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In this article I argue that the expression for entropic force, used as a starting point in Verlinde’s

derivation of Newton’s law [E. P. Verlinde, arXiv:1001.0785], can be deduced from the first principles if

one assumes that the microscopic theory behind his construction is the topological SOð4; 1Þ BF theory

coupled to particles.
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I. INTRODUCTION

There is a number of evidences suggesting a deep rela-
tion between gravity and thermodynamics. In the early
1970s four laws of black hole dynamics were formulated
[1], whose form closely resembled the four laws of ther-
modynamics. It was then realized that this similarity be-
tween gravity and thermodynamics reaches far beyond
formal analogy: the bold conjecture of Bekenstein [2]
that an area of the black hole horizon is proportional to
thermodynamical entropy has been strengthened by the
Hawking discovery of black hole radiation [3]. It turned
out that indeed, as suggested by the four laws of black hole
dynamics, black holes behave as thermal systems, with
entropy and temperature proportional to the area and sur-
face gravity, respectively.

About 20 years later, in a remarkable paper Jacobson [4]
showed that from the proportionality between area and
entropy [2] taken as a fundamental principle one can derive
the full Einstein equations of gravity. This idea was then
discussed in depth by Padmanabhan and others; see [5] for
a recent review and references.

Building on these developments, in a recent paper [6],
Verlinde argued that the force of the second law of dynam-
ics and that of Newton’s law of gravity can both have their
origin in thermodynamics, and can be understood in terms
of the entropic force (a similar idea, based on equipartition
of energy, appeared earlier in [7]). Within weeks several
follow-up works appeared, testing this idea in various
contexts (see, for example [8] for the discussion on the
context of cosmology and [9] for derivation of the
Coulomb law from thermodynamics.) In particular, in
[10] Smolin argued that Verlinde’s proposal could be natu-
rally realized in the context of loop quantum gravity, and
suggested its relations to constrained topological field
theories. This idea is the starting point of the present work.

Let us recall the major points of Verlinde’s reasoning.
The basic postulate of his work (see [6] for a detailed
discussion) is the following assumption:

(i) Consider a holographic screen S. If a particle of
mass m crosses the screen, then the change of en-

tropy of the screen is proportional to the mass and
displacement �x

�S�m�x: (1.1)

(ii) It then follows from the first law of thermodynamics
that if there is the temperature T that can be asso-
ciated with the screen, then the entropic force F
exists, satisfying

F�x ¼ T�S; (1.2)

so that

F�mT: (1.3)

As shown by Verlinde, Newton’s law of gravity can be
derived assuming just this postulate, energy equipartition,
and the holographic principle. The reasoning goes as fol-
lows. Consider a spherical screen S at the center of which a
localized, static chunk of matter of mass M is placed.
Assume that the radius of the screen is much larger than
the size of the chunk, so that we can assume spherical
symmetry of the problem. The holographic principle says
that the number of bits N on the screen S is proportional to
its area1

N ¼ A

G
; (1.4)

which is essentially the statement that the screen S is made
of pixels of Planck size (this is the point where, as pointed
out in [10], loop quantum gravity with its quantization of
area operator [11] naturally fits). To complete the deriva-
tion of Newton’s law one has to assume the equipartition of
energy on the screen, from which it follows the relation
between energy E ¼ M and the temperature

M ¼ 1
2NT: (1.5)

Finally, assume that the area of the screen S is given by the
Euclidean formula
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1In what follows I will use the units in which the velocity of
light c, the Planck constant @, and the Boltzmann constant kB are
all equal to 1.
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A ¼ 4�R2: (1.6)

It follows from Eqs. (1.4), (1.5), and (1.6) that the tem-
perature satisfies

T ¼ 2GM

4�R2
; (1.7)

which, together with the postulate (1.3) reproduces
Newton’s law, F ¼ GMm=R2. It is worth noticing that
for Schwarzschild black hole horizon R ¼ 2GM,
Eq. (1.7) reproduces the correct expression for
Bekenstein-Hawking temperature TBH ¼ ð8�GMÞ�1.

As argued by Verlinde the above reasoning is robust and
general, the only weak point being the origin of the en-
tropic force (1.2) and (1.3). Certainly, there must be some
microscopic degrees of freedom responsible for its emer-
gence, and below I will argue that they, and the correspond-
ing force, arise quite naturally in the formulation of gravity
as a constrained topological BF theory.

The plan of this paper is as follows. In the next section, I
will recall the formulation of gravity as a constrained
SOð4; 1Þ BF theory and its coupling to particles. These
technical results will be needed for the derivation of
Verlinde’s entropic force. The reader might decide to
skip these technicalities and jump directly to Sec. III,
where the main argument of the paper will be presented.
The last section is devoted to discussion and conclusions.

II. GRAVITYAS ACONSTRAINED TOPOLOGICAL
FIELD THEORY

It has been known for quite some time that gravity can
be formulated as a constrained topological field theory. The
most popular model of this kind is given by the Plebanski
action [12], being an action of the constrained BF theory of
the Lorentz SOð3; 1Þ group. This model is a starting point
for four-dimensional spin foam models building (see e.g.,
[13]). In the present context, however, it is convenient to
consider a different model, based on the de Sitter gauge
group SOð4; 1Þ (the anti–de Sitter model can be con-
structed analogously). The main reason for this choice is
that the SOð4; 1Þ model allows for natural particles
coupling.

The action of the SOð4; 1Þ constrained BF theory has the
following form [14,15]:

S ¼
Z

BIJ ^ FIJ � �

2
BIJ ^ BIJ � �

4
Bab ^ Bcd�abcd;

(2.1)

where FIJ is the curvature of the SOð4; 1Þ connection one-
form AIJ and B

IJ is a two-form valued in the algebra of the
SOð4; 1Þ group. Here the algebra indices I; J; . . . take
values 0; . . . ; 4, wile the indices a; b; . . . ;¼ 0; . . . ; 3 label
Lorentz subalgebra SOð3; 1Þ of SOð4; 1Þ. If one decom-
poses the connection AIJ into Lorentz and translational
parts

A ab ¼ !ab; Aa4 ¼ 1

‘
ea; (2.2)

solves the equations of motion for BIJ resulting from (2.1),
and plugs the result back into this action, one gets as a
result the first order action of general relativity

S ¼ 1

2G

Z
Rijð!Þ ^ ek ^ el�ijkl

� �

12G

Z
ei ^ ej ^ ek ^ el�ijkl

accompanied by the Holst term and a number of topologi-
cal terms (see [15] for details). To get the action of general
relativity the coupling constants �, � of the action (2.1)
and the length scale ‘ necessary for making the tetrad ea�
dimensionless are to be related to Newton’s constant G,
cosmological constant �, and Immirzi parameter � as
follows:

� ¼ �

�
;

1

‘2
¼ �

3
; G ¼ 3�ð1� �2Þ

�
: (2.3)

Let us pause for a moment to comment on the structure
of the action (2.1). If � vanishes, the resulting action is just
that of a topological field theory with no dynamical degrees
of freedom. The local degrees of freedom of gravity (like
gravitational waves or the presence of Newton’s potential)
appear only if the gauge breaking term, controlled by the
coupling constant �, is nonzero. Therefore the action (2.1)
clearly exhibits the split between topological and local
degrees of freedom. In other words it is only the last
term of (2.1) that knows about the dynamics of gravity.
In the context of the present paper an obvious question
arises: is it possible that the topological action describes
the primary degrees of freedom of theory, while the gauge
breaking term (i.e., gravity) arises as an emergent phe-
nomenon from entropic force? As it is argued below at
least Newton’s force between massive bodies can be under-
stood in this way.
It is worth noticing also that the form of the gauge

breaking term in the action (2.1) is justified only by the
fact that the theory described by this action turns out, at the
end of the day, to be equivalent on shell to general relativ-
ity. Therefore, it would be very interesting to find a prin-
ciple, which would explain the presence of this term (see
[14] for an interesting proposal in this context). Deducing
Newton’s law is the first step in this direction.
As explained in [16], one can straightforwardly add

point particles to the theory described by (2.1) by identify-
ing them with Wilson lines. To do that one includes the
localized breaking of the gauge symmetry along the one-
dimensional worldline. The gauge degrees of freedom are
then promoted to dynamical degrees of freedom, which, in
the case � � 0 reproduce the dynamics of a relativistic
particle coupled to gravity. For a single particle this idea is
realized by choosing a worldline P and a fixed element K
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in the Cartan subalgebra of the soð4; 1Þ Lie algebra gen-
erated by two generators, the translational T04 and rota-
tional T23 ones, depending on the particle rest mass and
spin2

K � m‘T04 þ sT23: (2.4)

Note that the particle mass arises quite naturally in this
picture in a purely algebraic way and is related to the one of
the Casimirs of the gauge algebra. Then the action for the
particle at rest takes the form

SPðAÞ ¼ �
Z

d�TrðKA�ð�ÞÞ; (2.5)

where � parametrizes the worldline z�ð�Þ and A�ð�Þ �
A�ðzð�ÞÞ _z�.

The action of the particle moving in an arbitrary way is
obtained by realizing that the moving particle is related to
the one at rest by an appropriate SOð4; 1Þ transformation
acting on the worldline. In this way the gauge degrees of
freedom at the location of the particle become its physical
degrees of freedom. Thus the Lagrangian of the dynamical
particle has the form

Lðz;h;AÞ ¼ �TrðKAh
�ð�ÞÞ S ¼

Z
d�Lðz; h;AÞ;

(2.6)

with

A h ¼ h�1Ahþ h�1dh;

which can be rewritten as

Lðz; h;AÞ ¼ L1ðz; hÞ � TrðJA�Þ; (2.7)

with the first term being the particle kinetic Lagrangian

L1ðz;hÞ ¼ �Trðh�1 _hKÞ; (2.8)

while the second describes its coupling to the connection
A, with J being the dynamical particle momentum/spin and
is given by

J � hKh�1: (2.9)

It can be shown that from (2.7) the correct particle equation
of motion (Mathisson-Papapetrou equation) follows; the
theory described by (2.1) and (2.7) leads to Einstein-Cartan
equations with point sources carrying mass and spin (see
[16] for a detailed discussion).

This completes our description of the theory. Let us now
turn to the discussion of solutions of topological BF theory
coupled to such defined particle.

Take the topological limit � ! 0 in (2.1) and (2.7) and
consider the resulting field equations [17] for the particle at
rest at the origin of an appropriate coordinate system.3 One
finds

F IJ ¼ �BIJ; (2.10)

DAB
IJ ¼ JIJ�P; �P ¼ �3ðxÞ"; (2.11)

where DA is the covariant derivative of connection A and "
is the volume three-form on a constant time surface.
If one then solves (2.10) for B and substitutes the result

to (2.11) one finds that the left-hand side of the resulting
equation is zero by virtue of Bianchi identity. It is clear
therefore that there does not exist a nonsingular connection
A satisfying these equations for a nonzero source.
However, if one allows connections with stringlike singu-
larity (Misner string [18], which is the gravitational coun-
terpart of Dirac string), these equations can be solved.
In fact it turns out that a pointlike source must be

accompanied by a string extending from the source to
infinity. As argued in [17] the spacetime corresponding to
the solution of these equations4 is the (linearized) Taub-
NUT spacetime

g ¼ �ðdtþ nð1� cos	Þd
Þ2 þ dr2

þ r2ðd	2 þ sin2	d
2Þ; (2.12)

with Taub-NUT charge

n ¼ �Gm; �G ¼ G
�

1þ �2
: (2.13)

This completes our brief description of the constrained
SOð4; 1Þ BF theory, its relation to gravity, and coupling
to point sources.

III. ENTROPYAND GRAVITY FROM
TOPOLOGICAL FIELD THEORY

In the previous section I argued that if one couples the
SOð4; 1Þ topological BF theory [which after gauge break-
ing down to SOð3; 1Þ is equivalent to general relativity] to
point particles, then the theory forces the particles to be
accompanied by semi-infinite Misner strings. Moreover,
the space-time corresponding to such solution is the Taub-
NUT solution linearized in the charge n, which turns out to
be proportional to Gm, where the particle mass m is the
value of one of the two Casimirs of SOð4; 1Þ (the second

2Here we consider massive particles only. An extension to the
case of massless particles is straightforward.

3The reader may wonder that by using the coordinates, and the
geometry, we let gravity sneak through the back door. Of course,
we need geometry to formulate the model, but the relation
between the local degrees of freedom of gravity and the geo-
metrical quantities is not present at this level yet, because
dynamical gravity is not there.

4In the limit ‘ ! 1, which corresponds to the vanishing
cosmological constant. Since the Taub-NUT charge n does not
depend on ‘, taking the limit does not influence it.
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one describes the spin, but here we discuss the spinless case
only).

Knowing this, let us turn to deducing the form of en-
tropic force acting on the particle. Suppose the test particle
of mass m is at the distance R from the mass M, which we
can assume to be also pointlike. Consider now, as in
Verlinde’s argument, a spherical screen S of radius R.
Let the test particle move radially toward the central
mass piercing the screen, and let its displacement be �x.
As a result we have now a segment of the Misner string of
the test particle of the length �x connecting it with the
screen. Therefore the screen that previously was just a
sphere5 now becomes a sphere with a piece of Misner
string, the line segment of length �x attached, S0.

Let me now turn to the main argument of this paper. It is
well known that there is entropy associated with Misner
string; see [19–22] where it is argued that the entropy of
Misner string is intrinsically defined. In particular, using
methods of conformal field theory Carlip [21] shows that
the segment of the Misner string of the length �x carries
the entropy

�S ¼ 1

8�G
n�x ¼ 1

8�
m�x: (3.1)

Although this result has not been rigorously established in
the present context of BF theory, it is unlikely that a
formula analogous to (3.1) would not hold in this case as
well. It seems clear that Misner string carries entropy, no
matter what is the theory describing local and/or topologi-
cal degrees of freedom. If one accepts this argument, it
follows from simple dimensional analysis that the entropy
of the segment of Misner string of the length �x has to
have the form

�S ¼ �m�x; (3.2)

where � is the coefficient depending on the structure (and
coupling constants) of the underlying theory.

The entropy (3.2) adds to the original entropy of the
screen, and since it is proportional to the test particle
displacement it leads to the emergence of the entropic
force. Notice that since entropy increases when the test
particle moves toward the mass M this entropic force is
attractive. Also when the test particle which was initially
inside the screen moves outside, the entropy decreases,
since the contribution from the Misner string is no longer
present.

Having (3.2) it is possible now to run the remaining part
of Verlinde’s argument essentially without modifications.
The only point that is worth discussing is the equation
relating the number of the screen pixels with area. Why
is G the measure of area of a pixel? In loop quantum

gravity this question finds its natural answer thanks to the
fact that quantization of area in Planck scale units is the
main result of this theory. It is not excluded that even in the
context of BF theory one can define an area operator with
discrete spectrum. Until this idea is supported (or dis-
proved) by concrete calculations we can rely only on
general intuitions. The theory at hand provides us with
the dimensionful scale ‘ and the dimensionless coupling
constant �. From the two it is possible to construct another
constant of dimension of area

�G ¼ 3�

‘2
; (3.3)

which in the full theory (including nontrivial gauge break-
ing term) becomes proportional to Newton’s constant of
general relativity [cf. (2.3)]. Since � has some final value,
and since ‘ is an infrared scale of the theory, it is quite
natural to treat �G as an intrinsic ultraviolet scale of the
theory, and thus to replace (1.4) with

N ¼ A
�G
; A ¼ 4�R2; (3.4)

which directly, by virtue of Verlinde’s argument recalled in
the Introduction, leads to Newton’s law

F ¼ GmM

R2
; (3.5)

where G ¼ 4�� �G is Newton’s constant, whose value can
be directly measured, e.g., in Cavendish experiment. This
concludes the presentation of the main argument of this
paper.

IV. CONCLUSIONS AND OUTLOOK

In this paper I argued that the form of entropic force
being the starting point of the recent proposal of Verlinde
[6] to seek the origin of gravity in thermodynamics can be
understood if one assumes that the fundamental degrees of
freedom behind it are described by the topological BF
theory coupled to particle(s). The reason for this is that,
as shown in [16] and discussed in [17], a particle carrying
the charge of (anti) de Sitter SOð4; 1Þ [SOð3; 2Þ] group
coupled to the topological BF theory with the same gauge
group must have Misner string attached. This string, in
turn, carries entropy, which adds to the entropy of the
holographic screen S when the particle crosses it, which
results in emergence of the entropic force.
It should be stressed that the thought experiment of

lowering the mass m described in the preceding section
has been devised so as to ensure that the particle is indeed a
test one, i.e., that one can safely neglect the backreaction in
the form of the entanglement of the configurations of the
test particle and the central mass. It can be therefore
assumed that to the leading order the only result of this
process will be the increase of the entropy of the screen as
in Eq. (3.2). Notice that in order to run this argument one

5More precisely S consists of the sphere along with the
attached string (or strings) emanating from the central mass
M. But since we are only interested in the (infinitesimal) change
of entropy, we do not have to consider them.
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does not need to know what is the total entropy of the
holographic screen; what matters is only its infinitesimal
change.

There are however some more complicated configura-
tions which should be analyzed and understood.6 For ex-
ample, consider again the test massm hovering just outside
the spherical holographic screen of radius R with mass M
residing in its center. This time let the Misner string go
from the test particle to the center of the screen and then
radially to infinity. (It should be noted that this configura-
tion cannot be obtained from the original one, considered
above, by the action of diffeomorphism; the diffeomor-
phism acts on both the string and the screen and the number
of points in which the string pierces the screen is diffeo-
morphism invariant.) Then pulling the string by an infini-
tesimal distance�x should again lead to the increase of the
entropy, and therefore the attractive force. However this
configuration is much harder to analyze than the one
considered above, because now the finite segment of test
particle’s Misner string is placed inside the screen and the
entanglement of its degrees of freedom with the one origi-
nally present inside the screen cannot be, presumably,
neglected any longer.

There are several problems of a more general nature that
have to be solved before the idea described above turns to a
solid proposal. First, one has to calculate the entropy of
Misner string directly in the framework of BF theory, to fix

the constant � in (3.2). This can be presumably done with
the help of the method similar to that described in [21].
Second, it would be interesting to see if it is possible to
improve on the part of the original Verlinde’s argument that
makes use of equipartition of energy to get the expression
for temperature (1.7). One has therefore to analyze in depth
the thermodynamics of the BF theory coupled to particles.
It would be also desirable to investigate if in the case of BF
theory one can define an area operator with discrete spec-
trum, resembling that of loop quantum gravity [11]. It is
interesting to note in this context that in order to do this one
would have to split the connection A into the translational
and Lorentz parts, with the former related to area (and
volume, and length) measurements. Thus it might be that
the area measurement, necessary for Verlinde’s construc-
tion to work, is the fundamental reason of the deep relation
between the dynamics of gravity and breaking of the
SOð4; 1Þ gauge group down to its Lorentz subgroup, re-
flected in the form of the action (2.1). Last but not least one
has to find out if it is possible to formulate the holographic
principle for BF theory. Work on these problems is in
progress.
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