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We show a uniqueness theorem for charged dipole rotating black rings in the bosonic sector of five-

dimensional minimal supergravity, generalizing our previous work [arXiv:0901.4724] on the uniqueness

of charged rotating black holes with topologically spherical horizon in the same theory. More precisely,

assuming the existence of two commuting axial Killing vector fields and the same rod structure as the

known solutions, we prove that an asymptotically flat, stationary charged rotating black hole with

nondegenerate connected event horizon of cross-section topology S1 � S2 in the five-dimensional

Einstein-Maxwell-Chern-Simons theory—if exists—is characterized by the mass, charge, two indepen-

dent angular momenta, dipole charge, and the ratio of the S2 radius to the S1 radius. As anticipated, the

necessity of specifying dipole charge—which is not a conserved charge—is the new, distinguished

ingredient that highlights difference between the present theorem and the corresponding theorem for

vacuum case, as well as difference from the case of topologically spherical horizon within the same

minimal supergravity. We also consider a similar boundary value problem for other topologically

nontrivial black holes within the same theory, and in particular, discuss some nontrivial issues that arise

when attempting to generalize the present uniqueness results to include black lenses—provided there

exists such a solution in the theory.
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I. INTRODUCTION

Classifying higher dimensional black holes in super-
gravity theories is one of the key issues toward under-
standing the structure of string theory. In our previous
paper [1], we addressed a classification problem of black
holes in five-dimensional minimal supergravity, and
showed that if an asymptotically flat, stationary charged
rotating black hole solution of the theory possesses two
rotational symmetries, then it can be uniquely specified by
its asymptotic conserved charges [2]. In this version of
uniqueness theorem, we restricted attention to the case of
topologically spherical black holes since in that case,
relevant boundary value analysis becomes simple and
also there is a known exact solution [4] which appears to
be most general as a spherical black hole in the five-
dimensional minimal supergravity. However, topology
theorem [5–7] itself does not stop us from considering
topologically nonspherical black holes as far as horizon
cross-section is of positive Yamabe type. In fact, a number
of topologically nontrivial exact solutions, such as black
rings and their multiple combinations, have been discov-
ered in various theories [8–21]. It is therefore of consid-
erable interest to consider a generalization of our
uniqueness result [1] to include nonspherical black holes
within the same supergravity theory. The main purpose of
this paper is to show, on the basis of Ref. [1], a uniqueness
theorem for black ring solutions—assuming their exis-
tence—in the bosonic sector of five-dimensional minimal
supergravity theory, or equivalently five-dimensional

Einstein-Maxwell-Chern-Simons (EMCS) theory with the
Chern-Simons coupling appropriately chosen.
Under the assumption that stationary black hole solu-

tions admit additionally two independent rotational sym-
metries one can reduce the five-dimensional minimal
supergravity theory to precisely the same type of nonlinear
sigma model considered in our previous paper [1], irre-
spective to the horizon topology. One can then construct
formally the same divergence identity for the sigma model
fields on two-dimensional base space. Therefore, as briefly
discussed in the summary section of Ref. [1], the only
difference in uniqueness properties between spherical and
nonspherical black holes should arise in the boundary
value analysis on the nonlinear sigma model. The neces-
sary boundary data are given at infinity and at a one-
dimensional boundary component that corresponds to
points of either the horizon or ‘‘axis’’ of rotational sym-
metries. The latter boundary component is further divided,
in a certain manner, into a set of segments or intervals of
invariant finite (or semi-infinite) length. Associated with
each interval is an integer-valued vector that tells which (or
what combination) of the two rotational Killing fields
vanishes on the interval. The collection of such intervals
and vectors are called the rod structure [22] (see also
[23,24]), which, in particular, specifies the horizon topol-
ogy. For example, as discussed in Ref. [1], the rod structure
for a single black ring may be given by the following:
(i) the semi-infinite interval ½c;1� with the vector (0, 0, 1),
(ii) the finite interval ½ck2; c�with (0, 1, 0), (iii) ½�ck2; ck2�
with no vector, corresponding to the event horizon, and
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(iv) ½�1;�ck2� with (0, 1, 0), where c > 0, 0< k2 < 1.
We will discuss this in more detail in the next section.
Then, noting that information about horizon topology can
be encoded in the rod structure, one might expect that the
desired generalization of the uniqueness theorem to in-
clude nonspherical black holes would be straightforwardly
achieved by merely specifying appropriate rod structure as
well as all possible global conserved charges. This is in-
deed the case for the vacuum solutions [23,25]. However,
one has to be more careful when gauge fields are involved:
For example, when a rotating black ring couples to
Maxwell field, it generates type of a dipole field.
Accordingly, the dipole charge—which is not a conserved
charge—comes to play a role as an additional parameter to
characterize the solution, as stated already in the first
example of dipole ring solutions found by Emparan [26],
which are electrically coupled to a two form or a dual
magnetic oneform field. Further examples of dipole rings
have been constructed by Elvang et al. [15] in five-
dimensional minimal supergravity, starting from a seven-
parameter family of nonsupersymmetric black ring solu-
tions. Their solution, however, does not have any limit to a
supersymmetric solution, and moreover the dipole charge
of their solution is not an independent parameter: it can be
determined in terms of the other asymptotic conserved
charges. Hence, as conjectured by the authors of [15]
themselves, it is natural to anticipate that there exists a
more general non-BPS black ring solution characterized by
its mass, two independent angular momenta, electric
charge, and a dipole charge that is independent of the other
asymptotic conserved charges [27]. Although such a seem-
ingly most general dipole ring solution has not been dis-
covered yet, assuming its existence, we would like to show
the following theorem:

Theorem. Consider the bosonic part of five-dimensional
minimal supergravity, i.e., five-dimensional Einstein-
Maxwell-Chern-Simons theory with certain value of the
Chern-Simons coupling, and suppose there exists a regular
stationary charged rotating black ring with finite tempera-
ture: that is, a stationary black hole solution that possesses
a nondegenerate connected event horizon with cross-
section topology S1 � S2, and is regular on and outside
the horizon and asymptotically flat in the standard sense
with spherical spatial infinity. If such a black ring solution
further admits (1) two mutually commuting axial Killing
vector fields, in addition to the stationary Killing vector
field, so that the isometry group is R�Uð1Þ �Uð1Þ, and
(2) the rod structure of the type (i)–(iv) above, then the
solution is uniquely characterized by its mass, electric
charge, two independent angular momenta, dipole charge,
and the rod data (which corresponds to the ratio of the S2

radius to the S1 radius).
Some remarks are in order. As discussed in detail in [24],

the rod structure (more precisely, the interval structure of
[23,24]) can specify not only the horizon topology but also

topology of the black hole exterior region, as well as the
action of the rotational symmetries. In the present case,
restricting the rod structure as above (i)–(iv), the black hole
exterior is topologically R� R4 n fD2 � S2g. In fact, all
known black ring solutions with a single horizon compo-
nent admit the rod structure above. However, it is not
obvious whether any black ring solution must always
have the rod structure of this simple type. Also when one
wishes to generalize the present theorem to include other
nontrivial black objects, one would need to address the
case with more general rod structure, as in fact we will
attempt to do so in Sec. III. In this regard, a similar unique-
ness problem with general rod structure, treating both
black rings and spherical holes in a unified manner, has
been addressed in a rather restricted class of five-
dimensional Einstein-Maxwell system [28]. There, the
necessity of specifying a dipole charge and other extra
charges (for the general rod structure case) has also been
pointed out.
In the next section, we prove the above theorem, starting

from a brief description of general strategy for the black
hole uniqueness proof. In Sec. III, we study the boundary
conditions for black holes with other horizon topologies,
i.e., black lenses. In Sec. IV, we summarize our results and
comment on some open issues on uniqueness for black
lenses and multirings.

II. PROOF

Our proof consists of the following three steps (i)–(iii),
employing the basic techniques of the classic uniqueness
proof for four-dimensional black holes (see e.g., Ref. [29]
and references therein), as well as imposing additional
conditions upon topology and symmetries. In fact, essen-
tially the same strategy has widely been used in proof of
uniqueness theorems proposed for some restricted classes
of higher dimensional black holes in various—but different
from the present—context (See e.g., Refs. [1,23–25,28,30–
38]). It goes roughly as follows: (i) First, using symmetry
conditions, we reduce the theory of interest to a certain
nonlinear sigma model on a two-dimensional base space,
�. Thanks to the symmetryG of the sigma model, the set of
sigma-model fields �A on � can collectively be described
in terms of a symmetric, unimodular matrix, M, on the
coset space G=H, where H is an isotropy subgroup of G.
Thus, in principle, the solutions of the system can com-
pactly be expressed by the matrix M. Furthermore, the
matrix M formally defines a conserved current, J, for the
solution. (ii) Next, we introduce the deviation matrix, �,
which is essentially the difference between two coset
matrices, say M½0� and M½1�, so that when two solutions

coincide with each other, the deviation matrix vanishes,
and vice versa. What we wish to show is that � vanishes
over the entire � when two solutions satisfy the same
boundary conditions that specify relevant physical parame-
ters characterizing the black hole solution of interest. For
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this purpose, we construct a global identity, called the
Mazur identity, (the integral version of) which equates an
integration along the boundary @� of a derivative of the
trace of� to an integration over the whole base space � of
the trace of ‘‘square’’ of the deviation, M, of the two
conserved currents, J½0� and J½1�. The latter is therefore

non-negative. The identity is essentially a generalization
of the Green’s divergence identity for the standard Laplace
equation. (iii) Then, we perform boundary value analysis
of the matrix �. We identify boundary conditions for M
that define physical parameters characterizing black hole
solutions and that guarantee the regularity of the solutions.
Then we examine the behavior of � near @�. For higher
dimensional case, this is the point where the topology and
symmetry properties, translated into the language of the
rod structure, come to play a role as additional parameters
to specify solutions. When the integral along the boundary
@�, say the left side of the Mazur identity, vanishes under
our boundary conditions, it then follows from the right side
of the identity, i.e., the non-negative integration over �,
that M has to vanish, hence the two currents, J½0� and J½1�,
must coincide with each other over �, implying that the
deviation matrix � must be constant over �. Then, if � is
shown to be zero on some part of the boundary @�, it
follows that � must be identically zero over the entire �,
thus proving the two solutions, M½0� and M½1�, must be

identical.
In our present case, the first two steps (i)-(ii) completely

parallel those in Ref. [1], and Step (iii) is the new result of
this paper. In order to highlight difference from the spheri-
cal horizon case and also to avoid unnecessary repetition,
in the following we provide only some key formulas of
Steps (i) and (ii), needed in Step (iii) later on, quoting from
Ref. [1].

Our starting point is the following five-dimensional
minimal supergravity action

S ¼ 1

16�

�Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 1

4
F2

�
� 1

3
ffiffiffi
3

p
Z

F ^ F ^ A

�
;

(1)

where we set the Newton constant to be unity and F ¼ dA
with A being the gauge potential. Varying this action (1),
we derive the Einstein equations with the standard stress-
energy tensor for five-dimensional Maxwell field, as well
as Maxwell’s equations which have the extra term coming
from the Chern-Simons term of (1). We are concerned with
asymptotically flat, stationary, charged rotating black ring
solutions of this theory. We additionally impose two inde-
pendent axial symmetries, so that the total isometry group
is R�Uð1Þ �Uð1Þ with R being stationary symmetry,
generated by mutually commuting three Killing vector
fields �t ¼ @=@t and �a ¼ ð��; �c Þ ¼ ð@=@�; @=@c Þ
[39]. Using the Einstein equations and the Maxwell equa-
tions, we can show that the generators �t, �a of the isome-
try group satisfy type of integrability conditions discussed

in Refs. [22,43]. As a result, we obtain the coordinate
system, ft; �; c ; �; zg, in which the metric takes the
Weyl-Papapetrou form

ds2 ¼ ���ðd�þ a�dtÞ2 þ �c c ðdc þ ac dtÞ2
þ 2��c ðd�þ a�dtÞðdc þ ac dtÞ
þ j�j�1½e2�ðd�2 þ dz2Þ � �2dt2�; (2)

and the gauge potential is written,

A ¼ ffiffiffi
3

p
c adx

a þ Atdt; (3)

where the coordinates xa ¼ ð�; c Þ denote the Killing
parameters, and thus all functions �ab, � :¼ � detð�abÞ,
aa, �, and ðc a; AtÞ are independent of t and xa, and where
the potentials c a are related to Maxwell field by eq. (8) of
Ref. [1] [see also Appendix A of Ref. [1] for the gauge
choice employed in Eq. (3)]. Note that the coordinates
ð�; zÞ that span a two-dimensional base space, � ¼
fð�; zÞj� � 0;�1< z <1g, are globally well-defined,
harmonic, and mutually conjugate on �. See e.g., [44].
Furthermore, by using the Maxwell’s equation and
Einstein’s equations, we introduce the magnetic potential
� and twist potentials !a by

d� ¼ 1ffiffiffi
3

p � ð�� ^ �c ^ FÞ � 	abc adc b; (4)

d!a ¼ �ð�� ^ �c ^ d�aÞ þ c að3d�þ 	bcc bdc cÞ;
(5)

where 	�c ¼ �	c� ¼ 1. Then, the nonlinear sigma
model reduced from the theory (1) with the symmetry
assumptions consists of the target space with the isometry
G ¼ G2ð2Þ and the eight scalar fields �A ¼ ð�ab;!a; c a;
�Þ on the base space �. All the other fields such as �, aa,
etc. can be determined by �A through the equations of
motion. It turns out that the sigma model fields,�A, can be
expressed by a 7� 7 symmetric unimodular coset
G2ð2Þ=SOð4Þ matrix M [see eq. (34) of Ref. [1]], as shown

by [45–47]. Then we define the deviation matrix, �, for
two solutions, M½0� andM½1�, as in eq. (42) of Ref. [1], and
derive the Mazur identity,

Z
@�

�@a tr�dSa ¼
Z
�
trðMT �MÞ�d�dz; (6)

where dot denotes the inner product on �. As briefly
mentioned above,M, in the right side essentially describes
the difference between two matrix currents J½0�; J½1�, given
by eq. (47) of Ref. [1], of which detail is irrelevant to
discussion below. Our task is to show that the left side of
Eq. (6) vanishes on the boundary, @�, and then show �
itself vanishes on some part of the boundary.
Now we proceed step (iii): The boundary value analysis.

In the Weyl-Papapetrou coordinate system, the boundaries
for black rings can be described as follows:
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(i) c -invariant plane: @�c ¼ fð�; zÞj� ¼ 0; c < z <

1g with the rod vector v ¼ ð0; 0; 1Þ,
(ii) �-invariant plane inside the black ring: @�in ¼

fð�; zÞj� ¼ 0; ck2 < z < cg with the rod vector v ¼
ð0; 1; 0Þ,

(iii) Horizon: @�H ¼ fð�; zÞj� ¼ 0;�ck2 < z < ck2g,
(iv) �-invariant plane outside the black ring: @�� ¼

fð�; zÞj� ¼ 0;�1< z <�ck2g with the rod vec-
tor v ¼ ð0; 1; 0Þ,

(v) Infinity: @�1 ¼ fð�; zÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p ! 1 with

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
finiteg,

where the two constants c and k satisfy c > 0 and
0< k2 < 1.

Therefore, the boundary integral in the left-hand side of
the Mazur identity, Eq. (6), is decomposed into the inte-
grals over the four rods (i)–(iv), and the integral at infinity
(v), as

Z
@�

�@p tr�dSp ¼
Z �ck2

�1
�
@ tr�

@z
dzþ

Z ck2

�ck2
�
@ tr�

@z
dz

þ
Z c

ck2
�
@ tr�

@z
dzþ

Z 1

c
�
@ tr�

@z
dz

þ
Z
@�1

�@a tr�dSa: (7)

Note that the only difference between black holes and
black rings appears at the third term in the right side of
Eq. (7), which corresponds to the integral over the
�-invariant plane inside the black ring. As will be seen
below, because of the existence of this third integral, a
dipole charge comes to appear in our boundary conditions.

We examine the behavior of� at each boundary, (i)–(v),
separately, starting from analysis at Infinity (v).

(v) Infinity: @�1 ¼ fð�; zÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p ! 1with

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
kept finiteg. Since we are concerned with

asymptotically flat solutions in the standard sense and the
behavior of the scalar fields near infinity does not depend
on what the topology of the horizon is, the discussion here
is the same as the case of a spherical horizon topology [1].
So we have

�@p tr�dSp ’ O
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
�
: (8)

(i) c -invariant plane: @�c ¼ fð�; zÞj� ¼ 0; c < z <

1g. This part is essentially the same as the boundary
analysis at �-invariant plane of Ref. [1]. Note that in this
paper, we are taking c as the Killing parameter along the
S1 sector of the ring solution, and for this reason the role of
@�c is played by the ‘‘�-invariant plane’’ of Ref. [1].

Therefore the behavior of� near @�c can be read off from

the formulas of eqs. (63)–(70) of Ref. [1]. As a result, for
two solutions,M½0� andM½1�, with the same mass, the same

angular momenta, and the same electric charge, we have,

�@z tr� ’ Oð�Þ: (9)

(iv) �-invariant plane outside the black ring: @�� ¼
fð�; zÞj� ¼ 0;�1< z <�ck2g. Similarly, the behavior of
� around @�� can be read off from Eqs. (75)–(82) of

Ref. [1], and we have �@z tr� ’ Oð�Þ, for � ! 0.
(iii) Horizon: @�H ¼ fð�; zÞj� ¼ 0;�ck2 < z < ck2g.

The regularity on the horizon requires that for � ! 0,

�ab ’ Oð1Þ; !a ’ Oð1Þ;
c a ’ Oð1Þ; � ’ Oð1Þ: (10)

Thus, we have for � ! 0, �@z tr� ’ Oð�Þ.
(ii) �-invariant plane inside the black ring: @�in ¼

fð�; zÞj� ¼ 0; ck2 < z < cg. This is the key part of the
present boundary value analysis. As in the case (iv), the
regularity requires that the potentials, �ab, must behave as

��� ’ Oð�2Þ; (11)

��c ’ Oð�2Þ; (12)

�c c ’ Oð1Þ: (13)

The dipole charge for a black ring is defined by

q :¼ 1

2�

Z
S2
F

¼ 1

2�

Z
S2
A�;zdz ^ d�

¼ ffiffiffi
3

p ½c �ð� ¼ 0; z ¼ ck2Þ � c �ð� ¼ 0; z ¼ �ck2Þ�
¼ ffiffiffi

3
p

c �ð� ¼ 0; z ¼ ck2Þ; (14)

where S2 denotes the two-sphere spatial cross section of
the black ring horizon and where, at the fourth equality, we
have used the fact that c � ’ Oð�2Þ on the �-invariant

plane @�� [eq. (81) of Ref. [1]]. Note that the derivative of

the electric potential, dc �, vanishes on @�in by definition,

and hence c � is constant over @�in. Therefore, from

Eq. (14), we immediately find that the electric potential,
c �, must behave as

c � ’ qffiffiffi
3

p þOð�2Þ (15)

in a neighborhood of @�in. We cannot determine how the
other magnetic potential, c c , behaves on @�in, and there-

fore we write

c c ’ fðzÞ þOð�2Þ; (16)

where fðzÞ is some function depending only on z.
Next, we consider the magnetic potential � on the

�-invariant plane inside the black ring @�in. The magnetic
potential, �, satisfies, Eq. (4), i.e.,
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d� ¼ 1ffiffiffi
3

p � ð�� ^ �c ^ FÞ � ðc �dc c � c c dc �Þ:
(17)

The first term vanishes on @�in by definition. Substituting
Eq. (15) into the above equation, we find that the derivative
of � can be written as

d� ¼ � qffiffiffi
3

p dc c : (18)

Hence, integrating (18), we obtain

� ¼ � qffiffiffi
3

p c c þ cin; (19)

where cin is a constant. Here, we note from the analysis (i)

on @�c that c c ! 0 [eq. (68) of Ref. [1]] and � !
2Q=

ffiffiffi
3

p
� [eq. (70) of Ref. [1]] at the center of the black

ring, � ¼ 0, z ¼ c. Then, the constant is determined as

cin ¼ 2Qffiffiffi
3

p
�
: (20)

Thus, in terms of the undetermined function, fðzÞ, of z, the
electric charge, Q, and the dipole charge, q, we can obtain
the behavior of the magnetic potential, �, near @�in as
follows.

� ’ � qffiffiffi
3

p fðzÞ þ 2Qffiffiffi
3

p
�
þOð�2Þ: (21)

Furthermore, consider the boundary condition for the
twist potentials, !a, on @�in. Recall that they are given by

d!a ¼ �ð�� ^ �c ^ d�aÞ þ c að3d�þ c �dc c

� c c dc �Þ: (22)

The first term vanishes on the c -invariant plane, @�in, by
definition. Substituting Eqs. (15) and (21) into the above
equation, we find that the derivative of the twist potentials,
!a, can be written as

d!a ¼ � 2qffiffiffi
3

p c adc c : (23)

Then, by using Eqs. (15) and (16), they can be rewritten as

d!� ¼ � 2

3
q2dfðzÞ; d!c ¼ � 2ffiffiffi

3
p qfðzÞdfðzÞ:

(24)

Integrating Eq. (24) on @�in, we obtain

!� ¼ � 2

3
q2fðzÞ þ c�; !c ¼ � 1ffiffiffi

3
p qfðzÞ2 þ cc ;

(25)

where c� and cc are arbitrary constants. From the analysis

(i) on @�c we have

!a ¼ � 2Ja
�

; c c ¼ 0 (26)

at the center of the black ring, � ¼ 0, z ¼ c [eqs. (66)–(68)
of Ref. [1]]. Hence, the constants, c� and cc , can be

determined as

c� ¼ � 2J�
�

; cc ¼ � 2Jc
�

: (27)

As a result, we find that the two twist potentials!� and!c

must behave as

!� ’ � 2

3
q2fðzÞ � 2J�

�
þOð�2Þ; (28)

!c ’ � 1ffiffiffi
3

p qfðzÞ2 � 2Jc
�

þOð�2Þ; (29)

on @�in. Thus, from Eqs. (11)–(13), (15), (16), (21), (28),
and (29), we find for � ! 0, �@z tr� ’ Oð�Þ. We empha-
size here that in order to obtain this result, we do not need
to, in advance, specify the functions, fðzÞ½0�; fðzÞ½1�, in the

two solutions.
We conclude from (i)–(v) that the boundary integral

vanishes on each rod and the infinity. We can also find,
by continuity, that the boundary integral is bounded, hence
vanishing, at the points where two adjacent rods meet. The
deviation matrix, �, is constant and has the asymptotic
behavior, � ! 0. Therefore, � vanishes over �, and the
two configurations,M½0� andM½1�, coincide with each other
for the two black ring solutions with the same mass,
angular momenta, electric charge, dipole charge and rod
structure (i.e., k2). This completes our proof for the unique-
ness theorem.

III. BOUNDARY VALUE PROBLEM FOR BLACK
LENS

As discussed in [23], under the existence of two com-
muting axial Killing vectors, the cross-section topology of
each connected component of the event horizon of sta-
tionary vacuum black hole solutions must be either S3,
S1 � S2 or a lens space. In this section we would like to
consider the boundary value problem for an asymptotically
flat, black lens, though such a solution has not been found
even in the vacuum case. The rod structure for a black lens
was given by Evslin [48]. In the Weyl-Papapetrou coordi-
nate system, the boundaries for a black lens with the
Lðp; 1Þ horizon topology, if exists, can be given as follows:
(i) c -invariant plane: @�c ¼ fð�; zÞj� ¼ 0; c < z <

1g with the rod vector v ¼ ð0; 0; 1Þ,
(ii) Inner axis: @�in ¼ fð�; zÞj� ¼ 0; ck2 < z < cg with

the rod vector v ¼ ð0; 1; pÞ,
(iii) Horizon: @�H ¼ fð�; zÞj� ¼ 0;�ck2 < z < ck2g,
(iv) �-invariant plane: @�� ¼ fð�; zÞj� ¼ 0;�1<

z <�ck2g with the rod vector v ¼ ð0; 1; 0Þ,
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(v) Infinity: @�1 ¼ fð�; zÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p ! 1with

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
finiteg,

where constants c and k satisfy c > 0 and 0< k2 < 1.
For the boundaries (i), (iii), (iv), and (v), the boundary

conditions of the scalar fields, �A, are exactly the same as
those of black rings. Therefore we consider only (ii). First,
note that the rod vector, v ¼ @=@�þ p@=@c , has fixed
points for � ¼ 0, z 2 ½ck2; c�, i.e.,
gðv; vÞ ¼ 0 () ��� þ 2p��c þ p2�c c ¼ 0: (30)

On the inner axis, we have

� ¼ �2
�c � ����c c ¼ 0: (31)

Therefore, we find that near the inner axis, the potentials,
�ab, must behave as

��� ’ p2gðzÞ þOð�2Þ; (32)

��c ’ �pgðzÞ þOð�2Þ; (33)

�c c ’ gðzÞ þOð�2Þ; (34)

where gðzÞ is some function of z.
Next, consider the boundary conditions for the electric

potentials c a. It follows from Eq. (30) that for � ¼ 0, z 2
½ck2; c�,

0 ¼ �ivF ¼ ffiffiffi
3

p ðdc � þ pdc c Þ: (35)

Integrating this, we obtain

c � þ pc c ¼ c0; (36)

where c0 is a constant. Therefore, we can set the electric
potentials to behave as

c � ’ c0 � phðzÞ þOð�2Þ; (37)

c c ’ hðzÞ þOð�2Þ; (38)

with hðzÞ being some function of z.
We further consider the behavior of the magnetic poten-

tial� defined by Eq. (4). Since the norm of the rod vector v
vanishes over the inner axis, the first term in the right-hand
side of Eq. (4) vanishes there. Then, it follows from
Eqs. (37) and (38) that the derivative of the magnetic
potential, �, is given by

d� ¼ �c0dhðzÞ: (39)

Integrating this, we obtain

� ¼ �c0hðzÞ þ c1; (40)

where c1 is an integration constant. Here, note that � ¼
2Q=ð ffiffiffi

3
p

�Þ, and c c ¼ 0 (i.e., hðz ¼ 0Þ ¼ 0) hold at � ¼
0, z ¼ c. Therefore, the constant c1 is determined as

c1 ¼ 2Qffiffiffi
3

p
�
: (41)

Thus, we find that near the inner axis, the magnetic poten-
tial, �, must behave as

� ’ �c0hðzÞ þ 2Qffiffiffi
3

p
�
þOð�2Þ: (42)

Finally, let us consider the twist potentials !a on the
inner axis. From Eqs. (37) and (38), the derivatives of the
twist potentials on the inner axis are give by

d!a ¼ �2c0c adhðzÞ: (43)

Then, it follows that !a can be written in terms of the
integration constants

!� ¼ �2c20hðzÞ þ pc0hðzÞ2 þ c2;

!c ¼ �c0hðzÞ2 þ c3: (44)

We easily find that

!� ¼ � 2Ja
�

; c c ¼ 0 (45)

at � ¼ 0, z ¼ c. From continuity of the potentials, the
constants c2 and c3 can be determined as

c2 ¼ � 2J�
�

; c3 ¼ � 2Jc
�

: (46)

Therefore, we find the twist potentials behave as

!� ’ �2c20hðzÞ þ pc0hðzÞ2 �
2J�
�

þOð�2Þ; (47)

!c ’ �c0hðzÞ2 �
2Jc
�

þOð�2Þ (48)

near the inner axis.
From the above behavior of the scalar fields, we find that

the leading term of the boundary integral
R
�@z tr�dz is

proportional to ðc0½0� � c0½1�Þ��3. Therefore, if the integra-

tion constants, c0½0� and c0½1�, for two solutions with the

same mass, two angular momenta and electric charge do
not coincide with each other, the boundary integral does
not vanish on the inner axis. Since in the vacuum case, the
constant c0 vanishes, our analysis above immediately im-
plies that the boundary integral vanishes on the inner axis.
This coincides with the results obtained in [28]. However,
in the present case with Maxwell field being nonvanishing,
there seems to be no obvious way to relate the constant c0
to asymptotic charges and the rod data.

IV. SUMMARYAND DISCUSSION

In this paper, we have considered asymptotically flat,
stationary charged rotating black rings, i.e., holes having
S1 � S2 horizon cross-section topology, in the bosonic
sector of five-dimensional minimal supergravity, and
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have proven a uniqueness theorem that states that under the
assumptions of the existence of two commuting axial
isometries, such a black ring with nondegenerate horizon
is characterized by the rod data which corresponds to the
ratio of the S2 radius to the S1 radius, and the following five
charges: i.e., the mass, charge, two independent angular
momenta, and dipole charge. As mentioned before, so far
no such black ring solutions have been discovered. The
solution obtained by Elvang et al. [15] admit no limit to a
supersymmetric black ring solution because the solution
does not have enough independent parameters, i.e., the
dipole charge is not an independent parameter, except the
case in which the net charge Q vanishes. One can expect
that there should exist a nonsupersymmetric charged di-
pole ring solution with five independent parameters. If it is
the case, our theorem states that such a solution must be
uniquely determined by the five charges mentioned above
and the rod data. Note that such a most general charged
dipole ring solution may turn out to be generically unbal-
anced, having a naked conical singularity of the form of a
disk inside the ring, as in the first example of a static black
ring in vacuum [43]. Even in the case, our theorem would
still apply (with removing the requirement that the space-
time itself be regular on and outside the horizon in the
statement of the theorem), since the existence of such a
conical singularity does not affect the regularity of our
target space scalar fields in a neighborhood of the
boundary.

We have also considered a similar boundary value prob-
lem for asymptotically flat, black lens solutions—even

though no such a black lens solution has been found so
far. We have not been able to relate the integration constant
c0 in Eq. (36) to any of the other charges, except for the
vacuum case (Q ¼ q ¼ 0). This indicates that the constant
c0 arises as a result of interplay between the nonvanishing
gauge field and nontrivial topology of the horizon, just like
the dipole charge in the black ring case, and therefore may
possibly play a role of an independent parameter to
uniquely specify a black lens solution (if exists) in the
minimal supergravity. In this paper, however, we have
not been able to identify the physical interpretation of c0.
We also expect that a similar problem just mentioned
above may occur when considering uniqueness theorems
for multirings, black Saturn, or more complicated black
objects which couple to some nonvanishing gauge field and
which admit the rod structure that contains a rod similar to
@�in in the above black lens example. This issue deserves
further study.
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