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We develop a new covariant formalism to treat spherically symmetric spacetimes in metric fðRÞ
theories of gravity. Using this formalism we derive the general equations for a static and spherically

symmetric metric in a general fðRÞ gravity. These equations are used to determine the conditions for

which the Schwarzschild metric is the only vacuum solution with vanishing Ricci scalar. We also show

that our general framework provides a clear way of showing that the Schwarzschild solution is not a

unique static spherically symmetric solution, providing some insight into how the current form of

Birkhoff’s theorem breaks down for these theories.
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I. INTRODUCTION

Ever since the publication of the Schwarzschild solution
almost 100 years ago, the study of spherically symmetric
solutions has played a fundamental role in determining the
understanding of the nature of gravity and underlies many
of the key tests of Einstein’s theory of general relativity
(GR). Until recently, general relativity has been unques-
tionably the only theory able to explain gravity on both
astrophysical and cosmological scales. With the advent of
new high precision cosmological tests, capable of probing
physics at very large redshifts, this situation has com-
pletely changed and recently the large-scale validity of
general relativity has begun to be questioned. This is
largely due to the fact that in order to fit the standard model
of cosmology, which is based on general relativity coupled
to standard matter (baryons and radiation), the introduction
of two dark components are needed to achieve a consistent
picture. Specifically, dark matter is needed to fit the astro-
physical dynamics at galactic and cluster scales, while a
new ingredient, dubbed dark energy, is required in order to
explain the observed accelerated behavior of the Hubble
flow. Combining the luminosity distance data of super-
novae type Ia [1], the large-scale structure [2], the anisot-
ropy of cosmic microwave background [3], and baryon
acoustic oscillations [4] suggest that if we retain general
relativity as the theory of the gravitational interaction, the
best fit model is a spatially flat Universe, dominated by
cold dark matter (CDM) and dark energy (DE) in the form
of an effective cosmological constant. Although CDM
candidates have not yet been directly detected, there are
strong arguments that suggest that CDM has a nongravita-

tional origin [5]. The same is not true for DE. The cosmo-
logical constant and coincidence problems together with
the fact that there are no convincing DE candidates, seems
to suggest that the concordance model is incomplete, and
despite enormous effort over the past few years, this prob-
lem remains one of the greatest puzzles in contemporary
physics. One of the theoretical proposals that has received
a considerable amount of attention recently, is that dark
energy has a geometrical origin. This idea has been driven
by the fact that modifications to general relativity appear in
the low energy limit of many fundamental schemes [6,7]
and that these modifications lead naturally to cosmologies
that admit a dark energy -like era [8–12] without the
introduction of any additional cosmological fields. Most
of the work on this idea has focused on fourth-order
gravity, in which the standard Hilbert-Einstein action is
modified with terms that are at most of order four in the
metric tensor.
The features of fourth-order gravity have been analyzed

with different techniques [13], and all of these studies
suggest that these cosmologies can give rise to a phase of
accelerated expansion, which is considered to be an im-
portant footprint of dark energy. In particular, dynamical
systems analysis shows that for Friedmann-Lemaı̂tre-
Robertson-Walker models there exist classes of fourth-
order theories, which admit a transient decelerated expan-
sion phase, followed by one with an accelerated expansion
rate. The first (Friedmann-like) phase provides a setting
during which structure formation can take place, followed
by a smooth transition to a DE-like era, which drives the
cosmological acceleration.
More recently, the theory of linear perturbations for

these models has been developed [14] using the 1þ 3
covariant approach [15]. A number of important features
were found which allows one to differentiate the structure
growth scenario from what occurs in general relativity.
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First, it was found that the evolution of density perturba-
tions is determined by a fourth-order differential equation
rather than a second-order one. This implies that the evo-
lution of the density fluctuations contains, in general, four
modes rather that two and can give rise to a more complex
evolution than the one of GR. Second, the perturbations are
found to depend on the scale for any equation of state for
standard matter (while in general relativity the evolution of
the dust perturbations are scale invariant). This means that
even for dust, the evolution of superhorizon and subhor-
izon perturbations are different. Third, it was found that the
growth of large-scale density fluctuations can occur also in
backgrounds in which the expansion rate is increasing in
time. This is in striking contrast with what one finds in
general relativity and would lead to a time-varying gravi-
tational potential, putting tight constraints on the integrated
Sachs-Wolfe effect for these models.

Although these results are very encouraging, there are
still some important open problems to be addressed. Of
particular interest is the degree to which the physics of
fourth-order gravity is consistent with both cosmological
and Solar System scales, indeed, there has been consider-
able debate about the short-scale behavior of higher order
over the past few years, leading to much work on the
Newtonian and post-Newtonian limits of these theories
[16]. Consequently, measurements coming from weak field
limit tests like the bending of light, the perihelion shift of
planets, and frame dragging experiments represent critical
tests for any theory of gravity. Fundamental to confronting
such tests with fourth-order gravity is the existence of
physically viable spherically symmetric solutions in these
theories. The aim of this paper is this therefore twofold.
First to determine a set of general results for spherically
symmetric spacetimes in fðRÞ gravity, and second to obtain
a general procedure for generating solutions of this type.

The present analysis is based on a powerful extension of
the 1þ 3 covariant approach in which the three spatial
degrees of freedom are further decomposed relative to a
spatial vector [17]. In the case of spherical symmetry, this
is chosen to be the radial direction. This leads to a larger set
of covariant variables with their corresponding equations
(evolution, propagation, and constraint). Furthermore, all
the equations are developed in the Jordan frame without
resorting to any conformal transformations.

Unless otherwise specified, natural units (@ ¼ c ¼ kB ¼
8�G ¼ 1) will be used throughout this paper, Latin indices
run from 0 to 3. The symbol r represents the usual cova-
riant derivative, and @ corresponds to partial differentia-
tion. We use the �, þ, þ, þ signature and the Riemann
tensor is defined by

Ra
bcd ¼ �a

bd;c � �a
bc;d þ �e

bd�
a
ce � �e

bc�
a
de ; (1)

where the �a
bd are the Christoffel symbols (i.e. symmetric

in the lower indices), defined by

�a
bd ¼ 1

2g
aeðgbe;d þ ged;b � gbd;eÞ: (2)

The Ricci tensor is obtained by contracting the first and the
third indices

Rab ¼ gcdRacbd: (3)

The symmetrization and the antisymmetrization over the
indexes of a tensor are defined as

TðabÞ ¼ 1
2ðTab þ TbaÞ ; T½ab� ¼ 1

2ðTab � TbaÞ: (4)

Finally the Hilbert–Einstein action in the presence of mat-
ter is given by

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ 2Lm�: (5)

II. GENERAL EQUATIONS FOR FOURTH-ORDER
GRAVITY

In a completely general context, a fourth-order theory of
gravity is obtained by adding terms involving
fðR; RabR

ab; RabcdR
abcdÞ to the standard Einstein Hilbert

action. However, we know the Gauss-Bonnet term (G ¼
R2 � 4RabR

ab þ RabcdR
abcd) is a total differential in four

dimensions and hence do not affect the field equations.
Hence, we can replace all linear terms of RabcdR

abcd with
the other two. Furthermore, if the spacetime is highly
symmetric, then the variation of the term RabR

ab can al-
ways be rewritten in terms of the variation of R2 [18,19]. It
follows that a sufficiently general fourth-order Lagrangian
for a highly symmetric spacetime only contains powers of
R, and we can write the action as

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½fðRÞ þ 2Lm�; (6)

where Lm represents the matter contribution.
Varying the action with respect to the metric gives the

following field equations:

f0Gab ¼ Tm
ab þ 1

2ðf� Rf0Þgab þrbraf
0 � gabrcrcf0;

(7)

where f0 denotes the derivative of the function ‘f’ with
respect to the Ricci scalar, and Tm

ab is the matter stress

energy tensor defined as

Tm
ab ¼ �muaub þ pmhab þ qma ub þ qmb ua þ �m

ab: (8)

Here, ua is the direction of a timelike observer, hab is the
projected metric on the 3-space perpendicular to ua. Also
�m, pm, qm, and �m

ab denote the standard matter density,

pressure, heat flux, and anisotropic stress, respectively.
Equations (7) reduce to the standard Einstein field equa-
tions when fðRÞ ¼ R.
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III. 1þ 1þ 2 COVARIANTAPPROACH

We know that the 1þ 3 covariant approach, initially
developed by Ehlers and Ellis [15] has proven to be a
very useful technique in many aspects of relativistic cos-
mology. The approach has been particularly useful in
obtaining a deep understanding of many aspects of relativ-
istic fluid flows, whether it is applied in terms of fully
nonlinear GR effects or the gauge invariant, covariant
perturbation formalism. In cosmology these methods
have been applied, for example, to the formalism and
evolution of density perturbations [20] in the Universe
and to the physics of cosmic microwave background
[21]. This approach is based on a 1þ 3 threading decom-
position of the spacetime manifold with respect to a time-
like congruence as a splitting of spacetime onto a timelike
and a orthogonal three-dimensional spacelike hypersur-
face. All the essential information in the system is captured
in a set of kinematic and dynamic 1þ 3 variables that have
a well defined physical and geometrical significance.
These variables satisfy a set of evolution and constraint
equations derived from the Bianchi and Ricci identities,
forming a closed system of equations for a chosen equation
of state describing matter.

A natural extension to the 1þ 3 approach, optimized for
problems that have spherical symmetry, is the 1þ 1þ 2
formalism developed recently by Clarkson and Barrett
[17]. In this formalism one first proceeds to the same split
of the 1þ 3 approach and then a further one that isolates a
specific spatial direction. This allows us to derive a set of
variables that are more advantageous to treat systems with
one preferred direction. For example, in the spherically
symmetric system the equation for the 1þ 1þ 2 variables
are scalar equations and are much simpler than the ones of
the 1þ 3 formalism, which are in general tensorial. The
1þ 1þ 2 formalism was applied to the study of linear
perturbations of a Schwarzschild spacetime [17] and to the
generation of electromagnetic radiation by gravitational
waves interacting with a strong magnetic field around a
vibrating Schwarzschild black hole [22].

In the following we give a brief review of these formal-
isms, before applying it to the specific case of fðRÞ gravity.

A. Kinematics

In (1þ 3) approach first we define a timelike congru-
ence by a timelike unit vector ua. Then the spacetime is
split in the form R � V, where R denotes the timeline along
ua and V is the 3-space perpendicular to ua. Then any
vector Xa can be projected on the 3-space by the projection
tensor hab ¼ gab þ uaub.

At this point, two derivatives are defined: the vector ua is
used to define the covariant time derivative (denoted by a
dot) for any tensor Ta...b

c...d along the observers’ worldlines

defined by

_T a...b
c...d ¼ uereT

a...b
c...d ; (9)

and the tensor hab is used to define the fully orthogonally
projected covariant derivative D for any tensor Ta...b

c...d,

DeT
a...b

c...d ¼ hafh
p
c . . . h

b
gh

q
dh

r
errT

f...g
p...q ; (10)

with total projection on all the free indices. Angle brackets
to denote orthogonal projections of vectors and the orthog-
onally projected symmetric trace-free PSTF part of tensors
[15]:

Vhai ¼ habV
b; Thabi ¼

�
hðachbÞd �

1

3
habhcd

�
Tcd:

(11)

In the (1þ 1þ 2) approach we further split the 3-space V,
by introducing the unit vector ea orthogonal to ua so that

eau
a ¼ 0 ; eae

a ¼ 1: (12)

Then the projection tensor

Na
b � ha

b � eae
b ¼ ga

b þ uau
b � eae

b; Na
a ¼ 2

(13)

projects vectors onto the 2-surfaces orthogonal to ea and
ua, which, following [17], we will refer to as ’’sheets.’’
Hence, it is obvious that eaNab ¼ 0 ¼ uaNab. As we know
in (1þ 3) approach any second rank symmetric 4-tensor
can be split into a scalar along ua, a 3-vector and a PSTF 3-
tensor. In (1þ 1þ 2) slicing, we can take this split further
by splitting the 3-vector and PSTF 3-tensor with respect to
ea. Any 3-vector, c a, can be irreducibly split into a com-
ponent along ea and a sheet component �a, orthogonal to
ea, i.e.

c a ¼�eaþ�a; �� c aea; �a �Nabc b: (14)

A similar decomposition can be done for PSTF 3-tensor,
c ab, which can be split into scalar (along e

a), 2-vector and
2-tensor part as follows:

c ab ¼ c habi ¼ �ðeaeb � 1
2NabÞ þ 2�ðaebÞ þ�ab ;

(15)

where

� � eaebc ab ¼ �Nabc ab; �a � Na
becc bc ;

�ab � c fabg �
�
Nc

ðaNbÞ
d � 1

2
NabN

cd

�
c cd ; (16)

and the curly brackets denote the PSTF part of a tensor
with respect to ea. We also have

hfabg ¼ 0; Nhabi ¼ �ehaebi ¼ Nab � 2
3hab: (17)

The sheet carries a natural 2-volume element, the alternat-
ing Levi-Civita 2-tensor

"ab � "abce
c ¼ �dabce

cud ; (18)

where "abc is the 3-space permutation symbol the volume
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element of the 3-space and �abcd is the spacetime permu-
tator or the 4-volume.

With these definitions it follows that any 1þ 3 quantity
can be locally split in the 1þ 1þ 2 setting into only three
types of objects: scalars, 2-vectors in the sheet, and PSTF
2-tensors (also defined on the sheet).

B. Derivatives and the kinematical variables

Apart from the ‘‘time’’ (dot) derivative, of an object
(scalar, vector or tensor), which is the derivative along
the timelike congruence ua, we now introduce two new
derivatives, which ea defines, for any object c a...b

c...d:

ĉ a...b
c...d � efDfc a...b

c...d ; (19)

�fc a...b
c...d � Na

f . . .Nb
gNh

c . . .Ni
dNf

jDjc f...g
i...j:

(20)

The hat derivative is the derivative along the ea vector field
in the surfaces orthogonal to ua. The � derivative is the
projected derivative onto the sheet, with the projection on
every free index. We can now decompose the covariant
derivative of ea in the direction orthogonal to ua into its
irreducible parts giving

Daeb ¼ eaab þ 1
2�Nab þ �"ab þ �ab ; (21)

where

aa � ecDcea ¼ êa ; (22)

� � �ae
a ; (23)

� � 1
2"

ab�aeb ; (24)

�ab � �faebg: (25)

We see that for an observer that chooses ea as special
direction in the spacetime, � represents the expansion of
the sheet, �ab is the shear of ea (i.e. the distortion of the
sheet) and aa its acceleration. We can also interpret � as
the vorticity associated with ea so that it is a representation
of the ‘‘twisting’’ or rotation of the sheet.

Using Eqs. (14) and (15) one can split the (1þ 3)
kinematical variables and Weyl tensors as

_u a ¼ Aea þAa ; (26)

!a ¼ �ea þ�a ; (27)

�ab ¼ �ðeaeb � 1
2NabÞ þ 2�ðaebÞ þ�ab ; (28)

Eab ¼ Eðeaeb � 1
2NabÞ þ 2EðaebÞ þ Eab ; (29)

Hab ¼ H ðeaeb � 1
2NabÞ þ 2H ðaebÞ þH ab ; (30)

where Eab andHab are the electric and magnetic part of the

Weyl tensor, respectively. Therefore, the key variables of
the 1þ 1þ 2 formalism are

f�;A;�;�; E;H ;Aa;�a;�a; Ea;H a;�ab; Eab;H abg:
(31)

Similarly, we may split the anisotropic fluid variables qa

and �ab:

qa ¼ Qea þQa ; (32)

�ab ¼ �½eaeb � 1
2Nab� þ 2�ðaebÞ þ�ab: (33)

The full covariant derivatives of ea and ua in terms of these
variables are given in the Appendix.

IV. 1þ 1þ 2 EQUATIONS FOR LRS-II
SPACETIMES

Locally rotationally symmetric (LRS) spacetimes posses
a continuous isotropy group at each point and hence a
multitransitive isometry group acting on the spacetime
manifold [23]. These spacetimes exhibit locally (at each
point) a unique preferred spatial direction, covariantly
defined, for example, by either vorticity vector field or a
nonvanishing nongravitational acceleration of the matter
fluids. The 1þ 1þ 2 formalism is therefore ideally suited
for covariant description of these spacetimes, yielding a
complete deviation in terms of invariant scalar quantities
that have physical or direct geometrical meaning [24]. The
preferred spatial direction in the LRS spacetimes consti-
tutes a local axis of symmetry and in this case ea is just a
vector pointing along the axis of symmetry and is thus
called a ‘‘radial’’ vector. Since LRS spacetimes are defined
to be isotropic, this allows for the vanishing of all 1þ 1þ
2 vectors and tensors, such that there are no preferred
directions in the sheet. Thus, all the nonzero 1þ 1þ 2
variables are covariantly defined scalars. The variables,
fA;�; �; �;�;�; E;H ; �; p;�; Qg fully describe LRS
spacetimes and are what is solved for in the 1þ 1þ 2
approach. A detailed discussion of the covariant approach
to LRS perfect fluid spacetimes can be seen in [23].
A subclass of the LRS spacetimes, called LRS-II, con-

tains all the LRS spacetimes that are rotation free. As
consequence, in LRS-II spacetimes the variables �, �
and H are identically zero, and the variables

fA;�; �;�; E; �; p;�; Qg

fully characterize the kinematics. The propagation and
constraint equations for these variables are given in the
following subsections:
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A. Propagation equations

�̂ ¼ �1
2�

2 þ ð13�þ �Þð23�� �Þ � 2
3�� 1

2�� E;

(34)

�̂� 2
3�̂ ¼ �3

2���Q; (35)

Ê � 1
3�̂þ 1

2�̂ ¼ �3
2�ðE þ 1

2�Þ þ ð12�� 1
3�ÞQ: (36)

B. Evolution equations

_� ¼ �ð�� 2
3�ÞðA� 1

2�Þ þQ; (37)

_�� 2
3
_� ¼ �A�þ 2ð13�� 1

2�Þ2 þ 1
3ð�þ 3pÞ

� E þ 1
2�; (38)

_E � 1
3 _�þ 1

2
_� ¼ ð32���ÞE þ 1

4 ð�� 2
3�Þ�þ 1

2�Q

� 1
2ð�þ pÞð�� 2

3�Þ: (39)

C. Propagation/evolution equations

_�þ Q̂ ¼ ��ð�þ pÞ � ð�þ 2AÞQ� 3
2��; (40)

_Qþ p̂þ �̂ ¼ �ð32�þAÞ�� ð43�þ �ÞQ
� ð�þ pÞA; (41)

Â� _� ¼ �ðAþ�ÞAþ 1
3�

2 þ 3
2�

2 þ 1
2ð�þ 3pÞ:

(42)

D. Commutation relation

_̂c � _̂c ¼ �A _c þ ð13�þ�Þĉ : (43)

Here, the quantities � and p are the total effective energy
density and pressure. In context of fourth-order gravity we
would define these quantities later. Since the vorticity
vanishes, the unit vector field ua is hypersurface orthogo-
nal to the spacelike 3-surfaces whose intrinsic curvature
can be calculated from the Gauss equation for ua that is
generally given as [24]

ð3ÞRabcd ¼ ðRabcdÞ? � KacKbd þ KbcKad ; (44)

where ð3ÞRabcd is the 3-curvature tensor, ? means projec-

tion with hab on all indices, and Kab is the extrinsic
curvature. With the additional constraint of the vanishing
of the sheet distortion �, i.e. the sheet is a genuine 2-
surface, The Gauss equation for ea together with the 3-
Ricci identities determine the 3-Ricci curvature tensor of
the spacelike 3-surfaces orthogonal to ua to be

3Rab ¼ �½�̂þ 1
2�

2�eaeb � ½12�̂þ 1
2�

2 � K�Nab ; (45)

This gives the 3-Ricci-scalar as

3R ¼ �2½12�̂þ 3
4�

2 � K�; (46)

where K is the Gaussian curvature of the sheet, 2Rab ¼
KNab. From this equation and (34) an expression for K is
obtained in the form [24]

K ¼ 1
3�� E � 1

2�þ 1
4�

2 � ð13�� 1
2�Þ2: (47)

From (34)–(39), the evolution and propagation equations
of K can be determined as

_K ¼ �2
3 ð23���ÞK ; (48)

K̂ ¼ ��K: (49)

From Eq. (48), it follows that whenever the Gaussian
curvature of the sheet is nonzero and constant in time,
then the shear is always proportional to the expansion as
� ¼ 2

3�.

Let us now turn to the case of spherically symmetric
static spacetimes, which belong naturally to LRS class II.
The condition of staticity implies that the dot derivatives of
all the quantities vanish. Furthermore, the expansion also
vanishes, as a nonvanishing expansion would imply that
the timelike congruence would contract or expand in time,
which is not possible in a static spacetime. Hence, we have
� ¼ 0, and as discussed in the previous section this im-
plies � ¼ 0. From Eq. (37) we then have the heat fluxQ to
vanish identically in these spacetimes. Hence, the set of
(1þ 1þ 2) equations, which describe the spacetime be-
come

�̂ ¼ �1
2�

2 � 2
3�� 1

2�� E; (50)

Ê � 1
3�̂þ 1

2�̂ ¼ �3
2�ðE þ 1

2�Þ; (51)

0 ¼ �A�þ 1
3ð�þ 3pÞ � E þ 1

2�; (52)

p̂þ �̂ ¼ �ð32�þAÞ�� ð�þ pÞA ; (53)

Â ¼ �ðAþ�ÞAþ 1
2ð�þ 3pÞ: (54)

V. SPHERICALLY SYMMETRIC STATIC
SPACETIMES IN HIGHER ORDER GRAVITY

At this point one can rederive these equations in the case
of fðRÞ gravity. The quantities �, p and � are defined, in
this case, as

� ¼ 1

f0

�
�m þ 1

2
ðRf0 � fÞ þ f00X̂ þ f00X�þ f000X2

�
;

(55)
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p ¼ 1

f0

�
pm þ 1

2
ðf� Rf0Þ � 2

3
f00X̂ � 2

3
f00X�

� 2

3
f000X2 �Af00X

�
; (56)

� ¼ 1

f0

�
2

3
f000X2 þ 2

3
f00X̂ � 1

3
f00X�

�
; (57)

where we have defined R̂ ¼ X. We will consider here the
‘‘external’’ field generated by a pointlike source so that
�m ¼ 0 and pm ¼ 0. Because of the additional degrees of
freedom the Eqs. (50)–(54) are not closed and we have to
add an additional equation, the trace equation

Rf0 � 2f ¼ �3f00X̂ � 3f00X�� 3f000X2 � 3Af00X:
(58)

Using the above equations in (50)–(54) and eliminating E,
we get the set of four coupled first order equations govern-
ing the spacetime in the fourth-order gravity as

f0½�̂þ�ð12��AÞ� ¼ 1
3Rf

0 � 2
3fþ f00Xð�þ 2AÞ;

(59)

f0½ÂþAðAþ�Þ� ¼ 1
6f� 1

3Rf
0 � f00XA; (60)

R̂ ¼ X; (61)

f00X̂ ¼ �1
3Rf

0 þ 2
3f� f000X2 � Xð�þAÞf00: (62)

We emphasize here that the above system of equations are
written in terms of the covariant quantities in the 1þ 1þ 2
splitting and absolutely coordinate independent. Note that
the system reduces to the second-order system of GR in
vacuum [17], if we put fðRÞ ¼ R, R ¼ 0 and X ¼ 0 [25].
However, as in the case of the Einstein equation, or any
other fully covariant system of equations, the physics can
be understood fully only if one chooses an observer. In the
1þ 3 approach this is done basically choosing a velocity
field, but in the 1þ 1þ 2 framework this is not sufficient.
One has to give also a particular form of ‘‘radial’’ coor-
dinate. This in turn will define a specific form for the ‘‘hat’’
derivative. As we will see in the later sections there is a
natural choice for this coordinate given by the geometry of
our problem and we will use it to find exact spherically
symmetric solutions for some specific fðRÞ gravity models.

VI. COVARIANT RESULTS FOR THE
SPHERICALLY SYMMETRIC SYSTEM

From the structure of (59)–(62), we can already deduce
some important results for spherically symmetric static
solutions in a general fðRÞ gravity in an absolute coordi-
nate independent manner. These results are important be-
cause they can be used as guidelines to understand the

behavior of any proposed fðRÞ model in this setting and to
design new ones.

A. Necessary condition for existence of solutions with
vanishing Ricci scalar

It is evident from Eqs. (59)–(62) above, the function f
must be of class C3 at R ¼ 0, which implies

jf0ð0Þj<þ1 ; jf00ð0Þj<þ1 ; jf000ð0Þj<þ1:

(63)

Also, we impose the conditions

fð0Þ ¼ 0; R ¼ 0: (64)

Note that the condition of vanishing of the Ricci scalar
throughout the manifold automatically implies X ¼ 0.
Now there are two possibilities:
(a) f0ð0Þ � 0: In this case we see the system reduces to

the following:

�̂þ�ð12��AÞ ¼ 0; (65)

ÂþAðAþ�Þ ¼ 0: (66)

It can be easily checked that the conditions R ¼ 0,
fð0Þ ¼ 0, and f0ð0Þ � 0 makes the Einstein tensor
Gab vanish and therefore Schwarzschild solution is
the only spherically symmetric static solution. This
then allows us to state a generalization of Birkhoff’s
theorem in higher order gravity.
For all functions fðRÞwhich are of classC3 atR ¼ 0
and fð0Þ ¼ 0 while f0ð0Þ � 0, the Schwarzschild
solution is the only static spherically symmetric
vacuum solution with vanishing Ricci scalar.
It is also interesting to note that the above result is
consistent with the conditions f0 > 0 and f00 > 0,
which guarantee the attractive nature of the gravita-
tional interaction and the absence of tachyons [12].
This shows that there may be a connection between
this solution and the very nature of the gravitational
interaction.
The presence of this solution, can have interesting
consequences on the validity of these models on the
Solar System level. In particular, if one concludes
that the Sun behaves very close to a Schwarzschild
solution, the experimental data of the solar system
would help constraining these models.

(b) f0ð0Þ ¼ 0, fð0Þ ¼ 0: In this case (59)–(62) are iden-
tically satisfied for all values of � and A that
guarantees R ¼ 0 and hence X ¼ 0 [26]. Hence,
for all models with f0ð0Þ ¼ 0, any solution with
vanishing Ricci scalar in general relativity would
be a solution to the above system. This is interesting
as it shows that fourth-order gravity in this context
can present the same solutions of GR plus additional
solutions. For example, the Reissner-Nordström so-
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lution which represents the spacetime outside a
spherically symmetric charged body, is a solution
to the system (59)–(62) even if no electric charge is
present. Similarly a static spherically symmetric
solution for a perfect fluid interior with equation
of state p ¼ ð1=3Þ	 (for example, the Hajj-
Boutros solution or the special case of the
Whittaker solution [28]) can be a solution of this
system in the absence of any standard fluid.
The presence of solutions of type (b) shows that
when the conditions given in paragraph (a) are not
satisfied the Schwarzschild solution is not a unique
static spherically symmetric solution. Such results
hint toward disproving the general Birkhoff theorem
in its classical form for fourth-order gravity.

B. Necessary condition for existence of solutions with
constant scalar curvature

Solutions with constant Ricci scalar are characterized by

the fact that R ¼ R0 ¼ const and, as consequence, X, X̂ ¼
0. Imposing these conditions on (59)–(62) and supposing it
to be at least of class C3 in R ¼ R0 one obtains

f00½�̂þ�ð12��AÞ ¼ 1
3R0f

0
0 � 2

3f0 ; (67)

f00½ÂþAðAþ�Þ� ¼ 1
6f0 � 1

3R0f
0 ; (68)

0 ¼ �R0f
0
0 þ 2f0 ; (69)

where f0ðR0Þ ¼ f00, etc. A first solution exists if

f00 � 0; f0 � 0; 2f0 � R0f
0
0 ¼ 0: (70)

Instead in the case f00 � 0, f0 ¼ 0 one obtains again the

Schwarzschild solution (R0 ¼ 0). Finally, another solution
can be achieved if

f00 ¼ 0; f0 ¼ 0; R ¼ R0 ; X; X̂ ¼ 0

(71)

is satisfied. As in the previous subsection, in this case also,
any constant Ricci scalar solution in GR would identically
be a solution to the system.

The relation (70) was already found by Barrow and
Ottewill [29] in the cosmological context and later redis-
covered in [30]. It relates the value of the constant Ricci
scalar with the universal constants in the action. For ex-
ample if we have the Lagrangian as R� 2�, which is the
Lagrangian for GR with the cosmological constant, we
must have, as is well known, the relation R0 ¼ 4�.

C. The curious case of R2 gravity

As we have already explained, the condition for exis-
tence of solutions with covariantly constant scalar curva-
ture connects the constant curvature with the universal
constants of the Lagrangian. However, this is not the case
for fðRÞ ¼ KR2. In fact, for this type of Lagrangian the

third condition of (70) is identically satisfied. This means
that we can have a constant curvature solution for any
value of the curvature. Thus for R2 gravity, the ‘‘cosmo-
logical’’ constant term in a Schwarzschild-de Sitter/anti-
de Sittter (dS/AdS) spacetime becomes a local constant of
integration just like the mass. Hence, in this theory we can
have two distant stars behaving like two different
Schwarzschild-dS/AdS objects with different values of
the constant. Unfortunately this case is rather pathological
since it corresponds to the case in which the trace of the
field equations in vacuum, 3hf0 þ f0R� 2f ¼ 0 is satis-
fied identically for constant Ricci scalar, whereas usually it
may be satisfied for special values of R. Also, this model is
ruled out by Solar System experiments (see [31]).

VII. CHOOSING A COORDINATE SYSTEM AND
RELATION BETWEEN THE COVARIANT

VARIABLES AND THE METRIC

The most natural way to choose the proper radial coor-
dinate in spherically symmetric static spacetimes, is to
make the Gaussian curvature ‘‘K’’ of the spherical sheets
to be proportional to the inverse square of the radius. In that
case, this coordinate ‘‘r’’ becomes the area radius of the
sheets. This gives a geometrical definition to the ‘‘hat’’

derivative. As we have already seen, K̂ ¼ ��K, therefore
the most natural way to define the hat derivative of any
scalar M would be

M̂ ¼ 1

2
r�

dM

dr
: (72)

With this choice, the system of Eqs. (59)–(62) becomes

f0
�
1

2
r�

d�

dr
þ 1

2
�2 � A�

�
¼ 1

3
Rf0 � 2

3
fþ ð�

þ 2AÞf00X; (73)

f0
�
1

2
r�

dA
dr

þA2 þA�

�
¼ 1

6
f� 1

3
Rf0 � f00X;

(74)

1

2
r�

dR

dr
¼ X; (75)

f00
1

2
r�

dX

dr
¼ � 1

3
Rf0 þ 2

3
f� f000X2 � ðX�þ XAÞf00:

(76)

In the r coordinate above the most general spherically
symmetric static metric is

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ r2ðd
2 þ sin2
d�2Þ: (77)

Now, from the properties of the four-velocity ua and the
radial vector ea, i.e. uaua ¼ �1 and eaea ¼ 1, we find that

ut ¼ ffiffiffiffiffiffiffiffiffi
AðrÞp

; er ¼ ffiffiffiffiffiffiffiffiffiffi
BðrÞp

; (78)
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also, from the definitions of different covariant scalars, we
get

A ¼ �ubuarbea ¼ 1

2A

dA

dr

ffiffiffiffi
B

p
; (79)

� ¼ Nb
arbe

a ¼ 2

r

ffiffiffiffi
B

p
: (80)

R can be found in the usual way as a contraction of the
Riemann tensor, and X is derived from it as in (75). Thus,
we see any solution to the Eqs. (73)–(76), would uniquely
determine the metric for the spacetime.

VIII. AN EXAMPLE: SOME EXACT SOLUTIONS
FOR Rn GRAVITY

In this section we present, as an example, a few exact
solutions for Rn gravity, in absence of standard matter.
Specializing the choice of fðRÞ ¼ Rn, Eqs. (73)–(76) be-
comes

1

2
nr�

d�

dr
Rn�1 ¼

�
A� 1

2
�

�
�Rn�1 þ n� 2

3n
Rn

þ ðn� 1ÞRn�2Xð�þ 2AÞ; (81)

1

2
nr�

dA
dr

Rn�1 ¼ �ðAþ�ÞARn�1 þ 1� 2n

6n
Rn

� ðn� 1ÞRn�2XA ; (82)

1

2
r�

dR

dr
¼ X; (83)

1

2
r�nðn� 1ÞdX

dr
Rn�2 ¼ 2� n

3
Rn � Xð�þAÞ

� nðn� 1Þðn� 2ÞRn�3X2: (84)

A. Schwarzschild solution

Substituting R ¼ 0, dR=dr ¼ 0 in the above set of
equations, we see that the equations are satisfied trivially

provided that n ¼ 1; 2;� 3. However, since R ¼ 0 is by
itself a differential constraint involving � and A, hence
any � and A that ensures a zero Ricci scalar would solve
the system. As we know the following solution

� ¼ 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r

s
; A ¼ m

r2

�
1� 2m

r

��ð1=2Þ
; (85)

with Eqs. (79) and (80) gives the usual Schwarzschild
metric in ðt; r; 
;�Þ coordinates that has a zero Ricci
scalar; hence, the above solution is the solution of the
system.

B. A solution with constant nonzero Ricci scalar

As described before if we substitute X ¼ 0, R ¼ R0 � 0
in the above system of equations then a solution is possible
if and only if n ¼ 2. In that case the solutions of the other
two functions are

� ¼ 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
þ R0

3
r2

s
; (86)

A ¼ mþ R0r
2

r2

�
1� 2m

r
þ R0

3
r2
��ð1=2Þ

: (87)

This is the usual Schwarzschild-dS/AdS solution depend-
ing on the sign of R0.

C. A solution with nonconstant Ricci scalar vanishing at
infinity

To find more nontrivial solutions of the above system of
equations, let us use a Schwarzschild like ansatz,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1r

� þ C2r
�

q
; R ¼ C3=r

ð > 0Þ ; (88)

such that the Ricci scalar vanishes at infinity. We use these
ansatz in the system of equations and then algebraically
solve for the powers and coefficients such that the system is
identically satisfied. With this choice we get the following
solution:

A ¼ �Cð5� 4nÞrðð4n2�11nþ9Þ=ðn�2ÞÞ þ ð4n2 � 6nþ 2Þr�1

2ð2� nÞ

�
�ð1þ 2n� 2n2Þð7� 10nþ 4n2Þð1þ Crð�ð7�10nþ4n2Þ=ð2�nÞÞ

ð2� nÞ2
��ð1=2Þ

; (89)

� ¼ 2

r

� ð1þ 2n� 2n2Þð7� 10nþ 4n2Þ
ð2� nÞ2ð1þ Crð�ð7�10nþ4n2Þ=ð2�nÞÞ

��ð1=2Þ
; (90)

R ¼ 6nðn� 1Þ
ð2nðn� 1Þ � 1Þr2 ; (91)
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X ¼ � 12nðn� 1Þ
ð2nðn� 1Þ � 1Þr3

�
� ð1þ 2n� 2n2Þð7� 10nþ 4n2Þ
ð2� nÞ2ð1þ Crð�ð7�10nþ4n2Þ=ð2�nÞÞ

��ð1=2Þ
: (92)

Now solving for the metric coefficients, we get

AðrÞ ¼ rð2n�2Þðð2n�1Þ=ð2�nÞÞ þ C

rðð5�4nÞ=ð2�nÞÞ ;

1

BðrÞ ¼
ð2� nÞ2

ð7� 10nþ 4n2Þð1þ 2n� 2n2ÞÞ
�

�
1þ C

rðð7�10nþ4n2Þ=ð2�nÞÞ

�
: (93)

This solution was originally found by Clifton [32]. The
solution reduces to Schwarzschild for n ¼ 1 and valid for
n < ð1þ ffiffiffi

3
p Þ=2 beyond which the metric has unphysical

signature. However, for n 2 ð1; ð1þ ffiffiffi
3

p Þ=2Þ the Ricci sca-
lar is negative and hence the action is only real valued if n
is an even rational number. That is in its lowest form the
numerator of the fraction is even. This problem can be also
be resolved by assuming the absolute value of the Ricci
scalar in the action. However, in that case the
Schwarzschild limit at n ¼ 1 is not possible as jRj is not
differentiable at R ¼ 0 and hence does not belong to the
class C3 functions. It is also interesting to note that in spite
of the Ricci scalar vanishing at infinity this solution is not
asymptotically flat.

IX. CONCLUSION

In this paper we have analyzed static spherically sym-
metric metrics within the fðRÞ gravity framework. Using
the 1þ 1þ 2 formalism we were able to derive equations
describing these metrics for a general form of the function
f and a pointlike source. These equations have been used
to obtain a set of general conditions for the existence of
certain types of static spherically symmetric solutions. It is
important to note that our system of equations are much
simpler than what one obtains when writing the Einstein
field equations in terms of metric components and there-
fore it is much easier to find new solutions and general
covariant results. In particular, the results when fð0Þ ¼ 0
and f0ð0Þ ¼ 0 are much more transparent using this
approach.

Our results show that the presence of solutions with
constant Ricci scalar is influenced by the properties of
the derivatives of the function f up to the third order.
This implies that two fðRÞ models are indistinguishable
in this framework if differences only arise after the third
derivative of f at the given value of the Ricci scalar. Also

one can probe in general that a form of the Birkhoff
theorem exists for fðRÞ gravity only if fð0Þ ¼ 0 and
f0ð0Þ � 0, while in general there is more than a static
and spherically symmetric solution for the field equations.
It is also interesting to note that the conditions f0 > 0,

f00 > 0, which guarantee the attractive nature of the gravi-
tational interaction and the absence of tachyons [12] are
consistent with the form of Birkhoff’s theorem stated here.
This suggests a possible link between these conditions and
the Birkhoff theorem, something which definitely deserves
further study.
In order to extract observable results the 1þ 1þ 2

equations need to be further specialized choosing a specific
form of the radial coordinate. This is equivalent to the
choice of an observer in the 1þ 1þ 2 formalism, which,
unlike the 1þ 3 case, requires not only the specification of
a velocity field but also a specific spatial direction. The
requirement that the Gauss curvature has an inverse square
dependence offers a natural choice for this coordinate.
Once this is done given any fðRÞ theory of gravity (and

sufficient ingenuity) one can derive static and spherically
symmetric solution(s) for this theory. We have used a Rn

gravity as an example to derive some exact solutions. As
expected from our general considerations, since for this
class of models f0ð0Þ, fð0Þ ¼ 0, the system (59)–(62) does
not admit a unique solution and Birkhoff’s theorem is
violated.
It is worth to stress, however, that such considerations

are limited to the case of pointlike sources. It is known that
the situation can be really different in the case of extended
ones [33]. Such issues will be treated elsewhere.
As a final comment we would like to point out that if one

admits the fact that in this framework the Birkhoff theorem
is violated, any Newtonian limit of a background solution
will give, in principle, a different results [34]. This means
that there is no way to calculate the physical Newtonian
potential without knowing the exact background which
characterizes the entire Universe. This is not surprising
because in these theories the relation between local physics
and the rest of the Universe is much tighter that in general
relativity due to their relation with Mach’s principle.
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APPENDIX: USEFUL RELATIONS

In this appendix we give some useful relation needed for
the calculations performed in the text.
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The full covariant derivatives of ea and ua are

raeb ¼ �Auaub � ua�b þ ð�þ 1
3�Þeaub

þ ð�a � "ac�
cÞub þ eaab þ 1

2�Nab

þ �"ab þ �ab ; (A1)

raub ¼ �uaðAeb þAbÞ þ eaebð13�þ �Þ
þ eað�b þ "bc�

cÞ þ ð�a � "ac�
cÞeb

þ Nabð13�� 1
2�Þ þ�"ab þ�ab: (A2)

The covariant time derivative of ea is given by

_e a ¼ Aua þ �a; where A ¼ ea _ua ; (A3)

and �a is the component lying in the sheet.
The new variables aa, �, �, �ab and �a are fundamental

objects of the spacetime, and their dynamics give us infor-
mation about the spacetime geometry. The spatial cova-
riant derivative of a scalar � is defined as

Da� ¼ �̂ea þ �a�; (A4)

while for any vector �a orthogonal to both ua and ea (i.e.
�a lies in the sheet), the various parts of its spatial deriva-
tive may be decomposed as follows (Note that a bar on a
particular index indicates that the vector or tensor lies in
the sheet.):

Da�b ¼ �eaeb�ca
c � eb½12��a þ ð�"ac þ �acÞ�c�

þ ea�̂ �b þ �a�b: (A5)

Similarly, for a tensor �ab (where �ab ¼ �fabg):

Da�bc ¼ �2eaeðb�cÞdad þ ea�̂bc þ �a�bc

� 2eðb½12��cÞa þ�cÞ
dð�"ad þ �adÞ�: (A6)

For the Levi-Civita 2-tensor, we have

"abe
b ¼ 0 ¼ "ðabÞ ; (A7)

"abc ¼ ea"bc � eb"ac þ ec"ab ; (A8)

"ab"
cd ¼ Na

cNb
d � Na

dNb
c ; (A9)

"a
c"bc ¼ Nab ; "ab"ab ¼ 2; (A10)

and

_" ab ¼ �2u½a"b�cAc þ 2e½a�b�c�c ;

"̂ab ¼ 2e½a"b�cac ; �c"ab ¼ 0:
(A11)

For the projection tensor, we have

_N ab ¼ 2uða _ubÞ � 2eða _ebÞ ¼ 2uðaAbÞ � 2eða�bÞ ;

N̂ab ¼ �2eðaabÞ ; �cNab ¼ 0:
(A12)
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