what follows, we use an approximative treatment
which is valid when the two horizons are well separated.
Doing so, we make contact with the original treatment
[1,5] based on wave packets. More importantly, we deter-
mine algebraic relations which do not rely on the validity
of our approximations. In particular, we establish that the
real frequency modes �u

! are intimately related to the
complex frequency modes even though their overlap
vanish.

A. The limit of thin near horizon regions

To simplify the mode propagation, we assume that the
near horizon regions are thin and well separated, i.e. L� �
D in Eq. (2). In this case, the propagation through the BH-
WH geometry resembles very much to that through a
cavity. Indeed, the following apply. First, the nontrivial
propagation across the two thin horizon regions can be
described by matrices that connect a solution evaluated on
one side to that on the other side. Second, the modes can be
analyzed separately in three regions: in L, the external left
region, for �ðxþ LÞ � D=�W ; in R, the external right
region, for ðx� LÞ � D=�B; and in the inside region I, for
L� jxj � D=�. Within each region, the gradient of v is
small. Hence, any solution is well approximated by a
superposition of WKB waves Eq. (18) with constant
amplitudes.

To further simplify the analysis, we use the fact that the
u-v mode mixing coefficients are generally much smaller
than those mixing the negative frequency modes to the
positive u ones [8,9]. Hence, it is a reliable (and consistent)
approximation to assume that the v modes completely
decouple. After having analyzed this case, we shall briefly
present the modifications introduced by relaxing this hy-
pothesis. Adopting the hypothesis that the u-v mixing can
be neglected, for each ! real, one has the following situ-
ation: In the left region L, one only has the WKB mode ’u

!

of Eq. (18). Thus, the only solution is�u;in
! (up to an overall

irrelevant phase we take to be 1). In the inside region I, one
has three modes:

�u;in
! ¼ A!’

u
! þBð1Þ

! ð’ð1Þ�!Þ� þBð2Þ
! ð’ð2Þ�!Þ�; (22)

since in supersonic flows, there exist two extra real roots in
Eq. (16). The superscripts u, (1), (2) characterize the co-
efficients and the WKB modes associated with the three
roots shown in Fig. 2. Since we are considering a solution
with i@t ¼ !> 0, the (positive norm) negative frequency

modes ’ðiÞ�! appear complex conjugated in Eq. (22).
In the external R region the solution must be again

proportional to the WKB mode ’u
!. By unitarity, the

solution must be of the form �u;in
! ¼ ei�!’u

!. Thus, a full
characterization of �u;in

! requires to compute the phase �!
and the above three coefficients. At this point, it should be
noticed that � ¼ ! is a priori real. However, the S matrix,
and therefore the three coefficients, are holomorphic func-
tions in �. Hence, nothing prevents to leave the real axis. In
fact, we shall show that the complex frequencies corre-
spond to poles associated with a coefficient of the Smatrix.

B. An S-matrix approach

1. The S matrix

The simplest way we found to compute the above co-
efficients is to follow the approach of [5], up to a certain
point. In this treatment, a solution of frequency !> 0 is
represented by a two component vector ð’u

!; ’
��!Þ. The

time evolution of a wave packet of such solutions is then
considered in the thin horizon limit. Since the frequency
content of the wave packet plays no role, we do not need to
introduce a new notation to differentiate it from an eigen-
mode. In this language, the S matrix characterizing a
bounce of the trapped mode ’��! can be decomposed as

S ¼ U4U3U2U1: (23)

The first matrix describes the scattering across the WH
horizon. In full generality we parameterize it by

U1 ¼ �! �!z!
~�!z

�
! ~�!

� �
: (24)

Unitarity imposes that j�!j2 ¼ j~�!j2 and j�!j2ð1�
jz!j2Þ ¼ 1. The second matrix describes the free propaga-
tion (i.e. without backscattering) from the WH to the BH
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horizon

U2 ¼ eiS
u
! 0

0 e�iSð1Þ�!

� �
: (25)

In a WKB approximation, the two phases are, respectively,
given by the actions

Su! ¼
Z L

�L
dxku!ðxÞ; Sð1Þ�! ¼

Z R!

L!

dx½�kð1Þ! ðxÞ�: (26)

In U2, S
ð1Þ�! is multiplied by �i since it governs the evolu-

tion of’��!. Its momentum is ku�! ¼ �kð1Þ! > 0, where kð1Þ!

is the most negative root of Eq. (16) found in supersonic
flows. The ends of integration L!, R! are, respectively, the
left and right locations of the turning points of the trajec-
tories with �!< 0. These obey Hamilton’s equations
[25,26]

dx=dt¼ ð@!ku!Þ�1; dku=dt¼�@x!¼�ku@xv; (27)

for negative frequency. In the thin horizon approximation,
the turning points hardly differ from �L and L. Unitarity
brings no conditions on these phases.

The third matrix describes the scattering across the WH
horizon, and we write it as

U3 ¼ 	! 	!w!

~	!w
�
! ~	!

� �
: (28)

Unitarity imposes that j	!j2 ¼ j~	!j2 and j	!j2ð1�
jw!j2Þ ¼ 1. The fourth matrix describes the return of the
negative frequency partner towards the WH horizon,
whereas the positive frequency mode propagates away in
the R region. This is described by

U4 ¼ 1 0
0 eiS

ð2Þ
�!

� �
: (29)

In the WKB approximation, this backwards movement

(hence the þi in the front of Sð2Þ) is governed by

Sð2Þ�! ¼
Z R!

L!

dx½�kð2Þ! ðxÞ�; (30)

where the momentum kð2Þ! is the least negative u root of
Eq. (16). Since the positive frequency mode further prop-
agates to the right, there is no meaning to attribute it a
phase in U4. In any case this phase would drop from all
physical quantities.

The matrix S of Eq. (23) is unitary since its four con-
stituents are. Hence, jS22j2 ¼ jS11j2 ¼ 1þ jS12j2. The
components S22 and S21 we shall later use are given by

S22 ¼ ~	! ~�!e
�iðSð1Þ�!�Sð2Þ�!Þ

�
1þ z!w

�
!

�!

~�!

eiðSu!þSð1Þ�!Þ
�
;

S21 ¼ ~	! ~�!e
�iðSð1Þ�!�Sð2Þ�!Þ

�
z�! þ w�

!

�!

~�!

eiðSu!þSð1Þ�!Þ
�
:

(31)

Hitherto we followed the method of [5]. Henceforth, we

proceed differently by adding a key element. We require
that the mode propagated by S be single valued. For real!,
this unequivocally defines�u

! of Eq. (22). Moreover, when
looking for complex frequency bound modes, this will give
us the modes ’a, c a we are seeking.

2. The real frequency modes

Imposing that the trapped mode of negative frequency is
single valued translates into

ei�!

b!

� �
¼ S

1
b!

� �
: (32)

The phase �! is that mentioned after Eq. (22). It should not
be constrained since the positive frequency component
keeps propagating to the right. The matricial equation
gives

b! ¼ S21
1� S22

; ei�! ¼ � S11
S�22

1� S�22
1� S22

: (33)

These equations constitute the first important result of this
section. They do not rest on the WKB approximation. Of
course, this approximation can be used to estimate the four
elements of S. But once these are known, e.g. using a
numerical treatment, these equations apply. What is needed
to get these equations is the neglect of the u-v mixing, and
no significant frequency mixing in the inside region in
order to obtain well-defined amplitudes in Eq. (22).
Using Sy ¼ S one verifies that the norm of the right-

hand side of the second equation is unity. This is as it is
must be, since in the absence of u-v mixing, the u compo-
nent only acquires a phase, here measured with respect to
the WKBwave. Adopting the convention that WKBmodes
’! have a vanishing phase at x ¼ �L, the coefficients of
Eq. (22) are

A! ¼ �!ð1þ z!b!Þ;
Bð1Þ

! ¼ ~�!ðz�! þ b!Þ; Bð2Þ
! ¼ b!:

(34)

These amplitudes are governed by b!, which can a priori
be larger or smaller than unity. In particular it diverges if
S22 ! 1 for some !, thereby approaching a resonance, see
Fig. 3. We now show that the complex frequency modes
correspond to these resonances.

3. The pairs of complex frequency modes

Following the discussion of Sec. III D, we impose that
the amplitude of the incoming u branch be zero, and, as
above, that the trapped mode of negative frequency is
single valued. This gives

�a

1

� �
¼ S

0
1

� �
; (35)

which implies

�a ¼ S12; 1 ¼ S22: (36)
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Two important lessons are obtained. First, to get the com-
plex frequencies �a with a positive imaginary part, it
suffices to solve the roots of S22 ¼ 1. Second, as men-
tioned, these correspond to the poles characterizing the
propagating modes, see Eq. (33).

Before computing these frequencies, we explain how to
get the decaying modes c a, the ‘‘partners’’ of the ’a in
Eq. (12). Since these bound modes have a negative imagi-
nary frequency, the amplitude of the escaping mode must
be zero, i.e.

0
1

� �
¼ S

~�a

1

 !
: (37)

Using the Hermitian conjugated Sy, and the unitarity rela-
tion SyS ¼ 1, this condition gives

~�a

1

 !
¼ Sy

0
1

� �
; (38)

from which we get ~�a ¼ ðSyÞ12 and 1 ¼ ðSyÞ22. As ex-
plained in the Appendix, when expressed in terms of the
elements of S, these equations give

~� a ¼ �½S21ð��Þ��; 1 ¼ ½S22ð��Þ��: (39)

Thus, the solutions of 1 ¼ S�22 are the complex conjugated
of those that solve Eq. (36), thereby establishing the part-

nership between ’a and c a. In addition, one has ~�a ¼
�ðdetSÞ��a.

C. The set of complex frequencies �a

To compute the roots of Eq. (36) we need to know S22 as
a function of � ¼ !þ i�. In what follows we shall relate

them to the quantities which enter in Eq. (31). To this end,
we suppose that the ‘‘tunneling’’ across the horizons is
small, i.e. the �-Bogoliubov coefficients associated with
each horizon are small. This is true for !=� sufficiently
large, see [8] where it was shown that z! andw!, which are
related to the Bogoliubov coefficients by z! ¼ �!=�!,

behave as �e��!=�ð1�!=!maxÞ1=4 where !max is de-
fined in Fig. 2. To proceed we suppose that the norms of
z2!, w

2
! and z!w! are much smaller than one. In this case,

one can expand Eq. (31) in these three products, and in �,
since the roots of Eq. (36) are real when z! ¼ w! ¼ 0.
Indeed, to zeroth order in these quantities, one gets

~�! ~	! ¼ e�i�. The norm is trivially constrained by unitar-
ity, whereas the phase takes its value from the contributions
stemming from the prefactor of the trapped mode at the
two turning points, see Eq. (18). Taking this into account,
S22 ¼ 1 gives

Sð1Þ�! � Sð2Þ�! þ � ¼
Z R!

L!

dx½�kð1Þ! ðxÞ þ kð2Þ! ðxÞ� þ �

¼ 2�n; (40)

with n 2 N1. This is the Bohr-Sommerfeld condition ap-
plied to the negative frequency mode ’�!. (In fact, sub-

tracting from both kð1Þ and kð2Þ the value of k at the turning
points, ktp! , the differences kð1Þ! � ktp! , k

ð2Þ
! � ktp! have op-

posite sign. Hence, Eq. (40) contains a sum of two positive
contributions, as in the Bohr-Sommerfeld condition.) We
call !a, a ¼ 1; 2; . . . ; N the discrete set of frequencies,
which is finite because no solution exists above !max.
To first order, for each !a, one gets a complex phase

shift ��a ¼ �!a þ i�a. The imaginary shift is

FIG. 3 (color online). By making use of numerical results borrowed from [20], we have represented the square norm of Bð2Þ
! , the

amplitude of the negative frequency trapped mode of Eq. (22), as a function of ! real. Near a complex frequency �a ¼ !a � i�a,

which solves S22 ¼ 1, see Eq. (36), jBð2Þ
! j2 behaves as a Lorentzian: �j!�!a � i�aj�2, see Eqs. (33) and (34). The dots are the

numerical values, whereas the continuous line is a fitted sum of Lorentzians. The remarkable agreement establishes that the complex
frequencies �a can be deduced from the analysis of the real frequency modes. The frequency ! has been expressed in the units of
!max, see Fig. 2, so that there is no resonance above !=!max ¼ 1. In the present case there are 13 resonances. The narrow peaks,
�a � 0, are due to the fact that the surface gravities are equal, �B ¼ �W , which leads to z! ¼ w! in Eq. (41).
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2�aT
b
!a

¼ jz!a
j2 þ jw!a

j2 þ 2jz!a
w!a

j cosc a

¼ jS12ð!aÞj2: (41)

The phase in the cosine is

c a ¼ Su!a
þ Sð1Þ�!a

þ argðz!a
w�

!a
�!a

=~�!a
Þ; (42)

and Tb
!a

> 0 is the time for the negative frequency partner

to make a bounce. It is given by

Tb
! ¼ @

@!
ðSð2Þ�! � Sð1Þ�! þ arg~�! ~	!Þ; (43)

evaluated for ! ¼ !a. The first two terms give the classi-
cal (Hamilton-Jacobi) time, whereas the last one gives the
contribution from the scattering coefficients (which is a

small correction when L�D1=2 � 1).3 The last equality of
Eq. (41) tells us that �a is linearly related to the norm of the
effective �-Bogoliubov coefficient of the pair, which
obeys jS22j2 ¼ 1þ jS12j2. It is also worth noticing that
S12 fixes the amplitude �a of the leaking mode in
Eq. (36).

Because jS22j2 ¼ 1þ jS12j2, �a defined in Eq. (41) is
positive, thereby implying that ’a, the solution of Eq. (35),
is a growing mode in time, and an ABM in space. What
distinguishes the present case from usual resonances char-
acterized by a decay rate (�< 0) is the fact that the norm of
the trapped mode ’��! is opposite to that of the leaking
wave ’u

!. Even though unitarity in both cases implies a
decrease of the norm of the trapped mode, in the present
case it becomes more negative whereas in the standard case
it tends to zero since it has the same sign as that of’u

!. As a
corollary of this, the fact that resonances have an opposite
sign of � while satisfying an outgoing condition as in
Eq. (35) implies that they are not ABM, and therefore
not included in the set of modes of Eq. (12). This remark
applies to fermionic fields and implies that the set of ABM
for the fermionic dispersive field considered in [1] and
propagating in the BH-WH metric of Eq. (2), is restricted
to the continous set of Eq. (12), i.e. positive real frequency
modes elastically scattered as given in Eq. (19). To com-
plete these remarks, one should notice that c a, our decay-
ing modes, are also ABM because they obey the incoming
condition Eq. (38).

Our treatment is similar to the interesting analysis pre-
sented in [11]. In that work, the general solution is con-
structed in terms of WKB waves. Then the Bohr-
Sommerfeld and the outgoing conditions are separately
imposed in the small tunneling approximation, thereby
fixing both the real part of the frequency !a and its
imaginary part �a. We followed another logic which leads

to the same result, namely, the requirement that the mode
be an ABM gives Eq. (35), which in turn gives the complex
equation S22 ¼ 1 that encodes both conditions. We note
that S22 ¼ 1 does not require that the tunneling amplitudes
be small to be well defined. We also note that our quanti-
zation scheme applies to the cases studied in [11,12] and
allows to remove the ‘‘formal trick’’ used in the second
paper.

D. The density of unstable modes

To further characterize the instability, it is of interest to
inquire about the density of unstable modes, about the end
of the set, its beginning, and about the most unstable mode.
The number of unstable modes will be either large, or

small, depending on the value of L=!max. When
L=!max � 1, the number is large because, for !<!max,
the gap between two neighboring modes roughly given by
D=L. The end of the set is controlled by !max as explained
after Eq. (40). It does not significantly contribute to the
instability when �=!max 	 1, since z! and w! tend to

zero as e��!=�ð1�!=!maxÞ1=4 for ! ! !max. Thus, the
growth rate �a ! 0 as ! ! !max.
The beginning of the set is governed by the first Bohr-

Sommerfeld modes. Their frequency is of the order of
D=L. A proper evaluation of �a is harder since, generi-

cally, the coefficients �! and 	! both diverge as �!�1=2.
We thus conjecture that the most unstable mode is the first
mode, or one of the first ones, because the cosine of
Eq. (41) could in some cases lower the value of �1 below
that of the next ones. We can also characterize the migra-
tion of the roots as L increases. The (total) variation of
Eq. (40) with respect to L and Eq. (43) tells us that
@!a=@L > 0. From this we conjecture that new unstable
modes (obtained by increasing L) appear with !a ¼ 0.
This is corroborated by the first runs of [20]. The determi-
nation of �a for !a ! 0 is difficult, and further study is
needed to establish if �a follows the abrupt behavior
present in Fig. 1 of [14].

E. Taking into account the u-v mixing

A nonvanishing u-v mixing hardly modifies the above
results. However, the algebra becomes more complicated
because the two nontrivial matrices describing the propa-
gation across the WH and the BH horizon (U1 and U3) are
now the 3� 3. Let us only sketch this enlarged case.
When considering the in mode�u;in

! , in the left region L,
one has �u;in

! ¼ ’u
! þ R!’

v
!, see Eq. (19). In the inside

region I, one has

�u;in
! ¼ Au

!’
u
! þAv

!’
v
! þBð1Þ

! ð’ð1Þ�!Þ� þBð2Þ
! ð’ð2Þ�!Þ�;

(44)

and in the external R region, the mode asymptotes to
T!’

u
!. As before, the coefficients are determined by the

matching conditions at the horizons. Expressing �u;in
! in

3Using the techniques of [26,27], we verified that it gives a
small correction to the classical actions. We also obtained a
refined expression for Eq. (40), which goes beyond the WKB
approximation and which has been validated by the numerical
analysis of [20].
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terms of three coefficients associated with the three WKB
waves, ð’u

!;’
v
!; ’

��!Þ, using the Bogoliubov matrices [8]
SWH, SBH which give, for the WH and the BH, respectively,
the coefficients after the scattering given the incident ones,
one has

Au
!

R!

Bð1Þ
!

0
@

1
A ¼ SWH

1
Av

!

Bð2Þ
!

0
@

1
A; (45)

and

T!e
iSu!

Av
!e

iSv!

Bð2Þ
! e�iSð2Þ�!

0
B@

1
CA ¼ SBH

Au
!e

iSu!

0
Bð1Þ

! e�iSð1Þ�!

0
B@

1
CA: (46)

In the second equation, the exponentials arise from the
propagation from the WH to the BH horizon, and from our
choice that the phase of WKB waves vanishes at the WH
horizon. The six relations fix the six coefficients. T! and
R! characterize the asymptotic scattering, see Eq. (19),
whereas the four others determine �u;in

! in the inside
region.

To get the complex frequencies �a, since the weight of
the incoming v mode is already set to 0, one simply needs
to replace the 1 in the right-hand side of Eq. (45) by a 0, as
done in Eq. (35).

V. PHYSICAL PREDICTIONS

A. Classical settings

From an abstract point of view, any (bounded) initial
condition, i.e. the data of the field amplitude and its de-
rivative with respect to time, can be translated into the
coefficients ai!, ba, ca of Eq. (12). This is guaranteed by
the completeness of the mode basis. Yet, it is instructive to
study more closely how initial conditions describing a
wave packet initially moving towards the WH-BH pair
translate into these coefficients. This will allow us to relate
our mode basis to the wave packet analysis of [1,5].
Moreover it is a warming up exercise for the determination
of the fluxes in quantum settings. For simplicity, we work
in the regime in which the number of unstable modes is
large, i.e. L!max � 1, and with a wave packet of mean

frequency obeying �! 	 !max and L �! � 1, e.g. with �! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!max=L

p
.

We consider a unit norm wave packet which is initially
in the left region and propagating to the right. At early
times, before it approaches the WH horizon, it can thus be
expressed in terms of the WKB modes of Eq. (18) as

��u
�!ðt; xÞ ¼

Z 1

0
d!ðf �!;x0ð!Þe�i!t’u

!ðxÞ þ c:c:Þ: (47)

As an example, one can consider the following Fourier
components:

f �!;x0ð!Þ ¼ e�ð!� �!Þ2=2
2

�1=4
1=2
ei!t0eiS

u
!ðx0;�LÞ: (48)

The first factor fixes the mean frequency �! and the spread

 taken to satisfy 
= �! 	 1 and 
L � 1. The last two
exponentials ensure that at t ¼ t0 the incoming wave
packet is centered around some x0 	 �L. Su!ðx; x0Þ is
the classical action of the u mode evaluated from x to x0,
see the phase of ’u

! in Eq. (18).
When decomposing ��u

�! as in Eq. (12), the coefficients
are given by the overlaps

�au! ¼ ð’u;in
! j ��u

�!Þ ¼ f �!;x0ð!Þ; �av! ¼ ð’v;in
! j ��u

�!Þ ¼ 0;

�ba ¼ ð�iÞðc aj ��u
�!Þ � 0; �ca ¼ ð�iÞð’aj ��u

�!Þ ¼ 0:

(49)

Hence, at all times, the wave packet can be expressed as

��u
�!ðt; xÞ ¼

Z 1

0
d!ðf �!;x0ð!Þe�i!t�u;in

! ðxÞ þ c:c:Þ
þ �að �bae�i�at’aðxÞ þ c:c:Þ: (50)

The first two coefficients in Eq. (49) are easily computed
and interpreted. They fix the real frequency contribution of
the wave packet. The last two are very interesting and
encode the instability. We first notice that, because of
Eq. (14), they are given by the overlap with the partner
wave. Hence, the coefficients �ca identically vanish. Indeed,
the overlap of our wave packet with the growing modes ’a

vanishes since these, by construction, have no incoming
branch. On the contrary �ba, the amplitudes of the growing
modes, do not vanish since the decayingmodes c a contain
an incoming branch, see Eq. (38). It is thus through the
nondiagonal character of Eq. (14) that the instability enters
in the game. In this respect, our analysis differs from
Ref. [16]. We do not understand the rules adopted in that
work.
To compute �ba we use the fact that at time t0 the wave

packet is localized around x0 	 �L. Thus we need the
behavior of c a in this region. Using the results of Sec. IVC
and Eq. (18) extended to complex frequencies, for
�aT

b
!a

	 1, one gets

c aðxÞ ¼ ~�a’
u
�a
ðxÞ ¼ ~�a’

u
!a
ðxÞ � exp½��at!a

ðx;�LÞ�;
(51)

where t!a
ðx;�LÞ ¼ @!S

uðx;�LÞ> 0 is the time taken by

a u mode of frequency !a to travel from x to �L.4

Inserting this result in ðc aj ��u
�!Þ, using the fact that the

wave packet has a narrow spread in x� x0 given by
1=ð
@!kuÞ, the overlap is approximately

4It is interesting to notice how c a and �a acquire a vanishing
norm. Because the leaking wave has an amplitude S21 / �1=2

a

and decreases in x in ��1
a , its positive contribution to the norm is

independent of �a and cancels out that negative of the trapped
mode.
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�b a ¼
~��
a

�1=4ð2
Þ1=2 e
�ið �!�!aÞt0eiSu!a ðx0;�LÞ � e��at!a ðx0;�LÞ;

(52)

The meaning of this result is clear. The spatial decay of c a

governed by �a has the role to delay the growth of the
amplitude of the wave packet until it reaches the WH-BH
pair. The phase ensures the spatial coherence of the propa-
gation. That is, the sum of a in Eq. (47) will give construc-
tive interferences along the classical trajectory emerging
from x0 at t0. Let us also mention that, because of Eq. (14),
the normalization of �ba is arbitrary, but the product �ba’a is
well defined and physically meaningful.

From this analysis, we see that at early times the wave
packet ��u

�! behaves as described in [1,5]. It propagates
freely without any growth until it reaches the horizon of
the WH. Then one piece is reflected and becomes a vmode
with amplitude R �!. The other piece enters in the inside
region. A later times, a component stays trapped and
bounces back and forth while its amplitude increases in

as e
��t. Every time it bounces there is leakage of a u wave

packet at the BH horizon, and a v mode at the WH one.
This back and forth semiclassical movement goes on

until the most unstable mode, that with the largest �a,
progressively dominates and therefore progressively de-
stroys the coherence of the successive emissions. In
Sec. IVD we saw that the most unstable mode is likely
to be that characterized by the smallest real frequency, n ¼
1 in Eq. (40). This implies that at late time, our wave packet
will be completely governed by the corresponding wave
’1ðxÞ (unless of course �b1 ¼ 0)

��u
�! ! e�1ðt�t0Þ � Re½e�i!1t �b1’1ðxÞ�: (53)

In the late time limit, its behavior differs from the above
semiclassical one. Indeed, in the inside region, one essen-
tially has a standing wave whose amplitude exponentially
grows (it would have been one if the tunneling amplitudes
were zero). Outside, for x � L, using ’1ðxÞ � �1’

u
�1
ðxÞ

and the same approximation as in Eq. (51), one has a
modulated oscillatory pattern given by

��u
�! ! e�1½ðt�t0Þ�t!1

ðL;xÞ� � Re½e�i!1t �b1�1’
u
!1
ðxÞ�: (54)

It moves with a speed equal to �1 in the dispersionless
regime, when!1=� 	 1. The energy flow is now given by
a sine squared of period 2�=!1 rather than being com-
posed of localized packets separated by the bounce time
Tb.

B. Quantum settings

1. The initial state

Because of the instability, there is no clear definition of
what the vacuum state should be. Indeed, as can be seen
from Eq. (15), the energy is unbound from below.
Therefore, to identify the physically relevant states, one

should inquire what would be the state, or better the subset
of states, which would obtain when the BH-WH pair is
formed at some time t0. If this formation is adiabatic, the
initial state would be close to a vacuum state at that time.
That is, the expectation values of the square of the various
field amplitudes would be close to their values in minimal
uncertainty states, with no squeezing, i.e. no anisotropy in
�! � �! plane, where�! is the conjugated momentum of
�!. Because of the orthogonality of the eigenmodes, this
adiabatic state would be, and stay, a tensor product of states
associated with each mode separately.
There is no difficulty to apply these considerations to the

real (positive) frequency oscillators which are described by

standard destruction (creation) operators âu!, â
v
! ðâuy! ; âvy! Þ.

The adiabaticity guarantees that one obtains a state close to
the ground state annihilated by the destruction operators.
Because of the elastic character of Eq. (19), for all real
frequency oscillators, one gets stationary vacuum expecta-
tion values with no sign of instability.
There is no difficulty either for the complex frequency

oscillators described by b̂a and ĉa. Indeed, as shown in the

Appendix, one can define two destruction operators d̂aþ
and d̂a�, and use them to define the state as that annihilated
by them at t0. In this state, we get the following nonsta-
tionary vacuum expectation values:

hb̂a0 ðtÞb̂ya ðt0Þi ¼ �a0;a

2
e�i!aðt�t0Þe�aðtþt0�2t0Þ;

hĉa0 ðtÞĉya ðt0Þi ¼ �a0;a

2
e�i!aðt�t0Þe��aðtþt0�2t0Þ;

hb̂a0 ðtÞĉya ðt0Þi ¼ i
�a0;a

2
e�i�aðt�t0Þ:

(55)

As expected, the expression in bby (ccy) leads to an
exponentially growing (decaying) contribution, whereas
the cross term is constant at equal time. This behavior is
really peculiar to unstable systems. Even though the metric
is stationary, there is no normalizable state in which the
expectation values of the b, c operators are constant.
Stationary states do exist though, but they all have an
infinite norm, see the Appendix.
Using Eq. (12), and putting t0 ¼ 0 for simplicity, the

two-point function in this vacuum state is

h�̂ðt; xÞ�̂ðt0; x0Þi ¼
Z 1

0
d!e�i!ðt�t0Þ½�u

!ðxÞð�u
!ðx0ÞÞ�

þ�v
!ðxÞð�v

!ðx0ÞÞ��
þ i�a¼1;N Reðe�i�aðt�t0Þ’aðxÞc �

aðx0Þ
� e�i��

aðt�t0Þc aðxÞ’�
aðx0ÞÞ

þ�a¼1;N Reðe�ið�at���
at

0Þ’aðxÞ’�
aðx0Þ

þ e�ið��
at��at

0Þc aðxÞc �
aðx0ÞÞ: (56)

We notice that the last term, the second contribution of
complex frequency modes is real, as a classical term (a
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stochastic noise) would be. We shall return to this point
below. We also notice that the second term is purely
imaginary and, when evaluated at the same point x ¼ x0,
it is confined inside the horizons since’a vanishes for x 	
�L whereas c a does it for x � L. Thus, it will give no
asymptotic contribution to local observables.

2. The asymptotic fluxes

Our aim is to characterize the asymptotic particle con-
tent encoded in the growing modes ’a. To this end it is
useful to introduce a particle detector localized far away
from the BH-WH pair. We take it to be sitting at x � L, in
the R region on the right of the BH horizon.We assume that
it oscillates with a constant frequency !0 > 0, and that its
coupling to � is switched on at t ¼ �1, and switched off
suddenly at t ¼ T � t0 in order to see how the response
function is affected by the laser effect a finite time after the
formation of the BH-WH pair at t0 ¼ 0.

When the detector is initially in its ground state, to
second order in the coupling g with the field, the probabil-
ity to find it excited at time T is given by [28]

PeðTÞ ¼ g2
Z T

�1
dt0

Z T

�1
dte�i!0ðt�t0Þh�̂ðt; xÞ�̂ðt0; xÞi;

¼ g2�aj�aj2j’u
�a
ðxÞj2j

Z T

t!a ðL;xÞ
dte�ið!0��aÞtj2;

¼ g2�a

j’u
!a
ðxÞj2

ð!0 �!aÞ2 þ ð�aÞ2
�n!a

ðT; xÞ; (57)

where

�n!a
ðT; xÞ ¼ j�aj2e2�aðT�t!a ðL;xÞÞ

� j1� expf�½�a þ ið!0 �!aÞ�ðT � t!a
Þgj2:
(58)

To get the second line of Eq. (57), we used ’aðxÞ �
�a’

u
�a
ðxÞ, the fact that the BH-WH pair is formed at t ¼ 0,

and that it takes a time t!a
ðL; xÞ for the mode ’u

�a
to reach

the detector at x. To get the third line, we used the inequal-
ity �aT

b
!a

	 1 as in Eq. (51). The meaning of the various

factors appearing in Pe is the following. The sum over a
means that all unstable modes contribute, but the Lorentz
functions restrict the significant contributions to frequen-
cies !a near !0, that of the detector. The prefactor
j’u

!a
ðxÞj2 depends on the norm of the corresponding

mode evaluated at the detector location, as in the usual
case. The function �n!a

ðT; xÞ acts as the number of particles

of frequency!a received by the detector at time T, and at a
distance x� L � ��1

B from the BH horizon. It depends on
the number initially emitted ( ¼ j�aj2) multiplied by the
exponential governed by T � t!a

, the lapse of time since

the onset of the BH-WH pair minus the time needed to
reach the detector at x.

From the response function of a localized detector, it is
clear that one cannot distinguish between the noise due to
quanta of the real frequency modes �u

! and that carried by
the growing modes ’a, because both modes asymptote to
the WKB waves ’u

! which are asymptotically complete. In
this respect it is particularly interesting to compute the de-
excitation probability Pd which governs the
(spontaneousþ induced) decay of the detector. It is ob-
tained by replacing !0 by �!0 in the first line of Eq. (57)
[28]. In that case, one finds that the spontaneous decay only
comes from the �u

! whereas the induced part only comes
from the ’a. The induced part equals that of Pe since the
asymptotic contribution of the’a to Eq. (56) is real. We are
not aware of other circumstances where orthogonal modes
with different eigenfrequency (here �u

! and ’a) are com-
bined in this way in the spontaneousþ induced de-
excitation probability Pd, or equivalently, contribute in
this way to the commutator and the anticommutator of
the field, i.e. with the ’a only contributing to the latter.
(For damped modes, the commutator and the anticommu-
tator are related differently, see, e.g. Appendices A and B
in [29].) The lesson we can draw is the following: even
though the modes�u

! are orthogonal to the growing modes
’a, their respective contribution to the asymptotic particle
content cannot be distinguished by external devices
coupled to the field.
It is also interesting to compute the asymptotic outgoing

energy flux hT̂uuðt; xÞi, where Tuu ¼ ½ð@t � @xÞ��2. At
large distances in the R region, using ’a � �a’

u
�a

and

Eq. (56), the renormalized value of the flux is

hT̂uuðt; xÞi ¼ �ajð@t � @xÞe�i�at’aðxÞj2
¼ �aj�aj2jð@t � @xÞe�i�at’u

�a
ðxÞj2: (59)

It only depends on the discrete set of complex frequency
modes. Yet, because of the imaginary part of �a defines a
width¼ �a, the spectrum of real frequencies ! is continu-
ous, as can be see in Eq. (57). In fact the observables can
either be written in terms of a discrete sum over complex
frequencies, or as a continuous integral of a sum of Lorentz
functions centered at !a and of width �a. However, this
second writing is only approximative and requires that the
inequality �aT

b
a 	 1 of Sec. IVC be satisfied to provide a

reliable approximation.

3. The correlation pattern

As noticed in [1], because of the bounces of the trapped
modes, the asymptotic fluxes possess nontrivial correla-
tions on the same side of the horizon, and not across the
horizon as in the case of Hawking radiation without dis-
persion [21,28,30], or in a dispersive medium [25]. These
new correlations are easily described in the wave packet
language of that reference, or that of Sec. VA. When using
frequency eigenmodes, they can be recovered through
constructive interferences, as in Sec IV F. of [9]. Indeed,
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when the complex frequencies modes form a dense set so
that the dispersion of the waves can be neglected, the sum
over a in Eq. (56) constructively interferes at equal time for
two different positions x and x0 separated by a propagation
time

@!S
uðx; x0Þ ¼

Z x0

x
dx@!k

u
!ðxÞ ¼ Tb

!; (60)

where Tb
! is the bounce time of Eq. (43). This is because

the differences !a �!aþn are equal n� 2�=Tb
! since the

!a are solutions of Eq. (40). With more precision, the
conditions for having these multimodes interferences are,
on one hand, !max=� � 1 so that dispersion hardly affects
the modes and, on the other hand, �L � 1, so as to have
many modes for ! below the Hawking temperature ��.
(For higher frequencies j�aj2, which governs the intensity
of the correlations, is exponentially damped.)

However, since dispersive effects grow and since the
most unstable mode progressively dominates the two-point
function of Eq. (56), at sufficiently large time the above
multimode coherence will be destroyed and replaced by
the single mode coherence of the most unstable one. This is
unlike what is obtained when dealing with a single BH or
WH horizon because in that case [30] the pattern is sta-
tionary, and all frequencies steadily contribute (signifi-
cantly for ! 
 �). In the present case, at late time, if �1

is the most unstable one, the correlation pattern is given by

h�̂ðt; xÞ�̂ðt0; x0Þi ¼ e�1ðtþt0Þ � Reðe�i!1ðt�t0Þ’1ðxÞ’�
1ðx0ÞÞ:

(61)

The asymptotic pattern, for x � L, is obtained using

’1ðxÞ � �1e
��1t!1

ðL;xÞ’u
!1
ðxÞ. It is very similar to that of

Eq. (54) found by sending a classical wave packet, see
Appendix C of [9] for a discussion of the correspondence
between statistical correlations encoded in the two-point
function and deterministic correlations encoded in the
mean value when dealing with a wave packet described
by a coherent state.

So far we worked under the assumption that the u-v
mixing coefficients are negligible. When taking them into
account, one obtains a richer pattern which is determined
by the complex frequency modes solutions of Sec. IVE.

4. The small supersonic region limit

When L of Eq. (2) [or D ¼ jvþj=c� 1] decreases, the
number of solutions of Eq. (40) diminishes. Therefore, in
the narrow supersonic limit �L ! 0, there is a threshold
value for �L given D, below which there is no solution. In
that case, there are no unstable mode, and no laser effect. In
fact no flux is emitted, and this even though the surface
gravity of the BH (and that of the WH) is not zero. The
reason is that there is no room for the negative frequency
modes ��! to exist. In agreement with the absence of
radiation, the entanglement entropy of the BH [31] would
vanish, because it accounts for the number of entangled

modes across the horizon and thus of opposite frequency,
see [32] for the effects of dispersion on the entanglement
entropy.

5. Comparison with former works

It is instructive to compare our expressions to those
obtained in [1] and in [5]. Our expressions differ from
theirs because the discrete character of the set of complex
frequency modes was ignored in these works. As a result, a
continuous spectrum was obtained. Yet this spectrum pos-
sesses rapid superimposed oscillations stemming from the
interferences that are present in S21ð!Þ of Eq. (31). A priori
one might think that they could coincide with our frequen-
cies!a ¼ Re�a. However, as noticed in [5], their value are

insensitive the phase governed by Sð2Þ! , whereas it plays a
crucial role in Eq. (40). We found no regime in which the
two sets could approximately agree. Therefore, as far as the
fine properties of the spectrum are concerned, the predic-
tions of [1,5] are not trustworthy.
Nevertheless, when the density of complex frequency

modes is high, and when ignoring these fine properties, the
average properties derived using [1,5] coincide with ours.
Indeed, when considering the mean flux in frequency
intervals �! � 1=L, the rapid oscillations found in [1,5]
are averaged out. As a result the mean agrees with that over
the contributions of complex frequency modes. This can be
explicitly verified by comparing the norm of our discrete
modes ’a, c a with the continuous norm of the negative
frequency modes used in [1,5]. In the limit of Sec. IVC the
relevant contribution to the overlap ðc aj’aÞ comes from
the negative frequency mode ’�!. Moreover, ’a and c a

are given by a sum of (normalized) WKB waves ’ð1Þ�!a
and

’ð2Þ�!a
times a prefactor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=Tb

!a

q
, where Tb

!a
is the

bounce time given in Eq. (43). This is just what is needed
for approximating the discrete sum in Eq. (56) by a con-
tinuous integral

R
d! with a measure equal to one.

In conclusion, when the number of bound modes be-
comes small, the difference between our description and
the continuous one increases. This difference is maximal
when there are no solution of Eq. (40). In this case, no
radiation is emitted, something which cannot be derived by
the continuous approach of [1,5].

VI. CONDITIONS FOR HAVING A LASER EFFECT

Having understood the black hole laser effect, it is worth
identify in more general terms the conditions under which
a laser effect would develop. We define a ‘‘laser effect’’ by
the fact that a free field possesses complex frequency ABM
while being governed by a quadratic Hermitian
Hamiltonian, as in Eq. (10), and a conserved scalar prod-
uct, as in Eq. (9). The field thus obeys an equation which is
stationary, homogeneous, and second order in time. Let us
note that this type of instability is often referred to as a
dynamical instability [6,16,33], a denomination which in-
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dicates that quantum mechanics is not needed to describe/
obtain it. Let us also note that we do not consider the case
where the frequency of the ABM is purely imaginary. Such
dynamical instability seems to belong to another class than
that we are considering, see the end of this subsection for
more discussion on this.

Using semiclassical concepts, the conditions for obtain-
ing complex frequency ABM are the following :

(i) For a finite range of the real part of frequency !,
WKB solutions with both signs of norm should exist,
or equivalently, positive normWKB solutions should
exist for both sign of !. This is a rather strong
condition which requires that the external field
(gravitational or electric) must be strong enough
for this level crossing to take place, i.e. for the
general solution be a superposition as in Eq. (22).

(ii) These WKB solutions of opposite norm must mix
when considering the exact solutions of the mode
equation. In other words, there should be connected
by a nonzero tunneling amplitude. This is a very
weak condition as different WKB branches are gen-
erally connected to each other. In our case it means
that z! and w! appearing in Eq. (31) should not
vanish.

(iii) One of these WKB solutions must be trapped so that
the associated wave packets will bounce back and
forth. This is also a rather strong condition.

(iv) The depth of the potential trapping these modes
should be deep enough so that at least one pair of
bound modes can exist, see Eq. (40). This condition
is rather mild once the first three are satisfied.

When these conditions are met for a sufficiently wide
domain of frequency !, they are sufficient to get a laser
effect, and they apply both when the external region is
finite [6] or infinite. Being based on semiclassical con-
cepts, stricto sensu, they cannot be considered as neces-
sary. But we are not here after mathematical rigor, rather
we wish to identify the relevant conditions in physically
interesting situations.

In this respect, it should be noticed that when only the
first two conditions are satisfied, one obtains a vacuum
instability [28], also called a superradiance in the context
of rotating bodies [33,34]. Hence, whenever there is a
vacuum instability, one can engender a laser effect by
introducing a reflecting condition, as was done in
[13,14], or by modifying the potential, so that the last
two conditions are also satisfied. It should be clear that
when the laser effect takes place, it replaces the vacuum
instability rather than occurs together with it. Indeed, as
proven in Sec. IVC, the frequency of the trapped modes
are generically complex. The possibility of having a
trapped mode (subjected to a vacuum instability prior
introducing the reflecting condition) with a real frequency
is of measure zero, as two conditions must be simulta-
neously satisfied. To give an example of the replacement of

a vacuum instability by a laser effect, let us consider the
archetypal case of pair production in a static electric field
studied by Heisenberg [35] and Schwinger [36]. In that
case, one obtains a laser effect by replacing the Coulomb
potential A0 ¼ Ex by A0 ¼ Ejxj which traps particles of
charge q for qE < 0, for frequencies !<�m where m is
their mass. We hope to return to such pedagogical ex-
amples in the near future.
In conclusion, we make several remarks. Even though

the complex frequency ABM are orthogonal to the real
frequency modes, as is it guaranteed by Eq. (11), the
asymptotic quanta associated with these modes are not of
a new type but are, as we saw, superpositions of the
standard ones associated with real frequency modes. If
laser instabilities can be studied in classical terms, the
quantum aspects are not washed out. For instance, when
considering a charged field, the charge received as infinity
is still quantized, albeit its mean value is described by a
complex frequency ABM. Moreover, in all cases, when the
instability ceases, the number of emitted quanta is a well-
defined observable governed by standard destruction/crea-
tion operators as those appearing in Eq. (A13). From this it
appears that dynamical instabilities governed by an ABM
with a purely imaginary frequency, as e.g. the Gregory-
Laflamme instability [37], belong to another class since
this asymptotic decomposition in terms of quanta does not
seem available. Whether it could nevertheless makes sense
to quantize such instability is a moot point.

VII. CONCLUSIONS

We showed that the black hole laser effect should be
described in terms of a finite and discrete set of complex
frequency modes, which asymptotically vanish. We also
showed that these modes are orthogonal to the continuous
set of real frequency modes which are only elastically
scattered, and which therefore play no role in the laser
effect. In Sec. IV, using the simplifying assumption that the
near horizon regions are thin, we determined the set of
complex frequencies and the properties of the modes using
the approach that combines and generalizes [5,11].
We described how an initial wave packet is amplified as

it propagates in the BH-WH geometry. When the density of
complex frequency modes is high we recovered the picture
of [1] at early times. Instead, at late time, or when the
density is low, the successive emissions of distinct wave
packets associated with the bouncing trajectories are re-
placed by an oscillating flux governed by the most unstable
mode.
We then computed in quantum settings how the growth

of the complex frequency modes determine the asymptotic
fluxes when the initial state at the formation of the BH-WH
pair is vacuum. Because of the width associated with the
instability, the spectral properties of the fluxes are continu-
ous albeit they arise from a discrete set of modes. The
properties we obtained significantly differ from those
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found in [1,5]. We also briefly described the properties of
the correlation pattern at early times when the number of
complex frequency modes is large, and at late time when
only the most unstable mode contributes. When the super-
sonic region between the two horizons is too small so that
there is no solution to Eq. (40), we concluded that there is
no instability, that no flux is emitted, and that the entangle-
ment entropy vanishes. Finally, in Sec. VI we gave the
general WKB conditions under which a laser effect would
obtain starting from the standard concepts that govern a
vacuum instability in quantum field theory.

This work poses several questions which deserve further
study. In Bose condensates, thebackreaction due to the
instability and the suppression of the instability could be
computed using the Gross-Pitaevskii equation. Fermionic
fields [1,12] should be further studied to reveal the roles of
the N pairs of complex frequency modes, which are not
ABM, but which indicate that the naive vacuum will decay
in the lowest energy state vacuum plus N asymptotic
quanta by spontaneously emptying the N Dirac holes
which are trapped inside the horizons.
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APPENDIX A: UPSIDE DOWN HARMONIC
OSCILLATORS

1. Real upside down oscillator

We review the quantization of upside down oscillators.
To begin with, we start with a single real upside down
harmonic oscillator. Its Hamiltonian is

H ¼ 1
2ðp2 � �2q2Þ; (A1)

when written in terms of position q and conjugated mo-
mentum p, obeying the standard equal time commutator
(ETC) ½q; p� ¼ i. Introducing the ‘‘null’’ combinations

b ¼ 1ffiffiffiffiffiffi
2�

p ðpþ �qÞ; c ¼ 1ffiffiffiffiffiffi
2�

p ðp� �qÞ; (A2)

one gets

H ¼ �

2
ðbcþ cbÞ: (A3)

One verifies that they obey the ETC ½b; c� ¼ i. The order-
ing of b and c in H follows from that of Eq. (A1). The
equations of motions are

_b ¼ ð�iÞ½b;H� ¼ �b; _c ¼ ð�iÞ½c;H� ¼ ��c;

(A4)

thereby establishing that b (c) is the growing (decaying)
mode b ¼ b0e

�t, (c ¼ c0e
��t).

It is now relevant to look for stationary states. In the b
representation (c ¼ �i@b), the stationary Schroedinger
equation H�E ¼ E�E reads

� ib@b�EðbÞ ¼
�
E

�
� i

2

�
�EðbÞ: (A5)

Solutions exist for all real values of E, and the general
solution is

�EðbÞ ¼ AE�ðbÞðbÞiE=��1=2 þ BE�ð�bÞð�bÞiE=��1=2:

(A6)

Since the spectrum is continuum, one should adopt a Dirac
delta normalization h�E0 j�Ei ¼ �ðE� E0Þ. This gives

jAEj2 þ jBEj2 ¼ 1

2��
: (A7)

Imposing that the solution be even in q (p, b, or c) imposes
AE ¼ BE. The important lesson one should retain is that
there is no square integrable stationary states. Therefore, in
all physically acceptable states (i.e. square integrable) the
expectation values of q2 þ p2 will exponentially grow
�e2�t at late time.

2. Complex oscillators

More relevant for us is the complex upside down har-
monic oscillator. It can be described by the complex var-
iables q ¼ q1 þ iq2, p ¼ p1 þ ip2 where q1, p1 and q2,
p2 are Hermitian and obey the standard ETC given above.
We then introduce the complex b and c variables

b ¼ 1ffiffiffiffiffiffi
4�

p ðpþ �qÞ; c ¼ 1ffiffiffiffiffiffi
4�

p ðp� �qÞ; (A8)

which are normalized so that they obey the ETC

½b; cy� ¼ i: (A9)

We then look for the (Hermitian) Hamiltonian, which
gives the following equations:

_b ¼ ð�iÞ½b;H� ¼ �i�b; _c ¼ ð�iÞ½c;H� ¼ �i��c;
(A10)

where � ¼ !þ i�. It is given by

H ¼ �i�cybþ i��byc: (A11)

It is instructive to reexpress this system is term of a couple

of destruction and creation operators d�, dy�, dþ, d
y
þ,

which are given, at a given time t0, by

b ¼ 1ffiffiffi
2

p ðdþ � idy�Þ; c ¼ 1ffiffiffi
2

p ð�idþ þ dy�Þ: (A12)
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They obey the standard commutation relations ½di; dyj � ¼
�ij, and Eq. (A11) reads

H ¼ !ðdyþdþ � dy�d�Þ þ �ðd�dþ þ dyþdy�Þ;
¼ H0 þHsq:

(A13)

In the first term one recovers the standard form of an
Hamiltonian is the presence of stationary modes with
opposite frequencies [9]. The second term induces a
squeezing of the state of the d�, dþ oscillators, which
grows linearly with time.

To set initial conditions, and to be able to read the result
of the instability in terms of quanta, it is appropriate to use
this decomposition of H and to work in the ‘‘interacting’’
picture where the operators b, c only evolve according to
H0, and where the squeezing operator acts on the state of
the field. Indeed, in this picture the states can be expressed
at any time as a superposition of states with a definite
occupation numbers n� and nþ.

3. The Hermitian conjugated Sy

To make contact with the treatment of Sec. IVB, it is
appropriate to express the time evolution of linear opera-
tors in a S-matrix language. We introduce the operator

A½ZðtÞ� ¼ xðtÞb0 þ yðtÞc0 ¼ b0 c0
� � xðtÞ

yðtÞ
� �

; (A14)

where b0 and c0 are the operators b, c evaluated at t0.
Using Eq. (A10), the time evolution of Z ¼ ðx; yÞ is

i@t
x
y

� �
¼ H

x
y

� �
; (A15)

where the 2� 2 matrix H is diagð�; ��Þ. By definition, the
S matrix brings Z from t0 to t0 þ t. It is given by

S ¼ e�i�t 0
0 e�i��t

� �
: (A16)

To define Sy we need to refer to the matrix encoding the
ETC of b and c, see Eq. (A9):

Q ¼ ½b; by� ½b; cy�
½c; by� ½c; cy�

� �
¼ 0 i

�i 0

� �
: (A17)

This matrix defines a scalar product in the space of the
vectors Z through

½AðZ0Þ; AðZÞy� ¼ ðZjZ0Þ ¼ x� y�
� �

Q
x0
y0

� �
: (A18)

The Hermitian conjugate defined by ðSZjZ0Þ ¼ ðZjSyZ0Þ
obeys

QSy ¼ S�TQ: (A19)

In the present case, using Eq. (A16), we find

Syð�Þ ¼ ei�t 0
0 ei�

�t

� �
¼ ½Sð��Þ��: (A20)

In the case where S would have been nondiagonal, we
should also transpose the matrix

Syð�Þ ¼ ½Sð��Þ��T: (A21)

We see that the expression of the components of Sy in
terms of those of S is unusual because the norm of Z,
instead of being jxj2 þ jyj2, it is of the form Imðxy�Þ.
However, when � is real, Eq. (A20) gives the usual rela-
tion. Hence, for complex �, it can be viewed as an analyti-
cal continuation of the real frequency case.
The Hermicity of the Hamiltonian guarantees that the S

matrix is unitary in the sense that the scalar product ðZ0jZÞ,
or the ETC relations Eq. (A9), are conserved. One verifies
that Eq. (A20) implies the usual unitarity condition

Syð�ÞSð�Þ ¼ I; (A22)

for � real and complex.
The above analysis applies to the modes ’a, c a when

considering the field operator restricted to the a sector, i.e.
AðZaÞ ¼ xba’a þ ycac a, because ’a, c a have complex
conjugated frequencies and because ba, ca obey Eq. (21).
Hence, the Hermitian conjugated matrix appearing in
Eq. (38) should be understood as in Eq. (A21).
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