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We present a numerical code for calculating the local gravitational self-force acting on a pointlike

particle in a generic (bound) geodesic orbit around a Schwarzschild black hole. The calculation is carried

out in the Lorenz gauge: For a given geodesic orbit, we decompose the Lorenz-gauge metric perturbation

equations (sourced by the delta-function particle) into tensorial harmonics, and solve for each harmonic

using numerical evolution in the time domain (in 1þ 1 dimensions). The physical self-force along the

orbit is then obtained via mode-sum regularization. The total self-force contains a dissipative piece as well

as a conservative piece, and we describe a simple method for disentangling these two pieces in a time-

domain framework. The dissipative component is responsible for the loss of orbital energy and angular

momentum through gravitational radiation; as a test of our code we demonstrate that the work done by the

dissipative component of the computed force is precisely balanced by the asymptotic fluxes of energy and

angular momentum, which we extract independently from the wave-zone numerical solutions. The

conservative piece of the self-force does not affect the time-averaged rate of energy and angular-

momentum loss, but it influences the evolution of the orbital phases; this piece is calculated here for

the first time in eccentric strong-field orbits. As a first concrete application of our code we recently

reported the value of the shift in the location and frequency of the innermost stable circular orbit due to the

conservative self-force [Phys. Rev. Lett. 102, 191101 (2009)]. Here we provide full details of this analysis,

and discuss future applications.
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I. INTRODUCTION

The prospects for detecting gravitational waves from the
inspiral of compact objects into massive black holes have
motivated, over the past decade, research in effort to under-
stand the general-relativistic orbital evolution in such sys-
tems. The underlying elementary theoretical problem is
that of a pointlike mass particle in a strong-field orbit
around a Kerr black hole of a much larger mass. The
dynamics of such systems can be described in a perturba-
tive fashion in terms of an effective gravitational self-force
(SF) [1–5]; knowledge of this force is a prerequisite for
describing the precise evolution of the orbit and the phas-
ing of the emitted gravitational waves. There is an active
research program focused on the development of computa-
tional methods and actual working codes for the SF in Kerr
spacetime [6]. This research agenda is being pursued in
incremental steps, through exploration of a set of simpli-
fied model problems with increasing complexity and
physical relevance. Much of the initial work has concen-
trated on a scalar-field toy model [7–13], but more recently
workers have begun to tackle the gravitational case [14–
18]. The state of the art is represented by three independent
calculations of the gravitational SF for circular geodesic
orbits in Schwarzschild geometry [15,17,18]. These calcu-
lations use different analytic and numerical methods (and
they even invoke different physical interpretations of the
SF), but they were shown to be fully consistent with each
other [18,19]. These calculations were also shown to be

consistent with results from post-Newtonian theory in the
weak-field limit [17,20,21].
In the current work we extend the analysis of Ref. [15]

(hereafter ‘‘paper I’’) from the special class of circular
geodesics to generic (bound) geodesics of the
Schwarzschild geometry. This generalization is astrophysi-
cally relevant because real inspirals often remain quite
eccentric up until the eventual plunge into the massive
hole [22]. At a more fundamental level, the generalization
to eccentric orbits is interesting because it allows us to start
exploring in earnest the conservative effects of the SF—for
instance, how it influences the orbital precession. Eccentric
orbits have already been considered in calculations of the
scalar [12] and electromagnetic (EM) [23] SFs by Haas.
While these calculations are of a less direct astrophysical
relevance, they offer an important test ground for computa-
tional techniques potentially applicable in the gravitational
problem too. Indeed, many elements of our numerical
method take their inspiration from Haas’ work.
The numerical code we present here takes as input the

two orbital parameters of an eccentric Schwarzschild geo-
desic (the semilatus rectum and eccentricity, to be defined
below), and returns the value of the Lorenz-gauge gravita-
tional SF along this geodesic. The dissipative and conser-
vative pieces of the SF are returned separately. Here we do
not consider the evolution of the orbit under the effect of
the SF, but leave this important next step for future work.
We envisage using, to this end, a version of the ‘‘osculating
geodesics’’ method [24], which takes as input the value of
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the SF along geodesics tangent to the actual inspiral orbit.
A systematic framework for analyzing the long-term evo-
lution of the inspiral orbits, using multiple-scale perturba-
tion methods, was recently developed by Hinderer and
Flanagan [25] (cf. Sec. VII of Gralla and Wald [4]).

Our strategy is similar to that of paper I. Its basic
elements are (i) the Lorenz-gauge perturbation formalism
of Barack and Lousto [26], (ii) a finite-difference algorithm
for numerical integration of the Lorenz-gauge perturbation
equations in the time domain, and (iii) mode-sum regulari-
zation [27–30]. The perturbation formalism is based on a
tensor-harmonic decomposition of the perturbed Einstein
equations in the Lorenz gauge. The equations are aug-
mented with ‘‘gauge damping’’ terms designed to suppress
gauge violations [26], and are written as a set of 10 hyper-
bolic equations (for certain linear combinations of metric
components) which do not couple at their principal parts.
These equations are sourced by the (tensor-harmonic
modes of the) particle’s energy-momentum, modeled
with a delta-function distribution along the specified ec-
centric geodesic. The equations are solved numerically
mode by mode in the time domain using characteristic
coordinates on a uniform 1þ 1-dimensions mesh. The
nonradiative monopole and dipole modes cannot be
evolved stably in this manner; instead, we solve for these
two modes separately in the frequency domain, using the
recently introduced ‘‘extended homogeneous solutions’’
technique [31] to cure the irregularity of the Fourier sum
near the particle. The code records the value of the pertur-
bation modes and their derivatives along the orbit (each
mode has a C0 behavior at the particle and hence a well-
defined value there, as well as a well-defined ‘‘one-sided’’
derivatives). These values are then fed into the ‘‘mode-sum
formula’’ [29], which returns the physical SF through
mode-by-mode regularization.

One of the primary advantages of the time-domain
approach is that eccentric orbits—even ones with large
eccentricity—are essentially ‘‘as easy’’ to deal with as
circular orbits, with computational cost being only a
weak function of the eccentricity [32]. Also, a time-domain
code for circular orbits can be upgraded with relative ease
to accommodate eccentric orbits (such a generalization is
radically less straightforward in the frequency domain).
Still, there are several important technical issues which
arise in the time-domain upgrade from circular to eccentric
orbits, and need to be addressed. We list some of these
issues below.

(i) Most obvious, the computational burden increases
significantly because the parameter space for geo-
desics turns from 1D (circular) to 2D (eccentric).
Moreover, for each given geodesic parameters the SF
becomes a function along the orbit (it has a constant
value along a circular geodesic), and one is required
to obtain this function over an entire radial period.
The latter becomes a technical hurdle in situations

where the radial period is very large,e.g., close to the
last stable orbit, or for orbits with very large radii.

(ii) In paper I we were able to improve the convergence
rate of our finite-difference algorithm using a
Richardson-type extrapolation to the limit of a van-
ishing numerical grid-cell size. That was possible
because in the circular-orbit case the numerical mesh
could be easily arranged such that the local discreti-
zation error varied smoothly along the orbit. This
cannot be achieved in any simple way when the orbit
is eccentric, and as a result one cannot implement a
similar Richardson extrapolation. The practical up-
shot is that one is forced to implement a higher-order
finite-difference scheme: a 2nd-order-convergent al-
gorithm (as in paper I) proves insufficient in practice.
For this work we developed an algorithm with a 4th-
order global convergence. The algorithm takes a
rather complicated form near the particle’s trajec-
tory, where the field (the Lorenz-gauge metric per-
turbation) has discontinuous derivatives. To
somewhat lessen this complexity (and reduce the
number of grid points needed as input for the
finite-difference formula) the algorithm makes use
of suitable junction conditions across the orbit. The
eventual numerical scheme is considerably more
sophisticated—and involved—compared to that of
paper I.

(iii) In the mode-sum scheme one first calculates the
contribution to the ‘‘full’’ (preregularization) force
from each tensorial-harmonic mode of the perturba-
tion, and then decomposes this into spherical har-
monics. The necessary input data for the mode-sum
formula are the individual spherical-harmonic con-
tributions. This procedure involves the implementa-
tion of a tensor-scalar coupling formula, whose
details depend on the orbit in question. The coupling
formula simplifies considerably in the circular-orbit
case; it reverts to its full complicated form [Eq.
(2.25) with Appendix C] when eccentric orbits are
considered.

(iv) The computation of the monopole and dipole con-
tributions to the SF (which we perform in the fre-
quency domain, as mentioned above) becomes much
more involved in the eccentric-orbit case. First, the
spectrum of the orbital motion now includes all
harmonics of the radial frequency, and one has to
calculate and add up sufficiently many of these
harmonics. A second, more technically challenging
complication arises from the fact that the perturba-
tion becomes a nonsmooth function of time across
the orbit (at a given radius), which disrupts the high-
frequency convergence of the Fourier sum at the
particle (a behavior reminiscent of the Gibbs phe-
nomenon). A general method for circumventing this
problem in frequency-domain calculations was de-
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vised recently in Ref. [31], and we implement it here
for the first time.

(v) In exploring the physical consequences of the SF it is
useful to split the SF into its dissipative and conser-
vative pieces, and discuss their corresponding effects
in separate. This splitting is straightforward in the
circular-orbit case: The conservative piece is pre-
cisely the (Schwarzschild) r component of the SF,
while the (Schwarzschild) t, ’ components exactly
account for the entire dissipative effect. This is no
longer true for eccentric orbits, where each of the
Schwarzschild components mixes up both dissipa-
tive and conservative pieces, and it is not immedi-
ately obvious how to extract these pieces
individually. Here we suggest and implement a sim-
ple new method for constructing the dissipative and
conservative pieces out of the computed
Schwarzschild components of the SF (without re-
sorting to a calculation of the advanced perturba-
tion). The method takes advantage of the general
symmetries of Schwarzschild geodesics.

With the computational framework in place, we can start
to explore the physical effects of the gravitational SF. In
this article we concentrate on two such effects. First, we
calculate the loss of orbital energy and angular momentum,
over one radial period, due to the dissipative piece of the
SF. We extract these quantities directly from the computed
SF along the geodesic orbit (for a sample of orbital pa-
rameters). The ‘‘lost’’ energy and angular momentummust
be balanced by the total amount of energy and angular
momentum in the gravitational waves radiated to spatial
infinity and into the black hole over a radial period. We
derive formulas for extracting these quantities from the far-
zone and near-horizon numerical Lorenz-gauge solutions,
and demonstrate numerically that they agree well with the
values computed from the local SF. Our values for the
energy and angular-momentum losses also agree with
those previously obtained by others using other methods.

The second effect we consider is conservative, and
cannot be inferred indirectly from the asymptotic gravita-
tional waves: It is the conservative shift in the location and
frequency of the innermost stable circular orbit (ISCO).
The analysis of the ISCO shift requires knowledge of the
SF along slightly eccentric geodesics near the last stable
orbit, and our code provides the necessary SF data for the
first time. We reported the results in a recent paper [33],
and here we describe our analysis in full detail. The quan-
titative determination of the ISCO shift is important in that
it provides a strong-field benchmark for calibration of
approximate (e.g., post-Newtonian) descriptions of binary
inspirals. Our result for the ISCO frequency shift has al-
ready been incorporated by Lousto et al. in their ‘‘empiri-
cal’’ fitting formula for predicting the remnant mass and
spin parameters in binary mergers [34,35]; and by Damour
[21] for breaking the degeneracy between certain unknown
parameters of the effective one body (EOB) formalism.

Perhaps of a more direct relevance to the problem of the
phase evolution in binaries with extreme mass-ratio is the
effect of the SF on the periapsis precession of the eccentric
orbit—also a conservative effect. SF corrections to the
precession rate have been analyzed for weak-field orbits
and within the toy model of the EM SF [36,37], but never
before for the gravitational problem in strong field. Our
code generates the SF data necessary to tackle this problem
for the first time. We leave the detailed analysis of SF
precession effects to a forthcoming paper.
The paper is organized as follows. In Sec. II we review

the relevant theoretical background: bound geodesics in
Schwarzschild geometry, the Lorenz-gauge metric pertur-
bation formulation, and the construction of the SF via the
mode-sum formula. Section III describes our numerical
method in detail, and in Sec. IV we present numerical
results for a few sample eccentric orbits, including a
‘‘zoom-whirl’’ orbit. We explain how the dissipative and
conservative pieces of the computed SF can be extracted
from the numerical data, and present these two pieces
separately in a few sample cases. We also analyze the
dissipative effect of the SF and demonstrate the consis-
tency between the dissipated energy and angular momen-
tum inferred from the local SF, and that extracted from the
asymptotic gravitational waves. Section V covers the
ISCO-shift analysis, and in Sec. VI we summarize and
discuss future applications of our code.
Throughout this work we use standard geometrized units

(with c ¼ G ¼ 1), metric signature�þþþ , and (unless
indicated otherwise) Schwarzschild coordinates x� ¼
ðt; r; �; ’Þ.

II. THEORETICAL BACKGROUND

A. Eccentric geodesics in Schwarzschild geometry

In this work we consider a pointlike particle with mass�
in a bound orbit around a Schwarzschild black hole of mass
M � �. In the limit� ! 0 the trajectory of the particle is
a timelike geodesic of the background Schwarzschild
spacetime. We parameterize this geodesic by proper time
�, in the form x�p ð�Þ ¼ ðtpð�Þ; rpð�Þ; �pð�Þ; ’pð�ÞÞ, with

corresponding four-velocity u� ¼ dx
�
p =d�. Without loss

of generality we take �pð�Þ ¼ �=2. The geodesic equa-

tions of the particle are given in integrated form as

dtp

d�
¼ E

fðrpÞ ;
d’p

d�
¼ L

r2p
; (2.1)

�
drp
d�

�
2 ¼ E2 � Rðrp;L2Þ; Rðr;L2Þ � fðrÞ

�
1þL2

r2

�
;

(2.2)

where f � 1� 2M=r, and E � �ut and L � u’ are the

integrals of motion corresponding to the particle’s specific
energy and angular momentum.
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When L2 > 12M2 the effective potential of the radial
motion, Rðr;L2Þ, has a maximum and a minimum and
hence eccentric (bound) orbits exist. These orbits can be
parametrized by the two values of rp at the turning points,

rmin and rmax (‘‘periastron’’ and ‘‘apastron,’’ respectively).
We may alternatively parameterize the orbits by the (di-
mensionless) semilatus rectum p and eccentricity e, de-
fined through

p � 2rminrmax

Mðrmin þ rmaxÞ ; e � rmax � rmin

rmax þ rmin

: (2.3)

From the two conditions RðrminÞ ¼ RðrmaxÞ ¼ E2, one
readily obtains

E 2 ¼ ðp� 2� 2eÞðp� 2þ 2eÞ
pðp� 3� e2Þ ;

L2 ¼ p2M2

p� 3� e2
:

(2.4)

Bound geodesics have 0 � e < 1 and p > 6þ 2e [38].
Points along the separatrix p ¼ 6þ 2e (where E2 equals
the maximum of the effective potential) represent margin-
ally unstable orbits. Stable circular orbits are those with
e ¼ 0 and p � 6, for which E2 equals the minimum of the
effective potential. The point ðp; eÞ ¼ ð6; 0Þ in the e-p
plane, where the separatrix intersects the e ¼ 0 axis, is
referred to as the innermost stable circular orbit; see Fig. 1.

Following Ref. [38], we introduce the monotonically
increasing ‘‘radial phase’’ parameter �, defined so that
the radial motion obeys

rpð�Þ ¼ pM

1þ e cos�
: (2.5)

Note � ¼ 2�n (n integer) correspond to periastron pas-
sages. In terms of �, the t and ’ components of the

geodesic equations (2.1) are reexpressed as

dtp
d�

¼ Mp2

ðp� 2� 2e cos�Þð1þ e cos�Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 2� 2eÞðp� 2þ 2eÞ

p� 6� 2e cos�

s
; (2.6)

d’p

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p� 6� 2e cos�

s
; (2.7)

and the radial velocity reads

ur ¼ Ee sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 6� 2e cos�

ðp� 2� 2eÞðp� 2þ 2eÞ

s
: (2.8)

The period of the radial motion can be derived by integrat-
ing Eq. (2.6) with respect to �:

Tr �
Z 2�

0

dtp

d�
d�: (2.9)

With the initial conditions tp¼’p¼0 at �¼0, the

particle’s geodesic trajectory is fully specified by
Eqs. (2.5), (2.6), and (2.7). The functions tpð�Þ and ’pð�Þ
cannot be written explicitly in analytic form, but it is easy
to obtain them numerically, for given p and e, at any
desired accuracy.

B. Gravitational self-force via mode-sum regularization

When � is finite (yet still much smaller than M), the
particle experiences a gravitational SF, F�½�Oð�2Þ�, and
the equation of motion is formally given by

�
D2~x�p

D~�2
¼ �

D~u�

D~�
¼ F�ð~�Þ: (2.10)

Here we use ~x�p ð~�Þ to denote the (nongeodesic) trajectory

under the effect of the SF, with ~� representing proper time
along this trajectory and ~u�p � d~x�p =d~�. The covariant

derivativesD=D~� are taken with respect to the background
geometry. From symmetry we have F� ¼ 0. Furthermore,
assuming the normalization ~u�~u

� ¼ �1, we have the or-
thogonality condition ~u�F

� ¼ 0, which interrelates the
remaining 3 components of the SF. All in all, then, there
are two nontrivial independent components of the SF to be
determined.
In this work we do not consider the evolution of the orbit

under the effect of the SF, i.e., we do not seek to obtain
consistent solutions of Eq. (2.10). Rather, we are interested
in calculating the value of the SF F�ð�Þ along a fixed,
geodesic orbit x�p ð�Þ, with given values of p, e. We envis-

age that the SF information F�ð�;p; eÞ (calculated over the
space of p, e) could be used, in a second step, to calculate
the orbital evolution in situations where at any given time
the orbit deviates only very slightly from a geodesic of the
background, and the evolution takes place over a time scale

Se
pa

ra
tri

x

e

bound
geodesics

ISCO

6 7 8 9 10
p

.2

.4

.6

.8

1

0

e

FIG. 1. Parameter space for bound geodesics in Schwarzschild
spacetime. The (dimensionless) ‘‘semilatus rectum’’ p and ‘‘ec-
centricity’’ e are defined in Eq. (2.3). Bound geodesics have e �
0 and p > 6þ 2e. Points along the separatrix p ¼ 6þ 2e rep-
resent marginally unstable orbits. Stable circular orbits lie along
the axis e ¼ 0 for p � 6. The point ðp; eÞ ¼ ð6; 0Þ is the ISCO.
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much longer than the radial period (‘‘adiabatic approxima-
tion’’). Here, however, we concentrate on the first step,
leaving the investigation of the orbital evolution for future
work.

The gravitational SF acting on the particle at any a point
along the geodesic x�p ð�;p; eÞ is calculated using the mode-

sum formula [27–29]

F� ¼ X1
l¼0

½F�l
full	 � A�	L� B�� � X1

l¼0

F�l
reg: (2.11)

Here L � lþ 1=2, and F�l
full are the multipole modes of the

full force field constructed from the (physical, retarded)
Lorenz-gauge metric perturbation as prescribed in
Sec. II D below. The subscript 	 refers to the two possible
values of F�l

full at x
�
p , resulting from taking one-sided radial

derivatives of the metric perturbation from either r ! rþp
or r ! r�p . A�	 and B� are the ‘‘regularization parameters,’’

given by [29,30]

At	 ¼ 
 �2ur

r2pfpU
; Ar	 ¼ 
�2E

r2pU
; A’

	 ¼ 0;

(2.12)

Bt ¼ �2Eur

�r2pfpU
3=2

½�K̂ðwÞ þ 2ð1�UÞÊðwÞ�;

Br ¼ � �2

�r2pU
3=2

½ðE2 þ fpUÞK̂ðwÞ

� ½2E2ð1�UÞ � fpUð1� 2UÞ�ÊðwÞ�;

B’ ¼ �2ur

�Lr2p
ffiffiffiffi
U

p
�
K̂ðwÞ �

�
1þ 2

L2

r2p

�
ÊðwÞ

�
; (2.13)

where K̂ðwÞ � R�=2
0 ð1� wsin2xÞ�1=2dx and ÊðwÞ �R�=2

0 ð1� wsin2xÞ1=2dx are complete elliptic integrals of

the first and second kind, respectively, fp � fðrpÞ ¼ 1�
2M=rp, and

w ¼ L2

r2p þL2
; U ¼ 1þL2

r2p
: (2.14)

It is important to remember that the gravitational SF [as
also the trajectory xpð�Þ itself] is a gauge-dependent entity
[39]. The mode-sum formula (2.11) is formulated in the
Lorenz-gauge, and requires as input the modes F�l

full de-

rived from the Lorenz-gauge metric perturbation. In our
approach this perturbation is obtained by tackling the
linearized Lorenz-gauge Einstein equations directly, in
the time domain. We proceed by reviewing the relevant
Lorenz-gauge perturbation formalism.

C. Metric perturbation in Lorenz gauge

Ref. [26] presented a formulation of the Lorenz-gauge
perturbation equations in Schwarzschild spacetime, ame-

nable to numerical treatment in the time domain. In paper I
we applied this formulation (with some minor modifica-
tions) in our study of circular orbits. Here we shall use the
same Lorenz-gauge formulation to obtain our metric per-
turbation, and we describe it here as applied to generic
eccentric orbits.
Let g�� be the metric of the background Schwarzschild

geometry, and h�� be the physical (retarded) metric per-

turbation due to the particle moving on the geodesic
x�p ð�;p; eÞ. We assume h�� is given in the Lorenz gauge,

i.e., it satisfies

�h ��
;� � Z� ¼ 0; (2.15)

where �h�� ¼ h�� � ð1=2Þg��h is the trace-reversed per-

turbation. The corresponding Einstein equations, linear-
ized in h�� over g��, take the compact form

�h ��
;�

;� þ 2R�
�
�
�
�h�� ¼ �16�T��; (2.16)

where a semicolon denotes covariant differentiation with
respect to g��, and h � g��h�� is the trace of h��. T�� on

the right-hand side is the energy-momentum tensor asso-
ciated with the particle, given by the distribution

T�� ¼ �
Z 1

�1
u�u�	

ð4Þðx� � x�p Þffiffiffiffiffiffiffi�g
p d�; (2.17)

where g is the determinant of g��.

It is well known that the hyperbolic set (2.16) admits a
well-posed initial-value formulation, and that the gauge
conditions (2.15) are satisfied automatically if only they are
satisfied on the initial (Cauchy or characteristic) surface.
However, in a time-domain numerical implementation of
Eqs. (2.16) it is usually impossible to satisfy the gauge
conditions (2.15) precisely on the initial surface, and, even
if one succeeded to do so, finite differencing errors would
usually lead to an uncontrollable violation of the gauge
conditions (unless one somehow actively imposes the
gauge conditions during the evolution). This problem,
and its resolution, were discussed in Ref. [26], and we
follow here the same method. To the original field equa-
tions (2.16) we add ‘‘divergence dissipation’’ terms, in the
form

�h ��
;�

;� þ 2R�
�
�
�
�h�� þ f0ðt� ~Z� þ t� ~Z�Þ ¼ �16�T��;

(2.18)

where t� ¼ ð1; f�1; 0; 0Þ and ~Z� ¼ ðfZr; Zr; Z�; Z’Þ.
While the inclusion of these extra terms does not (in
principle) affect the solutions of the equations, it guaran-
tees that violations of the gauge condition are efficiently
damped during the numerical time evolution. [This can be
shown by considering the divergence of Eq. (2.18), notic-
ing that this yields a hyperbolic equation for Z�, with a

manifest dissipation term [26].]
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Owing to the spherical symmetry of the background
geometry, the field equations (2.18) are separable into
tensorial spherical harmonics using the substitution

�h �� ¼ �

r

X1
l¼0

Xl
m¼�l

X10
i¼1

aðiÞl �hðiÞlmðr; tÞYðiÞlm
�� ð�; ’; rÞ (2.19)

(and similarly for the source T��). The tensorial-harmonic

basis YðiÞlm
�� and normalization factors aðiÞl (i ¼ 1; . . . ; 10)

are the ones defined in Ref. [26], except that here (as also in

paper I) we take Yð3Þlm
�� ! fðrÞ � Yð3Þlm

�� [this modification

is needed to achieve �hð3Þlm ! const as r ! 2M, in line with

the behavior of all other functions �hðiÞlm]. In Appendix A
we give explicit formulas for reconstruction of the various
Schwarzschild components �h�� out of the 10 scalarlike

functions �hðiÞlmðr; tÞ.
The above substitution reduces the field equations (2.18)

to the coupled set of two-dimensional hyperbolic equations

h �hðiÞlm þMðiÞl
ðjÞ �h

ðjÞlm ¼ SðiÞlm	ðr� rpÞ ði ¼ 1; . . . ; 10Þ:
(2.20)

Here a box represents the two-dimensional scalar-field
wave operator

h ¼ @uv þ VðrÞ; VðrÞ ¼ f

4r2

�
lðlþ 1Þ þ 2M

r

�
;

(2.21)

where v and u are the standard Eddington-Finkelstein null
coordinates, defined through v ¼ tþ r� and u ¼ t� r�,
with r� ¼ rþ 2M ln½r=ð2MÞ � 1�. The terms MðiÞl

ðjÞ �h
ðjÞlm

(summation over j implied) involve first derivatives of the
�hðjÞlm’s at most—hence the principal part of the set (2.20) is

entirely contained in the term h �hðiÞlm. SðiÞlm are the source
terms for the point particle, constructed from the tensor-
harmonic coefficients of T��. In Appendix B we give

explicit expressions for both MðiÞl
ðjÞ �h

ðjÞlm and SðiÞlm. The
time-radial functions �hðiÞlm also satisfy four elliptic equa-
tions, which arise from the Lorenz-gauge conditions (2.15).
These relations, too, are given in Appendix B.

D. Construction of the full-force mode

Given the Lorenz-gauge metric perturbation �h��, the

full-force modes F�l
full	 appearing in the mode-sum formula

(2.11) are formally constructed as we now prescribe.
First, following [28], we define the ‘‘full-force field’’ as

a tensor field at arbitrary spacetime points x, for a given
(fixed) worldline point xp (where the SF is to be calcu-

lated):

F�
fullðx; xpÞ ¼ �k��
	ðx; xpÞ �h�
;	: (2.22)

Here the trace-reversed metric perturbation, �h��, is eval-

uated at x, and

k��
	ðx; xpÞ ¼ g�	u�u
=2� g��u
u	 � u�u�u
u	=2

þ u�g�
u	=4þ g�	g�
=4; (2.23)

where g�	 is the background metric at x, and u� are the
values of the contravariant Schwarzschild components of
the four-velocity at xp (treated as fixed coefficients). In

principle, one can choose to extend the quantity k��
	 off
the worldline in any one of many different ways (a few
natural choices are discussed in Ref. [29]). The specific
choice made here is advantageous in that it guarantees a
finite mode-coupling in Eq. (2.25) below. Our choice of
extension does not correspond to any of the choices made
in [29], but it can be shown (using the methods of [29]) that
the regularization parameters associated with our exten-
sion are the same as those of the ‘‘fixed contravariant
components’’ extension defined in [29]—these are the
parameters whose values we state above in Eqs. (2.12) and
(2.13).
In the next step we expand �h�� in tensor harmonics as in

Eq. (2.19) and substitute in Eq. (2.22). Taking the limits
r ! rp and t ! tp (but maintaining the �, ’ dependence),

the full force takes the form

½F�
fullð�;’;rp; tpÞ�	 ¼�2

r2p

X1
l¼0

Xl
m¼�l

ff�lm0	 Ylm

þf�lm1	 sin2�Ylmþf�lm2	 cos� sin�Ylm
;�

þf�lm3	 sin2�Ylm
;��þf�4	ðcos�Ylm

� sin�Ylm
;� Þþf�lm5	 sin�Ylm

;�

þf�lm6	 sin3�Ylm
;�

þf�lm7	 cos�sin2�Ylm
;��g; (2.24)

where Ylmð�;’Þ are the spherical harmonics, and the co-
efficients f�lmn	 are constructed from the perturbation fields
�hðiÞlm and their first r and t derivatives, all evaluated at xp.

The labelsþ=� correspond to taking one-sided derivatives
from r ! rþp or r�p , respectively. The explicit expressions
for the f�lmn	 ’s are shown in Appendix C.
Since the mode-sum formula (2.11) requires as input the

spherical harmonic modes of the full force, we must now
reexpand Eq. (2.24) in terms of spherical harmonics. With
the help of the identities given in Appendix D, we obtain

F�l
full	 ¼ �2

r2p

Xl
m¼�l

Ylmð�p; ’pÞ � fF �l�3;m
ð�3Þ þF �l�2;m

ð�2Þ

þF �l�1;m
ð�1Þ þF �lm

ð0Þ þF �lþ1;m
ðþ1Þ þF �lþ2;m

ðþ2Þ
þF �lþ3;m

ðþ3Þ g	; (2.25)

where each of the functions F �lm
ðiÞ is a certain linear com-

bination of the f�lmn	 ’s (with the same l, m)—the explicit
relations are given in Appendix C. Hence, in general, a
given full-force mode F�l

full	 carries contributions from
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tensorial-harmonic functions �hðiÞ
l0m with l� 3 � l0 � lþ 3.

This coupling arises, of course, from the decomposition of
the tensor-harmonic contributions into spherical har-
monics.

E. Conservative and dissipative pieces of the SF

In analyzing the physical consequences of the SF—as
we start to do in Sec. V—it is useful to consider separately
its conservative and dissipative pieces. We therefore now
define these two pieces, and obtain a separate mode-sum
formula for each. To this end, we first introduce the nota-
tion F� � F�

ret, reminding us that the SF F� is derived
from the physical, retarded metric perturbation �h�� �
�hret��. We then define the ‘‘advanced’’ SF through

F�
adv ¼

X1
l¼0

½F�l
full	ð �hadv��Þ � A�	L� B��; (2.26)

where the modes Ffull	 are constructed precisely as pre-
scribed in the previous subsection, only this time using the
multipole modes of the advancedmetric perturbation, �hadv�� .

The regularization parameters A� and B� are the same as
those given above for the retarded SF. Since �hret�� and �hadv��

have the same local singular behavior near the particle
[40,41], the sum in Eq. (2.26) is guaranteed to converge.

Following Hinderer and Flanagan [25], we define the
SF’s conservative and dissipative components as the parts
of the SF which are (correspondingly) symmetric and
antisymmetric under ret $ adv:

F�ð� F�
retÞ ¼ F�

cons þ F�
diss; (2.27)

where

F�
cons � 1

2
ðF�

ret þ F�
advÞ; F�

diss �
1

2
ðF�

ret � F�
advÞ:
(2.28)

Substituting from Eqs. (2.11) (with F� ! F�
ret) and (2.26),

we obtain the mode-sum formulas

F�
cons ¼

X1
l¼0

½F�l
fullðconsÞ	 � A�	L� B�� � X1

l¼0

F�l
regðconsÞ;

(2.29)

F�
diss ¼

X1
l¼0

F�l
fullðdissÞ	 � X1

l¼0

F�l
regðdissÞ; (2.30)

where

F�l
fullðconsÞ	 � 1

2
½F�l

full	ð �hret��Þ þ F�l
full	ð �hadv��Þ�;

F�l
fullðdissÞ	 � 1

2
½F�l

full	ð �hret��Þ � F�l
full	ð �hadv��Þ�:

(2.31)

Notice that the dissipative piece of the SF requires no
regularization within the mode-sum scheme.

In Eqs. (2.29) and (2.30) the splitting of the SF into its
conservative and dissipative pieces is performed mode by
mode. This is useful in practice, because the lmodes of the
two pieces exhibit a rather different large-l behavior:
While F�l

fullðconsÞ	 normally admit an asymptotic power

series in 1=l [starting at OðlÞ], the modes of F�l
fullðdissÞ	 die

off at large l faster than any power of l. We will come back
to this issue in Sec. III D.
The extraction of the conservative and dissipative pieces

using Eqs. (2.29) and (2.30) entails a calculation of both
retarded and advanced metric perturbations. This would
normally double the computation time, as it requires one to
solve the perturbation equations twice, changing the
boundary conditions in order to obtain �hadv�� . Fortunately,

in the case of a Schwarzschild background we can avoid
this extra computational burden using a simple trick. For a
given eccentric geodesic, we think of the SF as a function
of � along the orbit. Without loss of generality we take � ¼
0 to correspond to a certain periapsis passage [i.e., rpð� ¼
0Þ ¼ rmin]. Then we have the following symmetry relation,
immediately following from Eq. (2.80) of [25]:

F�
advð�Þ ¼ �ð�ÞF�

retð��Þ (2.32)

(no summation over �), where �ð�Þ ¼ ð�1; 1; 1;�1Þ in

Schwarzschild coordinates. This relation can be used to
reexpress Eqs. (2.28) in terms of the retarded SF alone, in
the form

F�
consð�Þ ¼ 1

2
½F�

retð�Þ þ �ð�ÞF�
retð��Þ�;

F�
dissð�Þ ¼

1

2
½F�

retð�Þ � �ð�ÞF�
retð��Þ�:

(2.33)

Similar relations are applicable to the l modes F�l
fullðconsÞ	

and F�l
fullðconsÞ	 as well. These relations allow us to extract

the conservative and dissipative pieces of the SF in practice
without resorting to a calculation of the advanced pertur-
bation: All that is required is knowledge of the physical
(retarded) SF along the orbit [42].

III. NUMERICAL METHOD

In this section we describe the numerical method used to
solve the field equations (2.20) and to construct the local
SF along the eccentric orbit. Our numerical scheme is
basically similar to that of paper I—we still use finite
differencing on a characteristic grid in 1þ 1 dimen-
sions—but we have modified our code in several important
aspects. Most importantly, we abandon the use of a
Richardson extrapolation over the grid size: this technique
relies crucially on the uniformity of the local discretization
error along the orbit, which can no longer be guaranteed in
any simple way when dealing with eccentric orbits. To
accelerate the numerical convergence we have instead
upgraded our finite-difference scheme from second order
to fourth order. This introduces a significant amount of
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additional complexity, especially in the treatment of grid
cells traversed by the particle. Our method inherits from
Lousto [43] (fourth-order scheme for 1þ 1D evolution
with a particle source) and Haas [12] (implementation for
a scalar field), but we deviate from their methods in several
aspects.

A. Numerical domain and initial data

Our integration domain is discreterized using a two-
dimensional uniform mesh based on the double-null coor-
dinates v and u, as depicted in Fig. 2. The numerical
evolution starts with characteristic initial data

�h ðiÞðu ¼ u0; vÞ ¼ �hðiÞðu; v ¼ v0Þ ¼ 0 for all i; (3.1)

where the vertex ðv0; u0Þ corresponds to the particle’s
location at t ¼ 0 [so v0 ¼ �u0 ¼ r�pðt ¼ 0Þ where r�p ¼
r�ðrpÞ]. The early stage of the evolution will be dominated

by spurious radiation resulting from the imperfection of the
initial data. However, as demonstrated in [26] (also in
paper I), these spurious waves damp down rapidly, and
the error related to this behavior becomes negligible at late
time. Our numerical algorithm monitors the residual error
from spurious initial waves by comparing the SF values
recorded at regular intervals along the orbit. We then make
sure to evolve long enough for this error to drop below a set
threshold. For a fractional error threshold of 10�4 in the
final SF we find that the error from the spurious radiation
can be safely ignored after �2–3� Tr of evolution (de-
pending primarily on the value of p; larger p requires a
longer evolution).

Note that, in our setup, the numerical domain has no
causal boundaries. Therefore, no boundary conditions need
be imposed.

B. Finite-difference scheme

To derive our finite-difference equations, let us focus on
a grid cell of dimensions �v� �u ¼ h� h—say, the one
in Fig. 3 with center C and vertices 1, 2, 3, and 4. We shall

assume that the numerical values of hðiÞ at points 2–15 are

already known, and we wish to derive the value of hðiÞ at
point 1. To this end we consider the integral of the field
equations (2.20) over the cell with center C. The
uv-derivative term on the left-hand side is integrated in
exact form to giveZ

cell

�hðiÞ;uvdudv ¼ �hðiÞ1 � �hðiÞ2 � �hðiÞ3 þ �hðiÞ4 ; (3.2)

where �hðiÞn denotes the value of �hðiÞ at the grid point labeled
n in Fig. 3. The integral of the source term on the right-
hand side of the field equations is expressed as

S ðiÞ �
Z
cell

SðiÞlm	ðr� rpÞdudv

¼
�
2
Rtf
ti dtf

�1
p SðiÞlmðxpðtÞÞ; ðorbit crosses cellÞ;

0; ðorbit outside cellÞ;
(3.3)

where ti and tf are the values of t at which, correspond-

ingly, the particle enters and leaves the cell in question.
Since the integrand on the right-hand side depends only on
the known trajectory of the particle (obtained in advance
by solving the geodesic equation numerically), the integral
can be evaluated in exact form. Our code implements a 5-
point closed Newton-Cotes formula (‘‘Boole’s rule’’) to
evaluate this integral at each grid cell crossed by the
particle.
The rest of the terms appearing in the field equations

(2.20) [cf. Eqs. (B1)–(B10)] can each be expressed sche-

matically as either H � ~fðrÞ �hðjÞlm, H;v or H;r� , where
~fðrÞ

is some known function of r, j ¼ 1; . . . ; 10, and the indices

v t+r= *

t

r*

u t-r= *

INITIAL
SURFACE IN

IT
IA

L
SURFACE

“

“

EVENT

HORIZ
ON

“

“

NULL
INFINITY

FIG. 2 (color online). Numerical domain: a staggered 1þ
1-dimensional mesh in null coordinates v, u. r� is the standard
Schwarzschild ‘‘tortoise’’ radial coordinate. The dotted line
represents the trajectory of a typical eccentric orbit. In actual
implementation the mesh is, of course, much finer than it is
depicted here.

FIG. 3. Grid points involved in constructing our finite-
difference scheme. The point C is the center of the cell over
which we integrate the field equations, as described in the text.
The dimensions of each grid cell are �v��u ¼ h� h.
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ðjÞlm are suppressed for brevity. To complete the formu-
lation of the finite-difference scheme we need to obtain
finite-difference expressions for the integrals

I �
Z
cell

Hdudv;

Iv �
Z
cell

H;vdudv; and Ir� �
Z
cell

H;r�dudv:

(3.4)

We are aiming here to achieve a quartic [Oðh4Þ] global

numerical error in the fields �hðiÞlm. Hence, the local finite-
difference error for each of the integrals I, Iv, and Ir�
should not exceed Oðh6Þ. To formulate the necessary
finite-difference relations we will need to consider sepa-
rately the following 3 cases (referring again to the grid cell
with center C shown in Fig. 3): (1) The orbit does not cross
the triangular region shown in the figure (‘‘vacuum cell’’);
(2) The orbit crosses either the segment 2–11 or the seg-
ment 3–15 (‘‘near-orbit cell’’); (3) The orbit crosses either
the segment 1–2 or the segment 1–3 (‘‘orbit cell’’).

1. Vacuum cell

Consider the formal two-variable Taylor expansion of a
typical term H about the center of the cell in question—
point C in Fig. 3, with coordinates v ¼ vc and u ¼ uc. We
have

Hðu; vÞ ¼ XN
aþb¼0

cab
a!b!

ðu� ucÞaðv� vcÞb þOðhNþ1Þ;

(3.5)

where a, b, andN are non-negative integers (the latter to be
specified below), and cab are constant coefficients. Since
the desired error in I (the integral of H over the 2D cell) is
Oðh6Þ, we are allowed an error of Oðh4Þ in H and hence
take N ¼ 3 in Eq. (3.5). This leaves us with 10 expansion
coefficients cab, which we can solve for, using Eq. (3.5), in
terms of the values of H at the 10 points n ¼ 1–10 indi-
cated in Fig. 3. Substituting the values of these coefficients
back in Eq. (3.5) and integrating over the grid cell, we
obtain

I ¼ h2

24
½2H1 þ 10ðH2 þH3 þH4Þ � 4ðH5 þH6Þ

þ ðH7 �H8 �H9 þH10Þ� þOðh6Þ ½vacuum�;
(3.6)

where Hn denotes the value of H at grid point n. To
evaluate Iv and Ir� at local error Oðh6Þ, we need instead

truncate the Taylor series (3.5) at N ¼ 4, now leaving us
with 15 coefficients cab. These are determined by solving
Eq. (3.5) given the values Hn at the 15 points n ¼ 1–15.
Taking @v and @r� in Eq. (3.5) and integrating over the grid

cell gives

Iv ¼ h

24
½9ðH1 �H2Þ þ 19ðH3 �H4Þ � 5ðH6 �H9Þ

þ ðH10 �H14Þ� þOðh6Þ ½vacuum�; (3.7)

Ir� ¼
h

24
½28ðH3 �H2Þ � 5ðH6 �H5 �H9 þH8Þ

þ ðH10 �H7 �H14 þH12Þ� þOðh6Þ ½vacuum�;
(3.8)

which are the desired finite-difference expressions for Iv
and Ir� .

2. Near-orbit cell

The above derivation assumes that the fields �hðiÞlm (and
hence H) are sufficiently smooth across the region shown
in Fig. 3. This is no longer the case if the worldline of the
particle traverses this region, since H is generally non-
differentiable across the worldline, and the above Taylor-
series-based method would fail. Let us first consider the
simpler case, where the particle crosses either the segment
2–11 or the segment 3–15 (i.e., it does not traverse the
integration cell itself), as demonstrated in Fig. 4. In this
case the function Hðu; vÞ can still be expressed as a formal
Taylor series,

Hðu; vÞ ¼ XN
aþb¼0

c	ab
a!b!

ðu� ucÞaðv� vcÞb þOðhðNþ1ÞÞ;

(3.9)

but we now have two different sets of expansion coeffi-
cients, cþab and c�ab, depending on whether rðu; vÞ> rpðtÞ
or rðu; vÞ< rpðtÞ, respectively. As in the vacuum cell case,

the value of H at the grid points 1–15 provides 15 inde-
pendent equations for the unknown coefficients c	ab, which,
however, are now 30 in number. The necessary additional
15 relations between the various c	ab’s are obtained by

utilizing explicit junction conditions for H and its deriva-
tives across the particle’s orbit, as we now describe.

FIG. 4. Same as in Fig. 3, but now point C is located near the
particle’s worldline, represented by the dashed line. The finite-
difference scheme for this case is described in the text under
‘‘near-orbit cell.’’
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In Appendix E we derive explicit jump conditions for the

perturbation �hðiÞlm and its derivatives at a generic point x0
along the (known) geodesic worldline. Specifically (and
using the notation of Appendix E), we calculate the two

jumps ½ �hðiÞlm;u �0 and ½ �hðiÞlm;v �0, as well as the three jumps

½ �hðiÞlm;uu �0, ½ �hðiÞlm;uv �0, and ½ �hðiÞlm;vv �0, the 4 jumps in the various
third derivatives, and the 5 jumps in the various fourth
derivatives. Together with the continuity condition

½ �hðiÞlm�0 ¼ 0, we hence obtain 15 jump conditions in total.
Now referring back to our near-orbit cell scenario and to
Fig. 4, we take x0 to be the intersection of the worldline
with the past light cone of point 1, as demonstrated in the

figure. The 15 jump conditions for �hðiÞlm and its derivatives
at x0 readily translate into 15 jump conditions forH and its
derivatives at that point. Imposing these conditions in
Eq. (3.9) yields the required additional 15 independent
linear equations for the coefficients c	ab. Our algorithm

solves the total of 30 equations for c	ab numerically, given

the numerical values of Hn at points 1–15.
Once the coefficients c	ab have been calculated, Eq. (3.9)

can be integrated over the cell of center C, giving

I ¼ h2
�
c	00 þ

h2

24
ðc	20 þ c	02Þ

�
þOðh6Þ ½near-orbit�;

(3.10)

Iv ¼ h2
�
c	01 þ

h2

24
ðc	21 þ 3c	03Þ

�
þOðh6Þ ½near-orbit�;

(3.11)

Ir� ¼ h2
�
c	01 � c	10 þ

h2

24
ðc	21 � 3c	30 þ 3c	03 � c	12Þ

�
þOðh6Þ ½near-orbit�; (3.12)

where the values cþab apply if C is located at r > rpðtÞ and
the values c�ab apply if C lies in the region r < rpðtÞ.

3. Orbit cell

The procedure described above for calculating the
Taylor coefficients c	ab is applicable even when the parti-

cle’s worldline crosses the considered grid cell. However,
the integration of H and its derivatives over the grid cell
then becomes slightly more involved, because the cell is
divided by the trajectory into two parts, in each of which
the coefficients take different values. Following Lousto
[43], we consider separately the four cases illustrated in
Fig. 5.

‘‘Case UU’’ (top left in Fig. 5): the particle enters the
cell crossing the v ¼ const segment 2–4, and leaves it
crossing the v ¼ const segment 1–3. The worldline splits
the cell into two bits, ‘‘left’’ and ‘‘right,’’ respectively,
labeled L and R in the figure. Denoting the corresponding
contributions to I by IL and IR, we have I ¼ IL þ IR,
where, using the expansion (3.9),

IL ¼
Z h=2

�h=2
d �v

Z h=2

�upð �vÞ
d �uH

¼ X3
aþb¼0

c�ab
ðaþ 1Þ!b!

Z h=2

�h=2
d �v �vb½ðh=2Þaþ1

� ð �upð �vÞÞaþ1� þOðh6Þ; (3.13)

IR ¼
Z h=2

�h=2
d �v

Z �upð �vÞ

�h=2
d �uH

¼ X3
aþb¼0

cþab
ðaþ 1Þ!b!

Z h=2

�h=2
d �v �vb½ð �upð �vÞÞaþ1

� ð�h=2Þaþ1� þOðh6Þ: (3.14)

Here �u � u� uc and �v � v� vc, and �upð �vÞ represents

the value of �u on the trajectory, viewed as a function of �v.
Similar expressions are easily obtained for Iv and Ir� .

‘‘Case VU’’ (top right in Fig. 5): the particle enters the
cell crossing the u ¼ const segment 3–4, and leaves it
crossing the v ¼ const segment 1–3. We denote the entry
v value by vi and the exit u value by uf, and further denote

�vi ¼ vi � vc and �uf ¼ uf � uc. We obtain, in this case,

FIG. 5. Illustration of the four cases considered in formulating
the finite-difference equation for grid cells traversed by the
particle’s worldline (here represented by dashed lines). The
center of the cell is at ðu; vÞ ¼ ðuc; vcÞ, and in each case we
indicate the u, v coordinates of the two points where the particle
enters/leaves the cell.
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IL ¼
Z h=2

�h=2
d �v

Z h=2

�uf

d �uHþ
Z �uf

�h=2
d �u

Z �vpð �uÞ

�h=2
d �vH

¼ X3
aþb¼0

c�ab
ðaþ 1Þ!ðbþ 1Þ!

�
ðh=2Þbþ1½ðh=2Þaþ1

� ð �ufÞaþ1�½1þ ð�1Þb� þ ðaþ 1Þ

�
Z �uf

�h=2
d �u �ua½ð �vpð �uÞÞbþ1 � ð�h=2Þbþ1�

�
þOðh6Þ;

(3.15)

IR ¼
Z �uf

�h=2
d �u

Z h=2

�vpð �uÞ
d �vH

¼ X3
aþb¼0

cþab
a!ðbþ 1Þ!

Z �uf

�h=2
d �u �ua½ðh=2Þbþ1

� ð �vpð �uÞÞbþ1� þOðh6Þ; (3.16)

where �vpð �uÞ is the value of �v on the trajectory, expressed as

a function of �u. Once again, similar expressions can be
obtained for Iv and Ir� .

‘‘Case VV’’ (bottom left in Fig. 5): the particle enters the
cell crossing the u ¼ const segment 3–4, and leaves it
crossing the u ¼ const segment 1–2. In this case we obtain

IL ¼
Z h=2

�h=2
d �u

Z �vpð �uÞ

�h=2
d �vH

¼ X3
aþb¼0

c�ab
a!ðbþ 1Þ!

Z h=2

�h=2
d �u �ua½ð �vpð �uÞÞbþ1

� ð�h=2Þbþ1�; (3.17)

IR ¼
Z h=2

�h=2
d �u

Z h=2

�vpð �uÞ
d �vH

¼ X3
aþb¼0

cþab
a!ðbþ 1Þ!

Z h=2

�h=2
d �u �ua½ðh=2Þbþ1

� ð �vpð �uÞÞbþ1�; (3.18)

and similar expressions for Iv and Ir� .

‘‘Case UV’’ (bottom right in Fig. 5): the particle enters
the cell crossing the v ¼ const segment 2–4, and leaves it
crossing the u ¼ const segment 1–2. We denote the entry u
value by ui and the exit v value by vf, with �ui ¼ ui � uc
and �vf ¼ vf � vc. In this final case we have

IL ¼
Z �vf

�h=2
d �v

Z h=2

�upð �vÞ
d �uH

¼ X3
aþb¼0

c�ab
ðaþ 1Þ!b!

Z �vf

�h=2
d �v �vb½ðh=2Þaþ1

� ð �upð �vÞÞaþ1�; (3.19)

IR ¼
Z h=2

�vf

d �v
Z h=2

�h=2
d �uHþ

Z �vf

�h=2
d �v

Z �upð �vÞ

�h=2
d �uH

¼ X3
aþb¼0

cþab
ðaþ 1Þ!ðbþ 1Þ!

�
ðh=2Þaþ1½1þ ð�1Þa�

� ½ðh=2Þbþ1 � ð �vfÞbþ1� þ ðbþ 1Þ

�
Z �vf

�h=2
d �v �vb½ð �upð �vÞÞaþ1 � ð�h=2Þaþ1�

�
;

(3.20)

with similar expressions for Iv and Ir� .

4. Predictor-corrector method

In summary, recalling Eq. (3.2) and with reference to
Fig. 3, our basic finite-difference formula takes the form

�hðiÞ1 ¼ �hðiÞ2 þ �hðiÞ3 � �hðiÞ4 �
Z
cell

dudv½VðrÞ �hðiÞ þMðiÞ
ðjÞ �h

ðjÞ�
þ SðiÞ; (3.21)

where SðiÞ is given in Eq. (3.3) and the integral (over the
cell with center C in the figure) is evaluated with local error
Oðh6Þ as discussed above. A complication arises, since our
finite-difference expressions for the integral in Eq. (3.21)
involve the value of the perturbation at point 1 itself [as in,
e.g., Eq. (3.6)], which is the very unknown value wewish to
compute.
We overcome this difficulty using a type of predictor-

corrector algorithm, whereby we first approximate the
value of the field at the point in question (our point 1)
using extrapolation, and then apply our finite-difference
formula (3.21) iteratively, until the required accuracy is
achieved. Specifically, we use the values of the perturba-
tion H at the four points 3, 6, 10, and 15 (see Fig. 3) to
extrapolate the value H1 with an error of Oðh4Þ. If the
particle’s worldline happens to cross the null segment 1–
15 we instead use the points 2, 5, 7, and 11 for this
extrapolation. We then use the value of H1 thus obtained
as input in Eq. (3.21). Since the extrapolated terms enter
Eq. (3.21) multiplied by at least one power of h [see, e.g.,
Eqs. (3.6) and (3.7)], the resulting value ofH1 would have a
local error of Oðh5Þ. We then apply Eq. (3.21) once more,
with the new value of H1 as input. The output value of H1

following this second iteration should now have a local
error of Oðh6Þ as desired.
The above finite-difference scheme is designed to yield a

local error of Oðh6Þ in �hðiÞ1 at each grid point. Since the

overall number of grid points contributing to the accumu-
lated error scales as�h�2, we expect our scheme to show a
quartic [i.e., Oðh4Þ] numerical convergence.

C. Monopole and dipole modes

In the monopole case (l ¼ 0) the system of 10 field
equations (2.20) reduces to 4 equations only; it reduces
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to 6 equations for each of the two dipole modes ðl; mÞ ¼
ð1;	1Þ and to a single equation for the dipole mode
ðl; mÞ ¼ ð1; 0Þ. One may attempt to apply the above nu-
merical evolution scheme to these nonradiative modes as
well. However, numerical experimentation suggests to us
that the monopole and dipole cannot be evolved stably
using this scheme. A naive application of the evolution
scheme yields exponentially growing solutions, and, since
our scheme gives us no handle on the boundary conditions,
the occurrence of these unphysical solutions is difficult to
control.

Instead, we deal with the two modes l ¼ 0, 1 using the
standard frequency-domain method, just as in paper I. The
physical Lorenz-gauge monolpole and dipole are con-
structed from a basis of homogeneous frequency-mode
solutions of the underlying ordinary differential equations.
These homogeneous solutions are obtained numerically.
However, unlike in the circular-orbit case dealt with in
paper I, here we face the ‘‘Gibbs phenomenon,’’ since for
an eccentric orbit the perturbation is a nondifferentiable
function of coordinate time t at the particle’s location. We
have discussed this problem in depth in Ref. [31], and
proposed an elegant solution, whereby the correct physical
perturbation is constructed as a sum of ‘‘fake’’ frequency-
mode solutions whose Fourier sum converges exponen-
tially even at the particle’s position. Here we apply this
method in order to obtain the physical Lorenz-gauge
monopole and dipole modes. A full description of this
construction will be given in a forthcoming paper [44].

D. Implementation of the mode-sum scheme

Oncewe obtain the numerical values of the functions �hðiÞ
and their derivatives along the orbit (over a complete radial
period), we can construct the full-force modes F�l

full	 at any

point along the orbit through the procedure described in
Sec. II D. The mode-sum formula (2.11) then gives the
physical SF at that point. The application of the mode-
sum formula involves summation over contributions from
an infinite number of modes, from l ¼ 0 to l ¼ 1. In
reality, of course, we are only able to compute a small
number of low multipole modes—not least because the
numerical calculation becomes increasingly more demand-
ing with larger l. Since the mode-sum scheme converges
rather slowly (as�1=l), a calculation of the SF with even a
modest accuracy requires that we take a proper account of
the contribution from the truncated tail of the mode sum.

Let us denote by �l the highest spherical-harmonic lmode
calculated numerically (note this would entail calculating
all tensor-harmonic modes from l ¼ 0 to l ¼ �lþ 3).
Recalling the notation of Eq. (2.11), we express the SF as

F� ¼ X�l
l¼0

F�l
reg þ

X1
l¼�lþ1

F�l
reg � F�

l��l
þ F�

l>�l
; (3.22)

where F�
l��l

is the part calculated numerically, and F�
l>�l

is

the truncated tail we need to estimate. Here it is beneficial
to consider separately the conservative and dissipative
pieces of the SF. We remind that these can be constructed
individually using the mode-sum formulas (2.29) and
(2.30) via the procedure described in Sec. II E.
Consider the conservative piece first. The regularized

force modes in this case admit the large-l expansion

F�l
regðconsÞ ¼ D�

�2L
�2 þD�

�4L
�4 þ . . . ; (3.23)

whereD�
�2n are l-independent coefficients. An approxima-

tion for these coefficients can be obtained by fitting a
large-l subset of numerical data to Eq. (3.23). In practice
we take �l ¼ 15 and find the two coefficients D��2 and D��4

using the numerically derived modes 10 � l � 15. The
large-l tail piece of F�l

regðconsÞ is then approximated as

F�
cons;l>�l

� X1
l¼�lþ1

F�l
regðconsÞ

ffi D�
�2�1ð�lþ 3=2Þ þD�

�4�3ð�lþ 3=2Þ=3!;
(3.24)

where �nðxÞ is the polygamma function of order n, defined
in terms of the derivatives of the standard gamma function
as �nðxÞ ¼ dnþ1½log�ðxÞ�=dxnþ1. Since the leading term
omitted in Eq. (3.23) is of OðL�6Þ, we expect the absolute
error in our estimation of F�

cons;l>�l
to be of Oð�l�5Þ, or

Oð�l�4Þ fractionally. With �l ¼ 15 this amounts to a
�10�5 fractional error, which we can afford to tolerate
in this work.
Now consider the dissipative piece. We have that the

magnitude of F�l
regðdissÞ falls off faster than any power of 1=l

at large l. For the range of orbital parameters explored in
this work we find that the numerical value of F�l

regðdissÞ drops
below the round-off error at l� 7–12, and so the large-l

tail, estimated as F�
diss;l>�l

� F��l
regðdissÞ, can be safely ne-

glected taking �l ¼ 12. In practice, to avoid adding up
spurious round-off contributions, we truncate the mode-

sum series at �l ¼ minfl̂; 15g, where l̂ is the first value of l

above l ¼ 7 for which we find jF�l̂
regðdissÞj> jF�;l̂�1

regðdissÞj.
Our procedure for estimating the numerical error is as

follows. First, we estimate the discretization error in each
of the computed l-mode contributions (as a time series
along the orbit) by repeating our numerical evolution at a
coarser resolution and using the difference between the
high- and low-resolution data sets as a crude error estima-
tor. [For example, to obtain the data in Tables I, II, III, and
IV below we applied a cell size of �u� �v ¼ ð0:02MÞ2
for our highest resolution runs, then �u� �v ¼ ð0:04MÞ2
for error estimation.] The total error in the numerically
computed part of the SF is then taken (conservatively) as
the sum of the errors (in absolute value) from the various
modes. In the case of the conservative piece we add to this
the estimated standard fitting error for the large-l tail. For
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the fitting itself we use the high-resolution l-mode data
points, weighted by their estimated discretization errors.
This procedure yields a conservative estimate for the nu-
merical error in each of F�

consð�Þ and F�
dissð�Þ. It is this error

that we quote in the next section when presenting our
results.

E. Code validation and performance

Using a few test runs with a range of sample parameters,
we tested our code (i) for 4th-order numerical convergence,

(ii) against the SF results of paper I in the circular-orbit
case (e ¼ 0), (iii) by extracting the flux of energy and
angular momentum carried by the gravitational waves
and comparing with results in the literature (see
Sec. IVA), and (iv) by verifying that the dissipative com-
ponent of the computed SF precisely balances the above
flux (Sec. IVA). Our code seems to perform well, at a
standard fractional accuracy of <10�4 in the final SF,
across the parameter range 0 � e & 0:5 and p & 20M.
For larger eccentricities and/or larger values of p the

TABLE III. The gravitational SF at selected points along an eccentric geodesic with ðp; eÞ ¼ ð10; 0:3Þ. The structure of the table is
the same as that of Table. I.

� ��2Ft
cons ��2Ft

diss ��2Fr
cons ��2Fr

diss

0 0 �1:024 249ð7Þ � 10�3 2:303 169ð9Þ � 10�2 0

�=8 7:227 8ð2Þ � 10�4 �8:050 46ð5Þ � 10�4 2:216 59ð3Þ � 10�2 8:512 08ð8Þ � 10�4

�=4 1:161 48ð2Þ � 10�3 �3:678 55ð4Þ � 10�4 1:985 40ð2Þ � 10�2 1:177 85ð3Þ � 10�3

3�=8 1:247 664ð9Þ � 10�3 �6:107 8ð3Þ � 10�5 1:677 294ð8Þ � 10�2 9:636 01ð6Þ � 10�4

�=2 1:087 25ð1Þ � 10�3 3:343 4ð2Þ � 10�5 1:362 20ð1Þ � 10�2 5:654 58ð5Þ � 10�4

5�=8 8:111 60ð7Þ � 10�4 2:831 03ð3Þ � 10�5 1:088 087ð7Þ � 10�2 2:638 07ð5Þ � 10�4

3�=4 5:122 807ð9Þ � 10�4 1:104 18ð3Þ � 10�5 8:810 08ð2Þ � 10�3 1:063 75ð1Þ � 10�4

7�=8 2:408 105ð6Þ � 10�4 2:453 12ð6Þ � 10�6 7:537 692ð9Þ � 10�3 3:619 63ð8Þ � 10�5

� 0 2:836ð2Þ � 10�7 7:110 909ð3Þ � 10�3 0

TABLE I. The gravitational SF at selected points along an eccentric geodesic with ðp; eÞ ¼ ð7; 0:2Þ. � � �=M. In the first column �
is the radial phase along the orbit [cf. Eq. (2.5)], with � ¼ 0, � corresponding to periapsis and apoaspsis, respectively. Subsequent
columns display, in order, the conservative and dissipative pieces of Ft and the conservative and dissipative pieces of Fr. Values in
brackets are estimates of the uncertainty (due to numerical error) in the last displayed decimal place. For example, 5:384 4ð3Þ � 10�4

stands for ð5:3844	 0:0003Þ � 10�4. The values for F’ can be obtained from F�u� ¼ 0. Values for the SF along the inbound half of
the radial period (� � � � 2�) can be deduced based on the symmetry relations (2.33).

� ��2Ft
cons ��2Ft

diss ��2Fr
cons ��2Fr

diss

0 0 �4:063 30ð3Þ � 10�3 3:357 60ð5Þ � 10�2 0

�=8 5:384 6ð3Þ � 10�4 �3:479 62ð2Þ � 10�3 3:232 28ð4Þ � 10�2 3:148 027ð5Þ � 10�3

�=4 8:642 2ð6Þ � 10�4 �2:156 92ð2Þ � 10�3 2:909 89ð5Þ � 10�2 4:734 96ð1Þ � 10�3

3�=8 9:284 0ð3Þ � 10�4 �9:283 1ð1Þ � 10�4 2:507 09ð3Þ � 10�2 4:470 10ð1Þ � 10�3

�=2 8:284 6ð4Þ � 10�4 �2:516 8ð3Þ � 10�4 2:125 04ð2Þ � 10�2 3:204 188ð5Þ � 10�3

5�=8 6:611 85ð8Þ � 10�4 �3:385ð1Þ � 10�5 1:814 54ð2Þ � 10�2 1:893 665ð3Þ � 10�3

3�=4 4:607 08ð2Þ � 10�4 �1:124 1ð3Þ � 10�5 1:590 157ð5Þ � 10�2 9:633 74ð2Þ � 10�4

7�=8 2:364 09ð2Þ � 10�4 �2:713 8ð1Þ � 10�5 1:454 424ð7Þ � 10�2 3:905 16ð1Þ � 10�4

� 0 �3:461 4ð2Þ � 10�5 1:408 88ð2Þ � 10�2 0

TABLE II. The gravitational SF at selected points along an eccentric geodesic with ðp; eÞ ¼ ð7; 0:4Þ. The structure of the table is the
same as that of Table. I.

� ��2Ft
cons ��2Ft

diss ��2Fr
cons ��2Fr

diss

0 0 �1:509 113ð8Þ � 10�2 5:560 81ð6Þ � 10�2 0

�=8 1:800 6ð1Þ � 10�3 �1:142 319ð3Þ � 10�2 5:059 74ð8Þ � 10�2 1:828 802ð3Þ � 10�2

�=4 2:589 6ð2Þ � 10�3 �3:679 01ð9Þ � 10�3 3:908 32ð9Þ � 10�2 2:284 85ð2Þ � 10�2

3�=8 1:991 5ð2Þ � 10�3 1:269 76ð5Þ � 10�3 2:778 39ð3Þ � 10�2 1:605 261ð1Þ � 10�2

�=2 1:306 21ð8Þ � 10�3 1:745 87ð2Þ � 10�3 1:981 95ð4Þ � 10�2 7:597 98ð5Þ � 10�3

5�=8 9:866 2ð4Þ � 10�4 8:034 01ð6Þ � 10�4 1:470 71ð2Þ � 10�2 2:657 11ð2Þ � 10�3

3�=4 7:001 1ð1Þ � 10�4 2:396 343ð8Þ � 10�4 1:133 51ð1Þ � 10�2 7:762 46ð5Þ � 10�4

7�=8 3:496 21ð1Þ � 10�4 6:310 89ð3Þ � 10�5 9:281 15ð1Þ � 10�3 2:042 88ð2Þ � 10�4

� 0 2:925 05ð1Þ � 10�5 8:581 533ð5Þ � 10�3 0
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long evolution time required begins to play a prohibitive
role. Our code is still fully functional at (say) ðp; eÞ ¼
ð50; 0:9Þ, although in this case it becomes computationally
impractical to achieve our standard 10�4 accuracy running
on a standard (single) desktop computer.

In developing and testing our code we used a desktop
workstation with a 2.5 GHz 64-bit processor and 8 Gb of
RAM. A typical computation of the SF over a complete
radial period, with given parameters in the above ‘‘work-
able’’ range (and at the above accuracy standard), demands
4–8 days of CPU time on this machine.

IV. SAMPLE RESULTS

Figure 6 displays SF results for the sample parameters
ðp; eÞ ¼ ð10; 0:2Þ, (10, 0.5), and (10, 0.7). We plot the
temporal and radial components of the (total) SF along
the geodesic orbit as functions of coordinate time t. The
third nontrivial component, F’, can be obtained using the
orthogonality condition F�u� ¼ 0. In these plots t ¼ 0
corresponds to a periapsis passage (where r ¼ rmin), so
that, in accordance with the discussion at the end of
Sec. II E, the dissipative/conservative pieces of Ft are
described by the symmetric/antisymmetric parts of the Ft

graph, and conversely for Fr.
In Tables I, II, III, and IV we present numerical SF

results for the sets of orbital parameters ðp; eÞ ¼ ð7; 0:2Þ,
(7, 0.4), (10, 0.3), and (15, 0.3), for a few sample values of
the radial phase �. These numerical values can be used as a
reference for testing future calculations of the SF. In the
tables we display the conservative and dissipative pieces of
the SF separately. We only display values for Ft and Fr—
once again, the azimuthal component can be obtained
trivially using F�u� ¼ 0. Also, we only give values for
the ‘‘outbound’’ half of the orbital period (0 � � � �,
where _rp � 0); the values for the ‘‘inbound’’ half (� �
� � 2�) can be obtained immediately based on the sym-
metry relations (2.33).

A. Dissipation of energy and angular momentum

Given the local SF, we can calculate the (orbit-averaged)
rate at which orbital energy and angular momentum are

dissipated. This information is contained in the t and ’
components of the local SF. From Eq. (2.10) one readily
obtains

_Eð�Þ ¼ �½�utð�Þ��1Ftð�Þ;
_Lð�Þ ¼ ½�utð�Þ��1F’ð�Þ;

(4.1)

where in this section (unlike elsewhere in this work) an
overdot denotes d=dt. We shall assume here, in effect, that
�=M is sufficiently small that the back-reaction effect on
the orbit over a period of a few Tr can be neglected. At this

‘‘adiabatic’’ limit the functions _Eð�Þ and _Lð�Þ are periodic
with period Tr, and their time average is hence given by

h _Ei ¼ 1

Tr

Z 2�

0

_Ed�; h _Li ¼ 1

Tr

Z 2�

0

_Ld�: (4.2)

These averages determine the ‘‘secular’’ dissipative drift in

the values of E and L. Note that h _Ei and h _Li depend only
on the dissipative components Ft

diss and F’
diss (respec-

tively); it is immediately evident from the symmetry rela-
tions (2.33) that the contributions from Ft

cons and F’
cons

vanish upon orbital averaging. We also note that the dis-
sipative radial component Fr

diss (let alone Fr
cons) has no

effect on the values of h _Ei and h _Li. The secular drifts h _Ei
and h _Li must be balanced by the flux of energy and
azimuthal angular momentum in the gravitational waves
radiated to infinity and down the event horizon. Denoting
the respective energy fluxes by h _Ei1=EH and angular-

momentum fluxes by h _Li1=EH, we have the balance equa-

tions

��h _Ei ¼ h _Ei1 þ h _EiBH � h _Eitotal; (4.3)

��h _Li ¼ h _Li1 þ h _LiBH � h _Litotal: (4.4)

Two validation tests for our code now suggest them-
selves. First, we may attempt to extract the asymptotic
fluxes directly from our numerically calculated Lorenz-
gauge metric perturbation, and compare with results in
the literature. Second, using Eqs. (4.1) we can derive the

local quantities h _Ei and h _Li from our SF results, and check

TABLE IV. The gravitational SF at selected points along an eccentric geodesic with ðp; eÞ ¼ ð15; 0:3Þ. The structure of the table is
the same as that of Table. I.

� ��2Ft
cons ��2Ft

diss ��2Fr
cons ��2Fr

diss

0 0 �1:040 267ð9Þ � 10�4 1:139 648ð3Þ � 10�2 0

�=8 3:035 29ð3Þ � 10�4 �8:238 82ð8Þ � 10�5 1:102 460ð1Þ � 10�2 1:032 15ð6Þ � 10�4

�=4 5:075 93ð2Þ � 10�4 �3:915 7ð1Þ � 10�5 1:000 022ð2Þ � 10�2 1:439 70ð1Þ � 10�4

3�=8 5:682 96ð2Þ � 10�4 �8:332 0ð6Þ � 10�6 8:560 01ð2Þ � 10�3 1:197 34ð3Þ � 10�4

�=2 5:061 47ð1Þ � 10�4 1:979 28ð7Þ � 10�6 6:998 10ð1Þ � 10�3 7:218 3ð3Þ � 10�5

5�=8 3:765 543ð7Þ � 10�4 2:228 6ð2Þ � 10�6 5:578 997ð8Þ � 10�3 3:478 6ð1Þ � 10�5

3�=4 2:340 696ð1Þ � 10�4 8:471 9ð9Þ � 10�7 4:486 884ð2Þ � 10�3 1:441 8ð1Þ � 10�5

7�=8 1:084 278 5ð8Þ � 10�4 1:008 7ð2Þ � 10�7 3:814 949ð2Þ � 10�3 4:988 7ð8Þ � 10�6

� 0 �9:092ð5Þ � 10�8 3:590 240ð2Þ � 10�3 0
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whether the balance equations (4.3) and (4.4) are indeed
satisfied.

For both above tests we need a time-domain formulation
of the asymptotic fluxes in Schwarzschild spacetime. Such
a formulation was presented by Martel [45] and Poisson
[46,47], and we shall adopt it here. Martel-Poisson’s con-
struction is based on the Regge-Wheeler and Zerilli-
Moncrief perturbations functions �lm

RW and �lm
ZM, which

are related to our Lorenz-gauge variables through

�lm
RW ¼ � ðl� 2Þ!

2ðlþ 2Þ!
�



r
�hð9Þ þ f

r
�hð10Þ � �hð10Þ;r�

�
; (4.5)

�lm
ZM ¼ 2r

lðlþ 1Þð
rþ 6MÞ
�
�hð1Þ � �hð5Þ � f �hð6Þ

þ lðlþ 1Þrþ 2M

2r
�hð3Þ � r �hð3Þ;r� þ


rþ 6M

2
r
�hð7Þ

�
;

(4.6)

with 
 � ðlþ 2Þðl� 1Þ. In terms of �lm
RW and �lm

ZM, the
fluxes at infinity are given by [45,46]

h _Ei1 ¼ 1

64�

X
lm

ðlþ 2Þ!
ðl� 2Þ! h4j�

lm
RWðuÞj2 þ j _�lm

ZMðuÞj2i;

(4.7)

h _Li1 ¼ 1

64�

X
lm

ðlþ 2Þ!
ðl� 2Þ! ðimÞ

�
4�lm

RWðuÞ
Z u

�lm�
RWðu0Þdu0

þ _�lm
ZMðuÞ�lm�

ZM ðuÞ
	
; (4.8)

where an asterisk denotes complex conjugation, h
 
 
i in-
dicates a suitable time average (in our case an average over
a period Tr would suffice), and the functions �lm

RW and
�lm

ZM are evaluated at the ‘‘wave zone,’’ v ! 1 with fixed
u. The horizon fluxes h _EiBH and h _LiBH are given by ex-
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FIG. 6. The gravitational SF for a sample of eccentric orbits. We plot the temporal and radial components of the SF as functions of t
for the sample parameters ðp; eÞ ¼ ð10; 0:2Þ, (10, 0.5), and (10, 0.7). The solid and dashed lines show Ft and Fr, respectively. The ’
component of the SF can be trivially obtained using the orthogonality condition F�u� ¼ 0. In all graphs t ¼ 0 corresponds to a
periapsis passage. The radial periods for the e ¼ 0:2, 0.5, 0.7 plots are, respectively, Tr ’ 328M, 434M, 693M. We have cut out from
these plots the early part of the numerical solution, where nonphysical initial spurious waves dominate; the plots display only the later,
stationary part of the solutions, after the spurious waves have dissipated away. Note the small retardation manifest in the amplitude of
the total SF (with reference to the orbital phase). A similar retardation is observed in the scalar and EM cases [12,23].
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pressions similar to (4.7) and (4.8), merely replacing u !
v and evaluating �lm

RW and �lm
ZM near the horizon, i.e., at

u ! 1 with fixed v.
To calculate h _Ei1 and h _Li1, we start by recording the

numerical values of the perturbation functions �hðiÞðuÞ at
v ¼ 10 000M (approximating null infinity), over a com-
plete radial period. The desired fluxes at infinity are then
calculated using Eqs. (4.5), (4.6), (4.7), and (4.8), making
sure that the error from truncating the sum over l is
properly controlled (this is not difficult, as the mode sum
converges exponentially; in none of the cases considered
here we found it necessary to include modes beyond l ¼
12). In a similar manner we also construct the horizon
fluxes h _EiEH and h _LiEH, starting by extracting the numeri-

cal values �hðiÞðvÞ at very large u (approximating the hori-
zon; in practice we used u ¼ 10 000M), and then using
Eq. (4.5) and (4.6) with the horizon version of Eqs. (4.7)
and (4.8). We estimate the error in our flux values by
comparing results obtained at two different grid resolutions
(h ¼ 0:1 against h ¼ 0:2).

The eccentric-orbit fluxes h _Ei1 and h _Li1 were computed
independently in the past by several authors, including

Tanaka et al. [48] and Cutler et al. [38] [using frequency-
domain (FD) analyses based on Teukolsky’s formalism],
and later by Martel [45] [using a time-domain (TD) analy-
sis based on the Regge-Wheeler-Zerilli formalism]. Very
recently, Fujita et al. [49] developed a highly accurate FD
algorithm for flux calculations. In Table V we compare our
flux data with the TD data of Martel and the FD data of
Fujita et al. [50]. We look at two strong-field orbits, one
with moderate eccentricity (e ’ 0:19) and the other with a
rather high eccentricity (e ’ 0:76). All the results shown
agree with ours to within 1%. The FD results agree with
ours to within at least 0.01%, and in all cases the FD results
fall well within our estimated error bars. Martel’s TD
results were presented without error bars, but they are
likely less accurate than the FD ones.
In Tables VI and VII we carry out the second test

mentioned above, i.e., we check whether our numerical
SF data and flux data satisfy the balance equations (4.3)
and (4.4). The tables compare the time-averaged rates of

loss of orbital energy and angular momentum, �h _Ei and
�h _Li, with the corresponding total (horizonþ infinity)
fluxes h _Eitotal and h _Litotal. We find that the two are consis-

TABLE V. The flux of energy and angular momentum in the gravitational waves radiated to
infinity: comparison with results in the literature. The second column shows the values of the
radiative fluxes h _Ei1 and h _Li1, evaluated from our numerical results using Eq. (4.7) and (4.8) for
two sample values of p, e. Values in parentheses estimate the uncertainty in the last displayed
figure. The subsequent columns display, for comparison, the corresponding values obtained by
Martel [45] and Fujita et al. [49]. TD/FD indicate time/frequency-domain methods. Fujita et al.
claim all their displayed figures are significant.

This paper (TD) Martel (TD) Fujita et al. (FD)

p ¼ 7:504 78, e ¼ 0:188 917
h _Ei1 � 104��2 3.169(1) 3.1770 3.168 999 891 84

h _Li1 � 103��2M�1 5.967 60(8) 5.9329 5.967 552 156 08

p ¼ 8:754 55, e ¼ 0:764 124
h _Ei1 � 104��2 2.124(3) 2.1484 2.123 603 133 26

h _Li1 � 103��2M�1 2.777 4(6) 2.7932 2.777 359 389 96

TABLE VI. Testing our code using the global energy balance equation (4.3). The third column displays the (negative of the) average
rate of loss of orbital energy over one radial period, ��h _Ei, for strong-field orbits with semilatus rectum p ¼ 7 and a range of
eccentricities e. This quantity is calculated from local SF data using Eqs. (4.1) and (4.2). For comparison, we give in the fourth column
the corresponding values of the total energy fluxes h _Eitotal in the gravitational waves radiated to infinity and down the event horizon.
These fluxes are extracted from our numerically derived Lorenz-gauge metric perturbation, evaluated at the corresponding asymptotic
domains. Values in parentheses are estimates of the numerical error in the last displayed figure. The last column shows the relative
difference between ��h _Ei and h _Eitotal, confirming that the balance equations are satisfied to within our working precision. For
reference, the fifth column shows the relative contribution to h _Eitotal from horizon absorption alone, denoted h _EiBH. Manifestly, for the
strong-field orbits considered here and with our working precision of <10�4, black hole absorption cannot be neglected.

p e ��h _Ei � 104��2 h _Eitotal � 104��2 h _EiBH=h _Eitotal 1þ�h _Ei=h _Eitotal
7.0 0.0 4.001 63(5) 4.001 66(4) 1:3� 10�3 7� 10�6

7.0 0.1 4.216 96(9) 4.217(2) 1:6� 10�3 9� 10�6

7.0 0.2 4.898 3(2) 4.898(3) 2:7� 10�3 �6� 10�5

7.0 0.3 6.185 2(3) 6.185(4) 4:6� 10�3 �3� 10�5

7.0 0.4 8.543 6(5) 8.544(5) 7:8� 10�3 5� 10�5
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tent with each other to within the numerical accuracy. This
constitutes a significant, highly nontrivial validation test
for our code.

Tables VI and VII also display the partial contributions
to the fluxes h _Eitotal and h _Litotal coming form black hole
absorption, i.e., h _EiBH and h _LiBH. Note that our numerical
accuracy is sufficient to confidently resolve these (rela-
tively minute) horizon fluxes in the examples considered.
The consistency of the local dissipative SF with the asymp-
totic fluxes, at the accuracy level maintained here, is evi-
dent only when black hole absorption is correctly
accounted for. The data in Tables VI and VII represent a
first numerical test of the Martel-Poisson TD horizon-flux
formula.

B. Zoom-whirl orbits

An interesting family of eccentric geodesics, so called
‘‘zoom-whirl’’ orbits [51], has p� 6� 2e � � � 1.
These geodesics correspond to points in the p; e plane
lying very close to the separatrix (see Fig. 1), possessing
energy-squared E2 only slightly smaller than the maximum
of the effective potential Rðr;L2Þ. A particle on a zoom-
whirl orbit spends most of the radial period ‘‘whirling’’
around the central hole in a nearly circular orbit near
periapsis, before ‘‘zooming out’’ back to apoapsis distance.
During the whirl episode the particle may complete many
revolutions in’—the’ phase accumulated over one radial
period scales as �’ / lnð64e=�Þ [see Eq. (2.25) in [38]].

In Fig. 7 we show the SF along a sample zoom-whirl
orbit with parameters ðp; eÞ ¼ ð7:4001; 0:7Þ. All compo-
nents of the SF are relatively very small near the apoapsis,
as would be expected in virtue of the large distance from
the central black hole. During the brief ‘‘zoom-in’’ and
‘‘zoom out’’ episodes the particle has a large radial veloc-
ity component, and the SF changes rapidly. During the
whirl phase the particle moves on a nearly circular orbit,
and we expect the SF to settle to a constant value (this
expectation is indeed confirmed in studies of the scalar-
field and EM SFs [12,23]). We find that while this is true
for the t and ’ components, the r component of the SF
shows an unexpected linear-in-t behavior during the whirl.

Other zoom-whirl orbits we examined showed a similar
behavior.
In order to understand the above peculiarity we con-

ducted several experiments. The following points summa-
rize the information gained. (i) The linearly growing piece
of Fr is entirely dissipative; the conservative piece Fr

cons

shows no such linear growth (see Fig. 8). (ii) The linearly
growing piece of Fr

diss is entirely attributed to the time-

dependent piece of the monopole (l ¼ 0) contribution to
the SF; other modes show no such behavior. (iii) When
examining a sequence of zoom-whirl orbits approaching
the separatrix (� ! 0) with fixed e—see Fig. 8—we ob-
serve that the rate of linear growth decreases with �,
although rather slowly (slower than / �). It is possible
that our numerical results are in fact consistent with
Fr
diss ! 0 as � ! 0 (as expected), but this is difficult to
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FIG. 7. The gravitational SF for a zoom-whirl orbit with
parameters ðp; eÞ ¼ ð7:4001; 0:7Þ. In the upper panel we show
the (contravariant) t, r, and ’ components of the SF as functions
of time t along the orbit. The lower panel shows the radial
motion of the particle, for reference. t ¼ 0 is periapsis, and the
radial period is �789M. While Ft and F’ quickly settle to a
constant value during the quasicircular whirl episode (as one
would expect), the radial component exhibits a peculiar linear
behavior. This behavior is analyzed in the text (cf. Fig. 8).

TABLE VII. Testing our code using the global angular-momentum balance equation (4.4). The
structure of this table is similar to that of Table VI. The table compares between the average rate
of change of orbital angular momentum, h _Li, as inferred from local SF data, and the flux of
angular momentum carried away by the gravitational waves, h _Litotal, as inferred from the
asymptotic waveforms. We also indicate the relative contribution to h _Litotal from angular
momentum absorbed by the black hole, denoted h _LiBH.
p e �h _Li � 103��1 h _Litotal � 103ðM=�2Þ h _LiBH=h _Litotal 1þ�h _Li=h _Litotal
7.0 0.0 7.411 12(9) 7.411 24(7) 1:3� 10�3 2� 10�5

7.0 0.1 7.589 6(2) 7.589 61(7) 1:6� 10�3 1� 10�6

7.0 0.2 8.151 7(4) 8.151 37(7) 2:3� 10�3 �4� 10�5

7.0 0.3 9.209 0(5) 9.209 2(2) 4:0� 10�3 2� 10�5

7.0 0.4 11.162 7(7) 11.164(2) 7:0� 10�3 1� 10�4
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verify numerically. (iv) We have applied our numerical
algorithm to study the zoom-whirl behavior of the scalar-
field SF. As in [12], we observed no linear behavior during
the whirl [52].

The last point (iv) serves to reaffirm our trust in the
numerical code. The combination of points (i) and (ii)
(together with the fact that no linear growth is observed
in the scalar and EM cases) implies that the linear behavior
is purely gauge-related, and suggests that it should have no
observational (gauge invariant) consequences. In particu-
lar, the culprit monopole piece of Fr

diss is nonradiative and

has no secular physical effect on the orbit. Finally, the
observation made in (iii) suggests there is nothing wrong
with our choice of gauge either. In fact, it may be argued
that the observed linear-in-t behavior, with a weak depen-
dence on �, is perfectly consistent with the theoretical
expectation based on a local analysis of Fr

diss near the

separatrix. We explain this in the following.
Consider the behavior of Fr

diss for a zoom-whirl orbit,

� � 1. During the whirl the radial phase � changes very
little, so, taking � ¼ 0 at periapsis as usual, we can assume
� � 1. In the following analysis we fix the eccentricity
eð>0Þ and consider the limit � ! 0 by taking p ! 6þ 2e
(from above), inspecting the behavior of Fr

diss at leading

order in both � and �. A convenient starting point for this
analysis is the orthogonality condition u�F

� ¼ 0, whose
dissipative part can be rearranged to give

��1Fr
diss ¼

ðE2=fpÞð _Ediss �� _LdissÞ
ur

� ðE2=fpÞ�
ur

: (4.9)

Here we have used the dissipative part of Eqs. (4.1), and
denoted � � d’p=dt. Recall fp ¼ 1� 2M=rp and an

overdot denotes d=dt. The factor (E2=fp) is regular at � ¼
� ¼ 0 and hence uninteresting. For the radial velocity,

Eq. (2.8) gives ur / �1=2�, where throughout our present
discussion a proportionately symbol implies the leading-

order scaling with � and �. The function� is symmetric in
� [recall Eq. (2.33)] and clearly �ð� ¼ 0Þ ¼ 0; hence we
write� ¼ �2c ðe; �Þ þOð�4Þ, where c is � independent.

Taking now tð� ¼ 0Þ ¼ 0, Eq. (2.6) gives � / �1=2t, and
we thus obtain ur / �t and � / �t2c ðe; �Þ. We conclude
that

Fr
diss / tc ðe; �Þ: (4.10)

It is now essential to understand the scaling of c with � as
� ! 0. Clearly, c ! 0 at this limit, since for circular orbits

we have _Ediss ¼ � _Ldiss. It may be argued [38,51] that c
scales like the (small) fraction of the radial period that the
particle is spending in the zoom phase, which, in turn, is
proportional to 2�=�’ / ½lnð64e=�Þ��1. If this argument
is to be trusted, we obtain

Fr
diss / t� ½lnð64e=�Þ��1; (4.11)

which may explain the very weak � dependence of the
slope in Fig. 8. It is difficult in practice to test our numeri-
cal results more quantitatively against the scaling relation
(4.11) (precisely because the � dependence is so weak), but
we cannot rule out the possibility that our results are in fact
consistent with this scaling.
It remains to understand why the linear mode does not

exhibit itself so pronouncedly in the scalar and EM cases,
and how the amplitude of this mode might depend on the
choice of gauge in the gravitational case. This requires
further analysis, which we do not attempt here. We remind
that, from a practical point of view, the linear mode should
not cause any real concern, as it cannot affect any gauge-
invariant quantity derived from the SF.

V. ISCO SHIFT

Using our SF code we can start to explore the Oð�Þ
‘‘post-geodesic’’ dynamics of the orbit, and quantify the
physical effects resulting from the finiteness of�. As a first
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FIG. 8. Conservative and dissipative pieces of the radial SF for zoom-whirl orbits—left and right panels, respectively. Shown are
results for four orbits with the same eccentricity (e ¼ 0:7) but with increasing proximity to the separatrix p ¼ 6þ 2e.
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concrete application of the code, we calculated the Oð�Þ
shift in the location and frequency of the ISCO due to the
conservative piece of the SF. We recently reported the
results of this calculation in a paper [33]. Here (and in
Appendix F) we provide full details of this analysis.

The radiative transition across the ISCO, from a slow
quasicircular inspiral to a rapid plunge, has been studied in
the past and is now well understood. The transition occurs
not at a well-defined radius but rather in a gradual manner,
across a ‘‘transition regime,’’ whose width (in terms of the
corresponding azimuthal frequency) is proportional to a

low power of the mass ratio: ��trans / ð�=MÞ2=5 [53,54].
However, apart from the dominant radiative effect which
drives the inspiral (and the eventual transition to plunge),
the gravitational SF also has a conservative effect, which
shifts the location of the ISCO away from r ¼ 6M [by an
amount of Oð�Þ]. Unlike the radiative transition, this con-
servative shift is precisely quantifiable. Moreover, the
value of the azimuthal frequency at the shifted ISCO,
�isco, is essentially gauge invariant, and hence provides a
useful handle on the strong-field conservative dynamics.
Indeed, the value of �isco (for mass ratios not necessarily
extreme) has long been utilized in testing and calibrating
various approximate treatments of the general-relativistic
binary problem (see, e.g., [55,56], and the very recent
[21]). Our SF code allows us, for the first time, to obtain
a precise value for �isco (modulo a controlled numerical
error) at Oð�Þ.

In what follows we first derive a formula for the ISCO
frequency �isco including Oð�Þ conservative SF correc-
tions, and then describe the numerical method used to
obtain the necessary SF data, and the results. Many of
the details are relegated to Appendix F.

A. Formulation

We first review the notion of ISCO in the unperturbed
[geodesic, Oð�0Þ] case. The radial geodesic equation [ob-
tained by differentiating Eq. (2.2) with respect to �] reads

d2rp

d�2
¼ F effðrp;L2Þ; F effðr;L2Þ � � 1

2

@Rðr;L2Þ
@r

:

(5.1)

We consider a slightly eccentric orbit representing an e
perturbation of a circular orbit with radius r0. We write

rpð�Þ ¼ r0 þ er1ð�Þ þOðe2Þ; (5.2)

where e � 1 and r1ð�Þ is e independent. Substituting this
in Eq. (5.1) and reading the OðeÞ term, we obtain

e
d2r1
d�2

¼ @F effðrp;L2Þ
@rp









e¼0
er1

þ @F effðrp;L2Þ
@L2









e¼0
	eðL2Þ; (5.3)

where 	e denotes a linear variation with respect to e

(holding r0 fixed). Since 	eðL2Þ ¼ 0 for geodesics [see
Eq. (2.4)], we obtain

d2r1
d�2

¼ �!2
rr1; (5.4)

with

!2
r ¼ �@F effðrp;L2Þ

@rp









e¼0
¼ Mðr0 � 6MÞ

r30ðr0 � 3MÞ : (5.5)

Equation (5.4) tells us that the orbit is stable under small-e
perturbations whenever!2

r > 0, and is unstable under such
perturbations when !2

r < 0. The innermost stable circular
orbit is identified by the condition !2

r ¼ 0, giving risco ¼
6M. We also find that, at OðeÞ, the radial motion is har-
monic in �. Integrating Eq. (5.4) with the assumption of a
periapsis passage at � ¼ 0, we obtain r1 ¼ �r0 cos!r�
and hence

rpð�Þ ¼ r0ð1� e cos!r�Þ þOðe2Þ: (5.6)

Next, we consider the Oð�Þ correction to the orbit
caused by the conservative piece of the SF. The equations
of motion become

d~E
d~�

¼ ���1Fcons
t ;

d ~L
d~�

¼ ��1Fcons
’ ; (5.7)

d2~rp

d~�2
¼ F effð~rp; ~L2Þ þ��1Fr

cons; (5.8)

where hereafter overtildes indicate quantities associated
with the SF-corrected orbit (which is no longer a geodesic).
Here we have defined the SF-corrected energy and angular-

momentum parameters ~Eð~�Þ and ~Lð~�Þ (in general no longer
constants of the motion) through

d~tp

d~�
¼

~E
fð~rpÞ ;

d~’p

d~�
¼

~L
~r2p
; (5.9)

in analogy with Eqs. (2.1). We assume that the orbit
remains bound under the effect of the conservative SF,
with ~rmin � ~rpð~�Þ � ~rmax, and once again define p and e

as in Eq. (2.3), replacing rmin ! ~rmin and rmax ! ~rmax (we
leave e and p untilded for notational brevity). Without loss
of generality we take ~rpð~� ¼ 0Þ ¼ ~rmin.

The radial component Fr
cons is an even, periodic function

of � along the geodesic xpð�Þ [recall Eq. (2.33)], and hence
also, at leading order in �, an even, periodic function of ~�
along the perturbed orbit ~xpð�Þ. [This is because ~xpð�Þ �
xpð�Þ / Oð�Þ while Fr

cons is already Oð�2Þ.] Since ~rpð�Þ
too is even and periodic in ~� (and monotonically increasing
between ~rmin and ~rmax), we may express Fr

cons as a function
of ~rp only, for given p, e: Fr

cons ¼ Fr
consð~rp;p; eÞ. In

Eq. (5.8) the quantities ~rpð�Þ, d2~rp=d~�2, and Fr
cons are all

periodic and even in �, and we conclude that ~L, too, is

periodic and even. Hence, we may write ~L ¼ ~Lð~rp;p; eÞ.
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Let us now specialize to a slightly eccentric (SF-
perturbed) orbit. Working through OðeÞ, we write rmin ¼
r0ð1� eÞ and rmax ¼ r0ð1þ eÞ, where r0½¼ pMþOðe2Þ�
is the radius of the circular orbit about which we perturb.
For this orbit we write ~rpð�Þ ¼ r0 þ e~r1ð�Þ þOðe2Þ [as in
Eq. (5.2)], and we have Fr

cons ¼ Fr
consð~rp; r0; eÞ and ~L ¼

~Lð~rp; r0; eÞ. At Oðe0Þ (i.e., at the circular-orbit limit) ~L is

constant along the orbit from symmetry, and solving
Eq. (5.8) with d2~rp=d~�

2 ¼ 0 immediately gives

~L 2
0 ¼

Mr20
r0 � 3M

�
1� r20

�M
Fr
0

�
; (5.10)

where hereafter subscripts ‘‘0’’ denote circular-orbit val-
ues. In particular, we denote by Fr

0 the circular-orbit value

of Fr
cons (omitting the label ‘‘cons’’ for brevity). Then, at

OðeÞ, Eq. (5.8) yields

e
d2~r1
d~�2

¼ @F effð~rp; ~L2
0Þ

@~rp









~rp¼r0

e~r1

þ @F effðr0; ~L2Þ
@ð ~L2Þ









 ~L¼ ~L0

	e
~L2 þ��1	eF

r
cons;

(5.11)

where we have used 	e~rp ¼ e~r1. To evaluate 	e
~L2 and

	eF
r
cons, we note that the two quantities depend on e both

implicitly, thought rpð�; r0; eÞ, and explicitly. However, as

we showed in Ref. [33], the explicit linear variation of ~L2

and Fr
cons with respect to e (with fixed r0 and rp) vanishes at

e ¼ 0. Hence we may write 	e
~L2 ¼ e~r1d

~L2=d~rp and

	eF
r
cons ¼ e~r1dF

r
cons=d~rp (where the derivatives are eval-

uated at e ¼ 0), resulting in that Eq. (5.11) takes the form

d2~r1
d~�2

¼ � ~!2
r~r1; (5.12)

with

~! 2
r ¼ � d

d~rp
½F effð~rp; ~Lð~rpÞ2Þ þ��1Fr

consð~rpÞ�~rp¼r0 :

(5.13)

To obtain a more explicit expression for the shifted

radial frequency ~!r, we next expand ~L and Fr
cons in e

through OðeÞ. First, solving Eq. (5.12) with the initial
condition ~rp ¼ ~rmin, we find ~r1 ¼ �r0 cos ~!r~�. Then we

expand Fr
cons ¼ Fr

0 þ e~r1ðdFr
cons=d~rpÞ~rp¼r0 þOðe2Þ, giv-

ing

Fr
cons ¼ Fr

0 þ eFr
1 cos ~!r~�þOðe2Þ; (5.14)

where we have denoted Fr
1 � �r0ðdFr

cons=d~rpÞ~rp¼r0 . In a

similar manner we expand ~L ¼ ~L0 þ
e~r1ðd ~L=d~rpÞ~rp¼r0 þOðe2Þ, which, in conjunction with

Eq. (5.7), gives

Fcons
’ ¼ e ~!rF

1
’ sin ~!r~�þOðe2Þ; (5.15)

where F1
’ � �r0ðd ~L=d~rpÞ~rp¼r0 . Finally, using Eqs. (5.14)

and (5.15) and substituting for ~L0 from Eq. (5.10),
Eq. (5.13) becomes

~!2
r ¼ !2

r � 3ðr0 � 4MÞ
r0ðr0 � 3MÞ�

�1Fr
0 þ

1

r0
��1Fr

1

� 2

r40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr0 � 3MÞ

q
��1F1

’

¼ M

r30ðr0 � 3MÞ
�
r0 � 6M� 3r20ðr0 � 4MÞ

M�
Fr
0

þ r20ðr0 � 3MÞ
M�

Fr
1 �

2ðr0 � 3MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr0 � 3MÞp

Mr0�
F1
’

�
:

(5.16)

This formula describes the Oð�Þ conservative shift in the
radial frequency off its geodesic value. Note that it requires
knowledge of the SF through OðeÞ (knowledge of the
circular-orbit SF is not sufficient).
The perturbed ISCO radius, r ¼ ~risco, is now obtained

from the condition ~!2
rðr0 ¼ ~riscoÞ ¼ 0. Namely, ~risco is the

value of r0 that nullifies the expression in square brackets
in the second line of Eq. (5.16) through Oð�Þ. Note that in
this expression we are allowed to substitute r0 ¼ risco ¼
6M in all SF terms, since such terms are already Oð�Þ [so
the error introduced affects ~risco only at Oð�2Þ]. Thus, we
readily obtain

�risco � ~risco � 6M

¼ ðM2=�Þð216Fr
0is � 108Fr

1is þ
ffiffiffi
3

p
M�2F1

’isÞ
(5.17)

through Oð�Þ, where we have denoted Fr
0is � Fr

0ðr0 ¼
6MÞ and similarly for Fr

1is, F
1
’is.

Since the coordinate ISCO shift �risco is gauge depen-
dent (just like the SF itself), it is not very useful as a
benchmark for comparisons. Instead, we now consider the
(SF-corrected) circular-orbit azimuthal frequency,

~� � d~’p

d~t
¼ d~’p=d~�

d~tp=d~�
; (5.18)

which, as discussed in [19], is invariant under all Oð�Þ
gauge transformations whose generators respect the helical
symmetry of the circular-orbit configuration. Using
Eqs. (5.9) and (5.10) we obtain

~� ¼ �

�
1� r0ðr0 � 3MÞ

2M�f0
Fr
0

�
; (5.19)

where � � ðM=r30Þ1=2 is the geodesic (no SF) value.

Evaluated at r0 ¼ ~risco, the SF-induced frequency shift

�� � ~��� reads [through Oð�Þ]
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��isco ¼ � 1

63=2M

�
�risco
4M

þ 27M

2�
Fr
0is

�
: (5.20)

Equations analogous to (5.17) and (5.20) were obtained by
Diaz-Rivera et al. [10] in their study of scalar SF effects.

Despite the fact that ��isco is gauge invariant (in the
above sense), care must be exercised in interpreting the
quantity expressed in Eq. (5.20). As pointed out in [26], the
Lorenz-gauge metric perturbation has the somewhat pecu-
liar feature that its tt component (in Schwarzschild coor-
dinates) does not fall to zero as r ! 1, but instead

htt ! �2�ð¼ constÞ, with � ¼ �½r0ðr0 � 3MÞ��1=2.
This peculiarity can be removed simply by ‘‘rescaling’’

the time coordinate as t ! t̂ ¼ ð1þ 2�Þ1=2t ffi ð1þ �Þt
[neglecting terms of Oð�2Þ]. The angular frequency ~�,
whose definition has an explicit reference to t, will be

modified under such rescaling as ~� ! ~̂� ¼ ð1� �Þ ~�.
As explained in Ref. [19], and recently emphasized by
Damour [21], in order to compare with the frequency
derived in a gauge in which htt admits the ordinary asymp-
totic falloff [such as the Regge-Wheeler gauge, or the
gauge associated with the Oð�Þ part of EOB theory], one

must not use the ‘‘Lorenz-gauge’’ frequency ~�, but rather

the t-rescaled frequency ~̂�. For practical reasons, there-
fore, we also give here the ‘‘t-rescaled’’ version of
Eq. (5.20):

��̂isco ¼ � 1

63=2M

�
�risco
4M

þ 27M

2�
Fr
0is þ

�ffiffiffiffiffiffi
18

p
M

�
;

(5.21)

where we have used �ðr0 ¼ 6MÞ ¼ ð�=MÞ= ffiffiffiffiffiffi
18

p
.

B. Numerical method and results

In view of Eqs. (5.17) and (5.20), the task of calculating
�risco and ��isco amounts to obtaining numerical values
for the three coefficients Fr

0is, F
r
1is, and F1

’is. The first

coefficient is easily obtained: Fr
0is is just the SF along a

strictly circular geodesic with radius r0 ¼ 6M, and we
already computed it in paper I using our circular-orbit
code (it is one of the values listed in Table V of [15]).
Here we repeat this calculation at greater numerical preci-
sion, obtaining

Fr
0is ¼ 0:024 466 5ð1Þ�=M2: (5.22)

This is consistent with Berndtson’s [18] result of
0:024 466 497�=M2.

The computation of F1
’is and F

r
1is is much more delicate,

as it requires to resolve numerically the small variation in
the SF under a small-e perturbation of a circular orbit
[recall Eqs. (5.14) and (5.15)]. We are not helped by the
fact that this variation need be evaluated at ðp; eÞ ¼ ð6; 0Þ,
which is a singular point in the p-e plane (see below). The
subtlety of the computation task calls for an extra caution,

so, as a safeguard measure, we devised and implemented
two completely independent strategies for evaluating F1

’is

and Fr
1is. The first, more direct approach (method I) in-

volves an evaluation of the SF along a sequence of eccen-
tric geodesics approaching the ISCO along a suitable curve
in the p-e plane; the required SF coefficients are then
extracted as certain orbital integrals, extrapolated to e !
0 (see below). The second strategy (method II) involves an
expansion of the field equations themselves about a circu-
lar orbit, throughOðeÞ. In what follows we describe each of
the two methods and their outcomes in turn.

1. Method I: extrapolation in the p-e plane

From Eqs. (5.14) and (5.15) we obtain

Fr
1is ¼ lim

p!6
lim
e!0

F̂r
1ðp; eÞ;

F̂r
1ðp; eÞ � 2!rðe�Þ�1

Z �=!r

0
Fr
cons cos!r�d�; (5.23)

and

F1
’is ¼ lim

p!6
lim
e!0

F̂1
’ðp; eÞ;

F̂1
’ðp; eÞ � 2ðe�Þ�1

Z �=!r

0
Fcons
’ sin!r�d�; (5.24)

where !r, �, F
r
cons, and Fcons

’ are the values corresponding

to a geodesic with parameters p, e (hence we were allowed
to remove the tilde symbols off !r and �). It may be

noticed that, formally, the quantities F̂r
1ðp; eÞ and

F̂1
’ðp; eÞ are inverse Fourier integrals describing the first

!r harmonic of Fr
cons and F

cons
’ , respectively. The latter two

quantities, recall, are both periodic in � along the geodesic,
with Fr

cons being even and Fcons
’ being odd in �.

The order of the limits in Eqs. (5.23) and (5.24) is very
important: Since Fr

1is and F1
’is are defined through an

expansion about a stable circular orbit (e ¼ 0), we must
first take the limit e ! 0 before taking p ! 6. In practice,
however, it is more computationally economical to ap-
proach the point ðp; eÞ ¼ ð6; 0Þ along a certain continuous
curve in the p-e plane, rather than having to extrapolate to
e ! 0 along several different p ¼ const lines and then
extrapolate the resulting data again to p ! 6. In doing
so, however, we must choose our curve carefully, since
the limiting point (6, 0) is known to be a singular one. [A
simple manifestation of this singularity is the fact that the
rate at which the radial frequency !r vanishes at the limit
ðp; eÞ ! ð6; 0Þ depends upon the direction in the p-e plane
from which this limit is taken—see, e.g., Eq. (2.36) of
[38].] In particular, the curve must always ‘‘stay away’’
from the separatrix p ¼ 6þ 2e, where the e expansions
(5.14) and (5.15) [on which Eqs. (5.23) and (5.24) rely] are
meaningless. As discussed by Cutler et al. in [38] (in a
slightly different context), in order for the e expansion to
hold, one must require not only e � 1 but also e � p� 6.
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For our purpose, the point (6, 0) must be approached
keeping e � minf1; p� 6g.

Here we pick the curve p ¼ 6þ ffiffiffi
e

p
, for which e � 1

automatically implies e � p� 6. We select a set of p
values approaching p ! 6, and for each value we use our
code to calculate the SF along an eccentric geodesic with
parameters [p, ecðpÞ], where ecðpÞ ¼ ðp� 6Þ2. For each
of these parameter-space points we then construct the

quantities F̂r
1ðp; ecðpÞÞ and F̂1

’ðp; ecðpÞÞ defined in

Eqs. (5.23) and (5.24), by numerically integrating the SF
data along the orbit. The results are shown in Fig. 9.
Finally, we obtain the desired coefficients Fr

1is and F1
’is

by extrapolating the numerical values of F̂r
1 and F̂

1
’ to p ¼

6. We do this, in practice, by fitting a cubic polynomial to

the numerical data, writing (for example) F̂r
1 ¼

a0 þ a1ðp� 6Þ þ 
 
 
 þ a3ðp� 6Þ3 and taking the value
of the fitting coefficient a0 as our approximation for Fr

1is.

The results are

Fr
1is ¼ 0:0620ð5Þ�=M2;

F1
’is ¼ �1:066ð1Þ� ðmethod IÞ: (5.25)

Here, as elsewhere in this work, a parenthetical figure
indicates the uncertainty in the last displayed decimal place
due to numerical error [so, e.g., 0.0620(5) stands for
0:0620	 0:0005].

The error in the above calculation is estimated as fol-
lows. For each value of e considered, we first estimate the

numerical error in each of F̂r
1 and F̂1

’ as the difference

between the value obtained with the finest numerical grid
used and the value obtained with a coarser grid (of 4 times
the cell area). We calculate this difference for each of the

l-mode contributions to F̂r
1 and F̂

1
’, and conservatively take

the total (l-summed) error as the sum over the moduli of
the individual l-mode errors (adding to this the large-l tail
extrapolation error). The ‘‘error bars’’ thus obtained are
those displayed in Fig. 9. In the final step we fit a cubic

polynomial curve to each of the F̂r
1, F̂

1
’ data sets, using the

above error bars as a fitting weight. We take the standard
fitting error in the constant term (the above coefficient a0)
as our estimate for the error in Fr

1is, F
1
’is. It is this estimated

error that we indicate in Eqs. (5.25).

2. Method II: e expansion of the field equations

Our second procedure for evaluating Fr
1is and F1

’is is

based on a systematic expansion of the field equations (and
the SF) through OðeÞ, and is similar, in principle, to the
method used in Ref. [10] for the scalar-field SF. The idea is
to consider a slightly eccentric geodesic, with rpð�Þ ¼
r0ð1� e cos!r�Þ, where e � 1 and r0 ¼ const [as in
Eq. (5.6)], and for this geodesic expand the source term
in the perturbation equations (2.20) through OðeÞ as
SðiÞðt; rÞ	ðr� rpÞ ¼ SðiÞ0 ðt; r0Þ	ðr� r0Þ þ e½SðiÞ1 ðt; r0Þ

� 	ðr� r0Þ þ TðiÞ
1 ðt; r0Þ	0ðr� r0Þ�:

(5.26)

Here we have omitted the indices lm for brevity and used a
prime to denote d=dr. The various expansion coefficients
are given by

SðiÞ0 � SðiÞðt; r0Þ; SðiÞ1 � @SðiÞðt; rpÞ
@e









e¼0
;

TðiÞ
1 � �SðiÞðt; r0Þ

@rp

@e









e¼0
¼ SðiÞ0 r0 cos!r�:

(5.27)
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FIG. 9. Derivation of the SF coefficients Fr
1is and F1

’is entering the ISCO-shift formula (5.17), using method I. Plotted are the
numerical values of F̂r

1ðp; eÞ and F̂1
’ðp; eÞ [see Eqs. (5.23) and (5.24)] for a sequence of points in the p-e plane approaching the ISCO

along the curve p ¼ 6þ ffiffiffi
e

p
. Error bars indicate the estimated numerical error, which is evaluated as explained in the text. The solid

curves are weighted polynomial fits used to extrapolate the values of F̂r
1 and F̂1

’ to p ! 6. The extrapolated values are the desired

coefficients Fr
1is and F1

’is.
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The coefficients SðiÞ1 (for i ¼ 1; . . . ; 10) are evaluated by

substituting the above expression for rpð�Þ in Eqs. (B11)–

(B20), along with ur ¼ er0!r sin!r�þOðe2Þ, E ¼ ðr0 �
2MÞ½r0ðr0 � 3MÞ��1=2 þOðe2Þ, and L ¼ r0ðr0=M�
3Þ�1=2 þOðe2Þ, and then expanding through OðeÞ.
Explicit expressions for the SðiÞ1 ’s are given in
Appendix F. We also formally expand the metric perturba-

tion functions �hðiÞlm in the form

�h ðiÞðt; rÞ ¼ �hðiÞ0 ðt; rÞ þ e �hðiÞ1 ðt; rÞ þOðe2Þ (5.28)

(again omitting the indices lm for brevity), and conse-
quently single out the Oðe0Þ and Oðe1Þ pieces of the
perturbation equations (2.20) as

h �hðiÞ0 þMðiÞ
ðjÞ �h

ðjÞ
0 ¼ SðiÞ0 	ðr� r0Þ; (5.29)

h �hðiÞ1 þMðiÞ
ðjÞ �h

ðjÞ
1 ¼ SðiÞ1 	ðr� r0Þ þ TðiÞ

1 	0ðr� r0Þ:
(5.30)

Notice that the source terms in these equations are eval-
uated along a circular geodesic (of radius r0). The function
�hðiÞ0 is just the physical Lorenz-gauge perturbation from this

circular geodesic. The function �hðiÞ1 is not a physical per-
turbation; in particular, it is discontinuous across the orbit
(due to the 	0 term in its source).

For our purpose we need to solve Eqs. (5.29) and (5.30)

for r0 ¼ 6M. While there is no problem solving for �hðiÞ0 (as

we in fact already did in paper I), solving for �hðiÞ1 is

numerically subtle, since the source functions SðiÞ1 become

singular as !r ! 0 [cf. Equations (F2)–(F12) in
Appendix F]. Hence, as in method I, we use extrapolation:
we first solve Eq. (5.30) for a sequence of r0 values
approaching 6M, and then extrapolate our data to r0 ¼
6M.

A second difficulty arises because our TD algorithm
assumes that the numerical variables are continuous on
the particle’s orbit. This is no longer the case for the

functions �hðiÞ1 , which suffer finite jump discontinuities
across the orbit. This requires an adaptation of the junction
conditions implemented in the finite-difference scheme.
We describe the suitably modified junction conditions in
Appendix F. We use our amended TD algorithm to solve

for the functions �hðiÞ1 via time evolution.

Once the functions �hðiÞ0 ðt; rÞ and �hðiÞ1 ðt; rÞ are at hand we

can proceed to construct the SF along the slightly eccentric
orbit through OðeÞ. Here we need to be cautious: When we

evaluate �hðiÞðt; rÞ (and its derivatives) along the slightly
eccentric orbit rpð�Þ, we must take proper account of the

OðeÞ contribution coming from the term �hðiÞ0 ðt; rpÞ via the

expansion of rp in e. Recalling Eq. (5.28) we have, in fact,

�h ðiÞðt; rpÞ ¼ �hðiÞ0 ðt; r0Þ þ e½ �hðiÞ1 ðt; r0Þ
� �hðiÞ0;rðt; r0Þr0 cos!r�� þOðe2Þ; (5.31)

with similar expansions applying to the r and t derivatives
of the perturbation along rpð�Þ:

�h ðiÞ
;�ðt; rpÞ ¼ �hðiÞ0;�ðt; r0Þ þ e½ �hðiÞ1;�ðt; r0Þ

� �hðiÞ0;r�ðt; r0Þr0 cos!r�� þOðe2Þ; (5.32)

where� ¼ r or t. Recall that the derivatives of �hðiÞ0 and �hðiÞ1 ,

as well as the function �hðiÞ1 itself, are discontinuous at r0
and hence defined only in the sense of a directional limit
r ! r	0 (however, for simplicity we choose here not to

reflect this with a suitable notation). Notice also that the

first derivatives of the metric perturbation �hðiÞ along the
slightly eccentric geodesic involve second derivatives of

the function �hðiÞ0 along the circular geodesic (an rr deriva-

tive for �hðiÞ;r and an rt derivative for �hðiÞ;t ). The necessary data
for our calculation therefore includes the functions �hðiÞ0 and
�hðiÞ1 themselves, as well as the derivatives �hðiÞ0;r, �h

ðiÞ
0;t

�hðiÞ1;r, �h
ðiÞ
1;t,

�hðiÞ0;rr and �hðiÞ0;rt, all evaluated (in a one-sided fashion) at the

circular orbit with radius r0 ¼ 6M.
To construct the SF through OðeÞ, we substitute

Eq. (5.28) in Eq. (2.25), and evaluate the outcome along
the slightly eccentric orbit rpð�Þ. We remind that the func-

tions F appearing in Eq. (2.25) are given explicitly in

Appendix C in terms of the perturbation �hðiÞðt; rÞ and its
r and t derivatives. We next expand Eq. (2.25) in e through
OðeÞ using the expansions (5.31) and (5.32) and the above e
expansions for ur, E, and L. Keeping only the OðeÞ terms,
we proceed through the mode-sum regularization proce-
dure as described in Sec. II E, and construct theOðeÞ pieces
of the conservative SF components Fr

cons and F
diss
t . We find

that these OðeÞ pieces contain only terms proportional to
either cos!r� or sin!r�. More precisely, we obtain

OðeÞ piece of Fr
cons ¼ eFr

cos cos!r�; (5.33)

OðeÞ piece of Fcons
t ¼ e!rF

sin
t sin!r�; (5.34)

where the coefficients Fr
cos and Fsin

t are constructed from
�hðiÞ1 , �hðiÞ1;�, �hðiÞ0;�, and �hðiÞ0;r�. (The explicit form of these

coefficients is rather complicated and will not be shown
here. The coefficients can be readily evaluated using com-
puter algebra tools.) The OðeÞ part of the orthogonality
condition u�F� ¼ 0 then also gives

OðeÞ piece of Fcons
’ ¼ e!rF

sin
’ sin!r�; (5.35)

where Fsin
’ is related to the numerically computed coeffi-

cients Fsin
t and Fr

0 through

Fsin
’ ¼ � r20

L0f0
ðE0F

sin
t þ r0F

r
0Þ: (5.36)
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Comparing Eqs. (5.33) and (5.35) with Eqs. (5.14) and
(5.15), one finally identifies Fr

1 ¼ Fr
cos and F1

’ ¼ Fsin
’ .

We have implemented the above procedure for a dozen
or so radii r0 near 6M, and for each radius obtained the
values of Fr

1 and F1
’. We then extrapolated these values to

r0 ¼ 6M by fitting a cubic polynomial (see Fig. 10). We
obtained

Fr
1is ¼ 0:062095ð1Þ�=M2;

F1
’is ¼ �1:0665ð8Þ� ðmethod IIÞ: (5.37)

These values are in agreement, within the estimated nu-
merical accuracy, with the values obtained using method I
[compare with Eqs. (5.25)]. Using method II we were able
to explore orbits much nearer to the ISCO, resulting in a
much improved accuracy. Of course, the agreement be-
tween our two independent calculations provides signifi-
cant reassurance.

With the SF coefficient values given in Eqs. (5.22) and
(5.37), formulas (5.17), (5.20), and (5.21) finally yield

�risco ¼ �3:269ð2Þ�;

��isco ¼ �isco � 0:4869ð4Þ�=M;

��̂isco ¼ �isco � 0:2512ð4Þ�=M;

(5.38)

where �isco ¼ ð63=2MÞ�1 is the unperturbed (geodesic)
value of � at r ¼ 6M. The values obtained here are
slightly more accurate than the ones we give in our paper
[33] [�risco ¼ �3:269ð3Þ� and ��isco ¼ �isco �
0:4870ð6Þ�=M], an improvement made possible by the
inclusion of additional numerical data points in our
analysis.

VI. CONCLUDING REMARKS AND FUTURE
APPLICATIONS

This work marks a new frontline in the program to
model realistic two-body inspirals in the extreme mass-
ratio regime. For the first time we are able to calculate the
full [Oð�2Þ] gravitational SF across (essentially) the entire
parameter space of strong-field bound geodesics in
Schwarzschild spacetime. This work also represents a first
complete end-to-end implementation of a range of compu-
tational techniques which were developed gradually over
the past decade: mode-sum regularization scheme [29], the
1þ 1D Lorenz-gauge perturbation formalism [26], and the
method of extended homogeneous solutions [31]. As the
reader may appreciate, the underlying computational chal-
lenge is rather daunting, given the complexity of the field
equations, the technical subtleties involved in dealing with
the delta-function source, the high computational cost, and
the need to patch together different techniques in both the
time and frequency domains. Our eventual working code is
of considerable complexity and took over two years to
develop and test.
Following is a summary of the various tests which

helped us establish confidence in our code’s performance.
(i) The mode-sum regularization procedure is self-
validating, in the sense that it is extremely sensitive to
errors in the computation of the perturbation multipoles
(especially the high-l ones, which are most computation-
ally demanding). If the regularized mode sum shows the
expected falloff behavior at large l, this by itself is a strong
indication that the high-l modes were calculated correctly.
(ii) The code reproduces the known results in the circular-
orbit case; these results are now confirmed by 3 indepen-
dent analyses [15,17,18]. (iii) Our evolution code reprodu-
ces the correct asymptotic fluxes of gravitational-wave
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FIG. 10. Derivation of Fr
1is and F1

’is, using method II. Plotted are the numerical values of Fr
cosðpÞ and Fsin

’ ðpÞ [see Eqs. (5.33) and
(5.35)] for a sequence of points approaching the ISCO along the p axis in the p-e plane. Error bars indicate the estimated numerical
error, which is evaluated as explained in the text. The solid curves are weighted polynomial fits used to extrapolate the values of Fr

cos

and Fsin
’ to p ! 6. The extrapolated values are the desired coefficients Fr

1is and F1
’is.
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energy and angular momentum, as verified by comparing
with results in the literature. (iv) The work done by the
dissipative piece of the computed SF is found to precisely
balance these fluxes. (v) The value of the ISCO frequency
shift derived from our SF seems consistent with the value
derived in EOB at 3rd post-Newtonian (PN) order: Damour
recently showed that the latter is about 72.5% of the SF
value, with the difference likely attributed to higher-order
PN terms [21].

In principle, our code can return the SF along any bound
geodesic in Schwarzschild geometry, although in practice
computational cost may becomes prohibitive when the
orbital period is too large (i.e., for very large p and/or e
close to unity). The ‘‘workable domain’’ of our code using
a current-day standard single-processor desktop computer
is roughly 0 & e & 0:5 and p & 20M if a fractional accu-
racy of <10�4 in the SF is sought. The current algorithm
incorporates an explicit reference to the radial frequency
parameter, so it cannot be used to tackle unbound orbits.
However, it may be adapted with moderate effort to handle
unbound orbits (including orbits below the last stable orbit)
as well.

Even within the above ‘‘workable domain,’’ the current
code is discouragingly slow. It takes a few days to compute
the SF along a single strong-field geodesic, which makes it
impractical to cover the entire parameter space of inspirals
at sufficient resolution (having in mind the development of
theoretical gravitational waveform templates for astro-
physical inspirals). There are, however, various ways in
which one may improve the computational efficiency and
speed. Most obvious, one can use distributed computing—
our algorithm should be easily amenable for distribution on
a cluster, since different l modes can be calculated in
parallel. Other natural approaches include the use of
mesh refinement (see Thornburg’s recent report [57])
and/or higher-order finite-difference schemes. One may
also seek to reduce the computational cost attached to the
initial stage of the numerical evolution (when spurious
initial waves dominate) by iteratively improving the initial
conditions for the evolution—this idea is already being
implemented successfully in a 2þ 1D framework [58].
Other ideas represent a more significant deviation from
our approach: (i) work entirely in the frequency domain,
making full use of the method of extended homogeneous
solutions [31] (this is likely to prove most efficient with
smaller eccentricities); or (ii) abandon finite differencing
altogether and instead use finite elements or other pseudo-
spectral techniques [59,60], benefiting from their natural
flexibility in accommodating multiple length scales.

Nonetheless, some interesting applications are already
possible with the current version of our code, and we have
presented one of them in Sec. V. Our computation of the
ISCO frequency shift represents the first physically mean-
ingful new result coming out of the SF program, and it has
already informed both numerical-relativistic calculations

[34,35] and EOB/PN theory [21]. Further ideas for SF/
EOB synergy were recently discussed by Damour in [21].
In particular, Damour showed that a computation of the
(gauge-invariant) conservative SF correction to the preces-
sion rate of the periapsis, for slightly eccentric orbits, will
give access to the presently unknown 4PN (and possibly
higher-order) parameters of EOB theory. We are currently
working to extract the necessary SF data to facilitate this
calculation [these are essentially the coefficients Fr

0, F
r
1,

and F1
’ of Eqs. (5.14) and (5.15), as functions of r0]. Our

preliminary results show excellent agreement with the
analytic EOB predictions at 2PN and 3PN, and we are
hoping to publish these findings elsewhere [61].
More generally, our code allows to tackle the calculation

of post-geodesic [Oð�Þ] precession effects at any eccen-
tricity, not necessarily small. This would not only provide a
handle on the ‘‘Q’’ function of EOB theory, but can also
directly inform the computation of conservative effects in
inspiral trajectories. Information on the periastron advance
as a function of p, e could, for example, be incorporated
into an orbital evolution scheme à la Pound and Poisson
[24]. We are currently investigating this direction.
Finally, we comment briefly on the possibility of ex-

tending this work to the Kerr case (a more elaborate dis-
cussion of possible strategies for attacking the Kerr
problem can be found in [6]). The framework of the current
code, i.e., numerical evolution in 1þ 1D is not directly
applicable in Kerr spacetime, because the perturbation
equations in Kerr cannot be separated into harmonics in
the time domain. It is possible to tackle the field equations
in 2þ 1D (i.e., separating the perturbation into azimuthal
m modes only) or in full 3þ 1D, and there has been
considerable progress in that direction in the past two
years—although work so far has been restricted to the
toy problem of a scalar field in Schwarzschild geometry
[11,58,62,63]. Schemes for regularizing the SF directly in
2þ 1D or 3þ 1D have been proposed and recently im-
plemented [58,63,64]. Alternatively, one may attempt to
tackle the field equations in 1þ 1D by properly accounting
for the coupling between different l harmonics, and a
similar strategy may be applicable in the frequency domain
too. A first calculation of the SF in the Kerr case (using the
frequency-domain approach)—for a scalar charge in a
circular equatorial orbit—will be presented in a forthcom-
ing paper [65].
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APPENDIX A: ALGEBRAIC RECONSTRUCTION
OF THEMETRIC COMPONENTS IN THE LORENZ

GAUGE

We prescribe here the construction of the various com-
ponents of the (trace-reversed) Lorenz-gauge metric per-
turbation �h�� in terms of the 10 time-radial scalarlike

functions �hðiÞlm introduced in Eq. (2.19). In the following
Ylm ¼ Ylmð�; ’Þ are the standard spherical harmonics, f ¼
1� 2M=r, and for brevity we suppress the multipolar

indices l, m in �hðiÞlm. Recall that the functions �hðiÞlm—our
basic numerical evolution variables—are obtained by solv-
ing the coupled set (2.20).

The metric perturbation is reconstructed through

h�� ¼ �

2r

X1
l¼0

Xl
m¼�l

hlm��; (A1)

where the various Schwarzschild components are given by

hlmtt ¼ ð �hð1Þ þ f �hð6ÞÞYlm;

hlmtr ¼ f�1 �hð2ÞYlm;

hlmrr ¼ f�2ð �hð1Þ � f �hð6ÞÞYlm;

hlmt� ¼ rð �hð4ÞYlm
V1 þ �hð8ÞYlm

V2Þ;
hlmt’ ¼ r sin�ð �hð4ÞYlm

V2 � �hð8ÞYlm
V1Þ;

hlmr� ¼ rf�1ð �hð5ÞYlm
V1 þ �hð9ÞYlm

V2Þ;
hlmr’ ¼ rf�1 sin�ð �hð5ÞYlm

V2 � �hð9ÞYlm
V1Þ;

hlm�� ¼ r2ð �hð3ÞYlm þ �hð7ÞYlm
T1 þ �hð10ÞYlm

T2Þ;
hlm�’ ¼ r2 sin�ð �hð7ÞYlm

T2 � �hð10ÞYlm
T1Þ;

hlm’’ ¼ r2sin2�ð �hð3ÞYlm � �hð7ÞYlm
T1 � �hð10ÞYlm

T2Þ:

(A2)

The angular functions appearing in these relations are
defined as

Ylm
V1ð�;’Þ �

1

lðlþ 1ÞY
lm
;� ðfor l > 0Þ;

Ylm
V2ð�;’Þ �

1

lðlþ 1Þ sin
�1�Ylm

;’ ðfor l > 0Þ;

Ylm
T1ð�;’Þ �

ðl� 2Þ!
ðlþ 2Þ! ½sin�ðsin

�1�Ylm
;� Þ;� � sin�2�Ylm

;’’�
ðfor l > 1Þ;

Ylm
T2ð�;’Þ �

2ðl� 2Þ!
ðlþ 2Þ! ðsin�1�Ylm

;’ Þ;� ðfor l > 1Þ: (A3)

We note that for l ¼ 0, 1 we have hð7;10Þ ¼ 0 identically,

and that for l ¼ 0 we have additionally hð4;5;8;9Þ ¼ 0.

APPENDIX B: FIELD EQUATIONS AND GAUGE
CONDITIONS FOR THE PERTURBATION

FUNCTIONS �hðiÞlmðr; tÞ
We give here explicit expressions for the various terms

appearing in our 1þ 1D field equation (2.20). In what
follows f ¼ 1� 2M=r, f0 ¼ 2M=r2, r� is the standard
tortoise radial coordinate defined through dr=dr� ¼ fðrÞ,
and v ¼ tþ r�. We also denote 
 ¼ ðlþ 2Þðl� 1Þ.
The terms MðiÞl

ðjÞ �h
ðjÞlm in Eq. (2.20) read

Mð1Þ
ðjÞ �h

ðjÞ ¼ @

@r�

�
1

2
ff0 �hð3Þ

�
þ ðr� 4MÞf

2r3
ð �hð1Þ � �hð5ÞÞ

� ðr2 � 10Mrþ 20M2Þf
2r4

�hð3Þ

� ðr� 6MÞf2
2r3

�hð6Þ; (B1)

Mð2Þ
ðjÞ �h

ðjÞ ¼ @

@r�

�
1

2
ff0 �hð3Þ

�
þ @

@v
½f0ð �hð2Þ � �hð1ÞÞ�

� 3Mf

r3
�hð1Þ þ ðrþ 2MÞf

2r3
�hð2Þ

þ ð3r� 8MÞMf

r4
�hð3Þ � f2

2r2
�hð4Þ þ ff0

2r
�hð5Þ

þ f2f0

r
�hð6Þ; (B2)

M ð3Þ
ðjÞ �h

ðjÞ ¼ � f

2r2

�
�hð1Þ � �hð5Þ �

�
1� 4M

r

�
ð �hð3Þ þ �hð6ÞÞ

�
;

(B3)

Mð4Þ
ðjÞ �h

ðjÞ ¼ @

@v

�
f0

2
ð �hð4Þ � �hð5ÞÞ

�
� lðlþ 1Þf

2r2
�hð2Þ

�Mf

2r3
�hð4Þ � 2Mf

r3
�hð5Þ � lðlþ 1Þff0

4r
�hð6Þ

þ ff0

4r
�hð7Þ; (B4)

Mð5Þ
ðjÞ �h

ðjÞ ¼ f

r2

��
1� 9M

2r

�
�hð5Þ � 1

2
lðlþ 1Þð �hð1Þ � f �hð3ÞÞ

þ 1

2

�
1� 3M

r

�
ðlðlþ 1Þ �hð6Þ � �hð7ÞÞ

�
; (B5)

M ð6Þ
ðjÞ �h

ðjÞ ¼ � f

2r2

�
�hð1Þ � �hð5Þ �

�
1� 4M

r

�
ð �hð3Þ þ �hð6ÞÞ

�
;

(B6)

M ð7Þ
ðjÞ �h

ðjÞ ¼ � f

2r2
ð �hð7Þ þ 
 �hð5ÞÞ; (B7)

LEOR BARACK AND NORICHIKA SAGO PHYSICAL REVIEW D 81, 084021 (2010)

084021-26



Mð8Þ
ðjÞ �h

ðjÞ ¼ @

@v

�
f0

2
ð �hð8Þ � �hð9ÞÞ

�
�Mf

2r3
�hð8Þ

� 2Mf

r3
�hð9Þ þMf

2r3
�hð10Þ; (B8)

M ð9Þ
ðjÞ �h

ðjÞ ¼ f

r2

�
1� 9M

2r

�
�hð9Þ � f

2r2

�
1� 3M

r

�
�hð10Þ;

(B9)

M ð10Þ
ðjÞ �hðjÞ ¼ � f

2r2
ð �hð10Þ þ 
 �hð9ÞÞ: (B10)

These expression are the same as those given in
Appendix A of paper I, although we write them here in a
slightly different form, more amenable to discretization in
v, u coordinates.

The various source terms SðiÞlm in Eq. (2.20) are given
(referring to Sec. II A for notation) by

Sð1Þlm ¼ 4�f2p

Er3p
ð2E2r2p � fpr

2
p �L2fpÞY�

lmð�=2; ’pÞ;
(B11)

Sð2Þlm ¼ � 8�f2p

rp
urY�

lmð�=2; ’pÞ; (B12)

Sð3Þlm ¼ 4�

Er3p
f2pðr2p þL2ÞY�

lmð�=2; ’pÞ; (B13)

Sð4Þlm ¼ 8�imf2pL

r2p
Y�
lmð�=2; ’pÞ; (B14)

Sð5Þlm ¼ � 8�imf2pu
rL

r2pE
Y�
lmð�=2; ’pÞ; (B15)

Sð6Þlm ¼ 4�f2pL2

r3pE
Y�
lmð�=2; ’pÞ; (B16)

Sð7Þlm ¼ ½lðlþ 1Þ � 2m2�Sð6Þlm ; (B17)

Sð8Þlm ¼ 8�f2pL

r2p
Y�
lm;�ð�=2; ’pÞ; (B18)

Sð9Þlm ¼ � 8�f2pu
rL

r2pE
Y�
lm;�ð�=2; ’pÞ; (B19)

Sð10Þlm ¼ 8�imf2pL2

r3pE
Y�
lm;�ð�=2; ’pÞ: (B20)

The 1þ 1D field equations. (2.20) are supplemented by
4 elliptic ‘‘constraints’’ stemming from the Lorenz-gauge
conditions (2.15). These constraint equations read

� �hð1Þ;t þ f

�
� �hð3Þ;t þ �hð2Þ;r þ

�hð2Þ � �hð4Þ

r

�
¼ 0; (B21)

�h ð2Þ
;t �f �hð1Þ;r þf2 �hð3Þ;r �f

r
ð �hð1Þ � �hð5Þ �f �hð3Þ �2f �hð6ÞÞ¼ 0;

(B22)

�h ð4Þ
;t � f

r
ðr �hð5Þ;r þ 2 �hð5Þ þ lðlþ 1Þ �hð6Þ � �hð7ÞÞ ¼ 0; (B23)

�h ð8Þ
;t � f

r
ðr �hð9Þ;r þ 2 �hð9Þ � �hð10ÞÞ ¼ 0: (B24)

APPENDIX C: CONSTRUCTION OF THE
FULL-FORCE SPHERICAL-HARMONIC MODES

Following are the explicit values of the functions F �lm
ðnÞ

appearing in Eq. (2.25):

F �lm
ð�3Þ ¼ �lmðþ3Þf

�lm
6	 þ �lm

ðþ3Þf
�lm
7	 ;

F �lm
ð�2Þ ¼ �lm

ðþ2Þf
�lm
1	 þ �lm

ðþ2Þf
�lm
2	 þ 
lm

ðþ2Þf
�lm
3	 ;

F �lm
ð�1Þ ¼ �lmðþ1Þf

�lm
4	 þ 	lm

ðþ1Þf
�lm
5	 þ �lmðþ1Þf

�lm
6	 þ �lm

ðþ1Þf
�lm
7	 ;

F �lm
ð0Þ ¼ f�lm0	 þ ��lm

ð0Þ f
�lm
1	 þ �lm

ð0Þf
�lm
2	 þ 
lm

ð0Þf
�lm
3	 ;

F �lm
ðþ1Þ ¼ �lmð�1Þf

�lm
4	 þ 	lm

ð�1Þf
�lm
5	 þ �lmð�1Þf

�lm
6	 þ �lm

ð�1Þf
�lm
7	 ;

F �lm
ðþ2Þ ¼ �lm

ð�2Þf
�lm
1	 þ �lm

ð�2Þf
�lm
2	 þ 
lm

ð�2Þf
�lm
3	 ;

F �lm
ðþ3Þ ¼ �lmð�3Þf

�lm
6	 þ �lm

ð�3Þf
�lm
7	 : (C1)

The various functions f�lmn	 are those appearing in
Eq. (2.24), and below we give these functions explicitly
for � ¼ t, r (the values for ’, � are not needed in this
work). The values of the various l, m-dependent coeffi-
cients �, �, 
, �, � , � in the above expressions are given in
Eqs. (D3)–(D9) of Appendix D. In what follows we use the

notation L̂ � L=rp, and for brevity we suppress the in-

dices l, m as well as the subscript 	; it is to be understood
that the t and r derivatives in the following expressions are
taken from either ‘‘outside’’ or ‘‘inside’’ the orbit, yielding,
in general, two different one-sided values which corre-
spond to the suppressed þ or � subscripts.
For the t component we have
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ft0 ¼
E
4f4p

�
ðurÞ3 þ

�
E2

rp þ 4M

rp
� 2fp

�
ur � imfpL̂ððurÞ2 þ E2 � 2fpÞ

�
�hð1Þ � rp

4f4p
½ðE2 þ fpÞðurÞ2 þ E2ðE2 � fpÞ� �hð1Þ;t

� rp

4f4p
urE½ðurÞ2 þ E2 � 2fp� �hð1Þ;r� þ

1

2f4p

�
ðurÞ2

�
E2

rp þM

rp
� fp

rp �M

rp

�
þM

rp
E2ðE2 � fpÞ � imfpu

rL̂ðE2 � fpÞ
�
�hð2Þ

� rpu
r

2f4p
½E3 �hð2Þ;t þ urðE2 � fpÞ �hð2Þ;r� � þ

EL̂2

4fp
ður � imL̂Þ �hð3Þ � rpL̂

2

4f2p
½ðE2 þ fpÞ �hð3Þ;t þ urE �hð3Þ;r� � þ

m

2lðlþ 1Þf3p

� L̂
�
2iur

�
E2

rp �M

rp
� f2p

�
þmfpL̂ðE2 � fpÞ

�
�hð4Þ � imrpL̂

2lðlþ 1Þf3p
½E3 �hð4Þ;t þ urðE2 � fpÞ �hð4Þ;r� � þ

mEL̂
2lðlþ 1Þf3p

�
�
iðurÞ2

�
2� 3M

rp

�
þ iM

rp
E2 þmfpu

rL̂
�
�hð5Þ � imrpu

rL̂

2lðlþ 1Þf3p
½ðE2 þ fpÞ �hð5Þ;t þ urE �hð5Þ;r� � þ

E
4fp

ð�ur þ imL̂Þ �hð6Þ

þ rp

4f2p
½ðE2 � fpÞ �hð6Þ;t þ urE �hð6Þ;r� � �

mEL̂2

4lðlþ 1Þ
fp ½3mur � iL̂ð4þm2Þ� �hð7Þ þ m2rpL̂
2

4lðlþ 1Þ
f2p
½ðE2 þ fpÞ �hð7Þ;t þ urE �hð7Þ;r� �;

(C2)

ft1 ¼ �urEL̂2

2f2p
�hð1Þ � L̂2

2f2p
ðE2 � fpÞ �hð2Þ þ urEL̂2

2fp
�hð3Þ

� imEL̂3

2lðlþ 1Þfp
�hð5Þ þ EL̂2

4fp
ð3ur � imL̂Þ �hð6Þ

� rp

4f2p
L̂2ðE2 þ fpÞ �hð6Þ;t � rp

4f2p
urEL̂2 �hð6Þ;r�

� imEL̂3

lðlþ 1Þ
fp
�hð7Þ; (C3)

ft2 ¼ � L̂2ðE2 � fpÞ
2lðlþ 1Þf2p

�hð4Þ � urEL̂2

2lðlþ 1Þf2p
�hð5Þ

þ L̂2

4lðlþ 1Þ
f2p
½fpEð3ur � 5imL̂Þ �hð7Þ

� rpðE2 þ fpÞ �hð7Þ;t � rpu
rE �hð7Þ;r� �; (C4)

ft3 ¼
L̂2

4lðlþ 1Þ
f2p
½�fpEð3ur � imL̂Þ �hð7Þ

þ rpðE2 þ fpÞ �hð7Þ;t þ rpu
rE �hð7Þ;r� �; (C5)

ft4 ¼ � imL̂2

2lðlþ 1Þf2p
½ðE2 � fpÞ �hð8Þ þ urE �hð9Þ�

þ imL̂2

2lðlþ 1Þ
f2p
½fpEð3ur � 2imL̂Þ �hð10Þ

� rpðE2 þ fpÞ �hð10Þ;t � rpu
rE �hð10Þ;r� �; (C6)

ft5 ¼ � urL̂
lðlþ 1Þf3p

�
E2

rp �M

rp
� f2p

�
�hð8Þ

þ rpE3L̂

2lðlþ 1Þf3p
�hð8Þ;t þ rpu

rL̂

2lðlþ 1Þf3p
ðE2 � fpÞ �hð8Þ;r�

� EL̂
2lðlþ 1Þf3p

�
ðurÞ2 2rp � 3M

rp
þM

rp
E2

�
�hð9Þ

þ rpu
rL̂

2lðlþ 1Þf3p
ðE2 þ fpÞ �hð9Þ;t þ rpðurÞ2EL̂

2lðlþ 1Þf3p
�hð9Þ;r�

þ ðm2 � 1ÞEL̂3

2lðlþ 1Þ
fp
�hð10Þ; (C7)

ft6 ¼
EL̂3

2lðlþ 1Þ
fp ð

�hð9Þ þ �hð10ÞÞ; (C8)

ft7 ¼
EL̂3

2lðlþ 1Þ
fp
�hð10Þ: (C9)

For the r component we have
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fr0 ¼
1

4f3p

�
ðurÞ4 � imfpðurÞ3L̂þ ðurÞ2

�
rp þ 4M

rp
E2 þ fp

�
� imurfpL̂ðE2 þ 2fpÞ � fpE2

�
1� 4M

rp

��
�hð1Þ

� rpu
rE

4f3p
½ðurÞ2 þ E2 þ 2fp� �hð1Þ;t � rp

4f3p
½ðurÞ4 þ ðurÞ2ðE2 þ fpÞ � fpE2� �hð1Þ;r� þ

E
2f3p

�
ðurÞ3

�
1þM

rp

�
� imfpðurÞ2L̂

þM

rp
urðE2 þ 2fpÞ � imf2pL̂

�
�hð2Þ � rpE2

2f3p
½ðurÞ2 þ fp� �hð2Þ;t � rpðurÞ3E

2f3p
�hð2Þ;r� þ

1

4fp
½�ðurÞ4 þ imL̂ðurÞ3 þ E2ðurÞ2

� ðimurL̂þ fpÞðE2 � fpÞ� �hð3Þ þ
rpu

rE

4f2p
½ðurÞ2 � E2 þ fp� �hð3Þ;t þ rp

4f2p
½ðurÞ4 � E2ðurÞ2 þ fpðE2 � fpÞ� �hð3Þ;r�

þ imurEL̂
2lðlþ 1Þf2p

�
2ur

�
1�M

rp

�
� imfpL̂

�
�hð4Þ � imrpu

rE2L̂

2lðlþ 1Þf2p
�hð4Þ;t � imrpEL̂

2lðlþ 1Þf2p
½ðurÞ2 � fp� �hð4Þ;r� þ

imL̂
2lðlþ 1Þf2p

�
�
ðurÞ3

�
2� 3M

rp

�
� imfpðurÞ2L̂þ ur

�
M

rp
E2 þ 2f2p

�
� imf2pL̂

�
�hð5Þ � imrpEL̂

2lðlþ 1Þf2p
½ðurÞ2 þ fp� �hð5Þ;t

� imrpðurÞ3L̂
2lðlþ 1Þf2p

�hð5Þ;r� �
1

4
½ðurÞ2 � imurL̂þ fp� �hð6Þ þ

rpu
rE

4fp
�hð6Þ;t þ rp

4fp
½ðurÞ2 þ fp� �hð6Þ;r�

þ mL̂2

4lðlþ 1Þ
 ½�3mðurÞ2 þ iurL̂ð4þm2Þ �mfp� �hð7Þ þ
m2rpu

rEL̂2

4lðlþ 1Þ
fp
�hð7Þ;t þ m2rpL̂

2

4lðlþ 1Þ
fp ½ðu
rÞ2 � fp� �hð7Þ;r� ; (C10)

fr1 ¼ � L̂2

2fp
½ðurÞ2 þ fp� �hð1Þ � urEL̂2

2fp
�hð2Þ

þ L̂2

2
½ðurÞ2 þ fp� �hð3Þ � imurL̂3

2lðlþ 1Þ
�hð5Þ

þ L̂2

4
½3ðurÞ2 � imurL̂þ fp� �hð6Þ �

rpu
rEL̂2

4fp
�hð6Þ;t

� rpL̂
2

4fp
½ðurÞ2 � fp� �hð6Þ;r� �

imurL̂3

lðlþ 1Þ

�hð7Þ; (C11)

fr2 ¼ � L̂2

2lðlþ 1Þfp ½u
rE �hð4Þ þ ððurÞ2 þ fpÞ �hð5Þ�

þ L̂2

4lðlþ 1Þ
fp ½fpð3ðu
rÞ2 � 5imurL̂þ fpÞ �hð7Þ

� rpu
rE �hð7Þ;t � rpððurÞ2 � fpÞ �hð7Þ;r� �; (C12)

fr3 ¼
L̂2

4lðlþ 1Þ
fp ½�fpð3ðurÞ2 � imurL̂þ fpÞ �hð7Þ

þ rpu
rE �hð7Þ;t þ rpððurÞ2 � fpÞ �hð7Þ;r� �; (C13)

fr4 ¼ � imL̂2

2lðlþ 1Þfp ½u
rE �hð8Þ þ ððurÞ2 þ fpÞ �hð9Þ�

þ imL̂2

2lðlþ 1Þ
fp ½fpð3ðu
rÞ2 � 2imurL̂þ fpÞ �hð10Þ

� rpu
rE �hð10Þ;t � rpððurÞ2 � fpÞ �hð10Þ;r� �; (C14)

fr5 ¼ � ðurÞ2EL̂
lðlþ 1Þf2p

�
1�M

rp

�
�hð8Þ þ rpu

rE2L̂

2lðlþ 1Þf2p
�hð8Þ;t

þ rpEL̂

2lðlþ 1Þf2p
½ðurÞ2 � fp� �hð8Þ;r� �

urL̂
2lðlþ 1Þf2p

�
�
2rp � 3M

rp
ðurÞ2 þM

rp
E2 þ 2f2p

�
�hð9Þ

þ rpEL̂

2lðlþ 1Þf2p
½ðurÞ2 þ fp� �hð9Þ;t þ rpðurÞ3L̂

2lðlþ 1Þf2p
�hð9Þ;r�

þ ðm2 � 1ÞurL̂3

2lðlþ 1Þ

�hð10Þ; (C15)

fr6 ¼
urL̂3

2lðlþ 1Þ
 ½
 �hð9Þ þ �hð10Þ�; (C16)

fr7 ¼
urL̂3

2lðlþ 1Þ

�hð10Þ: (C17)

APPENDIX D: USEFUL IDENTITIES

The following identities are used in deriving Eq. (2.25)
for the full-force modes. In these relations Ylm are the
standard spherical harmonics, and the identities are valid
for any values of l, m.
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sin2�Ylm ¼ �lm
ðþ2ÞY

lþ2;m þ �lm
ð0ÞY

lm þ �lm
ð�2ÞY

l�2;m; cos� sin�Ylm
;� ¼ �lm

ðþ2ÞY
lþ2;m þ �lm

ð0ÞY
lm þ �lm

ð�2ÞY
l�2;m;

sin2�Ylm
;�� ¼ 
lm

ðþ2ÞY
lþ2;m þ 
lm

ð0ÞY
lm þ 
lm

ð�2ÞY
l�2;m; sin�Ylm

;� ¼ 	lm
ðþ1ÞY

lþ1;m þ 	lm
ð�1ÞY

l�1;m;

cos�Ylm � sin�Ylm
;� ¼ �lmðþ1ÞY

lþ1;m þ �lmð�1ÞY
l�1;m;

sin3�Ylm
;� ¼ �lmðþ3ÞY

lþ3;m þ �lmðþ1ÞY
lþ1;m þ �lmð�1ÞY

l�1;m þ �lmð�3ÞY
l�3;m;

cos�sin2�Ylm
;�� ¼ �lm

ðþ3ÞY
lþ3;m þ �lmþ Ylþ1;m þ �lm

ð�1ÞY
l�1;m þ �lm

ð�3ÞY
l�3;m:

(D1)

Here the various coefficients are all constructed from

Clm ¼
�

l2 �m2

ð2lþ 1Þð2l� 1Þ
�
1=2

(D2)

using

�lm
ðþ2Þ ¼ �Clþ1;mClþ2;m; �lm

ð0Þ ¼ 1� C2
lm � C2

lþ1;m;

�lm
ð�2Þ ¼ �ClmCl�1;m; (D3)

�lm
ðþ2Þ ¼ lClþ1;mClþ2;m; �lm

ð0Þ ¼ lC2
lþ1;m � ðlþ 1ÞC2

lm;

�lm
ð�2Þ ¼ �ðlþ 1ÞClmCl�1;m; (D4)


lm
ðþ2Þ ¼ l2Clþ1;mClþ2;m;


lm
ð0Þ ¼ m2 � lðlþ 1Þ þ l2C2

lþ1;m þ ðlþ 1Þ2C2
lm;


lm
ð�2Þ ¼ ðlþ 1Þ2ClmCl�1;m;

(D5)

	lm
ðþ1Þ ¼ lClþ1;m; 	lm

ð�1Þ ¼ �ðlþ 1ÞClm; (D6)

�lmðþ1Þ ¼ ð1� lÞClþ1;m; �lmð�1Þ ¼ ðlþ 2ÞClm; (D7)

�lmðþ3Þ ¼ �lClþ1;mClþ2;mClþ3;m;

�lmðþ1Þ ¼ Clþ1;m½lð1� C2
lþ1;m � C2

lþ2;mÞ þ ðlþ 1ÞC2
l;m�;

�lmð�1Þ ¼ �Cl;m½ðlþ 1Þð1� C2
l�1;m � C2

l;mÞ þ lC2
lþ1;m�;

�lmð�3Þ ¼ ðlþ 1ÞCl;mCl�1;mCl�2;m; (D8)

�lm
ðþ3Þ ¼ l2Clþ1;mClþ2;mClþ3;m;

�lm
ðþ1Þ ¼ Clþ1;m½m2 � lðlþ 1Þ þ l2C2

lþ1;m

þ ðlþ 1Þ2C2
l;m þ l2C2

lþ2;m�;
�lm
ð�1Þ ¼ Cl;m½m2 � lðlþ 1Þ þ l2C2

lþ1;m

þ ðlþ 1Þ2C2
l;m þ ðlþ 1Þ2C2

l�1;m�;
�lm
ð�3Þ ¼ ðlþ 1Þ2Cl;mCl�1;mCl�2;m: (D9)

APPENDIX E: JUMP CONDITIONS FOR THE
PERTURBATION MODES AND THEIR

DERIVATIVES

As explained in Sec. III B, our finite-difference scheme
makes use of formal jump conditions for the perturbation

modes �hðiÞlm and their (first through fourth) derivatives
across the particle’s orbit. In this appendix we derive the
necessary conditions. Our derivation refers to a specific
(yet generic) point x0 along the orbit, with known coordi-
nates ðr0; t0Þ or ðu0; v0Þ, and velocity components _u0 �
dup=d�jx0 and _v0 � dvp=d�jx0 , where � is proper time

along the orbit. We will use the notation ½A�0 � Aðxþ0 Þ �
Aðx�0 Þ, where Aðx	0 Þ are the values of a 1þ 1D field Aðr; tÞ
calculated by taking the limits t ! t0 and r ! r	0 . In this

appendix we shall omit multipolar indices lm for brevity.

1. Continuity condition for �hðiÞ

The Lorenz-gauge perturbation modes �hðiÞ are all con-
tinuous at any point along the orbit. This can be verified,

for example, by noticing that the distributional form �hðiÞ ¼
�hðiÞþ ðr; tÞ�½r� rpðtÞ� þ �hðiÞ� ðr; tÞ�½rpðtÞ � r� is indeed a so-

lution of the perturbation equations (2.20) only if the

homogeneous solutions �hðiÞþ and �hðiÞ� satisfy �hðiÞþ ¼ �hðiÞ� along
the worldline. Hence, for any i we have

½ �hðiÞ�0 ¼ 0: (E1)

2. Jump conditions for the 1st derivatives

Let us we reexpress the field equations (2.20) in the form

�h ðiÞ
;uv þ PðiÞ ¼

Z
d�~SðiÞðxpð�ÞÞ	ðu� upð�ÞÞ	ðv� vpð�ÞÞ;

(E2)

where

PðiÞ � VðrÞ �hðiÞ þMðiÞ
ðjÞ �h

ðjÞ; ~SðiÞ � 2Ef�2
p SðiÞ; (E3)

with MðiÞ
ðjÞ and SðiÞ being the quantities given in

Appendix B, and VðrÞ being defined in Eq. (2.21). Now
consider formally integrating Eq. (E2) along the ray v ¼
v0 over an infinitesimal interval (u0 � �, u0 þ �) across x0.
The integral of the left-hand side yields

�h ðiÞ
;v ju0þ�

u0�� þ
Z u0þ�

u0��
PðiÞdu ! �½ �hðiÞ;v �0 (E4)

as � ! 0, since PðiÞ is bounded. Similarly integrating the
right-hand side of Eq. (E2) one finds
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Z u0þ�

u0��
du

Z
d�~SðiÞðxpð�ÞÞ	½u� upð�Þ�	½v0 � vpð�Þ�

¼ _v�1
0

~SðiÞðx0Þ: (E5)

The desired jump condition is therefore

½ �hðiÞ;v �0 ¼ � _v�1
0

~SðiÞðx0Þ: (E6)

Similarly integrating the field equations along u ¼ u0 over
an infinitesimal interval (v0 � �, v0 þ �) one also obtains

½ �hðiÞ;u �0 ¼ _u�1
0

~SðiÞðx0Þ: (E7)

3. Jump conditions for the 2nd derivatives

It is straightforward to derive the jump condition in the
mixed uv-derivative. From Eq. (E2) we immediately have

½@u@v �hðiÞ�0 ¼ �½PðiÞ�0; (E8)

as the source term is supported only on the worldline.

Recall PðiÞ involves the perturbation �hðiÞ and its first de-

rivatives only, and so the jump in PðiÞ can be readily
calculated from the jump conditions obtained above.

To derive a jump condition for the vv derivative, we first
take the v derivatives of the field equations (E2), and then
integrate with respect to u along v ¼ v0 over (u0 � �,
u0 þ �). We thereby obtain

� ½ �hðiÞ;vv�0 ¼ lim
�!0

Z u0þ�

u0��
du

�
�PðiÞ

;v ðu; v0Þ

þ
Z

d�~SðiÞðxpÞ	0½v0 � vpð�Þ�	½u� upð�Þ�
�
:

(E9)

Now, for PðiÞ we may write

PðiÞ ¼ PðiÞ
þ ðu; vÞ�½v� vpðuÞ� þ PðiÞ� ðu; vÞ�½vpðuÞ � v�;

(E10)

in which PðiÞ
	 are smooth and where vpðuÞ is the value of v

at which the outgoing ray of retarded time u intersects the
worldline. Using this form we obtain

Z u0þ�

u0��
PðiÞ
;v ðu; v0Þdu ¼

Z u0þ�

u0��
dufðPðiÞ

þ ðu; v0Þ

� PðiÞ� ðu; v0ÞÞ	½v0 � vpðuÞ�
þ PðiÞ

þ;vðu; v0Þ�½v0 � vpðuÞ�
þ PðiÞ�;vðu; v0Þ�½vpðuÞ � v0�g

! ð _u0= _v0Þ½PðiÞ�0 (E11)

as � ! 0, since PðiÞ
	;v are bounded. Lastly, for the integral

involving ~SðiÞ in Eq. (E9) we have

Z u0þ�

u0��
du

Z
d�~SðiÞðxpð�ÞÞ	0½v0 � vpð�Þ�	½u� upð�Þ�

¼
Z

d�~SðiÞðxpð�ÞÞ	0½v0 � vpð�Þ��½upð�Þ
� ðu0 � �Þ��½ðu0 þ �Þ � upð�Þ�

¼
Z �0þ	þ

�0�	�
d�~SðiÞðxpð�ÞÞ	0½v0 � vpð�Þ�

¼ �
Z �0þ	þ

�0�	�
d�~SðiÞðxpÞ _v�1

p

d

d�
	½vpð�Þ � v0�

¼
Z �0þ	þ

�0�	�
d�

d

d�
½ _v�1

p
~SðiÞðxpð�ÞÞ�	½vpð�Þ � v0�

¼ _v�1
0

d

d�
½ _v�1

p
~SðiÞðxpÞ�jx0 ; (E12)

where �0 is the value of � at x0, and 		 are the values of �
at which the two outgoing rays of constant retarded times
u0 	 � cross the worldline. Combining the above results,
we arrive at

½ �hðiÞ;vv�0 ¼ ð _u0= _v0Þ½PðiÞ�0 � _v�1
0

d

d�
½ _v�1

p
~SðiÞðxpÞ�jx0 :

(E13)

The jump condition for the uu derivatives is derived in a
similar fashion. The result is

½ �hðiÞ;uu�0 ¼ ð _v0= _u0Þ½PðiÞ�0 þ _u�1
0

d

d�
½ _u�1

p
~SðiÞðxpÞ�jx0 : (E14)

4. Jump conditions for the 3rd derivatives

The jumps in the two mixed third derivatives are readily
obtained by considering the derivatives of the field equa-
tions (E2) with respect to v and with respect to u:

½ �hðiÞ;vvu�0 ¼ �½PðiÞ
;v �0; (E15)

½ �hðiÞ;uuv�0 ¼ �½PðiÞ
;u �0: (E16)

Here the jumps in PðiÞ
;u and PðiÞ

;v can be obtained from the

jumps in the first and second derivatives of �hðiÞ derived
above.
To obtain the jump condition for the vvv derivative, we

differentiate the field equations (E2) twice with respect to
v, and then integrate with respect to u along v ¼ v0 over
(u0 � �, u0 þ �). This yields

�½ �hðiÞ;vvv�0 ¼ lim
�!0

Z u0þ�

u0��
du

�
�PðiÞ

;vvðu; v0Þ

þ
Z

d�~SðiÞðxpÞ	00½v0 � vpð�Þ�

� 	½u� upð�Þ�
�
: (E17)

Using Eq. (E10) again, we obtain
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Z u0þ�

u0��
PðiÞ
;vvðu; v0Þdu ¼

Z u0þ�

u0��
duf2ðPðiÞ

þ;vðu; v0Þ � PðiÞ�;vðu; v0ÞÞ	½v0 � vpðuÞ� þ ðPðiÞ
þ ðu; v0Þ � PðiÞ� ðu; v0ÞÞ	0½v0 � vpðuÞ�

þ PðiÞ
þ;vvðu; v0Þ�½v0 � vpðuÞ� þ PðiÞ�;vvðu; v0Þ�½vpðuÞ � v0�g

! 2ðv0
0Þ�1½PðiÞ

;v �0 þ ðv0
0Þ�2½PðiÞ

;u �0 þ u000 ½PðiÞ�0 (E18)

as � ! 0. Here we have introduced v0
p � dvpðuÞ=du and v0

0 � v0
pðu0Þ ¼ _v0= _u0; and similarly, defining upðvÞ as the value

of u at which the incoming ray with advanced time v intersects the worldline, we introduced u0p � dupðvÞ=dv and u00p �
d2upðvÞ=dv2, with u00 � u0pðv0Þ ¼ _u0= _v0 and u000 � u00p ðv0Þ ¼ ð €u0 _v0 � _u0 €v0Þ= _v3

0. To evaluate the limit in Eq. (E18) we
have used

Z u0þ�

u0��
duðPðiÞ

þ;vðu; v0Þ � PðiÞ�;vðu; v0ÞÞ	½v0 � vpðuÞ� ! ðv0
0Þ�1½PðiÞ

;v �0 (E19)

(as � ! 0), along with

Z u0þ�

u0��
duðPðiÞ

þ ðu;v0Þ �PðiÞ� ðu;v0ÞÞ	0½v0 � vpðuÞ� ¼ �
Z u0þ�

u0��
du

�
ðPðiÞ

þ ðu;v0Þ �PðiÞ� ðu;v0ÞÞðv0
pÞ�1 d

du
½ðv0

pÞ�1	ðu� upðvÞÞ�
�

¼
Z u0þ�

u0��
du

�
d

du
½ðPðiÞ

þ ðu;v0Þ �PðiÞ� ðu;v0ÞÞðv0
pÞ�1�ðv0

pÞ�1	ðu� upðvÞÞ
�

! ðv0
0Þ�2½PðiÞ

;u �0 �v00
0 ðv0

0Þ�3½PðiÞ�0 ¼ ðv0
0Þ�2½PðiÞ

;u �0 þ u000 ½PðiÞ�0: (E20)

The term involving ~SðiÞ in Eq. (E17) gives, upon twice
integrating by parts,Z u0þ�

u0��
du

Z
d�~SðiÞðxpÞ	00ðv0 � vpð�ÞÞ	ðu� upð�ÞÞ

! _v�1
0

d

d�

�
_v�1
p

d

d�
ð _v�1

p
~SðiÞÞ

�







x0

(E21)

as � ! 0. Finally, substituting from Eqs. (E18) and (E21)
in Eq. (E17) we arrive at

½ �hðiÞ;vvv�0 ¼ 2ðv0
0Þ�1½PðiÞ

;v �0 þ ðv0
0Þ�2½PðiÞ

;u �0 þ u000 ½PðiÞ�0
� _v�1

0

d

d�

�
_v�1
p

d

d�
ð _v�1

p
~SðiÞÞ

�







x0

: (E22)

The jumps ½PðiÞ
;u �0 and ½PðiÞ

;v �0 can be obtained in a straight-
forward way from the jumps in the first and second deriva-
tives of the perturbation, obtained in previous steps.

In a precisely analogous manner, differentiating the field
equations (E2) twice with respect to u and then integrating
with respect to v along u ¼ u0 over (v0 � �, v0 þ �) gives

½ �hðiÞ;uuu�0 ¼ 2ðu00Þ�1½PðiÞ
;u �0 þ ðu00Þ�2½PðiÞ

;v �0 þ v00
0 ½PðiÞ�0

þ _u�1
0

d

d�

�
_u�1
p

d

d�
ð _u�1

p
~SðiÞÞ

�







x0

; (E23)

where v00
0 � v00

p ðu0Þ ¼ ð €v0 _u0 � _v0 €u0Þ= _u30.

5. Jump conditions for the 4th derivatives

The jumps in the five 4th-order partial derivatives of �hðiÞ
are obtained in a similar manner. The results are

½ �hðiÞ;uvvv�0 ¼ �½PðiÞ
;vv�0; ½ �hðiÞ;uuvv�0 ¼ �½PðiÞ

;uv�0;
½ �hðiÞ;uuuv�0 ¼ �½PðiÞ

;uu�0;
(E24)

½ �hðiÞ;vvvv�0 ¼ u0000 ½PðiÞ�0 þ 3u000 ½PðiÞ
;v �0 þ 3u000 ðv0

0Þ�1½PðiÞ
;u �0

þ 3ðv0
0Þ�1½PðiÞ

;vv�0 þ 3ðv00
0 Þ�2½PðiÞ

;uv�0
þ ðv0

0Þ�3½PðiÞ
;uu�0 � _v�1

0

d

d�

�
_v�1
p

d

d�

�
�
_v�1
p

d

d�
ð _v�1

p
~SðiÞÞ

��







x0

; (E25)

½ �hðiÞ;uuuu�0 ¼ v000
0 ½PðiÞ�0 þ 3v00

0 ½PðiÞ
;u �0 þ 3v00

0 ðu00Þ�1½PðiÞ
;v �0

þ 3ðu00Þ�1½PðiÞ
;uu�0 þ 3ðu000 Þ�2½PðiÞ

;uv�0
þ ðu00Þ�3½PðiÞ

;vv�0 þ _u�1
0

d

d�

�
_u�1
p

d

d�

�
�
_u�1
p

d

d�
ð _u�1

p
~SðiÞÞ

��







x0

: (E26)

Here u0000 ¼ u000p ðr0Þ ¼ ðu:::0 _v2
0 � 3 €u0 €v0 _v0 þ 3 _u0 €v

2
0 �

_u0v
:::
0 _v0Þ= _v5

0 and v000
0 ¼ v000

p ðr0Þ ¼ ðv:::0 _u20 � 3 €v0 €u0 _u0 þ
3 _v0 €u

2
0 � _v0u

:::
0 _u0Þ= _u50. The jumps in the various PðiÞ terms

are related to the jumps in the 1st, 2nd, and 3rd derivatives
of the perturbation, which were obtained in previous steps.
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APPENDIX F: SOURCE TERMS AND JUMP
CONDITIONS FOR SLIGHTLY ECCENTRIC

ORBITS

1. Source terms

We give here explicit expressions for the OðeÞ source
coefficients SðiÞ1 defined in Eq. (5.27). These are needed in

our discussion of the e-expansion method in Sec. V. We use
the notation

E 0 � Eðp ¼ r0; e ¼ 0Þ ¼ r0 � 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 � 3MÞp ;

L0 � Lðp ¼ r0; e ¼ 0Þ ¼
ffiffiffiffiffi
M

p
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0 � 3M
p ;

(F1)

along with f0 � 1� 2M=r0, and omit multipolar indices l,
m for brevity.

The coefficients SðiÞ1 are obtained by formally expanding

the source terms SðiÞ given in Eqs. (B11)–(B20) in powers
of e through OðeÞ, assuming the e-expansion forms of the
trajectory,

rpð�Þ ¼ r0ð1� e cos!r�Þ þOðe2Þ;

’pð�Þ ¼ !’�þ
2!’

!r

e sin!r�þOðe2Þ;

where we wrote !’ ¼ L0=r
2
0. S

ðiÞ
1 in then obtained as the

linear variation of SðiÞ with respect to e [recall Eq. (5.27)].
The result can be expressed in the form

SðiÞ1 ¼ X
n¼	1

SðiÞ
1;ne

�i!nm�; (F2)

where !nm ¼ n!r þm!’ and the various coefficients are

Sð1Þ
1;n ¼

2�ðr0 � 2MÞ3
E0r

4
0ðr0 � 3MÞ

�
�
r0 � 6Mþ 2mnðr0 � 2MÞ!’

!r

�
Y�
lmð0Þ; (F3)

S ð2Þ
1;n ¼ �4�in!rf

2
0Y

�
lmð0Þ; (F4)

S ð3Þ
1;n ¼ 2�E0

r20

�
r0 � 4Mþ 2mnðr0 � 2MÞ!’

!r

�
Y�
lmð0Þ;

(F5)

Sð4Þ
1;n ¼

8�imL0ðr0 � 2MÞ
r40

�
�
r0 � 4Mþmnðr0 � 2MÞ!’

!r

�
Y�
lmð0Þ; (F6)

S ð5Þ
1;n ¼ 4�mn!rL0ðr0 � 2MÞ2

E0r
3
0

Y�
lmð0Þ; (F7)

Sð6Þ
1;n ¼ 2�L2

0ðr0 � 2MÞ
E0r

5
0

�
�
3r0 � 10Mþ 2mnðr0 � 2MÞ!’

!r

�
Y�
lmð0Þ; (F8)

S ð7Þ
1;n ¼ ½lðlþ 1Þ � 2m2�Sð6Þ

1;n; (F9)

Sð8Þ
1;n ¼ 8�L0ðr0 � 2MÞ

r40

�
�
r0 � 4Mþmnðr0 � 2MÞ!’

!r

�
Y�
lm;�ð0Þ; (F10)

S ð9Þ
1;n ¼ � 4�in!rL0ðr0 � 2MÞ2

E0r
3
0

Y�
lm;�ð0Þ; (F11)

Sð10Þ
1;n ¼ 4�imL2

0ðr0 � 2MÞ2
E0r

5
0

�
3r0 � 10M

þ 2mnðr0 � 2MÞ!’

!r

�
Y�
lm;�ð0Þ: (F12)

Here !nm ¼ n!r þm!’, with Y�
lmð0Þ and Y�

lm;�ð0Þ denot-
ing the spherical harmonics and their � derivatives eval-
uated at � ¼ �=2 and ’ ¼ 0.
Notice that if we also write

TðiÞ
1 ¼ X

n¼	1

T ðiÞ
1;ne

�i!nm� with T ðiÞ
1;n ¼ 1

2
r0S

ðiÞ
0 ð’p ¼ 0Þ;

(F13)

then we may split the OðeÞ part of the metric perturbation

into two harmonic components, �hðiÞ1 ¼ �hðiÞ1;þ1 þ �hðiÞ1;�1, each

of which satisfying the field equation

h �hðiÞ1;n þMðiÞl
ðjÞ �h

ðjÞ
1;n ¼ ½SðiÞ

1;n	ðr� r0Þ þT ðiÞ
1;n	

0ðr� r0Þ�
� e�i!nm� ðn ¼ 	1Þ: (F14)

Evidently, the source for �hðiÞ1;n is simple harmonic in �, with

frequency !nm. It is clear that the solutions �hðiÞ1;nðr; tÞ (and
their derivatives) will inherit this simple harmonic depen-
dence on � along the orbit. Hence we may write, for
example,

@t �h
ðiÞ
1;njrpð�Þ ¼ �i!nmf0E�1

0
�hðiÞ1;njrpð�Þ; (F15)

where the factor f0E�1
0 is simply ðdtp=d�Þ�1.

2. Jump conditions

Here we explain the derivation of the necessary jump

conditions for the variables �hðiÞ1 associated with the OðeÞ
piece of the metric perturbation [recall Eq. (5.28)]. Unlike

the full physical metric perturbation functions �hðiÞ [or the
Oðe0Þ variables �hðiÞ0 ], the functions �hðiÞ1 are in general
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discontinuous across the particle’s worldline, because the
field equation which defines them, Eq. (5.30), is sourced by
a derivative of a delta function. For our TD algorithm we

need to derive analytic jump conditions for �hðiÞ1 itself as
well as for its first to fourth derivatives along the orbit. Our
task here will be somewhat simpler than in the case of the

full perturbation �hðiÞ (analyzed in Appendix E) thanks to

the simple harmonic dependence of �hðiÞ1 on t along the orbit,
expressed in Eq. (F15).

We start by reexpressing the field equations (F14) in the
form

ð@2r� � @2t Þ �hðiÞ1;n � 4PðiÞ
1;n ¼ �4½SðiÞ

1;n	ðr� r0Þ
þT ðiÞ

1;n	
0ðr� r0Þ�e�i!nm�

ðn ¼ 	1Þ; (F16)

where the definition of PðiÞ
1;n is similar to that of PðiÞ in

Eq. (E3), simply replacing �hðiÞ ! �hðiÞ1;n. Substituting

�h ðiÞ
1;n ¼ �hðiÞ�1;n �ðr0 � rÞ þ �hðiÞþ1;n �ðr� r0Þ (F17)

and comparing the 	0ðr� r0Þ and 	ðr� r0Þ terms on both
sides of the resulting equation, we readily obtain the jump
formulas

½ �hðiÞ1;n�0 ¼ � 4

f20
T 1;ne

�i!nm�; (F18)

½@r� �hðiÞ1;n�0 ¼
4

f0
PðiÞ
	;n �

4

f20
½f0SðiÞ

1;n þ f00T
ðiÞ
1;n�e�i!nm�;

(F19)

where PðiÞ
	;n are the terms / 	ðr� r0Þ in PðiÞ

1;n, which are

given by

Pð1Þ
	;n ¼

1

2
f20f

0
0½ �hð3Þ1;n�0; (F20)

Pð2Þ
	;n ¼

1

2
f0f

0
0½f0 �hð3Þ1;n þ �hð2Þ1;n � �hð1Þ1;n�0; (F21)

Pð4Þ
	;n ¼

1

4
f0f

0
0½ �hð4Þ1;n � �hð5Þ1;n�0; (F22)

Pð8Þ
	;n ¼

1

4
f0f

0
0½ �hð8Þ1;n � �hð9Þ1;n�0; (F23)

PðiÞ
	;n ¼ 0 ðothersÞ: (F24)

We may now easily obtain jump conditions for the
second and higher r� derivatives in a recursive manner:
Formally differentiating Eq. (F16) k times with respect to
r� we get the jump relations

½@kþ2
r�

�hðiÞ1;n�0 ¼ ½@2t @kr� �hðiÞ1;n�0 þ 4½@kr�PðiÞ
1;n�0

¼ �ð!nmf0=E0Þ2½@kr� �hðiÞ1;n�0 þ 4½@kr�PðiÞ
1;n�0

ðk � 0Þ; (F25)

where the second equality is due to the harmonic depen-

dence of �hðiÞ1;n on t along the orbit, expressed in Eq. (F15).

The jumps in the t derivatives are also obtained in a
straightforward manner, by writing

½@kt @k0r� �hðiÞ1;n�0 ¼ ð�i!nmf0=E0Þk½@k0r� �hðiÞ1;n�0: (F26)

The desired jump conditions in �hðiÞ1 and their derivatives
are finally obtained by adding up the jumps in the two n ¼
1 harmonics:

½@kt @k0r� �hðiÞ1 �0 ¼
X

n¼	1

½@kt @k0r� �hðiÞ1;n�0 ðk; k0 � 0Þ: (F27)
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