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We continue a previous work on the comparison between the post-Newtonian (PN) approximation and
the gravitational self-force (SF) analysis of circular orbits in a Schwarzschild background. We show that
the numerical SF data contain physical information corresponding to extremely high PN approximations.
We find that knowing analytically determined appropriate PN parameters helps tremendously in allowing
the numerical data to be used to obtain higher order PN coefficients. Using standard PN theory we
compute analytically the leading 4PN and the next-to-leading 5PN logarithmic terms in the conservative
part of the dynamics of a compact binary system. The numerical perturbative SF results support well the
analytic PN calculations through first order in the mass ratio, and are used to accurately measure the 4PN
and 5PN nonlogarithmic coefficients in a particular gauge invariant observable. Furthermore we are able
to give estimates of higher order contributions up to the 7PN level. We also confirm with high precision
the value of the 3PN coefficient. This interplay between PN and SF efforts is important for the synthesis of
template waveforms of extreme mass ratio inspirals to be analyzed by the space-based gravitational wave
instrument LISA. Our work will also have an impact on efforts that combine numerical results in a
quantitative analytical framework so as to generate complete inspiral waveforms for the ground-based

detection of gravitational waves by instruments such as LIGO and Virgo.
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I. MOTIVATION AND SUMMARY

This paper is the follow up of previous work [1] (here-
after Paper I) where we demonstrated a very good agree-
ment between the analytical post-Newtonian (PN)
approximation and the numerical gravitational self-force
(SF) for circular orbits in the perturbed Schwarzschild
geometry. The first step had been taken by Detweiler [2]
who showed agreement at 2PN order using the existing PN
metric [3]." Motivated by this result we pushed the PN
calculation in Paper I up to the 3PN level. This is particu-
larly interesting because the 3PN approximation necessi-
tates an extensive use of dimensional regularization to treat
the divergent self-field of point particles. The successful
comparison reported in Paper I confirmed the soundness of
both the traditional PN expansion (see e.g. [4]) and the
perturbative SF analysis [5-9] in describing the dynamics
of compact binary systems—notably, regarding subtleties
associated with the self-field regularizations in use in both
approaches. This comparison dealt with the conservative
part of the dynamics, but previous comparisons between
the PN and the SF had checked dissipative effects [10—-17].
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In Paper I we also showed that the quality of the nu-
merical SF data is such that substantial physical informa-
tion remains far beyond 3PN order, i.e. is contained within
the numerically derived residuals obtained after subtract-
ing the known 3PN terms from the data (see Fig. 3 of Paper
I). In the present paper we explore further the higher-order
PN nature of the numerical data. We point out that knowing
analytically determined appropriate PN parameters helps
tremendously in allowing our numerical data to be used to
obtain higher order PN terms. In particular, we show that
prior analytic information from PN theory regarding the
presence of logarithmic terms in the PN expansion is
crucial for efficiently extracting from the SF data the
numerical values of higher order PN coefficients.

The occurrence of logarithmic terms in the PN expan-
sion has been investigated in many previous works [18—
25]. Notably Anderson et al. [21] found that the dominant
logarithm arises at the 4PN order, and Blanchet and
Damour [25] (see also [26]) showed that this logarithm is
associated with gravitational wave tails modifying the
usual 2.5PN radiation-reaction damping at the 1.5PN rela-
tive order. Furthermore the general structure of the PN
expansion is known [24]: it is of the type Y (v/c)* X
[In(v/c)]4, where k and g are positive integers, involving
only powers of logarithms; more exotic terms such as
[In(In(v/c))]? cannot arise. In the present paper we shall
determine the leading 4PN logarithm and the next-to-
leading 5PN logarithm in the conservative part of the
dynamics of a compact binary system.
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Consider two compact objects with masses m; and m,
(without spins) moving on exactly circular orbits. The
dissipative effects associated with gravitational wave emis-
sion are neglected, which is formalized by assuming the
existence of a helical Killing vector field K*(x), being null
on the light cylinder associated with the circular motion,
timelike inside the light cylinder (for instance at the parti-
cle’s location) and spacelike outside (including a neighbor-
hood of spatial infinity). Then we consider a particular
gauge invariant observable quantity [2] defined as the
constant of proportionality between the four-velocity of
one of the masses, say m;, and the helical Killing vector
evaluated at the location of that particle, i.e. K{ = K*(y;),

uf = ulTKf‘ (1.1)
The quantity u! represents the redshift of light rays emitted
from the particle and received on the helical symmetry axis
perpendicular to the orbital plane [2]; we shall sometimes
refer to it as the redshift observable. Adopting a coordinate
system in which the helical Killing vector field reads
K%d, = 9, + Q4,, where () denotes the orbital frequency
of the circular motion, we find that the redshift observable
reduces to the ¢ component u} = dt/dr; of the particle’s
four-velocity, namely,

(1.2)
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Here v§ = dy%/dt = (c,v}) is the ordinary coordinate
velocity used in PN calculations, and g,z(y;) denotes the
metric being evaluated at the particle’s location by means
of an appropriate self-field regularization, i.e. mode-sum
regularization in the SF approach, and dimensional regu-
larization in the PN context.

The point is that u] can be computed as a function of the
orbital frequency () in both the PN approach for any mass
ratio, and in the perturbative SF framework when the mass
m is much smaller than m,. Summarizing the analytical
3PN result of Paper I and present computation of the 4PN
and 5PN logarithmic terms in Secs. II, III, IV, and V, we
0b2tain the SF contribution to the redshift observable (1.2)
as

121 41
ugp = —y = 2y> = 5y° + (——3 + ﬁwz)y“
64 956
+ <a4 5 1ny>y5 + <a5 + 105 lny)y6 + 0(y°),

(1.3)

where y = (Gm,Q/c?)?? is a PN parameter associated
with the lighter mass m;, and a4 and @5 denote some

“Inspired by our earlier work [1], the easy calculation of the
4PN logarithm has already been given in [27].
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purely numerical coefficients left out in the PN calculation.
However, having obtained theoretical predictions for the
4PN and 5PN logarithmic terms, we are able to perform an
efficient fit to the numerical SF data and to accurately
measure the other nonlogarithmic 4PN and 5PN coeffi-
cients. We find a, = —114.34747(5) and as5=
—245.53(1) where the uncertainty in the last digit is in
parenthesis. Furthermore we can also measure the 6PN
coefficients ag and B¢ (such that ag + B¢ Iny is the factor
of y7), and give an estimate of the total contribution of the
7PN coefficient (including both logarithmic and nonlogar-
ithmic terms); see Table Vand Fig. 1 in Sec. VID. The 3PN
coefficient a3 = — 131 + 41 777 is also found to be in agree-
ment with the SF data with high precision.

The nonlogarithmic coefficients ay, as, - - - would be
extremely difficult to obtain with standard PN methods.
Their computation would require, in particular, having a
consistent self-field regularization scheme; for instance, it
is not guaranteed that dimensional regularization which
has been so successful at 3PN order could be applied
with equal success at much higher orders. Nevertheless
these coefficients are obtained here for the first time with
reasonable precision up to the impressive 7PN order. This
emphasizes the powerfulness of the perturbative SF ap-
proach and its ability to describe the strong field regime of
compact binary systems, which is inaccessible to the PN
method. Of course, the limitation of the SF approach is the
small mass-ratio limit; in this respect it is taken over by the
PN method.

The analytical and numerical results obtained in this
paper up to 7PN order could be used for the synthesis
and calibration of template waveforms of extreme mass
ratio inspirals to be observed by the space-based gravita-
tional wave detector LISA. They are also relevant to analy-
ses that combine numerical computations in a quantitative
analytical framework for the generation of inspiral wave-
forms for the ground-based LIGO and Virgo detectors.

The remainder of this paper is organized as follows: In
Sec. II we perform a detailed analysis of the occurrence of
logarithmic terms in the near-zone expansion of an isolated
source. This general discussion is followed in Sec. III by
the explicit computation of the leading order 4PN and next-
to-leading order SPN logarithmic terms in the near-zone
metric of an arbitrary post-Newtonian source, and then of a
compact binary system. We proceed in Sec. IV with the
computation of these terms in the acceleration of the
compact binary, as well as in the binary’s conserved en-
ergy, and consider the restriction to circular orbits. This
allows us to derive intermediate results necessary for the
computation of the 4PN and 5PN logarithmic terms in the
redshift observable (1.2) for circular orbits; this is detailed
in Sec. V. Finally, Sec. VI is devoted to a high-order PN fit
of our numerical data for the SF effect on the redshift
variable. The Appendix provides general formulas for the
computation of logarithmic terms in PN theory.
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II. GENERAL STRUCTURE OF LOGARITHMIC
TERMS

A. Near-zone expansion of the exterior metric

In this Section we study in a general way the PN orders
at which logarithmic terms occur in the near-zone expan-
sion of the metric of an isolated source. Our main tool will
be the multipolar-post-Minkowskian (MPM) analysis of
the vacuum field outside the compact support of the source
[24-26,28,29]. The starting point is the general solution of
the linearized vacuum Einstein field equations in harmonic
coordinates, which takes the form of a multipolar expan-
sion parametrized by mass-type M; and current-type S;
multipole moments [30]3

apaey

00 _ ),
h = ngo
h(l)i = %Z( )e{aL—ll}Mgi)l(”)]
SiahauL—l[ESbL—l(u)]},
by {aH[ M3 ]
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+ ¢+ laaL 2|: lll?(lSJ)bL 2(”):”

The multipole moments M; and S; are symmetric and
trace-free (STF) with respect to all their indices and depend
on the retarded time u = t — r/c in harmonic coordinates.
They describe a general isolated source and are uncon-
strained except that the mass monopole M and current
dipole S; are constant, and the mass dipole M, is varying
linearly with time.

Starting from /; we define a full nonlinear MPM series
for the ““gothic™ metric deviation h*#F = /=gg*F — n*P
(where g*# and g denote the inverse and determinant of the
usual covariant metric, respectively, and where 7% is the
Minkowski metric) as

(2.1a)

+— :
€+ 1 (2.10)

RPN

ij — _
hi =

(2.1¢)

+ 00
heb = GhyP,

n=1

2.2)

30ur notation is as follows: L = i 1 -..1p denotes a multi-index
composed of € multipolar spatial indices iy, ..., iy (ranging from
1to3); d, =9, ...9;, is the product of € partial derivatives
9, =09/dx"; x, =x .x,~, is the product of € spatial positions
X 31m11ar1y ng = n; ...n;, is the product of € unit vectors n; =
x;/r; the symmetrlc trace- free (STF) projection is indicated Wlth
a hat i.e. XL = STF[XL] nL = STF[}’IL] aL = STF[BL] or
sometimes using brackets surrounding the indices, i.e. xqy =
X7. In the case of summed-up (dummy) multi-indices L, we do
not write the ¢ summations from 1 to 3 over their indices. The
totally antisymmetric Levi-Civita symbol is denoted &;;;; sym-
metrization over indices is denoted (ij) =5 (ij + J15 time-
derivatives of the moments are indicated by superscrlpts (n).

i
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where the Newton constant G serves at labelling the suc-
cessive post-Minkowskian orders. Plugging this series into
the (vacuum) Einstein field equations in harmonic coordi-
nates we find at each order 9, h," = 0, together with

Ohy? = NyP, (2.3)
where U = n#”d,0, is the flat d’Alembertian operator,
and where N, denotes the nth nonlinear gravitational
source term depending on previous iterations
hy, -, h,—{. An explicit “algorithm” has been proposed
in [24] for solving (2.3) and the condition of harmonic
coordinates at any post-Minkowskian order n.

We are interested in the expansion of the solution of
(2.3) in the near zone (NZ), i.e. formally when » — 0 (but
still outside the compact supported source). The general
structure of that expansion is known [26]. For the source
term we have (the NZ expansion being indicated with an
overbar)

Nob Z n+Z" =P Fgfq(t)nL< ) [m(%)]q.

1 =i
q<n 2

(2.4)

We see that besides the normal powers of r we have also
powers of logarithms of r; p is an integer (p € Z) bounded
from below by some p, depending on E,, and ¢ is a
positive integer (¢ € N). We pose A = 27¢/Q, with Q) a
typical frequency scale in the source to be identified later
with the orbital frequency of the binary’s circular orbit. We
denote by E, ={M; , M, -, Caig, i, Sar,—1}asetof n
multipole moments, with the current moments endowed
with their natural Levi-Civita symbol. We pose €; = ¢; for
mass moments and €; = €; + 1 for current moments, so
that >, £; is the total number of indices carried by the
moments of the set E,.. On the other hand € is the number
of indices carried by the STF multipolar factor 71;. The
multipole functions in (2.4) admit the general structure [26]

Fi’fq(t) = [dul e [dunj(gzl...én(t, up, -, uy,)

S(an)7 (),

aig,+1i¢, 2 alL,

XM (uy) - e 2.5)
where the kernel JC has an index structure made only of
Kronecker symbols and is only a function of time varia-
bles: the current time ¢, the n integration arguments u;
(satisfying u; = 1), and the period P = A/c of the source.
Then with this convention we see that the powers of 1/c¢ in
(2.4) are set by dimensionality. A useful lemma [26] is the
fact that the multipolar order € is necessarily constrained
by the following two inequalities:

—i§i+4—ss€sig +s
i=1 i=1

Here s is the number of spatial indices among « and B, i.e.

(2.6)
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the “spin” given by s = 0, 1, 2 according to a8 = 00, 0i,
ij.

The lemma (2.6) will serve at controlling the PN order of
“branches” of logarithmic terms arising in the MPM it-
eration of the external field. Already we know [24] that the
powers of the logarithms are limited to ¢ = n — 2 in the
source term N,,. After integration of the source term N,, we
shall find the corresponding solution /,, which will admit
the same type of NZ expansion as its source. However the
maximal power of the logarithms in the solution will be
increased by one unit with respect to the source and is thus
limited by n — 1, i.e. ¢ = n — 1 in h,. For instance this
means that logarithms squared cannot arise before the
cubic nonlinear order n = 3.

To control the occurrence of logarithms in the near zone
it will be sufficient to integrate the source (2.4) by means of
the integral of the ‘““instantaneous” potentials defined by
formal PN iteration of the inverse Laplace operator A~!,
say 07" = A1+ ¢729?A72 + - - - This is because any
homogeneous solution to be added to that particular solu-
tion will have the structure of a free multipolar wave
(retarded or advanced) whose near-zone expansion cannot
contain any logarithms. However, when acting on a multi-
polar expanded source term, valid only in the exterior of
the matter source and becoming singular in the formal limit
r — 0, we must multiply the source term by a regulator
(r/A)B, where B is a complex number and A = cP is the
length scale associated with the orbital motion. After ap-
plying the instantaneous propagator we take the finite part
(FP) of the Laurent expansion when B — 0. Thus the
solution reads as

_ 00 5 \2k r\B _ _
&P = Fp,_ (—) A*’H[(—) Nf:/”:l + HYP,
B Ogo cat A
2.7

Later, in (2.16) below, we shall denote by J~! the particu-
lar “instantaneous’ regularized propagator appearing in
(2.7). The term H,, denotes the NZ expansion of an homo-
geneous solution of the d’ Alembert equation. In the gen-
eral case this solution will be a mixture of purely retarded
and advanced multipolar waves, say of the type
S 0 {R.(t—r/c)/r} and ¥ ,{A.(t + r/c)/r}, but the
point is that the NZ expansion of H, when r — 0 clearly
does not contain any logarithms. So in order to control the
logarithms we can ignore the homogeneous piece H,,.

As argued in [26] the use of the latter instantaneous
propagator, say J~!, corresponds to keeping only the con-
servative part of the dynamics, i.e. neglecting the dissipa-
tive part associated with gravitational radiation-reaction.
Below we shall implement the restriction to the conserva-
tive case by looking at circular orbits with helical Killing
symmetry. We expect that a solution admitting this sym-
metry should be given by (2.7) where the homogeneous
part H, is of the symmetric type ¥ 9, {[S.(t — r/c) +
S, (t + r/c))/r}. In this “symmetric” situation, where the
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radiation-reaction is neglected, the solution should depend
on the length scale A appearing in the first term of (2.7).
Indeed this length scale is introduced in the problem by our
assumption of having the helical Killing symmetry with
Killing vector K9, = 9, + 09, where () = 27c/A.

B. Near-zone versus far-zone logarithms

Inserting the general form of the source term (2.4) into
(2.7), and ignoring from now on the homogeneous term H,,
which does not contain logarithms, we obtain (dropping
the space-time indices a8 for clarity)

2k
oy 3 +Z°°F<L,,2,<t>
! E, ALt £ et

gq=n—2

<ot (o))

We can explicitly integrate the iterated Poisson integral and
find

s T~ G e
» <£>BﬁL rp+2+2ki|’

(2.8)

(2.9)
with B-dependent coefficients
d 1
‘”’P”‘(B):Q)(B+p+2+2i—€)(3+p+3+2i+€)'
(2.10)

We shall now control the occurrence of a pole « 1/B in
the latter expression which, after taking the finite part in
(2.8), will generate a logarithm Inr. Actually, since we have
to differentiate ¢ times with respect to B, the pole in
@y, x(B) (which is necessarily a simple pole) will yield
multiple poles o 1/B™, and we shall finally end up with
powers of logarithms (Inr)™, where here m =< ¢ + 1—
hence the increase by one of the powers of logarithms
from the source to the solution, as discussed previously.

Inspection of Eq. (2.10) readily shows that there are two
types of poles. First we have the poles for which p + 2 =
€ — 2i. These will be qualified as ‘“‘near-zone poles,” and
the structure of the solution for these poles reads

1 r\2j r\ T
——G; ., (O)% (=) |In[=)] ,
mzzn c3"+2?:|ﬁi+€ L]m( )XL(C> [ n(/\)]

m=n—1

(//;n)NZ pole —

@2.11)

where j =k —i=0 and the functions G, (t) have a
structure similar to (2.5). Note that (2.11) is perfectly
regular when r — O [at least when ¢ + j = 1] and will
therefore be valid (after matching) inside the matter source.
On the other hand the ““far-zone poles’ (FZ) for which p +
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2 = —{ — 1 — 2i have the structure

_ 1 ~ (1\/r\%
i =S K08,
( n)FZ pole e C3”+Z:l:]fi_€_l L]m( ) L(r><c)

m=n—1

<[]

These poles become singular when r — 0. We shall argue
later that the associated logarithms do not contribute to the
PN expansion of quantities we compute in this paper (like
the redshift observable or the conserved energy of a com-
pact binary system).

We can now easily control the PN order of these poles.
Taking into account all the powers of 1/c¢ and the fact that
j = 0, we obtain

_ 1
o= SO
NZ pol %- JETES SaN]

i=1 =i

(2.12)

(2.13)

Next, the inequality in the left of the lemma (2.6) provides
a uniform bound of the PN order of each of the terms in
(2.13), leading to

_ 1
(hn)NZ pole — @<W)

This means that the NZ poles in the nth nonlinear metric
are produced at least at the %PN level; note that the
power of 1/c in the ij components of the perturbation 7,,,
such that s = 2, gives immediately the PN order. Similarly
we find, using now the inequality on the right of (2.6), that
the FZ poles are produced at the level

_ 1
(hn)FZpole = (9<m)

corresponding to (at least) the %PN order. Notice that
the far-zone poles come earlier than the near-zone ones in
the PN iteration.

We use these general results to control the occurrence of
(powers of) logarithms in the PN expansion. First be care-
ful that our findings do not mean that all the logarithms at
some nth nonlinear order will have the PN orders (2.14)
and (2.15); it states that whenever new logarithms appear
they are necessarily produced at least at these PN levels.
However, once a “new’ logarithm has been produced in
h,,, it will contribute in the source term N, of the next
iteration, and therefore will also appear in the correspond-
ing solution /1, where it needs not to be associated with a
pole occurring at that order. In fact we expect that the vast
majority of logarithms only come from the iteration of
original logarithms seeded by poles. Such “‘iterated” log-
arithms will escape the rules (2.14) and (2.15).

Given a logarithm at order n coming from an NZ pole
and being thus at least of order % PN, we can check that
it will generate iterated logarithms at any subsequent non-
linear order n + p, with p = 1, and that those will be at
least of order @ PN. We can therefore always bound the

(2.14)

(2.15)
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PN order of the complete family of iterated NZ logarithms
by the order %PN of the “seed” logarithm.* The same
reasoning applies for the PN orders of the iterated FZ
logarithms which are bounded from below by the
M=3PN order of the seed.

When n = 2 we find from (2.14) that there is a family of
NZ logarithms starting at the 4PN order. We know that the
4PN logarithmic term is associated with gravitational wave
tails; it has been computed for general matter sources in
[25]. Conjointly with this 4PN logarithm there will be also
logarithms at 5PN and higher orders, all of them at qua-
dratic order n = 2, and all these quadratic logarithms will
have to be iterated at the next cubic order n = 3, and so on.
As we discussed this defines a complete family of NZ
logarithms, and this family will be sufficient to control
all the NZ logarithms at 4PN and 5PN orders. Indeed, we
expect that at cubic order n =3 a new family of NZ
logarithms will appear, but according to the result (2.14)
this new family will be of order 5.5PN at least. In particular
this reasoning shows that the dominant NZ logarithm
squared [In(r/A)]? is at least 5.5PN order. Such 5.5PN
logarithm would be time odd in a time reversal and belongs
to the dissipative radiation-reaction part of the dynamics so
we shall ignore it. Similarly the next family coming at the
quartic approximation n = 4 will be at least 7PN—thus the
dominant [In(r/A)]? is expected to appear at least at 7PN
order.

We shall now argue that only the family of NZ loga-
rithms starting at the 4PN order needs to be considered for
the present computation, because quite generally the FZ
logarithms cannot contribute to the conserved part of the
dynamics of a compact binary system.

C. Argument that far-zone logarithms give zero
contribution

The FZ logarithms are generated by seeds whose PN
order is controlled by the estimate (2.15). First one can
check that due to the particular structure of the quadratic
metric n = 2 there is no FZ pole at the quadratic order
[25]. The FZ logarithms come only at the cubic order n =
3 and from the estimate (2.15) we see that they arise
dominantly at 3PN order, i.e. earlier than the NZ loga-
rithms at 4PN order. The 3PN far-zone logarithms have
been investigated in [25] and also in previous work [21].
However we do not need to consider these and other FZ

“When p = 1 we get the same PN order as the seed logarithm
because according to (2.14) the ij component of the metric
perturbation /" is of order 1/c*2, and hence generates at
the next iteration a term of order 1/c3** in the 00 component of
the metric perturbation hzfl (via the nonlinear source term
hilo;0 ,-h(l)o), which is still of %PN order. We shall use later
the trick that by gauging away the ij component of the metric
perturbation we can greatly simplify the computation of the
subsequent iteration.
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logarithms in the present calculation as the following argu-
ment shows.

The NZ and FZ logarithms were investigated using the
operator of the “instantaneous” potentials defined by [see
Eq. 2.7)]

T-[N,] = FPs_y g(%)ZkAkl[G)BNn]. (2.16)

This propagator depends on the length scale A. Now our
basic assumption is that in order to treat the conservative
part of the dynamics, admitting the helical Killing vector
K*d, = 9, + 4, in the two-body case, one should inte-
grate the field equations with the propagator (2.16) in
which we set A = 277¢/). In this way the conservative
dynamics will fundamentally depend on the scale A com-
ing from the Killing symmetry and explicitly introduced
through the propagator (2.16).

By contrast, in a physical problem where we look for the
complete dynamics including both conservative and dis-
sipative (radiation-reaction) effects, there is no preferred
scale such as A—indeed, nothing suggests that the dynam-
ics should depend on some predefined scale A. In this case
we integrate the field equations using the standard retarded
integral, i.e.

B -1 &Bx' (|x|\B
O = oo [ ()

X N,x',t—|x —x'|/c). (2.17)
The nonlinear source term N,, is in unexpanded form since
we integrate in all the exterior of the source and not only in
the NZ as in (2.16). But, as in (2.16), we have introduced a
regulator (|x’|/A)? and a finite part to cure the divergencies
of the multipole expansion at the origin of the coordinates.
Because of this regulator, the retarded integral (2.17) de-
pends on the scale A which must therefore be cancelled by
other terms in the physical metric. What happens is that the
dependence on A coming from integrating the nonlineari-
ties using (2.17) is cancelled by a related dependence on A
of the multipole moments of the source which parametrize
the linear (retarded) approximation. The source multipole
moments can be written as integrals over the pseudo stress-
energy tensor of the matter and gravitational fields [28].
Because of the noncompactness of the gravitational field
the integral extends up to infinity and involves a similar
regulator (|x’|/A)2 dealing with the boundary of the inte-
gral at infinity. The final independence of the physical
metric on A can be checked by formally differentiating
the general expression of the metric found in [28]. The
cancellation of A has been explicitly verified up to the 3PN
order in the case of compact binaries [31].

What is the difference between the physical situation
and the ‘“‘unphysical” one in which we would use the
propagator (2.16) ? To compare the two situations we ex-
pand the retarded integral (2.17) in the near-zone.
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Recalling that the overbar refers to the NZ expansion, we
obtain [26,29]
Ox'[N,] = I"'[N,]

(=) & [Tp(t = r/c) = Tp(t + r/c)
+z€' aL{L Cer c},

=0
(2.18)

showing that the two solutions differ by an homogeneous
solution of the wave equation which is of the antisymmet-
ric type (i.e. retarded minus advanced) and is therefore
regular in the source. We know that the multipolar func-
tions T (u) parametrizing this solution are associated with
nonlinear tails and their expressions can be found in
[26,29]. In the physical case, the homogeneous solution in
(2.18) will remove the A dependence located in the NZ
logarithms appearing from the first term, and which have
the symbolic NZ structure ~%; In(r/A). On the other hand
the A dependence in the FZ logarithms ~d, (1/r) In(r/A),
is removed by the retarded homogeneous solution we start
with at the linear approximation.

Now in the unphysical situation we shall want to sub-
tract the antisymmetric solution in (2.18) in order to use the
instantaneous propagator J~!. Therefore the scale A will
no longer be cancelled from the near-zone logarithms
~%; In(r/X) which will thus remain as they are. Suppose
that they are evaluated at the location of a body in a two-
body system, then the NZ Ilogarithms become
~94In(ly,|/A) where y, is the position of the body, and
hence ~$%In(r|5/A) in the frame of the center of mass,
where ry, is the two-body’s separation. Using Kepler’s law
the logarithm becomes In(r;,/A) =11Iny where y =
Gm/(ry,c?) is a standard PN parameter, showing that the
NZ logarithms do contribute to the final result.

On the contrary the FZ logarithms ~d, (1/r)In(r/A)
will not. Indeed the scale A therein will still be cancelled
out by the linear retarded solution.” This means that in the
application to binary systems the final FZ logarithms are
scaled not by A but rather by the size r, of the orbit, and
become some ~d; (1/r) In(r/ry,). When considered at the
location of one of the bodies we get ~d,(1/]y;]) X
In(ly,|/r,) which clearly does not contribute in the
center-of-mass frame. The latter reasoning is rather formal
because the multipole expansion is valid only outside the
source and it does not a priori make sense to apply it “at
the location of one particle.” However the reasoning may
be better justified from a matching argument suggesting
that the multipole expansion is valid “everywhere,” in a
restricted sense of formal asymptotic series.

>The argument could be extended to an unphysical solution
which would be truly symmetric in time, i.e. which would start
with a symmetric (retarded plus advanced) linear approximation
and integrate the nonlinearities by means of the propagator 1.

084033-6



HIGH-ORDER POST-NEWTONIAN FIT OF THE ...

Our conclusion is that we do not need to consider the FZ
logarithms. From the previous investigation we see that it
is sufficient to consider the family of iterated NZ loga-
rithms generated at the quadratic order n = 2, and to
compute the 4PN and 5PN logarithms within this family.
We devote the next Section to this task.

III. THE 4PN AND 5PN NEAR-ZONE
LOGARITHMS

A. External near-zone post-Newtonian metric

Following [25,26] we know that the dominant loga-
rithms in the near-zone metric are coming from “tails”
generated by quadratic coupling between the constant total
mass M of the system [i.e. the Arnowitt-Deser-Misner
mass] and the time varying multipole moments M; or
S;. Let us define Z?B (n, u) as being the coefficient of the
leading 1/r piece in the nonstationary or “‘dynamical” part
(h‘f‘ﬁ )ayn of the linearized metric given by (2.1), i.e. such
that (hf"g)dyn = r 1z + O(r~2). This quantity is a func-
tional of the time varying moments (i.e. having € = 2)
evaluated at retarded time u = r — r/c, and explicitly
reads

Z(l)o = _42 €+2€'M(€)(u) (.1a)
(=2
i np—i ¢
' = _42[ (izg,M() 1 (u)
(=2
- ¢ SO (u) 3.1b
msmb"u—l bL—1\1) | (.1b)

ij np—»
o _452[ “2evM(1L 2 (1)

— Cw—i_l)!naLzsah(iSj)bL_z(u)]. (310)

All the logarithms in the quadratic metric hgﬁ will be
generated from the leading 1/r* piece in the quadratic
source, defined by ND‘B =r 205 B(m, u) + O(r3). The
coefficient is computed from the quantity (3.1) as “B =
n @ 74P + K 5 where the first term will generate the
talls and the second term is associated with the stress-
energy of gravitational waves, with k% = (1,n) the
Minkowskian  outgoing null vector, and o =
%(I)Z{LV(I)ZIMV - %(l)zlliﬂ(l)zfu‘

Now, as shown in the

Appendix, the logarithms produced by the second term o«
k%kP are pure gauge, so only the first term dealing with
tails is responsible for the near-zone logarithms. Hence the
part of the NZ expansion of the quadratic metric /2, con-
taining those logarithms is given by

_ <0\ 4M
o =rm S o ()R]
2 B OkZO cot A 2t (n, u)

3.2)
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We substitute the explicit expression (3.1) into (3.2), ex-
pand the retardation u = ¢ — r/c in the source term when
r — 0, and integrate using Eqgs. (2.9) and (2.10). Then we
look for the poles « 1/B and after applying the finite part
get the logarithms. Some general formulas for obtaining
the logarithms directly from the unexpanded source are
relegated to the Appendix. We readily recover that the
dominant logarithms arise at 4PN order. We limit our
computation to the leading order 4PN and next-to-leading
order 5PN logarithms, and find

— 8M 6 1 r2 )
e o]
1 xabc
TR Mf,jc}l ( ) ( ) (3.3)
i _8M[ e L7 @] L x?
Bh(z) _3?{3‘ [Mai +1_0_2Mai] _5_2Mabi
2 X 1
+15 iab QS(G)} () ( ) (3.3b)
~ij SM (4) 1 I” (6) 1 x4 (6)
Shi = — {M teaMy — g M
4 x4
Ty e a,,(,sj;l} ( ) (o( ) (3.3¢)

The mass-type quadrupole moment M;;, mass octupole
moment M;j, and current quadrupole S;; in Egs. (3.3)
are functions of coordinate time . The indicated PN re-
mainders O(c~?) refer only to the logarithmic terms.

We now want to iterate the expressions (3.3) at higher
nonlinear order in order to get the complete family of
logarithms generated by that “seed.” To do that it is very
convenient to perform first a change of gauge. Starting
from (3.3), which is defined in some harmonic gauge, we
pose ks = h5P + 20l — naBa & with gauge vec-
tor

g = L o e - 25 )

X 1n(§), (3.42)
B fowent 2 Do) 227w

-2 %Mﬁi tyewsn(y) Gan)

This gauge transformation will have the effect of moving
many 4PN logarithmic terms into the 00 component of the
(ordinary covariant) metric. As a result the implementation
of the nonlinear iteration in that new gauge will be espe-
cially simple. Since our aim is to compute the gauge
invariant quantity (1.2) we can work in any convenient
gauge. Our chosen gauge is very similar to the general-
ization of the Burke-Thorne gauge introduced in [32] to
deal with higher order (2.5PN and 3.5PN) radiation-

084033-7



BLANCHET, DETWEILER, LE TIEC, AND WHITING

reaction effects. We obtain

2
16 ubM(G) _ i r_xahM(s)

? X ab 35 C2 ab

16 x“bc 8) r 1
+ @ C2 Mabc}ln(x) + @(F) (353.)
i M[16 ., 7 64 e o6
Bk(z) - T{ix belb) - Esiabx SE)C)}

xin(5) + @( )
okl = (9(%)

In this gauge the iteration at cubic nonlinear order is very
simple. To control all the 5PN logarithmic terms at cubic
order n = 3 we need only to solve the Poisson equation
A[SKL + 8ki] = —20,h°0 8k + O(c™'*), where h{°
denotes the NZ expansion of the linearized metric (2.1a),
and we can use for 8k3° the leading 4PN approximation
given by the first term in (3.5a). Posing A% = —4U/c? +
O(c™*), the latter equation is integrated as®

M
SRY + 8k = g {—

(3.5b)

(3.5¢)

- =i 64M _ a 6 r 1
SR + 6k = — =33 Ux *MY) ln(X) + (9(?)’ (3.6)

with the explicit expression

-3 )eMLaL( )

(3.7)

=t
We readily check that the quartic and higher nonlinear
iterations (n = 4) are not needed for controlling the 4PN
and 5PN logarithmic terms (cf. the discussion at the end of
Sec. IIB).

B. Internal near-zone post-Newtonian metric

The metric we computed so far is in the form of a
multipolar expansion valid in the exterior of an isolated
source. We now want to deduce from it the metric inside
the matter source. First of all, since the expressions (3.5)
are regular at the origin r — 0, we find using a matching
argument that they are necessarily also valid inside the
matter source. On the other hand it is clear that the ex-
pression (3.6) will also be valid inside the source provided
that we match the multipole expansion U given by (3.7)
with the actual Newtonian potential of the source. From the

SActually the integration yields in addition to the near-zone
5PN logarithm (3.6) the extra far-zone 5PN logarithmic contri-
bution

_ 64M (—)* 1

00 ii —_ _ (6)
(83" + 6k)pz = ——5- M, In ( );)(26"'5)6' ( )MLab
We argued on general grounds in Sec. II C that FZ logarithms do
not have to be considered for the present computation, so we
drop this term out in the following.
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known Newtonian limit of the multipole moments M; =
[ dxzLp(x, 1) + O(c™?), where p is the Newtonian source
density in the source, we get GU = U + O(c~?) where

v Gf|

From the latter arguments we therefore obtain the piece of
the inner metric of any isolated source (coming back to the
usual covariant metric g,g) that depends logarithmically
on the distance r to the source’s center at 4PN and 5PN
orders as

1P, (3.8)

G*M[8( 2U\, © 4 ab g (®)
8/“””":?[5(1 e ) "My 352 M
8 ibens® r 1
— 189c2x b Mabc]ln(x) + (O(F), (3.9a)
G’M 16 i % 64 aco® |7
Sl = 7 ¥ = g5 e Si ()
1
+ (9<?), (3.9b)
C
G2*MTS8 b
5/gij = W -5 bMab6 ] ()\) + @( > (390)

where U is the Newtonian potential (3.8) valid all over the
source.

However we now discuss other pieces of the inner metric
whose near-zone expansion does not explicitly depend on
the logarithms of » but which involve new inner potentials
integrating over a logarithmically modified source density.
The first of these pieces comes from the fact that the 4PN
modification of the metric given by the first term in (3.9a)
implies a modification of the stress-energy tensor of the
matter fluid at the SPN order; in particular, the fluid’s
source density, say o = T%/c?, gets modified by the

amount
S0 4GM M
do _ MO In ( )+ co( ) (3.10)
p 5 o a

On the other hand the 4PN term of the metric will induce a
4PN change in the acceleration of the fluid motion given by

dal = 8G “M(6)1<)+@< )
5 8

When computing the inner metric at the 1PN order we have
to take into account the retardation due to the propagation
of gravity, using say (17! = A™1 + ¢ 292A72 4+ O(c ™).
The time derivatives at 1PN order will yield an acceleration
and the modification of the acceleration (3.11) will give a
contribution at SPN order. We find that the sum of the two
effects gives the following extra contribution to the inner
metric at SPN order:

3.11)
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8GM (6)[ dx I Ib ()
1
5C | ,lpx n

+0( i)

This 5PN contribution is present only in the 00 component
of the metric.” The complete logarithmic contributions we
shall consider in this paper are thus given by

8"g00 =

(3.12)

88ap = 0'8ap + 8"8up. (3.13)

These contributions exhaust the possibilities of having 4PN
and 5PN near-zone logarithmic terms in the gauge invari-
ant observable quantity (1.2).

C. Application to compact binary systems

Let us now apply the previous results to the specific
problem of a system of two point particles. The Newtonian
mass density in that case is p = Y ,m,6(x —y,) where §
is the Dirac delta function. The trajectory of the a th
particle (a = 1, 2) is denoted y,(#); the ordinary coordinate
velocity will be v, = dy,/dt. The two masses m, have
sum m = m; + m,, reduced mass w = m;m,/m, and
symmetric mass ratio » = u/m. The Newtonian potential
of the system reduces to

Gm1
_l’_
8 )

G
U= "

(3.14)

where r, = |x —y,| is the distance from particle a. The
regularized value of that potential at the location of particle
1 is simply

sz

2

U, = (3.15)

where r, = |y; — y,|. Similarly we evaluate the logarith-
mic contributions at the location of particle 1. Concerning
the first piece (3.9) we find (no longer mentioning the PN
remainder)

7Interestingly, it was found in Ref. [33] (following [34]) that a
similar-looking contribution must also be taken into account
when computing the higher order (3.5PN) radiation-reaction
force for compact binary systems from a near-zone radiation-
reaction formalism defined in [32]. Actually the 2.5PN + 3.5PN
near-zone radiation-reaction formalism [32] [see, in particular,
Eqgs. (2.16) there] is quite similar to the present 4PN + 5PN near-
zone conservative logarithm formalism.
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8'g00(y1) = G;_ljy :2(1 - %) ?bMEfb) + 354 Zy%y“bM(ai)
Call)
8'g0i(y1) = Gcz_l]lVI :;—?ﬁﬁ“bej;,) %smby“CS(6):|
X ln(ly—/\ll), (3.16b)
8'gii(y) = Gj# 2 yi’beb)b‘,»j] ln<¥), (3.16¢)

which involves the logarithm In(r/A) evaluated on the
particle 1, i.e. In(ly;|/A). As for the second piece (3.12)
we compute the Poisson integral using p =¥ m, 8(x —
y,) and perform a regularization on the particle 1 to obtain

G*M Iy, |
8"go0(y1) = — 2 —15- UpyiyiM S In (yj) (3.17)

8

5 o2
which is proportional to the logarithm In(|y,|/A) associ-
ated with the other particle. These results are valid in a
general frame. However we shall later specify the origin of
the coordinate system to be the center of mass of the binary
system. In that case we have In(|ly,|/A) = In(r;5/A) +
In(u/m,) + O(c™?), where the PN remainder does not
involve any logarithmic term, and the logarithm of the
mass ratio is a constant, and is therefore clearly irrelevant
to our search of logarithmic terms; so In(r;,/A) is in fact
the only relevant logarithm and we shall now systemati-
cally replace all In(|y,|/A)’s by In(r,/A). Finally we end
up with the following contributions of the 4PN and 5PN
logarithms to the near-zone metric evaluated at the location
of particle 1 in our chosen gauge:

8go0(y1) = %[2(1 - %)Y?bMSfb) 582 Uiyty bM(6)
+ 35—2)’1)’1 gb) - %9(:2 lebCMt(ng)c:I
X In (’)1\2), (3.182)
8g0i(y1) = GCZ_IJIW -;ﬂangb) Ziamby?cSﬁf)]
X 1n<2), (3.18b)
A
52,;(y1) = GCQ—O zyc;bMﬁf,jaU] ln<%). (3.18¢)

Note that this result is complete but not fully explicit
because we have still to replace all the multipole moments
M; and S; by their expressions valid for point mass binary
systems. In particular the quadrupole mass moment M;;
should be given with 1PN relative precision as (1 < 2
means adding the same terms for particle 2)
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1/3 Gmy\ .
M. = 14+ —(= 2 _ ]Al./+
Y ml{[ 62(2Ul rlz)yl
20 d ., i
_2162 dt(vll{ylj )}_’_1‘_’2’

1 & Qi
m W()’%Yl'l)
(3.19)

and its time derivatives should consistently use the 1PN
equations of motion. Besides M;; we also need the constant
mass monopole or total mass M at 1PN order, namely,

1 (1
M= ml[l +—2<—v% - Gm2>] +1e2
c-\2 2}"12

(3.20)

All the other moments are only required at the Newtonian
accuracy, and read

M, =m$t+1o2 (3.21a)

S, = mygicgk™Nayb 4 1 2 (321b)

However in applications it is often better to postpone the

(messy) replacements of the multipole moments by their
|

32

5

68 iabps® 4 M o ® A e 32
_ ia + aprg\s) _ T ja ) _ 7=
105 1 Mab losylylMla 63y1 Mlah 5

. G*MT8 1 (8 28
day = — [—y“M@+C—<§v?yi’M§2)——U1y?M§?+gU1y‘é'Mf-2)+

45 45 45

where the multipole moments are given by (3.19), (3.20),
and (3.21).

An important check of this result is that the acceleration
should be purely conservative, by which we mean that
there should exist some corresponding contributions at
the 4PN and 5PN orders in the conserved energy, angular
momentum, linear momentum and center-of-mass position
of the binary system. Let us see how this works in the case
of the energy. The modification at 4PN and 5PN of the
energy, say SE, should be such that d6E/dt exactly bal-
ances the replacement of accelerations by (4.1) in the time
derivative of the known expression of the energy up to 1PN
order (say Epyn). This requirement yields

dSE L 13, Gmy[ 1 ,-
— = Ty Ul +? Evlvl + e _E(l’llzvz)nlz

vé])]5a’i +1e2

Plugging (4.1) into (4.2) and using the expressions of the
multipole moments (3.19), (3.20), and (3.21), we indeed
find that the right-hand side of (4.2) takes the form of a total
time derivative, and we are thus able to infer the contribu-
tion to the energy,

4.2)

+
(%)
S
|
NSNREN]

A 12 . 32
6 ;
'Ullay[fMib) - 7U1y(11hM((17b) -

128 64 64 64
+ _Siabvllly?S(bﬁc) + _Siubytllvfsgfc) - _8ahcyt11vfs§2) + _8iaby(]wS(b7c)>:| 10(2),
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explicit values (3.19), (3.20), and (3.21) and to use more
compact expressions such as (3.18).

IV. LOGARITHMS IN THE EQUATIONS OF
MOTION AND ENERGY

A. General orbits

With the 4PN and 5PN logarithmic contributions in the
near-zone metric (3.18) we now derive the corresponding
terms in the acceleration of point particle binary systems.
The computation is straightforward from the geodesic
equation. A subtle point is that we must take into account
the coupling between the 1PN terms in the metric and the
4PN logarithm to produce new 5PN logarithms. On the
other hand one must be careful about the replacement of
accelerations in 1PN terms by the 4PN acceleration to also
produce 5PN logarithms. The final result, valid for generic
(noncircular) orbits in an arbitrary frame, is

16 s 6 4 P 6
3 U1”122y112)’?bM(ab) + 5 U1r122y112y‘11y3Mz(1b)

. 32
Vvt M) + E(ynvl)y‘foZ)

5 15

4.1)

45 A

40 L4 @@ 2 (3,0
oE = [__MabMab +_MabMab __MabMab

8 5 5 5

Lid 0@ ag,0 _ 4 506 ,0
+ ?(@MabcMabc - @MabcMabc

4 2 64
_I__M(5) M(3) _ M(4) M(4) + S(G)Sab

189 abc™" abc 189 abc'™ abe 45 ab
64 64 32 12
- 22s@st) + Tessy - 2505 + 2o,

45 ab"™ ab 45 ab® ab 45 ab“ab
2 2 16
(6) £7(2) (7) (1) (6) (1)
T3S MOH — M) = S MK

16 (7) ry
‘I’ﬁMabKab)]ln(T). (43)
In addition to the standard multipole moments (3.19),
(3.20), and (3.21), we have also introduced the supplemen-
tary moments (needed only at Newtonian accuracy)

HL == mly%j}% + 1 > 2, (443)
K, = mlv’iﬁ’f + 12, (4.4b)
0, = mviHt +1 2. (4.4c)

By the same method we have also computed the modifica-
tion of another integral of the motion, namely, the center-
of-mass position G'. The result is
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. 12GM G2M (16 8 G2M ([ 68 20 16
36! = [ 25" + (L mwa) S, )+ (T MM — S MM, + S,
4 3 3 4 2 4 8 1 5 4 6 64 5 32 1 4
~ G+ O, ~ SO, + b~ et 5+ MY
32 4) o1 64 35 32 4 4 6 ri»
teE eiapMi S\ — Eemhm ) S0 — 155 S@ — > HaMga))]ln(T), (4.5)

and will be useful when restricting our general result for
the redshift observable—valid for a generic orbit in an
arbitrary frame—to circular orbits described in the
center-of-mass frame.

B. Circular orbits

Let us now focus our attention on the case of circular
orbits. We look for the 4PN and 5PN logarithms 8a/, in the
relative acceleration a, = a! — a), of the particles for
circular orbits. The first contribution to da!, will evidently
come from the difference §aj — 6aj. We insert the center-
of-mass relations y’, = Yi[y2, V2], expressing the individ-
ual positions in terms of the relative posmon yi, =y =¥
and relative velocity vi, = vi — dylz/dt At 1PN
order and for circular orbits these _expressions simply
reduce to the Newtonian relations yi = X,yi, and y) =

—X,y!,, where X, = m,/m. All the multipole moments
and their time derivatives are replaced by their expressions
for circular orbits given in terms of yj, and v}, (and
masses). However there is also another contribution which
comes from the known relative acceleration at 1PN order
(say a'py) when reduced to circular orbits. As usual we
perform an iterative computation: knowing first Sai, at
4PN order we use the result to find the next order 5PN
correction. In this computation we use the fact that the
center-of-mass relations y,, = Y.[y,, v|,] are not modified
by logarithmic terms before the SPN order. This is checked
using the modification of the integral of the center-of-mass
8G' given in (4.5) [see also the result (5.1) for circular
orbits below, which is clearly a SPN effect]. Finally the

modification of the acceleration is found to be of the form
5“32 = —6Q2y’i2, 4.6)

where the total change in the orbital frequency (squared)
for circular orbits due to 4PN and 5PN logarithms reads

Gm[128 [ 8572
e ey (R PP YIny. (47
ﬁz[ 5 ( 35 ”)7]”7 ny. @4.7)

The orbital separation is r;, = |y;,|, and we have intro-
duced the convenient post-Newtonian parameter (where
m=m; + my)

80?

Gm
v = 5 4.8)
ripc

From (4.7) we have the relation between the orbital fre-
quency and the parameter <. Inverting this relation we

obtain y as a function of the orbital frequency or, rather,
of the parameter x defined by

Gm{\2/3
x = ( ” ) . 4.9)
c

We find that the 4PN and 5PN logarithms in vy as a function

of x are
128 (508 944
==tz t -7 3 Inx. .
oy [ G (105 15 V)x]vx Inx (4.10)

We have taken into account in (4.7) and (4.10) the
important fact that the length scale A = cP is related to
the period P = 27/(), and hence contributes to the loga-
rithm. As ah;ady mentioned, using Kepler’s third law we

o — VY

have “2 =¥ so that In(") = j Iny plus an irrelevant
constant. Post-Newtonian corrections to Kepler’s law do
not change the argument, which applies with x as well as
with 7. Recall that A = 277¢/{) was introduced in the
problem when we assumed the existence of the helical
Killing vector K“d, = 9, + {20, to describe exactly cir-
cular orbits. Then this scale entered explicitly into the
propagator we used to integrate the field [see (2.7) or
(3.2)], and it is thus no surprise that it contributes to the
final result. Of course we could have chosen any other scale
proportional to A without changing the result which con-
cerns only the logarithmic dependence.

To be clearer about formulas such as (4.7) and (4.10) we
would need to give the more complete formulas including
also the known contributions up to 3PN order. However we
must be careful since these formulas depend on the gauge.
Thus §Q? and 87 are to be added to the 3PN expressions
given by Eqgs. (188) and (191) in [4] when working in
Hadamard regularization gauge, or by Eqgs. (B6) and (B7)
in Paper I when working in dimensional regularization
gauge. Also the 4PN and 5PN terms computed in (4.7) and
(4.10) themselves depend on the choice of gauge at the
4PN and 5PN orders (see Sec. III).

It is much better to turn to gauge invariant quantities.
The most obvious one is the conserved energy E for
circular orbits as a function of the orbital frequency ().
As for the previous computation of the acceleration we
have two contributions, one coming directly from the
general-orbit modification of the energy given by (4.3),
and one coming from the circular-orbit reduction of the
IPN energy Epy. We first express the results entirely in
terms of the parameter vy using (4.7) and then replace all the
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v’s by functions of the x’s using (4.10). The result for the
4PN and 5PN logarithms is (where wu = mm,/m)

1 448 4988 1904
= —_ uclyl —/— 4+ [ - = — 4
OE 2,u,c x[ 15 ( 35 15 V)X]I/X Inx.

4.11)

Beware that 6 E here has not the same meaning as in (4.3)
because of the additional terms coming from the circular-
orbit reduction of the 1PN energy Epy.

Since the energy as a function of x is a gauge invariant
relation, let us also provide the complete result including
all the known terms up to 3PN order, and also the 4PN and
5PN terms in the test-mass limit for one of the particles
known from the exact result lim,_E/(uc?) = (1 — 2x) X
(1 —3x)""/2 = 1. We have

1 3 v 27 19 2
=——pcl+ |-+ -+ ]4?
E 2,LLC x{l ( 1 IZ)X < g T3 v 24)x

( 675 [34445 205 2] 155 ,
+(——+ -

64 576 96 T 96 g
35 0\ 4. ([ 3969 448 )

- + (222 +
s18a” )x ( 58 vey(v) G Vlﬂx)x

45927 4988 1904 5
+(——+ ve5(v)+[— — V]Vlnx)x }

512 35 15

(4.12)

Here e,(v) and es(v) denote some unknown 4PN and 5PN
coefficients which are some polynomials in the symmetric
mass ratio »—this can be proved from the fact that the
energy function for general orbits (i.e. before restriction to
circular orbits) must be a polynomial in the two separate
masses m; and m,. This 5PN accurate formula could be
used to compute the location of the innermost circular orbit
in the comparable mass regime, which also coincides with
the innermost stable circular orbit in the extreme mass ratio
regime. The shift of the Schwarzschild innermost stable
circular orbit due to the conservative part of the self-force
has been recently computed [35]. A high-order PN com-
parison with this result would be interesting, but requires at
least the evaluation of the coefficients e4(») and es(v) in
the extreme mass ratio regime, i.e. the knowledge of e4(0)
and e5(0).

V. THE GAUGE INVARIANT REDSHIFT
OBSERVABLE

We are now ready to implement our computation of the
gauge invariant redshift observable (1.2). We replace the
4PN and 5PN logarithmic terms in the metric coefficients
evaluated on the particle (3.18) into (1.2). We are careful at
including also the metric up to 1PN order because of the
coupling between 1PN and 4PN orders which produce SPN
terms. The result is valid for any orbit in a general frame.
Next we go to the frame of the center-of-mass defined by
G' = 0, where G is the conserved integral of the center of
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mass. We have found the 4PN and 5PN logarithms in G in
Eq. (4.5), and from this we compute the displacement of
the center of mass for circular orbits. As already used in
Sec. IV we find that the first logarithmic terms in the
center-of-mass integral for circular orbits arise only at
5PN order. We obtain

. 324 .
5G' = —7mV2A75 Inyyi,,

(5.1)
where A = (my — m;)/m = /1 — 4v is the relative mass
difference. The correction to the individual center-of-mass
positions will thus be given by 8y, = —8G'/m fora = 1,
2 (see e.g. Appendix B in Paper I), and similarly v/, =
—8G'/m for the individual center-of-mass velocities. We
already notice that because of the factor »? in (5.1) this
correction will not influence the SF limit. Next we reduce
the latter expression to circular orbits, replacing all orbital
frequencies by their expressions in terms of 7y, and then
replacing all y’s by their expressions in terms of x. The
formulas (4.7) and (4.10) for the 4PN and 5PN logarithms
play of course the crucial role. Finally we end up with the
full correction due to the 4PN and 5PN logarithmic terms
for circular orbits in our redshift observable u” as (remov-
ing now the index 1 indicating the smaller mass)

Sul [ 32 32A n 64 n (478 n 478 N 1684
u =|-—-— —v — +— —v
5 5 15 105 105 21
4388 3664
+ 105 v — 105 Vz)x]vxS Inx. 5.2)

This correction is valid for any mass ratio g = m; /m, and
is to be added to the 3PN expression for u’ obtained in
Eq. (4.10) of Paper 1. Being proportional to the symmetric
mass ratio v, the correction (5.2) vanishes in the test-mass
limit, which is to be expected since the Schwarzschild
result for u7 () does not involve any logarithm.

We now investigate the small mass ratio regime g << 1.
As in Paper I we introduce a convenient PN parameter
appropriate to the small mass limit of particle 1:

_ (Gm29)2/3

> (5.3)

We immediately obtain, up to say the quadratic order in ¢,
and keeping only the relevant logarithmic terms,
64 (956 4588
Sul =ql ——+(==+—=— Sy + O(qg?).
u [ s (105 T q)y]y ny + O(q*)
(5.4)
Our complete redshift observable, expanded through post-
self-force order, is of the type

ul = uly, + qulp + Pulse + O(g), (5.5)

where the Schwarzschild result is known in closed form as
uly, = (1 —3y)7"/2. Adding back the 3PN results of
Paper I [see Eq. (5.5) there], we thus find that the self-
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force contribution is given by®

121 41
uly = —y— 2y% — 5y% + (— = + 0 7T2>y4
64 956
+ <a4 5 lny>y5 + (a5 + 105 lny)y6 + 0(y%).

(5.6)

The expansion (5.6) was determined up to 2PN order « y3
in [2] based on the Hadamard-regularized 2PN metric
given in [3]. The result at 3PN order = y* was obtained
in Paper I using the powerful dimensional regularization
(as opposed to Hadamard’s regularization which found its
limits at that order). By contrast our analytic determination
of the logarithmic terms at 4PN and 5PN orders depends
only marginally on the regularization scheme.

The coefficients a4 and a5 denote some unknown purely
numerical numbers which would be very difficult to com-
pute with PN methods, and should depend crucially on
having a consistent regularization scheme. By comparing
the expansion (5.6) with our accurate numerical SF data for
uly, we shall be able to measure these coefficients with at
least 8 significant digits for the 4PN coefficient a4, and 5
significant digits for the SPN coefficient a5. These results,
as well as the estimation of even higher-order PN coeffi-
cients, will be detailed in Sec. VI.

Similarly, adding up the results of Paper I for the post-
self-force term, we get

97 725 41
upsp =y + 3y + §y3 + <—12 - aWZ)y4 + €y’
4588
+ <65 + lny)y6 + 0(y%). (5.7)

Note that there is no logarithm at 4PN order in the post-
self-force term, as is also seen from Eq. (5.4); the next 4PN
logarithm would arise at cubic order ¢°, i.e. at the post-
post-SF level. The coefficients €, and €5 in (5.7) are
unknown, and unfortunately they are expected to be ex-
tremely difficult to obtain, not only analytically in the
standard PN theory, but also numerically as they require
a second-order perturbation SF scheme.

VI. NUMERICAL EVALUATION OF POST-
NEWTONIAN COEFFICIENTS

In the self-force limit, the SF effect ul. on the redshift
observable u is related to the regularized metric perturba-
tion AR p at the location of the particle through

ulp =31 = 3y) " 2avaf kg, (6.1)
where i“ is the background four-velocity of the particle.
Beware that here /% p stands in fact for the perturbation per

8For clarity we add the Landau o symbol for remainders which
takes the standard meaning.
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unit mass ratio, denoted hf /g in Paper I [cf. Eq. (2.11)
there]. In SF analysis, the combination #*@PhY, arises
more naturally than ulg; this is the quantity we shall be
interested in fitting in this Section. However our final
results in Table V will include the corresponding values
of the coefficients for the redshift variable ulg. We refer to
Sec. II of Paper I for a discussion of the computation of the
regularized metric perturbation hEB, and the invariant
properties of the combination a*#?hk, with respect to
the choice of perturbative gauge. In this Section we often
use r = 1/y, a gauge invariant measure of the orbital
radius scaled by the black hole mass m, [see Eq. (5.3)].

Our earlier numerical work, partially reported in [2] and
in Paper I, provided values of the function a*@#hk 4(r)
which cover a range in r from 4 to 750. Following a
procedure described in [36], we have used Monte Carlo
analysis to estimate the accuracy of our values for
a“aPhy 5. As was reported in Paper I, this gives us con-
fidence in these base numbers to better than one part in
10'3. We denote a standard error o representing the nu-
merical error in #*@PhY 5 by

o = |a®aPhl gl X EX 10715, (6.2)

where E =~ 1 is being used as a placeholder to identify our
estimate of the errors in our numerical results.

A. Overview

A common task in physics is creating a functional model
for a set of data. In our problem we have a set of N data
points f; and associated uncertainties o;, with each pair
evaluated at an abscissa r;. We wish to represent this data
as some model function f(r) which consists of a linear sum
of M basis functions F;(r) such that

M
f(r) = ¢;F(n). (6.3)
j=1

The numerical goal is to determine the M coefficients c;
which yield the best fit in a least squares sense over the
range of data. That is, the c; are to be chosen such that

= il:fi - Z]/W:l Cij(Vi)]2

g;

(6.4)

i=1

is a minimum under small changes in the c;. For our
application we choose the basis functions F;(r) to be a
set of terms which are typical in PN expansions, such as
r~1 r72, ..., and also terms such as 7 In(r).

Our analysis depends heavily upon Ref. [37]; we use
both the methods and the computer code for solving sys-
tems of linear algebraic equations as described therein.
While we do employ standard, least squares methods for
solving a system of linear equations to determine the c;, we
also recognize that a solution to this extremum problem is
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not guaranteed to provide an accurate representation of the
data (r;, f;, ;). The quality of the numerical fit is mea-
sured by y? as defined in Eq. (6.4). If the model of the data
is a good one, then the y? statistic itself has an expectation
value of the number of degrees of freedom in the problem,
N — M, with an uncertainty (standard deviation) of
V2(N — M). In particular, a large residual x> would cor-
respond to under-fitting the data whereas a y? that is too
small corresponds to over-fitting the data, which amounts
to fitting randomness in the residuals.

The numerical evaluation of the fitting coefficient c;
includes a determination of its uncertainty X; which de-
pends upon (i) the actual values of r; in use, (ii) all of the
a;, and (iii) the set of basis functions F;(r). In fact, the
estimate of the X; depends solely upon the design matrix

EFj(ri)
(O ’

A

ij (6.5)
and not at all on the data (or residuals) being fitted.
However, the estimates of the 2, j are only valid if the
data are well represented by the set of basis functions.
For emphasis: the X; depend upon F;(r;) and upon o;
but are completely independent of the f;. Only if the fit
is considered to be good, could the 2.,- give any kind of
realistic estimate for the uncertainty in the coefficients c;.
If the fit is not of high quality (unacceptable x?), then the
p3 ; bear no useful information [37]. We will come back to
this point in the discussion below.

A further remark concerning the meaning of the X, is
appropriate. Fitting the data as described to determine the
coefficients is a standard, well-defined statistical proce-
dure. If we were to change the integration routine used to
generate the #%iiPhR p(r;), which are the set of input data
values f;, with the restriction that we maintained the same
numerical accuracy then the f; would each change in a
random way governed by o;. If the coefficients ¢; were
then determined for this second data set, the statistical
analysis ensures that the X, associated with this second
data set would be identical to those of the first set and the
newly determined estimates of the ¢; would differ from the
initial ones in a statistical fashion governed by the 3 j
Recall that the X; depend upon the choice of the r;, upon
the o; for the individual data points and upon the set of
basis functions F;(r). The 3 ; are completely independent
of the data values f;.

Now we consider two other possible changes. If we add
an extra data point, or if we add another basis function not
orthogonal to the others (this would be typical over a finite
set of data points, unless we carefully engineered other-
wise) the design matrix changes accordingly, all estimated
coefficients c; change accordingly, and the estimated X.;
change in ways which are not easily related to the previous
results. In particular, if we add an additional basis function
F)r+1 to the previous set, so there is now one more coef-

PHYSICAL REVIEW D 81, 084033 (2010)

ficient ¢y to be fit, and we compare the first M values of
the new c¢; to their earlier values, their differences need not
be closely related to either the first or second set of ;.
Thus, a change in the design matrix of the problem leads to
an inability to make any intuitive prediction about what to
expect for the new c;, and there is no reason to expect that
the differences of the c; respect the values of the ., for
these two different statistical problems.

We also should remark that the task of determining
coefficients in the 1/r characterization of our numerical
data is almost incompatible with the task of determining an
asymptotic expansion of % hR p from an analytic analy-
sis. Analytically, the strict r — +o0 limit is always tech-
nically possible, whereas numerically, not only is that limit
never attainable, but we must always contend with function
evaluations at just a finite number of discrete points, ob-
tained within a finite range of the independent variable, and
computed with finite numerical precision. Nevertheless,
this is what we intend to do.

In practice, the numerical problem is even more con-
strained. At large r, even though the data may still be
computable there, the higher order terms for which we
are interested in evaluating PN coefficients rapidly descend
below the error level of our numerical data. This is clearly
evident in Fig. 1 below. For small r, the introduction of so
many PN coefficients is necessary that it becomes ex-
tremely difficult to characterize our numerical data accu-

r>(uuh-5PNL) ——
5PN - ]

h

0.001

I uuw

16-04
16-05
1e-06 |,

1e-07 |

1e-08

100 200 300 400 500 600 700

y—1

FIG. 1 (color online). The absolute value of the contributions
of the numerically determined post-Newtonian terms to
ra*aPhY 5. Here PNL refers to just the logarithm term at the
specified order. The contribution of a4 is not shown but would be
a horizontal line (since the 4PN terms behaves like r—°) at
approximately 121.3. The remainder after a, and all the known
coefficients are removed from r’a“#fhy, is the top (red)
continuous line. The lower (black) dotted line labeled “‘err”
shows the uncertainty in % i# h® > namely, 2Er* X 10713, The
jagged (green) line labeled “[|res|” is the absolute remainder
after all of the fitted terms have been removed. The figure reveals
that, with regard to the uncertainty of the calculated #%i?hR g
the choice E =~ 1 was slightly too large.
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rately. Thus, in practice, we find ourselves actually work-
ing with less than the full range of our available data. At
large r we could effectively drop points because they
contribute so little to any fit we consider. At the other
extreme, the advantage of adding more points in going to
smaller r is rapidly outweighed by the increased uncer-
tainty in every fitted coefficient. This results from the need
to add more basis functions in an attempt to fit the data at
small r. Further details will become evident in Sec. VID
below.

B. Framework for evaluating PN coefficients
numerically

In a generic fashion we describe an expansion of
a® PR p In terms of PN coefficients a; and b; with

ﬁaﬁﬁhﬁlg: Zﬁ_ nrz j+1’

j>0 ]>4

(6.6)

where a is the Newtonian term, a; is the 1PN term and so
on. Similarly, for use in applications involving u” we also
introduce the coefficients a; and B; in the expansion of the
SF contribution

AN I R e
SF r_/+l r.)Jrl

j=0 j=4

(6.7)

These series allow for the possibility of logarithmic terms,
which are known not to start before the 4PN order. We also
concluded in Sec. II that (Inr)? terms cannot arise before
the 5.5PN order. Since we are computing a conservative
effect, possible time-odd logarithmic squared contributions
at the 5.5PN or 6.5PN orders do not contribute. But there is
still the possibility for a conservative 7PN (Inr)? effect,
probably originating from a tail modification of the dis-
sipative 5.5PN (Inr)? term. However, we shall not permit
for such a small effect in our fits. As discussed below in
Sec. VID, we already have problems distinguishing the
7PN linear Inr term from the 7PN nonlogarithmic
contribution.

The analytically determined values of the coefficients
ap, a, ay, as, and a, ay, a,, a; computed in Ref. [2] and
Paper I are reported in Table I, together with the new
results by = =128 by =P and B, = —&, Bs =% o

105 105 ©
the present work.

C. Verifying analytically determined PN coefficients

In this section we investigate the use of our data for
a“aPhy and the fitting procedures we have described
above (and expanded upon in the beginning of
Sec. VID). We will begin by fitting for enough of the other
PN coefficients to be able to verify numerically the various
coefficients as, by, and b5 now known from PN analysis.
We choose a starting point for the inner boundary of the
range, and each range continues out to » = 700. The results

PHYSICAL REVIEW D 81, 084033 (2010)

TABLE I. The analytically determined PN coefficients for
a®aPhY g (left) and ufy (right).

Coeff. Value Coeff. Value
ao _2 o _1
ag _1 23] _2
7
2 1387 a1 2 2 121_541 2
. e 5w e
by 5 Ba -5
5944 95
bs + 705 Bs * 105

of a series of fits are displayed in Tables II and III. First we
remark that bringing the outer boundary inward as far as to
300 has very little effect on the outcome of any of these fits,
except that the y? statistic decreases as expected with the
number of degrees of freedom.

As a first step in this section, we will complete the task
we began in Paper I, namely, the numerical determination
of the coefficient a3 (and «a3), this time taking fully into
account the known logarithmic terms at 4PN and 5PN
order. For illustrative purposes only, these results are given
in Table II. We were able to obtain a fit with six undeter-
mined parameters, and could include data from r = 700
down to r = 35. Note that, with the inclusion of the b, and
bs coefficients, the precision of our tabulated value for aj
has increased by more than 4 orders of magnitude from
Paper 1, although our accuracy is still no better than about
23.. Such a discrepancy is not uncommon. The uncertainty,
3, reflects only how well the data in the given, finite range
can be represented by a combination of the basis functions.
It is not a measure of the quality of a coefficient when
considered as a PN expansion parameter, which neces-
sarily involves an r — +o00 limiting process.

Our next step is to include the known value for a5 and to
use our numerical data to estimate values for the b, and b5
coefficients. Our best quality numerical result was ob-
tained with five fitted parameters, over a range from r =
700 down to only r = 65, and is given in the first row of
Table III. Notice that while our b, is determined relatively
precisely, it has only about 63 accuracy. The higher order

TABLE II. The results of a numerical fit for a set of coeffi-
cients which includes the analytically known as. Thus this is not
the best fit of our data possible, but it allows for a comparison
with Table V. The uncertainty in the last digit or two is in
parentheses. The range runs from r = 35 to r = 700, with 266
data points and a respectable y> of 264.

Coeff. Value

as —32.5008069(7)
ay —121.302 54(30)
as —42.99(5)

ag —228(6)

be +677(2)

a; —8226(27)
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TABLE III.  The numerically determined PN coefficients for #%ii? hi - Bach row represents a different fit. The first three columns
give the starting point r,,;, at the inner boundary of the fitting range, the degrees of freedom of the fit, N — M, and the x? statistic for
the chosen fit. If a value for a coefficient is not shown, then either that parameter was not included in that particular fit (far right) or its
analytically known value was used (e.g., b,;). The formal uncertainty of a coefficient in the last digit or two is in parentheses. The outer

boundary is 700 in each case.

"min  Deg. X’ ay b, as bs ag bg as

65 231 222 —121.40(1) —25.6116(20) —102(1) 45.5(3) —2081(9)

85 212 207  —121.3180(7) —91.45(70) 48.48(15) —2170(8)

65 231 222 —121.313(1) -79(2) 50.6(4) —1868(44)  131(21)

40 255 247  —121.3052(6) —47(1) 55.7(2) —359(41) 625(15) —7722(162)

coefficient b5 is more difficult to obtain and, at this point, it
is very poorly determined. It corresponds to a term which
falls off rapidly with increasing r and is significant over a
relatively small inner part of the fitted range.

We can of course use the known value of b, in order to
improve the accuracy for bs. If we do this without adding
another parameter to fit, we immediately get a fit of very
poor quality, since we have moved b, far from its best-fit
value; as shown in the second row of Table III, we must
move the inner boundary out to r = 85 to reestablish a
good fit.

The inclusion of basis functions for the higher order
coefficients, by and a5, as shown in the third and fourth
rows, respectively, allows the inner boundary for the fit to
move to smaller » where the higher PN terms are more
important. The third row of the table shows that adding
another parameter allows us to move the inner boundary to
r = 65, while the final row shows that we can now add one
further fitted parameter, and obtain a good quality fit by
pushing the inner boundary to » = 40. Only in this row is
the b5 parameter close to its known value, but it is still off
by around 4.5 (see Table IV below). Moreover, we have
reached a limit for treating our data in this way, adding
further parameters and inner points does not result in any
higher quality fit.

By now we have presented enough to show that we have
data which allows high precision, with an accuracy that we
now have some experience in relating to the computed
error estimates. This experience will be valuable when
we come to discuss further results in the next section.
For convenience, we summarize the relevant information
further, in Table I'V, referring just to our estimates of known
PN parameters, and relating our error estimates to the
observed accuracy.

D. Determining higher order PN terms numerically

In this section we turn our attention to using our nu-
merical SF data and fitting procedures to obtain as many as
possible unknown PN coefficients, by making maximum
use of the coefficients which are already known. We find
that in our best fit analysis we can use a set of five basis
functions corresponding to the unknown coefficients ay,
as, ag, bg, and a;.

In Table V, we describe the numerical fit of our data over
a range in r from 40 to 700. The y? statistic is 259 and
slightly larger than the degrees of freedom, 256, which
denotes a good fit. Further, we expect that a good fit would
be insensitive to changes in the boundaries of the range of
data being fit, and we find, indeed, that if the outer bound-
ary of the range decreases to 300 then essentially none of
the data in the Table changes, except for y? and the degrees
of freedom which decrease in a consistent fashion. Figure 1
shows that in the outer part of the range % it? nR p 1s heavily
dominated by only a few lower order terms in the PN
expansion—those above the lower black double-dashed
line in the figure.

The inner edge of the range is more troublesome. The
importance of a given higher order PN term decreases
rapidly with increasing r. Moving the inner boundary of
the range outward might move a currently well-determined
term into insignificance. This could actually lead to a
smaller x?, but it would also lead to an increase in the
2, of every coefficient. Moving the inner edge of the range
inward might require that an additional higher order term
be added to the fit. This extra term loses significance
quickly with increasing r so the new coefficient will be
poorly determined and also result in an overall looser fit
with an increase of ., for all of the coefficients. If the inner
boundary and the set of basis functions are chosen prop-
erly, then a robust fit is revealed when the parameters being
fit are insensitive to modest changes in the boundaries of
the range. The fit described in Table V appears to be robust.
The parameters in this Table are consistent with all fits with
the inner boundary of the range varying from 35 to 45 and
the outer boundary varying from 300 to 700.

TABLE IV. Comparing the analytically known PN coefficients
(column 5) with their numerically determined counterparts (col-
umn 3), and comparing the numerically determined error esti-
mates (column 3) with the apparent accuracy (column 4). The
source of the data is given in column 1.

Source Coeff.  Estimate Accuracy  Exact Result
Paper I a3 —27.677(5) — (11) —27.6879---
Table I a3 —32.5008069(7) — (15) —32.5008054---
Table Il b, —25.6116(20) — (116) —25.6

Table III b5 +55.7(2) —(9) +56.6095---
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TABLE V. The numerically determined values of higher order
PN coefficients for #®u#?hR p (left) and for uly (right). The
uncertainty in the last digit or two is in parentheses. The range
runs from r = 40 to r = 700, with 261 data points being fit. The
x? statistic is 259. We believe that a contribution from a b term
piggybacks on the a; coefficient. Both terms fall off rapidly and
have influence over the fit only at small r. And the radial
dependence of these two terms only differ by a factor of Inr
[or possibly (Inr)?] which changes slowly over their limited
range of significance.

Coeff. Value Coeft. Value

ay —121.303 10(10) ay —114.34747(5)
as —42.89(2) as —245.53(1)

ae —215(4) g —695(2)

be +680(1) Bs +339.3(5)

a; —8279(25) a —5837(16)

If an additional term, with coefficient b, is added to the
basis functions then, for identical ranges, each of the X j
increases by a factor of about ten, and the changes in a4 and
as are within this uncertainty. The coefficient ag changes
sign and bg and a; change by an amount significantly
larger than the corresponding 2 ;. And the new coefficient
b, is quite large. In the context of fitting data to a set of
basis functions these are recognized symptoms of over-
fitting and imply that the extra coefficient degrades the fit.

How should we (and others) interpret the data in
Table V? To guide our discussion of this very important
question, we assemble together into Table VI all the rele-
vant results from the earlier fits of Sec. VI C which relate to
the best prior estimates we have there for ay, as, ag, bg, and
a, which we have finally calculated here. As was shown in
Table IV and is now evident in Table VI, our numerical
accuracy tends to be in the range of 2 — 63, both when
comparing the best results for a4, as, ag, bg, and a; from
Sec. VIC with those obtained here and, we would suggest,
for the purposes of comparing the results of this section
with future PN coefficients.

E. Summary

Our best fit can be visualized in Fig. 2, where we plot the
self-force effect uly on the redshift variable u” as a func-
tion of r = y~!, as well as several truncated PN series up to
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FIG. 2 (color online). The self-force contribution uly to u”

plotted as a function of the gauge invariant variable y~!. Note
that y~! is an invariant measure of the orbital radius scaled by
the black hole mass m, [see Eq. (5.3)]. The *“‘exact” numerical
points are taken from Ref. [2]. Here, PN refers to all terms,
including logarithms, up to the specified order (however recall
that we did not include in our fit a log term at 7PN order).

7PN order, based on the analytically determined coeffi-
cients summarized in Table I, as well as our best fit of the
higher-order PN coefficients reported in Table V. Observe,
in particular, the smooth convergence of the successive PN
approximations towards the exact SF results. Note, though,
that there is still a small separation between the 7PN curve
and the exact data in the very relativistic regime shown at
the extreme left of Fig. 2.

We have found that our data in the limited range of 35 =
r = 700 can be extremely well characterized by a fit with
five appropriately chosen (basis) functions. That is, the
coefficients in Table V are well determined, with small
uncertainties, and small changes in the actual details of
the fit result in coefficients lying within their error esti-
mates. Fewer coefficients would result in a very poor
characterization of the same data while more coefficients
result in large uncertainties in the estimated coefficients,
which themselves become overly sensitive to small
changes in specific details (such as the actual choice of
points to be fitted). In practice, over the data range we
finally choose, and with the five coefficients we fit for, we
end up with exceedingly good results for the estimated

TABLE VI. Comparing the “best fit” numerical values and statistical uncertainties of the
estimated PN coefficients in Table V to other numerical evaluations of these same quantities in
Sec. VIC.

Coeff. Table V (best) Table 1T Table III

ay —121.303 10(10) —121.302 54(30) — (56) —121.3052(6) — (21)
as —42.89(2) —42.99(5) — (10) —47(1) — (4)
ag —215(4) —228(6) — (13) —359(41) — (144)
be +680(1) +677(2) — (3) +625(15) — (55)
a; —8279(25) —8226(27) — (53) —7722(162) — (557)
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coefficients, and with residuals which sink to the level of
our noise. We have a very high quality fit which is quite
insensitive to minor details. Nevertheless, as Tables IV and
VI hint, error estimates for these highest order coefficients
should be regarded with an appropriate degree of caution.
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APPENDIX A: FORMULAS TO COMPUTE THE PN
LOGARITHMS

In Sec. III we looked for poles generating near-zone
logarithms when integrating the field equations at qua-
dratic nonlinear order. We used the propagator of the
instantaneous potentials defined by

00 9 \2k r\B
e S ).
B Olg) cot A

and acting on a source term of the type r~2F(n, u) where
u=t—r/c, see Eq. (3.2). We consider here a single
multipolar piece in the source term, say r~ 2, F(u). The
function F is typically a product of the mass with some
time derivatives of multipole moments. We recall that the
propagator (Al) depends on the length scale A = cP,
where P is the period of the source; we thus consider

®, = rl[’i—g F(u)].

(AD)

(A2)

In this Appendix we shall provide a general and compact
formula giving all the logarithms in the near-zone expan-
sion of the solution (A2). The logarithms come from ex-
panding the retardation u = ¢ — r/c in the source when
r/c — 0, integrating each of the terms using the formulas
(2.9) and (2.10), and finally taking the finite part (FP)
associated with the poles « B~!. Our compact formula
gives the result of all these operations as

s, = =9 1n(1>

2 A

A {F(_e_l)(t —r/c)— FCD(t + r/c)
X 8,

|3
-

where F(=¢=1 denotes the (€ + 1)th time antiderivative of
the function F. By 6®; we mean the contribution of
logarithms in ®;; thus all the other terms in ®; besides
6®; admit an expansion when r — 0 in simple powers of r
without logarithms. Note that the factor of the logarithm in
Eq. (A3) is a multipolar antisymmetric homogeneous so-
lution of the wave equation which is regular at the origin,
when r — 0. The logarithms in (A3) are thus of the NZ
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type; no FZ logarithms are generated from a source term
r~2A; F(u). We recall also from Sec. II that the FZ loga-
rithms start to arise at the cubic n = 3 nonlinear iteration,
and that they do not contribute to the conservative part of
the dynamics of compact binaries.

The formal near-zone expansion of 6®; reads

w Ao2ite FQi+0)(4
o0, = () (7) 3 s 0
A & 2020 + 26 + DI e

(A4)

At the 1PN relative order required for our computation in
(3.2) and (3.3), we have

_ O © r? (€+2)
e+ et [F @+ 20224 + 3)F 20
+ (9(%)] 1n<§). (A.5)

The result (A3) can be generalized in the following
sense that the same type of result will hold also for non-
STF sources. Namely, if we define 6®; to be non-STF in
L,i.e. having n; = n; ---n;, in place of the STF product
iy in (A2), then we can easily prove that the log-terms are
given by (A3) with 9, = 9; -+ d;, in place of the STF
product ) 1. Of course all the other terms will be different,
but the structure of the log-terms will be the same. Then it
is trivial to show that the formula applies as well to a
product of Minkowskian outgoing null vectors k¢ =
(1, m) representing the direction of propagation of gravita-
tional waves, and satisfying naﬁk“kﬁ = (. Considering
(A6)

Tk, kg,
Oy oy =1 1[%“”)],

I%

where k, = (=1, n), we find indeed that the contribution
of logarithms in the near-zone expansion of this object is
given by

B (—e)*1 (r
8(1311]...‘1(; = 3 h‘l(X)
FED(t—r/e)— FEOD (e + r/c)}

Xaa]
(A7)

We use this result to show that a family of logarithms not
considered in Sec. III is actually pure gauge. We showed
there that all the 4PN and 5PN near-zone logarithms come
from iterating the leading-order 1/7? part of the quadratic
source, namely, QF P= “L_—ﬁ” (2)Z¢lxﬁ + ki_—’z‘B o. However we
computed only the first term o« mz?B , which is associated
with tails, but we left out the second term o k*kP. Now
thanks to the structure = k“k” the logarithms appear in the
form of a gauge transformation and will never contribute to
a gauge invariant result. This was already shown at the
level of the dominant 4PN log-term in [25]. By expanding
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o on the basis of STF tensors 7i; (or rather 71; _,) we need
only to prove this for each of the individual multipolar
pieces in the source which have the structure

P, = I*l[kakﬁ ”L—;ZF(M)]. (A8)
r

Applying (A7) the logarithms are given by

B :(_C)€+1 (1)
0P, 7, — lnA

FED(t—r/e)—FECD(t+r/c)
r

X aaaﬁéL,z{
(A9)

and can readily be put in the form of a gauge transforma-
tion with gauge vector

|

PHYSICAL REVIEW D 81, 084033 (2010)

(=)t ,
y 8“3L2{F(_€_1)(t —r/c) ; FEED(@ + r/c)}.

£l

(A10)

Indeed we have 8®¢F, =200 ¢ | — nBg, & mod-
ulo some terms which are free of logarithms. Therefore the
seed logarithms generated in this way at quadratic order
can be removed by a gauge transformation, and we con-
clude that the whole family of logarithms coming from the
iteration at cubic and higher orders can be removed by a
nonlinear deformation of the gauge transformation,
namely, by a coordinate transformation. Thus we do not
have to consider these logarithms in our computation of a
gauge invariant quantity; only those coming from the first
term o (2)131’3 in 0 P will contribute as computed in
Sec. III.
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