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We study thermodynamic instability of a class of (nþ 1)-dimensional charged dilatonic spherically

symmetric black holes in the background of the anti–de Sitter universe. We calculate the quasilocal mass

of the anti–de Sitter dilaton black hole through the use of the subtraction method of Brown and York. We

find a Smarr-type formula and perform a stability analysis in the canonical ensemble and disclose the

effect of the dilaton field on the thermal stability of the solutions. Our study shows that the solutions are

thermally stable for small �, while for large � the system has an unstable phase, where � is a coupling

constant between the dilaton and matter field.

DOI: 10.1103/PhysRevD.81.084040 PACS numbers: 04.70.Dy

I. INTRODUCTION

Strong motivation for studying thermodynamics of
black holes in anti–de Sitter (AdS) spaces arises from the
correspondence between the gravitating fields in AdS
spacetime and conformal field theory (CFT) living on the
boundary of the AdS spacetime [1]. It was argued that the
thermodynamics of black holes in AdS spaces can be
identified with that of a certain dual CFT in the high
temperature limit [2]. With the AdS/CFT correspondence,
one can gain some insights into thermodynamic properties
and phase structures of strong ’t Hooft coupling CFTs by
studying thermodynamics of AdS black holes. It is well
known that the Schwarzschild black hole in AdS space is
thermodynamically stable for a large horizon radius, while
it becomes unstable for a small horizon radius. That is,
there is a phase transition, named the Hawking-Page phase
transition, between the high temperature black hole phase
and the low temperature thermal AdS space [3]. It has been
explained by Witten [2] that the Hawking-Page phase
transition of Schwarzschild black holes in AdS spaces
can be identified with a confinement/deconfinement tran-
sition of the Yang-Mills theory in the AdS/CFT correspon-
dence. It is important to note that for the (locally) AdS
black holes with a zero or negative constant curvature
horizon the Hawking-Page phase transition does not appear
and these black holes are always locally stable [4–6].

On the other side, there has been a renewed interest in
studying scalar coupled solutions of general relativity ever
since new black hole solutions have been found in the
context of string theory. The low energy limit of the string
theory leads to the Einstein gravity, coupled nonminimally
to a scalar dilaton field [7]. The dilaton field couples in a
nontrivial way to other fields such as gauge fields and

results in interesting solutions for the background space-
time [8–10]. These solutions [8–10], however, are all
asymptotically flat. It has been shown that with the excep-
tion of a pure cosmological constant, no dilaton de Sitter or
anti–de Sitter black hole solution exists with the presence
of only one Liouville-type dilaton potential [11]. In the
presence of one or two Liouville-type dilaton potential,
black hole spacetimes that are neither asymptotically flat
nor (anti)–de Sitter [(A)dS] have been studied in different
setups (see e.g. [12–17]). With the combination of three
Liouville-type dilaton potentials, charged dilaton black
hole/string solutions in the background of (A)dS spacetime
in four- [18] and higher-dimensional spacetime [19,20]
have been explored. Such potential may arise from the
compactification of a higher-dimensional supergravity
model [21], which originates from the low energy limit
of a background string theory.
In this paper, we would like to study thermodynamic

instability of asymptotically AdS dilaton black holes in all
higher dimensions. In particular, we shall disclose the
effect of the dilaton field on the thermal stability of the
solutions. The motivation for studying higher-dimensional
solutions of Einstein gravity originates from string theory,
which is believed to be the most promising approach to
quantum theory of gravity in higher dimensions. In fact,
the first successful statistical counting of black hole en-
tropy in string theory was performed for a five-dimensional
black hole [22]. This example provides the best laboratory
for the microscopic string theory of black holes. Besides,
recently it has been realized that there is a way to make the
extra dimensions relatively large and still be unobservable.
This is if we live on a three-dimensional surface (brane)
embedded in a higher-dimensional spacetime (bulk)
[23,24]. In such a scenario, all gravitational objects such
as black holes are higher dimensional. Furthermore, as
mathematical objects, black hole spacetimes are among
the most important Lorentzian Ricci-flat manifolds in any
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dimension. One striking feature of the Einstein equations
in more than four dimensions is that many uniqueness
properties holding in four dimensions are lost. For in-
stance, four-dimensional black holes are known to possess
a number of remarkable features, such as uniqueness,
spherical topology, dynamical stability, and the laws of
black hole mechanics. One would like to know which of
these are peculiar to four dimensions and which hold more
generally. For a recent review on higher-dimensional black
holes see [25]. In the light of all mentioned above, it
becomes obvious that further study on the thermodynamics
of higher-dimensional dilaton black holes in AdS spaces is
of great interest.

This paper is outlined as follows. In Sec. II, we present
the (nþ 1)-dimensional black hole solutions of Einstein-
Maxwell–dilaton theory in AdS background. In Sec. III,
we obtain the conserved and thermodynamic quantities of
the solutions and verify the validity of the first law of black
hole thermodynamics. We perform a stability analysis in
the canonical ensemble and disclose the effect of the
dilaton field on the thermal stability of the solutions in
Sec. IV. We summarize our results in Sec. V.

II. DILATON BLACK HOLES IN ADS SPACES

The action of (nþ 1)-dimensional (n � 3) Einstein-
Maxwell–dilaton gravity can be written

S ¼ � 1

16�

Z
dnþ1x

ffiffiffiffiffiffiffi�g
p �

R� 4

n� 1
ðr�Þ2 � Vð�Þ

� e�4��=ðn�1ÞF��F
��

�
; (1)

where R is the scalar curvature, Vð�Þ is a potential for the
dilaton field �, � is an arbitrary constant governing the
strength of the coupling between the dilaton and the
Maxwell field, F�� ¼ @�A� � @�A� is the electromag-

netic field tensor, and A� is the electromagnetic potential.

While � ¼ 0 corresponds to the usual Einstein-Maxwell–
scalar theory, � ¼ 1 indicates the dilaton-electromagnetic
coupling that appears in the low energy string action in
Einstein’s frame. Varying action (1) with respect to the
gravitational field g��, the dilaton field �, and the gauge

field A� yields the following field equations:

R�� ¼ 4

n� 1

�
@��@��þ 1

4
g��Vð�Þ

�

þ 2e�4��=ðn�1Þ
�
F��F�

�

� 1

2ðn� 1Þg��F��F
��

�
; (2)

r2� ¼ n� 1

8

@V

@�
� �

2
e�4��=ðn�1ÞF��F

��; (3)

r�ðe�4��=ðn�1ÞF��Þ ¼ 0: (4)

We assume the (nþ 1)-dimensional spherically symmetric
metric has the following form:

ds2 ¼ �N2ð�Þf2ð�Þdt2 þ d�2

f2ð�Þ þ �2R2ð�Þd�2
n�1; (5)

where d�2
n�1 denotes the metric of a unit (n� 1) sphere

and Nð�Þ, fð�Þ, and Rð�Þ are functions of �, which should
be determined. First of all, the Maxwell equations (4) can
be integrated immediately, where, for the spherically sym-
metric spacetime (5), all the components of F�� are zero

except Ft�:

Ft� ¼ Nð�Þqe
4��=ðn�1Þ

½�Rð�Þ�n�1
; (6)

where q, an integration constant, is the charge parameter of
the black hole. Our aim here is to construct exact, (nþ 1)-
dimensional black hole solutions of Eqs. (2)–(4) for an
arbitrary dilaton coupling parameter �. The dilaton poten-
tial leading to AdS-like solutions of dilaton gravity has
been found recently [19]. For an arbitrary value of � in
AdS spaces the form of the dilaton potential Vð�Þ in (nþ
1) dimensions is chosen as

Vð�Þ ¼ 2�

nðn� 2þ �2Þ2 f��2½ðnþ 1Þ2 � ðnþ 1Þ�2

� 6ðnþ 1Þ þ �2 þ 9�e�4ðn�2Þ�=½ðn�1Þ��

þ ðn� 2Þ2ðn� �2Þe4��=ðn�1Þ

þ 4�2ðn� 1Þðn� 2Þe�2�ðn�2��2Þ=½ðn�1Þ��g: (7)

Here� is the cosmological constant. For later convenience
we redefine� ¼ �nðn� 1Þ=2l2, where l is the AdS radius
of spacetime. It is clear the cosmological constant is
coupled to the dilaton in a very nontrivial way. This type
of dilaton potential can be obtained when a higher-
dimensional theory is compactified to four dimensions,
including various supergravity models [21]. In the absence
of the dilaton field action (1) reduces to the action of
Einstein-Maxwell gravity with cosmological constant.
Using metric (5) and the Maxwell field (6), one can show
that the system of equations (2) and (3) have solutions of
the form

N2ð�Þ ¼
�
1�

�
b

�

�
n�2

���ðn�3Þ
; (8)

f2ð�Þ ¼
��
1�

�
c

�

�
n�2

��
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�
b
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�
n�2
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1��ðn�2Þ

� 2�

nðn� 1Þ�
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�
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�
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�
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; (9)
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�ð�Þ ¼ n� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2þ 2�� n�Þ

q
ln

�
1�

�
b

�

�
n�2

�
; (10)

R2ð�Þ ¼
�
1�

�
b

�

�
n�2

�
�
: (11)

Here c and b are integration constants and the constant � is

� ¼ 2�2

ðn� 2Þðn� 2þ �2Þ : (12)

The charge parameter q is related to b and c by

q2 ¼ ðn� 1Þðn� 2Þ2
2ðn� 2þ �2Þ cn�2bn�2: (13)

According to the Gauss theorem, the electric charge of the
black hole is

Q ¼ 1

4�

Z
�!1

Ft�

ffiffiffiffiffiffiffi�g
p

dn�1x ¼ �n�1

4�
q; (14)

where �n�1 is the volume of the unit (n� 1) sphere. For
� � 0 the solutions become imaginary for 0< �< b, and
therefore we should exclude this region from the space-
time. For this purpose we introduce the new radial coor-
dinate r as

r2 ¼ �2 � b2 ) d�2 ¼ r2

r2 þ b2
dr2:

With this new coordinate, the above metric becomes

ds2 ¼ �N2ðrÞf2ðrÞdt2 þ r2dr2

ðr2 þ b2Þf2ðrÞ þ ðr2 þ b2Þ

� R2ðrÞd�2
n�1; (15)

where the coordinates r assume the values 0 � r <1, and
NðrÞ, fðrÞ, �ðrÞ, and RðrÞ are given by Eqs. (8)–(11) with

replacement � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
.

The Kretschmann invariant R���	R
���	 and the Ricci

scalar R diverge at r ¼ 0 (� ¼ b). Thus, r ¼ 0 is a curva-
ture singularity. It is worthwhile to note that the scalar field
�ð�Þ and the electromagnetic field Ft� become zero as

� ! 1. It is also notable to mention that these solutions
are valid for all values of �. When (� ¼ 0 ¼ �), these
solutions describe the (nþ 1)-dimensional asymptotically
AdS Reissner-Nordstrom black holes. One should note that
the singularity for � � 0 is null, while it is timelike for
� ¼ 0.

The quasilocal mass of the dilaton AdS black hole can
be calculated through the use of the subtraction method of
Brown and York (BY) [26]. Such a procedure causes the
resulting physical quantities to depend on the choice of
reference background. In order to use the BY method, the
metric should have the form

ds2 ¼ �WðRÞdt2 þ dR2

VðRÞ þR2d�2: (16)

Thus, we should write the metric (5) in the above form. To
do this, we perform the following transformation:

R ¼ �

�
1�

�
b

�

�
n�2

�
�=2

:

It is a matter of calculations to show that the metric (5) may
be written as (16) with the following W and V:

WðRÞ ¼ N2ð�ðRÞÞf2ð�ðRÞÞ;

VðRÞ ¼ f2ð�ðRÞÞ
�
dR
d�

�
2

¼
�
1þ 1

2
ð�ðn� 2Þ � 2Þ

�
b

�

�
n�2

�
2

�
�
1�

�
b

�

�
n�2

�ð��2Þ
f2ð�ðRÞÞ:

The background metric is chosen to be the metric (16) with

W0ðRÞ ¼ V0ðRÞ ¼ f20ð�ðRÞÞ

¼

8>><
>>:

1þ �2

l2
� 2�2b�

l2ð1þ�2Þ þ �4b2

l2ð1þ�2Þ2 for n ¼ 3

1þ �2

l2
� �2b2

l2ð2þ�2Þ for n ¼ 4

1þ �2

l2
for n � 5:

(17)

As you see from the above equation, the solutions for n ¼
3 and n ¼ 4 have not ‘‘exact’’ asymptotic AdS behavior.
Because of this point, we cannot use the AdS/CFT corre-
spondence to compute the mass. Indeed, for n � 5 the
metric is exactly asymptotically AdS, while for n ¼ 3, 4
it is approximately asymptotically AdS. This is due to the
fact that if one computes the Ricci scalar, then it is not
equal to �nðnþ 1Þ=l2. It is well known that the Ricci
scalar for AdS spacetime should have this value (see e.g.
[27]). Also, the metrics with f20ð�Þ given by Eq. (17) for

n ¼ 3 and n ¼ 4 do not satisfy the Einstein equation with
the cosmological constant, while an AdS spacetime should
satisfy the Einstein equation with a cosmological constant,
and an asymptotical AdS should satisfy at infinity. On the
other side, at large �, the metric behaves as �2, and there-
fore we used the word approximately asymptotically AdS.
To compute the conserved mass of the spacetime, we

choose a timelike Killing vector field 
 on the boundary
surface B of the spacetime (16). Then the quasilocal
conserved mass can be written as

M ¼ 1

8�

Z
B
d2’

ffiffiffiffi
�

p fðKab � KhabÞ
� ðK0

ab � K0h0abÞgna
b; (18)

where � is the determinant of the metric of the boundary
B, K0

ab is the extrinsic curvature of the background metric,

and na is the timelike unit normal vector to the boundary
B. In the context of the counterterm method, the limit in
which the boundaryB becomes infinite (B1) is taken, and
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the counterterm prescription ensures that the action and
conserved charges are finite. Although the explicit function
fð�ðRÞÞ cannot be obtained, at large R this can be done.
Thus, one can calculate the mass through the use of the
above modified Brown and York formalism as

M ¼ �n�1

16�
ðn� 1Þ

�
cn�2 þ n� 2� �2

n� 2þ �2
bn�2

�
: (19)

In the absence of a nontrivial dilaton field (� ¼ 0), this
expression for the mass reduces to the mass of the (nþ 1)-
dimensional asymptotically AdS black hole.

III. THERMODYNAMICS OF ADS DILATON
BLACK HOLE

In this section we intend to study thermodynamics of
dilaton black holes in the background of AdS spaces. The
entropy of the dilaton black hole typically satisfies the so-
called area law of the entropy, which states that the entropy
of the black hole is a quarter of the event horizon area [28].
This near universal law applies to almost all kinds of black
holes, including dilaton black holes, in Einstein gravity
[29]. It is a matter of calculation to show that the entropy of
the dilaton black hole is

S ¼ �n�1b
n�1��ðn�1Þ=2

þ
4ð1� �þÞðn�1Þ=ðn�2Þ ; (20)

where

� ¼ 1�
�

b2

r2 þ b2

�ðn�2Þ=2
;

and �þ ¼ �ðr ¼ rþÞ in which rþ is the outer horizon and
is related to the parameters b, c, �, and �. The Hawking
temperature of the dilaton black hole on the outer horizon
rþ can be calculated using the relation

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p ðN2f2Þ0
4�Nr

��������r¼rþ
; (21)

where a prime stands for the derivative with respect to r.
One can easily show that

T ¼ �bðn� 2Þ�1��ðn�1Þ=2
þ

2nðn� 1Þ�ð1� �þÞ1=ðn�2Þ

�
nðn� 1Þð1� �þÞ2=ðn�2Þ

2�b2

� n��ðn�1Þ�1
þ
ðn� 2Þ � ½�ðn� 1Þ � 1�ð1� �þÞ

�2��ðn�1Þ
þ

�
: (22)

We have shown the behavior of T versus �þ in various
dimensions in Figs. 1 and 2. From these figures we find out
that, independent of the spacetime dimensions, for small
values of � and �þ, the temperature may be negative (T <
0). In this case we encounter a naked singularity. On the
other hand, for an extremal black hole the temperature is
zero and the horizon is degenerate. In this case rext is the
positive root of the following equation:

3�2��ðn�1Þ
ext ð1� �extÞð4�nÞ=ðn�2Þ � 6�

nðn� 1Þ b
2

�
�

n�ext

ðn� 2Þð1� �extÞ þ �ðn� 1Þ � 1

�
¼ 0;

where

�ext ¼ 1�
�

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ext þ b2

p
�
n�2

: (23)

Finally, for large values of � it is always positive provided
�þ > b. Substituting solutions (8)–(11) in Eq. (6), the
electromagnetic field can be simplified as

Ftr ¼ q

ðr2 þ b2Þðn�1Þ=2 ; (24)

while the corresponding gauge potential At may be ob-
tained as

At ¼ � q

ðn� 2Þ�n�2
: (25)

The electric potential U, measured at infinity with respect
to the horizon, is defined by [30]

U ¼ A��
�jr!1 � A��

�jr¼rþ ; (26)
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FIG. 1. T versus �þ for b ¼ 0:2, l ¼ 1, and � ¼ 0:1. n ¼ 4
(solid line), n ¼ 5 (bold line), and n ¼ 6 (dashed line).
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FIG. 2. T versus �þ for b ¼ 0:2, l ¼ 1, and n ¼ 5. � ¼ 0:1
(solid line), � ¼ 1 (bold line), and � ¼ 2 (dashed line).
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where � ¼ @t is the null generator of the horizon.
Therefore, the electric potential may be obtained as

U ¼ q

ðn� 2Þ�n�2þ
; (27)

where �2þ ¼ r2þ þ b2. Finally, we check the first law of
thermodynamics for the black hole. In order to do this, we
obtain the mass M as a function of extensive quantities S
and Q. Using the expression for the charge, the mass, and
the entropy given in Eqs. (14), (19), and (20), we can obtain
a Smarr-type formula per unit volume as

MðS;QÞ ¼ ðn� 1Þ
16�

�
32�2ðn� 2þ �2ÞQ2b2�n

ðn� 1Þðn� 2Þ2

þ n� 2� �2

n� 2þ �2
bn�2

�
; (28)

where b ¼ bðQ; SÞ. One may then regard the parameters S
and Q as a complete set of extensive parameters for the
mass MðS;QÞ and define the intensive parameters conju-
gate to S and Q. These quantities are the temperature and
the electric potential

T ¼
�
@M

@S

�
Q
¼ ð@M@b ÞQð @b@rþ

ÞQ
ð @S@rþ

ÞQ þ ð@S@bÞQð @b@rþ
ÞQ

; (29)

U ¼
�
@M

@Q

�
S
þ

�
@M

@b

�
S

�
@b

@Q

�
S
; (30)

where

�
@b

@rþ

�
Q
¼ �ð @Z@rþ

ÞQ
ð@Z@bÞQ

; (31)

Z ¼
�
1� 32�2ðn� 2þ �2ÞQ2

ðn� 1Þðn� 2Þ2r2n�4þ

�
rþ
b

�
n�2

�

�
�
1�

�
b

rþ

�
n�2

�
1��ðn�2Þ

� 2

nðn� 1Þ�r2þ
�
1�

�
b

rþ

�
n�2

�
�
: (32)

Straightforward calculations show that the intensive quan-
tities calculated by Eqs. (29) and (30) coincide with
Eqs. (22) and (27). Thus, these thermodynamics quantities
satisfy the first law of black hole thermodynamics,

dM ¼ TdSþUdQ: (33)

IV. STABILITY IN THE CANONICAL ENSEMBLE

Finally, we study the thermal stability of the solutions in
the canonical ensemble. In particular, we will see that the
scalar dilaton field makes the solution unstable. The stabil-
ity of a thermodynamic system with respect to small
variations of the thermodynamic coordinates is usually
performed by analyzing the behavior of the entropy

SðM;QÞ around the equilibrium. The local stability in
any ensemble requires that SðM;QÞ be a concave function
of the intensive variables. The stability can also be studied
by the behavior of the energy MðS;QÞ, which should be a
convex function of its extensive variable. Thus, the local
stability can in principle be carried out by finding the
determinant of the Hessian matrix of MðS;QÞ with respect
to its extensive variables Xi, HM

XiXj
¼ ½@2M=@Xi@Xj�

[30,31]. In our case the mass M is a function of entropy
and charge. The number of thermodynamic variables de-
pends on the ensemble that is used. In the canonical
ensemble, the charge is a fixed parameter and therefore
the positivity of ð@2M=@S2ÞQ is sufficient to ensure local

stability. In Fig. 3 we show the behavior of ð@2M=@S2ÞQ as

a function of the coupling constant parameter � for a
different value of n. This figure shows that there exists
an upper limit for �, named �max, for which ð@2M=@S2ÞQ
is negative provided�> �max and positive otherwise. That
is the black hole solutions are unstable for large values of
�. It is important to note that �max depends on the parame-
ters b, rþ, and the dimensionality of spacetime (see Fig. 4).
On the other hand, Figs. 5 and 6 show the behavior of
ð@2M=@S2ÞQ as a function of �þ for different values of
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FIG. 3. ð@2M=@S2ÞQ versus � for b ¼ 0:2, l ¼ 1, and �þ ¼
0:4. n ¼ 5 (solid line), n ¼ 6 (bold line), and n ¼ 7 (dashed
line).
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FIG. 4. ð@2M=@S2ÞQ versus � for b ¼ 0:2, l ¼ 1, and n ¼ 5.
�þ ¼ 0:5 (solid line), �þ ¼ 0:55 (bold line), and �þ ¼ 0:6
(dashed line).
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coupling constant parameter � and different values of n.
These figures show that for a fixed value of � the solution
is thermally stable for �þ > b in five, six, and seven
dimensions provided �< �max. It is also easy to plot these
figures for arbitrary n and generalize the conclusions for
higher dimensions.

In comparison with the asymptotically AdS black holes
of Einstein gravity, which have a small unstable phase, the
stability phase structure of the black holes in Einstein-
Maxwell–dilaton gravity shows that the dilaton field cru-
cially changes the stability phase structure.

V. SUMMARYAND DISCUSSION

Thermodynamics of black holes in AdS spaces have
been the subject of much recent interest. This is primarily
due to their relevance for the AdS/CFT correspondence. It
was argued that the thermodynamics of black holes in AdS
spaces can be identified with that of a certain dual CFT in
the high temperature limit. In this paper, we considered
asymptotically AdS black holes in (nþ 1)-dimensional
Einstein-Maxwell–dilaton gravity. We computed the
charge, mass, temperature, entropy, and electric potential
of the AdS dilaton black holes and found that these quan-
tities satisfy the first law of black hole thermodynamics.
We also obtained a Smarr-type formula, MðS;QÞ, and
performed a stability analysis in the canonical ensemble
by considering ð@2M=@S2ÞQ for the charged black hole

solutions in (nþ 1) dimensions and showed that there is
no Hawking-Page phase transition in spite of the charge of
the black holes for small �, while the solutions have an
unstable phase for large values of �. Indeed, for fixed
values of the metric parameters, we found that there exists
a maximum value of � for which the solutions are ther-
mally unstable if �> �max, where �max depends on the
dimensionality of the spacetime and the metric parameters
b and rþ. This phase behavior shows that although there is
no Hawking-Page transition for black object whose hori-
zon is diffeomorphic to Rp for small � and therefore the
system is always in the high temperature phase [2], in the
presence of dilaton with �> �max the black hole solutions
have some unstable phases.
Finally, we would like to mention that although charged

AdS black holes in dilaton gravity are thermodynamically
unstable for large values of dilaton coupling constant �, it
is worthwhile to examine the dynamical (gravitational)
instability of these dilaton black holes. This is due to the
fact that there are black holes in Einstein gravity that are
thermodynamically unstable, while they are dynamically
stable [32]. However, there may be some correlations
between the dynamic and thermodynamic instability of
black hole solutions in dilaton gravity [31].
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