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Exact analytic expressions for planetary orbits and light trajectories in the Schwarzschild geometry are

presented. A new parameter space is used to characterize all possible planetary orbits. Different regions in

this parameter space can be associated with different characteristics of the orbits. The boundaries for these

regions are clearly defined. Observational data can be directly associated with points in the regions. A

possible extension of these considerations with an additional parameter for the case of Kerr geometry is

briefly discussed.
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I. INTRODUCTION

Nearly a century after Einstein’s theory of general rela-
tivity was found to correctly predict the precession of the
planet Mercury around the Sun and the deflection of light
by the Sun’s gravitational field, the problem of understand-
ing orbital trajectories around very massive objects still
retains interest as it relates to current astrophysical topics
[1] such as the study of gravitational waves. Among the
numerous works on this subject, we should mention the
classic publications of Whittaker [2], Hagihara [3] and
Chandrasekhar [4] on the Schwarzschild geometry, and
the more recent work of Levin and Perez-Giz [5] on the
Schwarzschild and Kerr geometries.

In the work of Chandrasekhar and that of Hagihara, the
orbits are classified into various types according to the
roots of a certain cubic equation, while in the work of
Levin and Perez-Giz, the orbits are classified topologically
by a triplet of numbers that indicate the numbers of zooms,
whirls, and vertices. In the work of Levin and Perez-Giz,
the orbits were obtained by numerically integrating the
integrable equations. These authors used the planet’s en-
ergy and angular momentum as the principal physical
parameters, and made extensive use of an effective poten-
tial for describing the Schwarzschild orbits, as most studies
on the topics of general relativity do.

In this paper, we first present, in Sec. II, three explicit
analytic expressions for the orbits in the Schwarzschild
geometry: one is for periodic [6] and unbounded orbits, and
two are terminating orbits. The explicit analytic expres-
sions that we derive not only describe the precise features
of the orbits (periodic, precessing, nonperiodic, terminat-
ing, etc.) but also clearly indicate two physical parameters
which can be used to characterize these orbits. These two
dimensionless parameters are specific combinations of the
following physical quantities: the total energy and angular
momentum of the planet, the masses of the massive object
and the planet, and, of course, the universal gravitation

constant G and the speed of light c. These two physical
dimensionless parameters were first used by one of us in
Ref. [6]. We shall refer to these two quantities as the energy
eccentricity parameter e and the gravitational field parame-
ter s, respectively, (or simply as the energy parameter and
the field parameter). They will be defined in Sec. II. We
will use neither the common convention of setting G ¼
c ¼ 1, nor the energy and angular momentum of the planet
by themselves, as the physical parameters for characteriz-
ing the orbits. With the energy parameter (0 � e � 1)
plotted on the horizontal axis and the field parameter (0 �
s � 1) plotted on the vertical axis, the parameter space for
all possible orbits will be shown to be divisible into three
sectors, which we call Regions I, II, and II’, that have
clearly defined boundaries. Region I permits periodic, un-
bounded, and terminating orbits. Regions II and II’ permit
terminating orbits only.
In Sec. III, we describe Region I (for 0 � e � 1) and the

orbits in greater detail. We first divide Region I by lines
each of which represents orbits described by elliptic func-
tions of the same modulus k. We then give a more physical
division of Region I, which consists of nearly horizontal
lines each of which represents orbits that have the same
precession angle ��, and of bent vertical lines each of
which represents orbits that have the same ‘‘true’’ eccen-
tricity ". The terminating orbits will be characterized by
two parameters one of which is the angle at which the
planet enters the center of the black hole, and the other
being the initial distance of the planet from the star or black
hole. In Sec. IV, we describe Regions II and II’ (for 0 �
e � 1) in which all orbits are terminating, and we again
divide Region II by curves of constant modulus k each of
which describes orbits with the same modulus. Regions II
and II’ are separated by the Schwarzschild horizon. In
Sec. V, we describe orbits corresponding to e > 1 for
Regions I and II. Our ‘‘map’’ in the parameter space
ðe; sÞ thus describes all possible orbits in the
Schwarzschild geometry in their entirety. The observatio-
nal data related to a planet’s orbit about some giant star or
black hole can be directly identified with a point having*fhioe@sjfc.edu
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certain coordinates ðe; sÞ on our map, which can then be
used for estimating the physical characteristics associated
with the star or black hole and that of the planet itself,
assuming that the star or black hole is not spinning very
fast. For the Kerr geometry, another dimensionless quan-
tity, which is clearly the ratio of the spin angular momen-
tum per unit mass of the black hole to the orbital angular
momentum per unit mass of the planet, should enter into
the consideration. In Sec. VI, we briefly discuss a possible
extension of our results to the case involving a slowly
spinning black hole, at least to the first order perturbation,
by rescaling the physical parameters involved.

In Sec. VII, we study the deflection of light by the
gravitational field of a very massive object. A single di-
mensionless parameter will be used to characterize the
region. We show that here too, we should divide the region
into three sectors, which we again call Regions I, II, and
II’, and we present three analytic expressions for the
trajectories of light applicable in these different regions.
Region I has trajectories of light that get deflected, and
Regions II and II’ have trajectories of light that are ab-
sorbed by and terminate at the black hole.

In Sec. VIII, we give a summary of our results. Proof of
many interesting analytic relations among the parameters
appearing in these studies are given in several appendices.
Since our results presented in this paper cover gravitational
fields of all ranges, from the weak field produced by the
Sun of our Solar System, for example, to the very strong
field produced by a black hole, we want to avoid referring
to the massive object that produces the gravitational field
as a black hole, and prefer to refer to it as the star or black
hole, and we shall refer to the object of a much smaller
mass that orbits around it as the planet or the particle.

We have supplemented our many analytic results with
numerous tables that present various physical quantities
such as the minimum and maximum distances of the planet
from the star and the angles of precession of the orbits that
are calculated from our analytic expressions, as well as
numerous figures that show various kinds of orbits of the
planet and various kinds of deflection of light.

II. ANALYTIC EXPRESSIONS FOR THE ORBITS

We consider the Schwarzschild geometry, i.e. the static
spherically symmetric gravitational field in the empty
space surrounding some massive spherical object such as
a star or a black hole of massM. The Schwarzschild metric
for the empty spacetime outside a spherical body in the
spherical coordinates r, �, � is [1]

dl2 ¼ c2
�
1� �

r

�
dt2 �

�
1� �

r

��1
dr2 � r2d�2

� r2sin2�d�2; (1)

where

� ¼ 2GM

c2
(2)

is known as the Schwarzschild radius, G is the universal
gravitation constant, and c is the speed of light. If ½x�� ¼
ðt; r; �; �Þ, then the worldline x�ð�Þ, where � is the proper
time along the path, of a particle moving in the equatorial
plane � ¼ �=2, satisfies the equations [1]�

1� �

r

�
_t ¼ �; (3)

c2
�
1� �

r

�
_t2 �

�
1� �

r

��1
_r2 � r2 _�2 ¼ c2; (4)

r2 _� ¼ h; (5)

where the derivative _ represents d=d�. The constant h is
identified as the angular momentum per unit mass of the
planet, and the constant � is identified to be

� ¼ E

m0c
2
;

where E is the total energy of the planet in its orbit and m0

is the rest mass of the planet at r ¼ 1. Substituting Eqs. (3)
and (5) into (4) gives the ‘‘combined’’ energy equation [1]

_r 2 þ h2

r2

�
1� �

r

�
� c2�

r
¼ c2ð�2 � 1Þ: (6)

Substituting dr=d� ¼ ðdr=d�Þðd�=d�Þ ¼ ðh=r2Þ�
ðdr=d�Þ into the combined energy equation gives the
differential equation for the orbit of the planet�

du

d�

�
2 ¼ �u3 � u2 þ Buþ C; (7)

where u ¼ 1=r, B ¼ 2GM=h2, C ¼ c2ð�2 � 1Þ=h2.
Following Whittaker [2], it is convenient to change vari-
able from u to a dimensionless quantity U defined by

U ¼ 1

4

�
�

r
� 1

3

�
¼ 1

4

�
�u� 1

3

�
; (8)

or u ¼ 4U=�þ 1=ð3�Þ so that Eq. (7) becomes�
dU

d�

�
2 ¼ 4U3 � g2U� g3; (9)

where

g2 ¼ 1
12 � s2 g3 ¼ 1

216 � 1
12s

2 þ 1
4ð1� e2Þs4; (10)

and where

e ¼
�
1þ h2c2ð�2 � 1Þ

ðGMÞ2
�
1=2

; (11)

and

s ¼ GM

hc
: (12)
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The two dimensionless parameters e and s, which are
defined by the two above equations and which we call the
energy and field parameters, respectively, will be the prin-
cipal parameters we shall use for characterizing the orbit of
a planet. It will be noted that the constant c2ð�2 � 1Þ,
which is <0 for a bound orbit, can be identified with
2E0=m in the Newtonian limit, where E0 is the sum of
the kinetic and potential energies and is <0 for a bound
orbit, and is� 0 for an unbound orbit, andm is the mass of
the planet (which approaches m0), and that

e ’
�
1þ 2E0h

2

mðGMÞ2
�
1=2

(13)

is the ‘‘eccentricity’’ of the orbit. Also, in the small s limit,
the orbit equation can be shown to be given by

1

r
’ GM

h2
½1� e cosð1� �Þ��; (14)

where � ’ 3ðGMÞ2=ðhcÞ2. Thus, r assumes the same value
when � increases to �þ 2�=ð1� �Þ. Comparing this
with the increase of � from � to �þ 2�, the ellipse
will rotate about the focus by an amount which is the angle
of precession

�� ’ 2�

1� �
� 2� ’ 2�� ¼ 6�ðGMÞ2

h2c2
: (15)

This is the well-known approximate expression for the
precession angle for the case of very small s. The limiting
case for � ¼ 0 is the well-known orbit equation in
Newtonian mechanics. We should note that while the limit
s ¼ 0 (and thus � ¼ 0) cannot be strictly correct in prin-
ciple so long as M � 0, this limit can be used for many
practical cases with great accuracy as evidenced by the
predictions of Newtonian mechanics. A special case of
these Newtonian orbits is the circular orbit of radius r ¼
h2=GM for e ¼ 0.

We now derive the exact analytic solutions of Eq. (9) and
classify the three possible solutions from a purely mathe-
matical viewpoint, and we shall consider their physical
interpretations in the next section. We first define the
discriminant � of the cubic equation

4U3 � g2U� g3 ¼ 0; (16)

by

� ¼ 27g23 � g32: (17)

The three roots of the cubic Eq. (16) are all real for the
case � � 0. We call the three roots e1, e2, e3 and arrange
them so that e1 > e2 > e3; the special cases when two of
the roots are equal will be considered also. For the case
�> 0, the cubic Eq. (16) has one real root and two roots
that are complex conjugates. The analytic solutions of
Eq. (9) that we shall present will give the distance r of
the planet from the star or black hole in terms of the
Jacobian elliptic functions that have the polar angle � in

their argument and that are associated with a modulus k
that will be defined. Instead of writing r, we use the
dimensionless distance q measured in units of the
Schwarzschild radius � and defined by

q � r

�
� 1

�u
: (18)

The dimensionless distance q is related to U of Eq. (8)
by

1

q
¼ 1

3
þ 4U: (19)

We now give the three analytic solutions of Eq. (9) in the
following.
Solution (A1) For � � 0, e1 > e2 � U > e3.
Writing the right-hand side of Eq. (9) as 4ðe1 �UÞ�

ðe2 �UÞðU� e3Þ, Eq. (9) can be integrated with � ex-
pressed in terms of the inverse Jacobian sn function [7].
After a little algebra and some rearrangement, the equation
for the orbit is found to be

1

q
¼ 1

3
þ 4e3 þ 4ðe2 � e3Þsn2ð	�; kÞ

¼ 1

3
þ 4e3 þ 4ðe2 � e3Þ 1� cnð2	�; kÞ

1þ dnð2	�; kÞ ; (20)

where the point at � ¼ 0 has been chosen to give U ¼ e3.
The constant 	 appearing in the argument, and the modulus
k, of the Jacobian elliptic functions are given in terms of
the three roots of the cubic Eq. (16) by

	 ¼ ðe1 � e3Þ1=2; (21)

k2 ¼ e2 � e3
e1 � e3

; (22)

where e1, e2, e3 are given by

e1 ¼ 2

�
g2
12

�
1=2

cos

�
�

3

�
; e2 ¼ 2

�
g2
12

�
1=2

cos

�
�

3
þ 4�

3

�
;

e3 ¼ 2

�
g2
12

�
1=2

cos

�
�

3
þ 2�

3

�
; (23)

and where

cos� ¼ g3

�
27

g32

�
1=2

: (24)

Equation (20) is valid for orbits for all values of e but for
restricted values of s, as will be shown. It was first given in
Ref. [6] using a slightly different approach that was ini-
tiated by Whittaker [2] for describing the precessional
orbits for 0 � e < 1. It was shown to reduce to Eq. (14)
for the case of very small s, which in turn gave the known
approximate precession angle given by Eq. (15). The
modulus k of the elliptic functions has a range 0 � k2 �
1. For the special case of k2 ¼ 1, snð	�; 1Þ ¼ tanhð	�Þ,
cnð	�; 1Þ ¼ dnð	�; 1Þ ¼ sechð	�Þ, and we shall refer to
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the orbit given by Eq. (20) as the asymptotic elliptic-,
parabolic-, or hyperbolic-type orbit for 0 � e < 1, e ¼ 1,
or e > 1.

The period of cnð2	�; kÞ is 4KðkÞ, and the period of
dnð2	�; kÞ and of sn2ð	�; kÞ is 2KðkÞ, where KðkÞ is the
complete elliptic integral of the first kind [7]. For k ¼ 0,
snðx; 0Þ ¼ sinx, cnðx; 0Þ ¼ cosx, dnðx; 0Þ ¼ 1. As k2 in-
creases from 0 to 1, KðkÞ increases from �=2 to 1. For an
elliptic-type orbit, the distance r of the planet from the
center of the star or black hole assumes the same value
when its polar angle � increases from � to �þ
4K=ð2	Þ ¼ �þ 2K=	. Comparing this with the increase
of � from � to �þ 2� in one revolution, the perihelion
(or the aphelion) will rotate by an amount

�� ¼ 2KðkÞ
	

� 2�; (25)

which is the exact expression for the precession angle. For
k2 close to the value 1, the planet can make many revolu-
tions around the star or black hole before assuming a
distance equal to its initial distance. Thus, if n is the largest
integer for which 2KðkÞ=	 is equal to or greater than 2n�,
the angle of precession should be more appropriately de-
fined as 2KðkÞ=	� 2n�. For the sake of consistency,
however, we shall stick to the definition given by
Eq. (25).

For the case of very small s and to the order of s2, it was
shown in Ref. [6] that e1 ’ 1=6� s2, e2 ’ �1=12þ ð1þ
eÞs2=2, e3 ’ �1=12þ ð1� eÞs2=2, � ’ 2

ffiffiffiffiffiffi
27

p
es2, 	 ’

½1� ð3� eÞs2�=2, k2 ’ 4es2, KðkÞ ’ �ð1þ es2Þ=2, and
substituting these into Eq. (25) gives the well-known ap-
proximate result given by Eq. (15).

For the periodic orbits, we note that the maximum
distance rmax (the aphelion) of the planet from the star or
black hole and the minimum distance rmin (the perihelion)
of the planet from the star or black hole, or their corre-
sponding dimensionless forms qmax ð¼ rmax=�Þ and qmin

( ¼ rmin=�), are obtained from Eq. (20) when 	� ¼ 0 and
when 	� ¼ KðkÞ, respectively, and they are given by

1

qmax

¼ 1

3
þ 4e3; (26)

and

1

qmin

¼ 1

3
þ 4e2; (27)

where e2 and e3 are determined from Eqs. (23), (24), and
(10) in terms of e and s.

Although we may call the orbits given by this solution
for 0 � k2 < 1 and 0 � e < 1 periodic, they are not nec-
essarily closed orbits. It is seen from the precession dis-
cussed above that for �� ¼ f�, unless f is a rational
number, the orbit will not close and it is not strictly a
closed periodic orbit. However, for all practical purposes,
any irrational number when truncated becomes a rational

number, and thus the orbit will be closed. The distinction of
closed and nonclosed orbits depending on whether f is
rational or irrational is of course of profound theoretical
interest [5].
For a general periodic orbit that precesses, the general or

true eccentricity " of the orbit is defined by

" � rmax � rmin

rmax þ rmin

¼ qmax � qmin

qmax þ qmin

; (28)

where qmax and qmin are given by Eqs. (26) and (27).
We shall show in the following section that the true

eccentricity " is in general not equal to the energy eccen-
tricity parameter e defined by Eq. (11), but that " ! e in
the limit of s ! 0, i.e. in the Newtonian limit. For the
special case of " ¼ 1, however, we shall show that it
coincides with the special case of e ¼ 1 for all applicable
values of s, and that it signifies an unbounded orbit.
We now proceed to present the second solution.
Solution (A2) For � � 0, U > e1 > e2 > e3.
We write the right-hand side of Eq. (9) as 4ðU� e1Þ�

ðU� e2ÞðU� e3Þ and Eq. (9) can be integrated with �
expressed in term of the inverse Jacobian sn function [7].
The equation for the orbit is found to be

1

q
¼ 1

3
þ 4

e1 � e2sn
2ð	�; kÞ

cn2ð	�; kÞ ; (29)

where 	, k, e1, e2, and e3 are given by Eqs. (21)–(24) as in
the first solution. This solution gives a terminating orbit.
The point at � ¼ 0 has been chosen to be given by

1

q1
¼ 1

3
þ 4e1: (30)

The planet, starting from the polar angle � ¼ 0 at a
distance q1 from the black hole, plunges into the center of
the black hole when its polar angle �1 is given by
cnð	�1; kÞ ¼ 0, i.e. when

�1 ¼ KðkÞ
	

;

where 	 and k are given by Eqs. (21) and (22).
The region of ðe; sÞ where orbits given by Solutions A1

and A2 are applicable will be called Region I, and it will be
described in greater detail in Sec. III. Thus, each point
ðe; sÞ of parameter space in Region I represents two distinct
orbits, one periodic and one terminating. At the same
coordinate point, the characteristic quantities that describe
the two distinct orbits are related. For example, by noting
e1 þ e2 þ e3 ¼ 0 and from Eqs. (26) and (27), q1 can be
expressed as

1

q1
¼ 1�

�
1

qmin

þ 1

qmax

�
; (31)

where qmin and qmax are the minimum and maximum
distances for the periodic orbit at the same coordinate
points ðe; sÞ. It will be noted that q1 is less than qmin, i.e.

F. T. HIOE AND DAVID KUEBEL PHYSICAL REVIEW D 81, 084017 (2010)

084017-4



for the terminating orbit the planet is assumed initially to
be closer to the black hole than the qmin for the associated
periodic orbit, except at k2 ¼ 1, where q1 ¼ qmin and the
planet has a circular instead of a terminating orbit that will
be explained later.

We note that the terminating orbit Eq. (29) presented has
no singularity at the Schwarzschild horizon q ¼ 1, be-
cause, as is well known, q ¼ 1 is a coordinate singularity
and not a physical singularity. The orbit obtained from
continuing � beyond the value �1 ¼ KðkÞ=	 re-emerges
from the singularity at q ¼ 0. This behavior is perhaps
similar to the conjectured trajectory of a particle that is
emitted from a so-called ‘‘white hole’’ [1]. The orbit
beyond � ¼ �1 is shown as a dotted line in the figures
that show the terminating orbits.

For now, the orbits in Region I are characterized mathe-
matically by � � 0.

We now present the third solution.
Solution (B) For �> 0.
Define

A ¼ 1

2

�
g3 þ

ffiffiffiffiffiffi
�

27

s �
1=3

; B ¼ 1

2

�
g3 �

ffiffiffiffiffiffi
�

27

s �
1=3

; (32)

where g3 and � are defined by Eqs. (10) and (17). The real
root of the cubic Eq. (16) is given by

a ¼ Aþ B; (33)

and the two complex conjugate roots b and b are �ðAþ
BÞ=2� ðA� BÞ ffiffiffi

3
p

i=2. We further define

	 ¼ ½3ðA2 þ ABþ B2Þ�1=4 (34)

and

k2 ¼ 1

2
� 3ðAþ BÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðA2 þ ABþ B2Þp ¼ 1

2
� 3a

4	2
: (35)

Writing the right-hand side of Eq. (9), with U � a, as

4ðU� aÞðU� bÞðU� bÞ, Eq. (9) can be integrated with�
expressed in terms of the inverse Jacobian cn function [7].
We find the equation for the orbit to be

1

q
¼ 1

3
þ 4aþ 4	2 1� cnð2	�; kÞ

1þ cnð2	�; kÞ
¼ 1

3
þ 4aþ 4	2tn2ð	�; kÞdn2ð	�; kÞ: (36)

This is a terminating orbit. The initial distance q2 of the
planet at � ¼ 0 has been chosen to be given by

1

q2
¼ 1

3
þ 4a: (37)

It plunges into the center of the black hole when its polar
angle � ¼ �2 is given by

�2 ¼ KðkÞ
	

;

where 	 and k are given by Eqs. (34) and (35). Again, we
note that the orbit Eq. (36) has no singularity at q ¼ 1.
The region of ðe; sÞ where orbits given by Eq. (36) are

applicable will be divided into two sectors called
Regions II and II’, the boundary between which will be
defined later. They have terminating orbits only. For now,
the orbits in Regions II and II’ are characterized mathe-
matically by �> 0.
As for the initial points of the orbits discussed above, by

comparing Eq. (19) with the orbit Eqs. (20), (29), and (36),
and with Eqs. (26), (30), and (37), we already noted that
our choice of � ¼ 0 in our orbit equations is such that for
0 � e � 1 it gives U ¼ e3, e1, and a, respectively, that in
turn give q ¼ qmax, q1, and q2 as the initial distances of the
planet from the star or black hole. We then note from
Eq. (9) that dU=d� ¼ 0 and hence dr=d� ¼ 0 for the
planet at these initial points of the trajectories, i.e. the
trajectory or more precisely the tangent to the trajectory
at � ¼ 0 is perpendicular to the line joining the planet to
the star or black hole. All this will be seen in the figures
presented later, and all our references to the initial position
of the planet from here onward, for the case 0 � e � 1,
assume that the trajectory (as � increases from 0) of the
planet at its initial position is perpendicular to the line
joining the planet to the star or black hole.
In Secs. III and IV, we shall consider the case 0 � e � 1,

and we shall discuss the case e > 1 in Sec. V.

III. REGION I FOR 0 � e � 1

Consider the orbits expressed by Eqs. (20) and (29)
given by Solutions A1 and A2 and characterized mathe-
matically by � � 0. We call the region covered by the
associated range of values for ðe; sÞ Region I. In this
section, we shall be mainly concerned with the values of
e in the range 0 � e � 1, and we shall deal with the values
of e in the range e > 1 in Sec. V.
To gain a preliminary perspective, consider the Earth (as

the planet) and the Sun (as the star) in our Solar System.
Substituting the mass of the Sun M ¼ MS ¼ 1:99�
1030 kg and the angular momentum of the Earth per unit
mass of the Earth h ¼ 4:48� 1015 m2=s, we find s ¼
0:983� 10�4. The energy eccentricity parameter e, which
is equal to the true eccentricity " of the Earth’s orbit for
such a very small s value, is known to be about 0:017. The
approximate relation k2 ’ 4es2 gives the squared modulus
of the elliptic functions that describe the Earth’s orbit to be
k2 ¼ 0:657� 10�9. We see that for the planetary system
that is familiar to us, the values of s and k2 are very small
indeed. We may also note that the Schwarzschild radius
� ¼ 2GMS=c

2 ’ 3 km would be well inside the Sun
which has a radius of 6:96� 105 km. The Earth’s dimen-
sionless distance is q ’ 5� 107 from the Sun’s center. For
this value of s, with qmin ’ qmax ’ 5� 107, the orbit given
by Eq. (29) from Solution (A2) would require the initial
position q1 of a planet to be ’ 1 according to Eq. (31), i.e.
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the planet would have to be at a distance equal to the
Schwarzschild radius from the center of the Sun for it to
have a terminating orbit which plunges to the center of the
Sun. Therefore, the terminating orbit given by Eq. (29) is
inapplicable for our Solar System. The periodic and un-
bounded orbits, on the other hand, are perfectly valid.

However, for cases when the massive object is a gigantic
mass concentrated in a small radius such as a black hole, all
the possibilities presented here may arise. As the field
parameter s increases from 0, the modulus k of the elliptic
functions that describe the planet’s orbits also increases.
From Eqs. (21)–(24), it is seen that several steps are needed
to relate k2 to e and s. In Appendix A, we show that a direct
relationship between k2 and e and s can be established, and
it is given by

1� 18s2 þ 54ð1� e2Þs4
ð1� 12s2Þ3=2 ¼ ð2� k2Þð1þ k2Þð1� 2k2Þ

2ð1� k2 þ k4Þ3=2
(38)

¼ cos�: (39)

The cos� of Eq. (39) is the same cos� that appears in
Eq. (24), and, in particular, it is equal to 1, 0, �1 for k2 ¼
0, 1=2, 1, respectively.
The curve represented by k2 ¼ 1, after setting cos� ¼

�1 in Eq. (39), can be readily shown to give a quadratic
equation 27ð1� e2Þ2s4 � 2ð1� 9e2Þs2 � e2 ¼ 0 that
gives

s21 ¼
1� 9e2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 9e2Þ2 þ 27e2ð1� e2Þ2p

27ð1� e2Þ2 (40)

for e � 1, and s21 ¼ 1=16 for e ¼ 1. Equation (40) repre-
senting k2 ¼ 1 gives the upper boundary (for the values of
s) of Region I (the uppermost heavy solid line in Fig. 1); it

extends from s1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=27

p ¼ 0:272 166 for e ¼ 0 to s1 ¼
1=4 ¼ 0:250 000 for e ¼ 1, i.e. a line that is nearly parallel
to the e axis. Thus, Region I is a region bounded by 0 �
s � s1 for 0 � e � 1 where s1 is given by Eq. (40), in
which the squared modulus of the elliptic functions that
describe the orbits cover the entire range 0 � k2 � 1.
We now use Eq. (38) to give a plot of lines of constant

k2 ¼ 0:001; 0:01; 0:1; 0:3; . . . ; 1 as shown in Fig. 1. These
lines conveniently divide Region I into regions of increas-
ing field strengths as k2 increases from 0 to 1. On a point
representing a particular k2 and a particular e value, s can
be determined from Eq. (38) and the orbit is then given by
Eq. (20) using Eqs. (A5), (10), and (21). The values of s on
these constant k2 lines for the values of e ¼
0:1; 0:2; . . . ; 1:0 are given in Table I, which thus give the
coordinates ðe; sÞ of the points on the lines representing
different values of k2. These coordinate points ðe; sÞ from
Table I are used to give the following tables: Tables II and
III give the values of qmax and qmin for the orbits obtained
from Eqs. (26) and (27). Note that the dimensionless
distance q is in units of the Schwarzschild radius � which
depends on the mass M of the star or black hole corre-
sponding to that particular coordinate point, and thus one
should not compare q at two different coordinate points
just by their absolute values alone. Table IV presents the
values of the precession angle in units of �, i.e. ��=�,
obtained from Eq. (25). Table V presents the values of the
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FIG. 1. Region I plots of k2 ¼ 0:001, 0.01, 0.1, 0.3, 0.5, 0.7,
1.0.

TABLE I. Values of s for various values of e and k2 in Region I.

s e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 0:001 0.055 4787 0.0 454 170 0.0 346 617 0.0 286 392 0.0 248 892 0.0 222 952 0.0 203 686 0.0 188 667 0.0 176 539 0.0 166 480 0.0 157 963

k2 ¼ 0:01 0.1 14 809 0.109 191 0.0 969 713 0.0 851 063 0.0 757 980 0.0 686 999 0.0 631 762 0.0 587 575 0.0 551 328 0.0 520 954 0.0 495 050

k2 ¼ 0:1 0.210 213 0.208 385 0.203 281 0.195 887 0.187 374 0.178 683 0.170 376 0.162 703 0.155 729 0.149 428 0.143 740

k2 ¼ 0:2 0.238 703 0.237 612 0.234 488 0.229 734 0.223 875 0.217 424 0.210 787 0.204 236 0.197 932 0.191 956 0.186 339

k2 ¼ 0:3 0.252 575 0.251 809 0.249 595 0.246 160 0.241 814 0.236 873 0.231 612 0.226 239 0.220 900 0.215 689 0.210 663

k2 ¼ 0:4 0.260 533 0.259 944 0.258 236 0.255 562 0.252 131 0.248 163 0.243 857 0.239 372 0.234 829 0.230 311 0.225 877

k2 ¼ 0:5 0.265 408 0.264 926 0.263 523 0.261 314 0.258 458 0.255 122 0.251 460 0.247 600 0.243 642 0.239 658 0.235 702

k2 ¼ 0:6 0.268 462 0.268 045 0.266 831 0.264 913 0.262 422 0.259 494 0.256 258 0.252 821 0.249 269 0.245 666 0.242 061

k2 ¼ 0:7 0.270 350 0.269 973 0.268 875 0.267 137 0.264 873 0.262 203 0.259 239 0.256 076 0.252 791 0.249 443 0.246 076

k2 ¼ 0:8 0.271 452 0.271 099 0.270 069 0.268 436 0.266 305 0.263 787 0.260 985 0.257 986 0.254 863 0.251 671 0.248 452

k2 ¼ 0:9 0.272 006 0.271 665 0.270 668 0.269 088 0.267 025 0.264 583 0.261 863 0.258 948 0.255 908 0.252 796 0.249 653

k2 ¼ 1:0 0.272 166 0.271 828 0.270 840 0.269 276 0.267 232 0.264 812 0.262 116 0.259 225 0.256 209 0.253 120 0.250 000
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true eccentricity " obtained from Eq. (28). Tables II, III, IV,
and V are to be used in conjunction with Table I for
identifying the locations ðe; sÞ of the corresponding quan-
tities that are presented. The physical quantities presented
in Tables II, III, IV, and V together with the coordinates
ðe; sÞ given in Table I now give all possible periodic orbits
in the Schwarzschild geometry in its entirety. That is, the

coordinates ðe; sÞ of a planet orbiting a nonspinning black
hole can be identified if the observation data on rmin, rmax,
" and �� can be collected. Region I shown in Fig. 1 is
where orbits given by Eqs. (20) and (29) apply. In Secs. IV
and V, we shall discuss Regions II and II’, which are shown
above Region I in Fig. 2 where orbits given by Eq. (36)
apply. As an example of application of Tables I, II, III, IV,

TABLE III. Values of qmin for various values of e and k2 in Region I.

qmin e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 0:001 149.15 215.27 343.84 466.77 574.79 669.11 751.92 825.10 890.20 948.48 1001.0

k2 ¼ 0:01 31.135 33.980 41.469 50.945 60.399 69.110 76.948 83.963 90.248 95.899 101.00

k2 ¼ 0:1 7.0549 7.1489 7.4154 7.8125 8.2864 8.7891 9.2876 9.7635 10.209 10.621 11.000

k2 ¼ 0:2 4.7480 4.7753 4.8530 4.9703 5.1133 5.2691 5.4278 5.5830 5.7311 5.8703 6.0000

k2 ¼ 0:3 3.8359 3.8465 3.8765 3.9220 3.9777 4.0389 4.1018 4.1639 4.2237 4.2803 4.3333

k2 ¼ 0:4 3.3289 3.3325 3.3428 3.3583 3.3773 3.3983 3.4199 3.4413 3.4619 3.4815 3.5000

k2 ¼ 0:5 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

k2 ¼ 0:6 2.7667 2.7645 2.7585 2.7494 2.7382 2.7260 2.7134 2.7009 2.6889 2.6774 2.6667

k2 ¼ 0:7 2.5911 2.5877 2.5778 2.5629 2.5446 2.5247 2.5042 2.4840 2.4645 2.4460 2.4286

k2 ¼ 0:8 2.4535 2.4491 2.4366 2.4178 2.3949 2.3698 2.3442 2.3189 2.2946 2.2716 2.2500

k2 ¼ 0:9 2.3422 2.3371 2.3228 2.3012 2.2751 2.2465 2.2174 2.1887 2.1613 2.1354 2.1111

k2 ¼ 1:0 2.2500 2.2445 2.2288 2.2052 2.1767 2.1458 2.1142 2.0833 2.0538 2.0259 2.0000

TABLE II. Values of qmax for various values of e and k2 in Region I.

qmax e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 0:001 174.74 273.42 522.17 871.99 1345.9 2012.0 3012.8 4681.4 8018.4 18 025 1
k2 ¼ 0:01 43.673 49.688 68.266 99.742 145.78 212.38 313.52 482.96 822.60 1842.4 1
k2 ¼ 0:1 14.306 14.851 16.550 19.608 24.429 31.802 43.389 63.171 103.21 223.98 1
k2 ¼ 0:2 11.377 11.697 12.693 14.481 17.300 21.627 28.458 40.168 63.938 135.75 1
k2 ¼ 0:3 10.282 10.534 11.314 12.713 14.914 18.291 23.625 32.774 51.357 107.53 1
k2 ¼ 0:4 9.7280 9.9479 10.630 11.849 13.766 16.704 21.342 29.298 45.460 94.318 1
k2 ¼ 0:5 9.4118 9.6145 10.243 11.365 13.128 15.828 20.089 27.397 42.239 87.109 1
k2 ¼ 0:6 9.2220 9.4148 10.012 11.078 12.751 15.314 19.356 26.285 40.359 82.903 1
k2 ¼ 0:7 9.1078 9.2946 9.8733 10.906 12.527 15.008 18.920 25.627 39.246 80.413 1
k2 ¼ 0:8 9.0421 9.2256 9.7938 10.808 12.399 14.833 18.672 25.252 38.612 78.997 1
k2 ¼ 0:9 9.0094 9.1912 9.7542 10.759 12.335 14.747 18.549 25.066 38.299 78.296 1
k2 ¼ 1:0 9.0000 9.1814 9.7429 10.745 12.317 14.722 18.514 25.013 38.209 78.095 1

TABLE IV. Values of ��=� for various values of e and k2 in Region I.

��=� e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 0:001 0.018 906 0.012 572 0.007 2747 0.0 049 522 0.0 037 347 0.0 029 941 0.0 024 975 0.0 021 419 0.0 018 748 0.0 016 669 0.0 015 004

k2 ¼ 0:01 0.0 88 019 0.078 760 0.060 819 0.046 033 0.036 087 0.029 413 0.024 739 0.021 316 0.018 713 0.016 671 0.015 029

k2 ¼ 0:1 0.42 211 0.41 041 0.37 969 0.33 964 0.29 902 0.26 259 0.23 177 0.20 625 0.18 522 0.16 780 0.15 323

k2 ¼ 0:2 0.69 762 0.68 449 0.64 888 0.59 968 0.54 604 0.49 423 0.44 737 0.40 639 0.37 108 0.34 079 0.31 478

k2 ¼ 0:3 0.95 650 0.94 206 0.90 245 0.84 652 0.78 377 0.72 123 0.66 290 0.61 042 0.56 410 0.52 353 0.48 808

k2 ¼ 0:4 1.2200 1.2 043 1.1 608 1.0 987 1.0 281 0.95 649 0.88 857 0.82 648 0.77 085 0.72 150 0.67 786

k2 ¼ 0:5 1.5029 1.4858 1.4383 1.3701 1.2917 1.2116 1.1348 1.0638 0.99 972 0.94 234 0.89 123

k2 ¼ 0:6 1.8226 1.8038 1.7519 1.6770 1.5905 1.5015 1.4157 1.3360 1.2635 1.1982 1.1398

k2 ¼ 0:7 2.2072 2.1866 2.1293 2.0465 1.9507 1.8517 1.7559 1.6666 1.5851 1.5114 1.4453

k2 ¼ 0:8 2.7169 2.6938 2.6295 2.5365 2.4286 2.3170 2.2087 2.1075 2.0150 1.9312 1.8558

k2 ¼ 0:9 3.5401 3.5129 3.4374 3.3281 3.2011 3.0696 2.9419 2.8224 2.7130 2.6139 2.5247

k2 ¼ 1:0 1 1 1 1 1 1 1 1 1 1 1
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and V, from the second row and second column of Tables I,
II, III, IV, and Vand using only two significant figures, for
orbits with e ¼ 0:10, s ¼ 0:11, k2 ¼ 0:010, we find from
Tables II, III, IV, and V that qmax ¼ 50, qmin ¼ 34,
��=� ¼ 0:079 or �� ¼ 14�, and " ¼ 0:19, i.e. orbits
with those seemingly small values of s and k2 give a
precession angle of 14� per revolution that is already
very large compared to those encountered in our Solar
System for which the precession angle is only 3.8’’ per
century for the Earth’s orbit (for which s ’ 0:983� 10�4,
k2 ’ 0:657� 10�9, " ’ e ’ 0:017), and the value of the
true eccentricity " of these orbits is already quite different
from their energy parameter e. We thus appreciate that the
range of values for s given by 0 � s � s1 for Region I,
where s1 ranges from 0.276 166 for e ¼ 0 to 0.25 for e ¼
1, is not as small as it seems (noting also that 0 � k2 � 1),
and that the classical Newtonian orbits are restricted to a
very narrow strip of the region indeed for which s ’ 0 and
k2 ’ 0, and for which " ’ e for 0 � e � 1.

Although the lines of constant k2 in Region I conven-
iently associate the orbits with the orbit equations for the
periodic and terminating orbits given by Eqs. (20) and (29)
and with the physical parameters given in Tables II, III, IV,

and V, the precession angle �� and the true eccentricity "
are more physically meaningful parameters that can be
associated with the description of the orbit. The expres-
sions for �� and " in terms of k and s are given by
Eq. (A6) in Appendix A and Eq. (B1) in Appendix B.
For a given value of�� and of e, we can use Eqs. (A6) and
(38) to solve for s (and k) [using a numerical program such
as FSOLVE in MAPLE] and thus locate its coordinate ðe; sÞ;
and similarly for a given value of " and of e, we can use
Eqs. (B1) and (38) to solve for s (and k). The relationship
of e and s with " is simpler for k2 ¼ 1 and will be
discussed later [see Eqs. (49) and (50)]. In Fig. 3, we
present lines of constant��=� (that are nearly horizontal)
and lines of constant " (that are bent vertical) in Region I,
and the corresponding tables for their coordinates are

TABLE V. Values of 
 for various values of e and k2 in Region I.


 e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 0:001 0.079 005 0.11 900 0.20 592 0.30 268 0.40 148 0.50 088 0.60 054 0.70 032 0.80 015 0.90 002 1

k2 ¼ 0:01 0.16 760 0.18 774 0.24 420 0.32 383 0.41 413 0.50 896 0.60 587 0.70 380 0.80 227 0.90 105 1

k2 ¼ 0:1 0.33 947 0.35 009 0.38 115 0.43 017 0.49 343 0.56 695 0.64 738 0.73 227 0.81 998 0.90 946 1

k2 ¼ 0:2 0.41 109 0.42 021 0.44 683 0.48 894 0.54 373 0.60 819 0.6 7964 0.75 594 0.83 548 0.91 710 1

k2 ¼ 0:3 0.45 659 0.46 503 0.48 963 0.52 845 0.57 889 0.63 825 0.70 412 0.77 454 0.84 802 0.92 344 1

k2 ¼ 0:4 0.49 009 0.49 813 0.52 152 0.55 832 0.60 598 0.66 190 0.72 378 0.78 978 0.85 847 0.92 880 1

k2 ¼ 0:5 0.51 659 0.52 436 0.54 692 0.58 231 0.62 797 0.68 133 0.74 014 0.80 261 0.86 737 0.93 341 1

k2 ¼ 0:6 0.53 845 0.54 603 0.56 798 0.60 232 0.64 644 0.69778 0.75 410 0.81 364 0.87 508 0.93 743 1

k2 ¼ 0:7 0.55 703 0.56 445 0.58 594 0.61 944 0.66 233 0.71 200 0.76 623 0.82 327 0.88 183 0.94 096 1

k2 ¼ 0:8 0.57 314 0.58 044 0.60 155 0.63 437 0.67 623 0.72 449 0.77 692 0.83 179 0.88 781 0.94 410 1

k2 ¼ 0:9 0.58 733 0.59 454 0.61 534 0.64 759 0.68 857 0.73 560 0.78 645 0.83 939 0.89 316 0.94 690 1

k2 ¼ 1:0 0.60 000 0.60 713 0.62 766 0.65 942 0.69 963 0.74 558 0.79502 0.84 623 0.89 798 0.94 943 1
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FIG. 2. Region II plots of k2 ¼ 1:0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,
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presented in Tables VI and VII. We note that because ��
given by Eq. (25) depends on 	 given by Eq. (21) as well as
onKðkÞ, the line of constant�� does not coincide with the
line of constant k2 except for k2 ¼ 1. We note also that the
line of constant " does not coincide with the (vertical) line
of constant e except for " ¼ e ¼ 1. We show in
Appendix B that it is only for a very thin strip of region,
where s is between zero and some very small positive
value, that " ’ e which applies in the Newtonian limit.
We also show in Appendix B that " ¼ e when e ¼ 1
exactly. The distinction between e defined by Eq. (11) or
Eq. (13) with " defined by Eq. (28) in the Newtonian or
non-Newtonian theory has never been clearly recognized
previously.

With Fig. 3, which has curves of constant ��=� and
constant " in place, Region I is now partitioned into cells
with the coordinate points specified by (��=�, "). We
have a clear idea what the orbits of a planet would be like at
points within each cell in terms of their precession angle
and true eccentricity, and the coordinates of these orbits
ðe; sÞ then give the energy and field parameters correspond-
ing to these orbits. In Fig. 4, we present examples of
periodic and unbounded orbits, plotted in polar coordinates
ðq;�Þ, corresponding to various precession angles of �=6,
�=3, �=2, �, 3�=2, 2�,1 (vertically from top to bottom)
for values of e ¼ 0, 0.5, 1 (horizontally from left to right),
where the star or black hole is located at the origin. We first

note that the orbits for which e < 1 are periodic and closed
because f is a rational number in�� ¼ f� for each one of
them. The precession angle can be seen from the heavy
solid line that marks the trajectory (as � increases) from
the initial point at � ¼ 0 to the first point at which the
distance from the origin is equal to the distance at � ¼ 0.
The true eccentricity of the orbits is " given by Eq. (28).
For example, for the orbit of Fig. 4 (a1) for �� ¼ �=6,
e ¼ 0, " is far from zero which can be seen from the qmin

and qmax in the figure, and it can be more accurately
calculated to be equal to 0.22 629. For each of the un-
bounded orbits characterized by e ¼ 1, the incoming tra-
jectory coming from infinity at � ¼ 0 makes an angle �
with the outgoing trajectory going to infinity given by� ¼
2KðkÞ=	 ¼ 2�þ �� from Eq. (25), as can be seen in
some of the figures presented. The case ��=� ¼ 1 cor-
responding to the special case of k2 ¼ 1 will be discussed
later in this section for which the planet starting from qmax

ends up circling the black hole with a radius that ap-
proaches qmin (see Fig. 4(g)).
Generally, if we are given a coordinate point in Fig. 3,

for example, a point on e ¼ 0:5 just above the ��=� ¼
1=3 line slightly to the left of the " ¼ 0:6 curve (where " ¼
0:581 431 . . . and s ¼ 0:194 229 . . . ), then we find �� ¼
60:4706 . . . degrees or ��=� ¼ 0:33 594 . . . , and part of
the orbit is shown in Fig. 5. Whether the orbit will close on
itself depends on whether ��=� is or is not a rational

TABLE VI. Values of s for constant values of �� in Region I.

s e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

�� ¼ �=18 0.0 929 975 0.0 929 922 0.0 929 763 0.0 929 498 0.0 929 129 0.0 928 655 0.0 928 078 0.0 927 400 0.0 926 622 0.0 925 745 0.0 924 773

�� ¼ �=6 0.150 971 0.150 946 0.150 871 0.150 747 0.150 574 0.150 353 0.150 087 0.149 776 0.149 424 0.149 031 0.148 601

�� ¼ �=3 0.195 246 0.195 185 0.195 000 0.194 694 0.194 273 0.193 741 0.193 104 0.192 372 0.191 551 0.190 651 0.189 680

�� ¼ �=2 0.220 477 0.220 377 0.220 080 0.219 591 0.218 920 0.218 080 0.217 085 0.215 951 0.214 696 0.213 336 0.211 888

�� ¼ � 0.254 214 0.254 018 0.253 437 0.252 492 0.251 216 0.249 650 0.247 838 0.245 823 0.243 650 0.241 354 0.238 971

�� ¼ 3�=2 0.265 371 0.265 111 0.264 346 0.263 113 0.261 468 0.259 478 0.257 210 0.254 729 0.252 091 0.249 347 0.246 537

�� ¼ 2� 0.269 502 0.269 206 0.268 334 0.266 938 0.265 091 0.262 877 0.260 379 0.257 671 0.254 819 0.25 1875 0.248 804

�� ¼ 1 0.272 166 0.271 828 0.270 840 0.269 276 0.267 232 0.264 812 0.262 116 0.259 225 0.256 209 0.253 120 0.250 000

TABLE VII. Values of s for constant values of 
 in Region I

s e ¼ 0:00 e ¼ 0:02 e ¼ 0:04 e ¼ 0:06 e ¼ 0:08 e ¼ 0:10 e ¼ 0:12 e ¼ 0:14 e ¼ 0:16 e ¼ 0:18 e ¼ 0:20


 ¼ 0:2 0.135 153 0.13 4536 0.132 663 0.129 457 0.124 776 0.118 388 0.109 916 0.0 987 083 0.0 835 085 0.0 611 485 0

s e ¼ 0:00 e ¼ 0:04 e ¼ 0:08 e ¼ 0:12 e ¼ 0:16 e ¼ 0:20 e ¼ 0:24 e ¼ 0:28 e ¼ 0:32 e ¼ 0:36 e ¼ 0:40


 ¼ 0:4 0.234 806 0.234 069 0.231 803 0.227 832 0.221 831 0.213 264 0.201 255 0.184 309 0.159 570 0.120 022 0

s e ¼ 0:00 e ¼ 0:06 e ¼ 0:12 e ¼ 0:18 e ¼ 0:24 e ¼ 0:30 e ¼ 0:36 e ¼ 0:42 e ¼ 0:48 e ¼ 0:54 e ¼ 0:60


 ¼ 0:6 0.272 166 0.272 037 0.271 572 0.270 524 0.268 439 0.264 552 0.257 565 0.245 130 0.222 468 0.177 299 0

s e ¼ 0:61 e ¼ 0:62 e ¼ 0:64 e ¼ 0:66 e ¼ 0:68 e ¼ 0:70 e ¼ 0:72 e ¼ 0:74 e ¼ 0:76 e ¼ 0:78 e ¼ 0:80


 ¼ 0:8 0.261 834 0.261 450 0.259 987 0.257 309 0.252 931 0.246 121 0.235 710 0.219 699 0.194 219 0.149 735 0
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number in principle, even though, as we mentioned before,
a truncated number in practice is always a rational number
and the orbit will be a closed one. We only show part of the
orbit in Fig. 5 as the subsequent path is clear from the angle
of precession and true eccentricity of the orbit and we are
not concerned with how many ‘‘leaves’’ the orbit is going
to create. Figure 3 (or one with even more curves of
constant ��=� and constant ") is a very useful map that
can be used fruitfully with any observation data that are
obtained for any planet.

Besides the special case k2 ¼ 1, the case of k2 ¼ 1=2 is
also somewhat special in that it allows many relationships
to be expressed simply and explicitly. We present some of
these simple relations for k2 ¼ 1=2 in Appendix C. It is to
be noted from Fig. 1 that the line of constant k2 ¼ 1=2 is

very close to the boundary given by k2 ¼ 1. The line of
constant k2 ¼ 1=2 for Region II, on the other hand, is
closer to dividing the region approximately into two
halves, as shown in Fig. 2. The k2 ¼ 1=2 curve for
Region II will be discussed in Sec. IV.
The terminating orbits in Region I given by Eq. (29) can

be characterized by the planet’s initial position q1 given by
Eq. (31), and by the angle�1 at which the planet enters the
center of the black hole. It is interesting to note that even
for these terminating orbits, the precession angle still has
an ‘‘extended’’ meaning and use that we shall describe. It is
clear from Eq. (29) that the orbit terminates, i.e. q becomes
zero when 	�1 ¼ KðkÞ, but if the orbit is continued (by
continuing to increase �), q would assume its initial value
at � ¼ 0 when 	�0 ¼ 2KðkÞ, producing a ‘‘precession
angle’’ of �� ¼ �0 � 2� ¼ 2KðkÞ=	� 2� which is
equal to the precession angle for the corresponding peri-
odic orbit at the same coordinate point ðe; sÞ. Since �0 ¼
2�1, the polar angle �1 at which the path of the terminat-
ing orbit enters the center of the black hole is related
simply to the precession angle of the periodic orbit by
�1 ¼ ��=2þ �, or

�1

�
¼ 1

2

��

�
þ 1:

As �1=� can be easily calculated from ��=� for the
periodic orbits given in Table IV, we do not tabulate it
separately. The values of q1 are presented in Table VIII,
and we note the small range 1 � q1 � 2:25 for the entire
Region I. Examples of these terminating orbits are pre-

FIG. 4 (color online). Region I: Periodic (a1–f1, a2–f2), un-
bounded (a3–g3), asymptotic periodic orbits (g1–g3) for �’
equal to (a) �=6, (b) �=3, (c) �=2, (d) �, (e) 3�=2, (f) 2�, (g)1
and for e equal to (1) 0, (2) 0.5, (3) 1. The numbers on the axes
are in units of Schwarzschild radii.

FIG. 5 (color online). Precessional orbit for �’ ¼
ð13 þ 0:002614 . . .Þ�, 
 ¼ 0:58 143 . . . , e ¼ 0:5, s ¼
0:194 229 . . . . The numbers on the axes are in units of
Schwarzschild radii.
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sented in Fig. 6. The dotted line represents the continuation
of the orbit when � is continued beyond �1.

Before we discuss Regions II and II’, we want to de-
scribe three special cases: the case of k2 ¼ 0 which, as we
shall see, is not of any interest but must be included for
completeness; the case of k2 ¼ 1 which gives the upper
boundary of Region I (and lower boundary of Region II);
and the case of e ¼ 1 (see Figs. 1 and 2).

(i) The Special Case of k2 ¼ 0
The line of k2 ¼ 0 coincides with the s ¼ 0 axis in

Fig. 1. To show this, we note that k2 ¼ 0 implies � ¼ 0
from Eq. (A2). Substituting � ¼ 0 into Eq. (24) gives s ¼
0 when we use the expressions in Eq. (10) for g2 and g3.
The we find g2 ¼ 1=12 and g3 ¼ 1=216, and from Eq.
(A5), we find

e1 ¼ 1
6; e2 ¼ e3 ¼ � 1

12;

and 	 ¼ 1=2. Equation (20) then gives 1=q ¼ 0 or q ¼ 1,
i.e. it is the limiting case of zero gravitational field. As we
pointed out earlier, the classical Newtonian case is given by
only a very narrow strip represented by k2 ’ 0 and s ’ 0
for which q is large but finite.

(ii) The Special Case of k2 ¼ 1
It follows from Eqs. (38) and (39) that on the line of

k2 ¼ 1, cos� ¼ �1. Thus, from Eqs. (24) and (17), we
have

� ¼ 0; (41)

which can be identified as the ‘‘boundary’’ between
Solutions (A) and (B) in Sec. II. The range of s values
for � ¼ 0 is 0:25 � s � 0:272 166 for 1 � e � 0 [see the
discussion below Eq. (40)], and for that range of s values,

s < 1=2
ffiffiffi
3

p ¼ 0:288 675 or s2 < 1=12 and therefore g2 >
0 [see Eq. (10)]. From Eq. (41), the relation between g2 and
g3 can be more precisely expressed as

ffiffiffiffiffi
g33

p ¼ �
ffiffiffiffiffi
g2
3

r

after noting that g3 is negative and g2 is positive for the

values of s along the line k2 ¼ 1. Also from Eq. (A5), we
note that

e1 ¼ e2 ¼
ffiffiffiffiffiffi
g2
12

r
; e3 ¼ �

ffiffiffiffiffi
g2
3

r
: (42)

Equation (20) becomes

1

q
¼ 1

3
þ 2

ffiffiffiffiffi
g2
3

r
1� 5 sechð2	�Þ
1þ sechð2	�Þ ; (43)

where

	 ¼
�
3g2
4

�
1=4

(44)

and where the values of g2 (and g3) are those given by the
values of e and s on the line k2 ¼ 1 that are obtained from
Eq. (40). The orbit will be referred to as an asymptotic one.
The planet starts from an initial position qmax at � ¼ 0
given by

1

qmax

¼ 1

3
þ 4e3 ¼ 1

3
� 4

ffiffiffiffiffi
g2
3

r
(45)

and ends up at � ¼ 1 circling the star or black hole with a
radius that asymptotically approaches qmin given by

1

qmin

¼ 1

3
þ 4e2 ¼ 1

3
þ 2

ffiffiffiffiffi
g2
3

r
: (46)

Equations (43)–(46) are explicit and simple equations
that give the orbit equation, qmax, and qmin for k2 ¼ 1. In
particular, it is seen from Table III, for example, that qmin

ranges from 2 for e ¼ 0 to 9=4 ¼ 2:25 for e ¼ 1, i.e. qmin

is still no less than twice the Schwarzschild radius for the
strongest gravitational field that permits the periodic orbits.
However, it is a very small number indeed compared to,
say, qmin ’ 5� 107 for the Earth’s orbit around the Sun.
On this upper boundary k2 ¼ 1 of Region I, the termi-

nating orbit given by Eq. (29) from Solution (A2) becomes
a circular orbit with a radius qc ¼ q1, where q1 is the initial
distance of the planet from the star or black hole given by

TABLE VIII. Values of q1 for various values of e and k2 in Region I (terminating orbits).

q1 e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 0:001 1.0 126 1.0 084 1.0 048 1.0 033 1.0 025 1.0 020 1.0 017 1.0 014 1.0 012 1.0 011 1.0 010

k2 ¼ 0:01 1.0 582 1.0 521 1.0 403 1.0 306 1.0 240 1.0 196 1.0 165 1.0 142 1.0 124 1.0 111 1.0 100

k2 ¼ 0:1 1.2 685 1.2 614 1.2 427 1.2 180 1.1 928 1.1 699 1.1 504 1.1 341 1.1 206 1.1 094 1.1 000

k2 ¼ 0:2 1.4 255 1.4 182 1.3 983 1.3 703 1.3 394 1.3 089 1.2 810 1.2 563 1.2 348 1.2 161 1.2 000

k2 ¼ 0:3 1.5 575 1.5 502 1.5 299 1.5 007 1.4 672 1.4 332 1.4 008 1.3 711 1.3 445 1.3 209 1.3 000

k2 ¼ 0:4 1.6 756 1.6 683 1.6 481 1.6 186 1.5 841 1.5 483 1.5 135 1.4 809 1.4 511 1.4 242 1.4 000

k2 ¼ 0:5 1.7 844 1.7 773 1.7 574 1.7 281 1.6 935 1.6 570 1.6 210 1.5 869 1.5 552 1.5 263 1.5 000

k2 ¼ 0:6 1.8 864 1.8 795 1.8 601 1.8 315 1.7 973 1.7 610 1.7 248 1.6 900 1.6 575 1.6 275 1.6 000

k2 ¼ 0:7 1.9 831 1.9 764 1.9 578 1.9 301 1.8 968 1.8 612 1.8 254 1.7 908 1.7 582 1.7 279 1.7 000

k2 ¼ 0:8 2.0 754 2.0 691 2.0 513 2.0 248 1.9 929 1.9 584 1.9 236 1.8 898 1.8 577 1.8 278 1.8 000

k2 ¼ 0:9 2.1 642 2.1 583 2.1 415 2.1 164 2.0 860 2.0 532 2.0 198 1.9 872 1.9 562 1.9 271 1.9 000

k2 ¼ 1:0 2.2 500 2.2 445 2.2 288 2.2 052 2.1 767 2.1 458 2.1 142 2.0 833 2.0 538 2.0 259 2.0 000
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Eq. (30). From Eqs. (30) and (31) and noting that e1 ¼ e2
for k2 ¼ 1, we find that

qc ¼ q1 ¼ qmin (47)

given by Eq. (46) [see Tables III and VIII for k2 ¼ 1]. We
shall refer to the orbits given by Eq. (43) as the asymptotic
elliptic-type (for 0 � e < 1), asymptotic parabolic-type
(for e ¼ 1) and asymptotic hyperbolic-type (for e > 1Þ
orbits, and to the orbits given by Eq. (47) as the asymptotic
terminating orbits, respectively, of Region I. Thus, the
special cases given by Eqs. (43) and (47) for k2 ¼ 1 of
the orbits given by Eqs. (20) and (29) for Solutions A1 and
A2, respectively, clearly exhibit completely different be-
haviors from their counterparts for 0 � k2 < 1. Examples
of asymptotic elliptic-type orbits are shown in Fig. 4 g1
and g2, and an example of asymptotic parabolic-type orbit
is shown in Fig. 4 g3. Asymptotic terminating orbits are
simply circles of radius equal to q1, as shown in Fig. 6(d).

Using Eqs. (28), (42), (45), and (46), for k2 ¼ 1 the true
eccentricity " can be shown to be expressible in terms of g2
by

" ¼ 9
ffiffiffiffiffiffiffiffiffiffi
g2=3

p
1� 3

ffiffiffiffiffiffiffiffiffiffi
g2=3

p ; (48)

which can be solved to give s in terms of ", and then e in
terms of " using Eq. (38). We find that the coordinates
ðe; sÞ of a given 0:6 � " � 1 on the line k2 ¼ 1 are given
by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ "Þð�3þ 5"Þp

ð3� "Þ ; (49)

and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3� "Þð1þ "Þp
2ð3þ "Þ : (50)

It is interesting that Eqs. (49) and (50) can be used in
place of Eq. (40) as parametric equations for determining
the coordinates ðe; sÞ of the line k2 ¼ 1 as " takes the
values from 0.6 to 1. In particular, Eqs. (49) and (50) allow
us to see that the " ¼ const curves are not vertical (except
for " ¼ e ¼ 1), and they intersect the upper boundary s1 of
Region I for 0:6 � " � 1 (see Fig. 3). The " ¼ 0:6 curve,
the boundary curve s1, and the s axis are concurrent at e ¼
0, s ¼ ffiffiffiffiffiffiffiffiffiffiffi

2=27
p

. By looking at where the " ¼ const curve
intersects the k2 ¼ 1 curve for 0:6 � " � 1 using Eq. (49)
and Fig. 3, for example, we can make conclusions such as
periodic orbits with e ¼ 0 have true eccentricity in the

range 0 � " � 0:6, and periodic orbits with e <

3
ffiffiffi
5

p
=11 ¼ 0:609 836 have " < 0:8.

(iii) The Special Case of e ¼ 1
The orbits corresponding to e ¼ 1 given by Eq. (20) will

be referred to as the parabolic-type orbits. In Appendix B,
we show that e ¼ 1 always gives an unbounded orbit
except for the asymptotic terminating orbit of Region I,

which becomes a circular orbit with a radius given by
Eq. (47) independent of e and thus is not an unbounded
orbit. Many explicitly simple relationships among s, k,
qmin, q1, etc. have been found on the boundary line e ¼
1, and they are given and proved in Appendix B. In
particular, we have, on e ¼ 1 in Region I, that

s2 ¼ k2

4ð1þ k2Þ2 ; (51)

	 ¼
�

1

4ð1þ k2Þ
�
1=2

; (52)

FIG. 6 (color online). Terminating orbits in Region I (dotted
line represents trajectory beyond r ¼ 0). (a) k2 ¼ 0:01, e ¼ 0,
s ¼ 0:114 809, ’1

� ¼ 1:0440, q1 ¼ 1:0582. (b) k2 ¼ 0:1, e ¼
0:5, s ¼ 0:178 683, ’1

� ¼ 1:1313, q1 ¼ 1:1699. (c) k2 ¼ 0:9, e ¼
0:9, s ¼ 0:252 796, ’1

� ¼ 2:3070, q1 ¼ 1:9271. (d) k2 ¼ 1, e ¼
1, s ¼ 0:25, ’1 ¼ 1, q1 ¼ 2.
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qmin ¼ 1þ k2

k2
; (53)

and

q1 ¼ 1þ k2: (54)

Examples of the orbits for e ¼ 1 are shown in Fig. 4
(a3–g3).

We shall now describe Regions II and II’ for the orbit
Eq. (36) given by Solution B for the case �> 0.

IV. REGIONS II AND II’ FOR 0 � e � 1

Consider the orbits expressed by Eq. (36) given by
Solution B and characterized mathematically by �> 0.
The associated values for ðe; sÞ in this case satisfy s > s1,
where s1 is the upper boundary of Region I given by
Eq. (40). We shall be mainly concerned with the values
of e in the range 0 � e � 1 in this section, and we shall
deal with the case of e > 1 in the next section. This region
of parameter space defined by s > s1 can be naturally
divided into two sectors which we call Region II and II’
with Region II bordering Region I (see Fig. 2). The bound-
ary between Regions II and II’ is determined by the
Schwarzschild radius in a manner to be described later in
this section.

We first want to prove that the lower boundary (for s) of
Region II, characterized by � ¼ 0 as it is for the upper
boundary of Region I, also gives k2 ¼ 1, where k2 is
calculated from Eq. (35) for Solution (B) [In Sec. III, we
showed that for k2 calculated from Eq. (22) for
Solution (A), k2 ¼ 1 implies � ¼ 0]. Substituting � ¼ 0
into Eq. (32) gives

A ¼ B ¼ 1

2

ffiffiffiffiffi
g33

p ¼ � 1

2

ffiffiffiffiffi
g2
3

r
:

After noting that Að¼ BÞ is a negative value for the range
of s values for � ¼ 0, substituting the above into Eq. (35)
gives k2 ¼ 1. We also find from Eq. (34) that 	2 ¼
�3

ffiffiffiffiffi
g33

p
=2 ¼ ffiffiffiffiffiffiffiffi

3g2
p

=2 which agrees with the 	 given by

Eq. (44), and we find from Eq. (33) that

a ¼ ffiffiffiffiffi
g33

p ¼ �
ffiffiffiffiffi
g2
3

r
: (55)

Substituting these into Eq. (36) gives the same orbit
Eq. (43) for the terminating orbit in Region II on its lower
boundary as that for the asymptotic periodic orbit in
Region I on its upper boundary. Thus, on the boundary
k2 ¼ 1 the equation for the orbits in Region II does not
represent a terminating orbit but is the same as the asymp-
totic periodic orbit for Region I given by Eq. (43) [see
Fig. 4, g1–g3]. Also, from Eqs. (42) and (55), we see that
the smallest root in Eq. (23) in Solution (A) is identified
with the real root given by Eq. (33) of Solution (B), i.e.
e3 ¼ a. Thus, from Eqs. (26) and (37), q2 ¼ qmax when
k2 ¼ 1, i.e. the initial distance q2 of the terminating orbit in

Region II can be identified as the continuation of qmax of
the periodic orbit from Region I. On the boundary of
Regions I and II, the two other real roots e1 ¼ e2 given
by Eq. (42) of the cubic Eq. (16) agree with b ¼ �b given
below Eq. (33). The line k2 ¼ 1 defined by Eq. (40) is the
boundary between Regions I and II; it is the upper bound-
ary for Region I and is the lower boundary for Region II
(see Fig. 2). The above discussion also illustrates the
transition that takes place: from a periodic orbit to an
asymptotic periodic orbit to a terminating orbit, as one
crosses the boundary from Region I to II.
We now consider the upper boundary of Region II. We

define this boundary to be that obtained by requiring the
planet’s initial position to be just at the Schwarzschild
horizon, i.e. that obtained by setting q ¼ 1 initially at � ¼
0. Setting q ¼ 1 in Eq. (36) for � ¼ 0, which is 1=q ¼
1=3þ 4a, we require a ¼ 1=6, where a is the real root of
the cubic Eq. (16). We then use the equation

4ð16Þ3 � ð16Þg2 � g3 ¼ 0; (56)

and substitute the expressions for g2 and g3 given in
Eq. (10) into Eq. (56) and solve for s. We find

s22 ¼
1

1� e2
; (57)

which we shall use as the equation for the upper boundary
of Region II, for 0 � e � 1. Thus, Region II is a region
bounded between e ¼ 0 and e ¼ 1, and between s1 given
by Eq. (40) [the lower heavy solid line in Fig. 2] and s2
given by Eq. (57) [the upper heavy solid line in Fig. 2], i.e.
s1 < s � s2. The region defined by s2 < s � 1 and
bounded between e ¼ 0 and e ¼ 1 will be called
Region II’, for which the planet’s initial position ranges
from just inside the Schwarzschild horizon up to the center
of the black hole. Since the same terminating orbit Eq. (36)
applies in Regions II and II’, the division into two regions
may seem unnecessary. However, the Schwarzschild radius
is of physical significance, and it is useful to know the
location of the curve s2 in the ðe; sÞ plot, which indicates
that the initial position of the planet is at the Schwarzschild
horizon. Separating out Region II’ also makes it possible to
realize and appreciate that a very large region of the
characterizing parameter s2 < s � 1 is of relevance only
to a very small physical region 0 � q < 1 for the case
where the initial position of the planet is inside the
Schwarzschild horizon.
For Region II, as s increases its value above those on its

lower boundary s ¼ s1 on which k2 ¼ 1, the value of k2

calculated from Eq. (35) decreases from 1. The curves of
constant k2 for k2 ¼ 0:9; 0:8; . . . can be easily obtained
from Eq. (35) where A and B are expressed in terms of s
and e (again using MAPLE FSOLVE), and they are presented
in Fig. 2. However, the value of k2 has a minimum value
that is not 0 in Region II. First, we show in Appendix C that
the k2 ¼ 1=2 curve is given by
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s2 ¼ 1

6ð1� e2Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e2

3

s �
: (58)

The significance of this k2 ¼ 1=2 curve is that on it, as
e ! 1, s ! 1, just like the curve for the upper boundary of
Region II represented by Eq. (57). For k2 > 0:5, the con-
stant k2 curves intersect the e ¼ 1 line at some finite value
of s, whereas for k2 < 0:5, the constant k2 curves intersect
the upper boundary curve given by Eq. (57) at points for
which the values of e are less than 1. We then find that the

minimum value of k2 in Region II is equal to 1=2�
1=ð2 ffiffiffi

5
p Þ ¼ 0:276 393, which is obtained by setting e ¼

0, s ¼ 1 in Eqs. (32) and (35), and this value of k2 appears
at one coordinate point only at e ¼ 0 and s ¼ 1. There is
no orbit whose k2 is less than 0.276 393 in Region II (see
Fig. 2), and k2 is thus restricted to the range 0:276 393 �
k2 � 1.

In Table IX, we present the coordinates ðe; sÞ of these
curves of constant k2 between 0.276 393 and 1. In Table X,
we present the values of q2 given by Eq. (37), the initial
distance of the planet from the black hole. Note that unlike
q1 for the terminating orbits in Region I whose range is
finite and small, q2 can be infinite (for e ¼ 1 and k2 > 0:5).
Like the terminating orbits of Region I, the terminating
orbits of Region II can be characterized by q2 and the angle
�2 at which the planet enters the center of the black hole. If
we define the ‘‘precession angle’’ �� for the terminating
orbits as in Eq. (25), with k and 	 defined by Eqs. (35) and
(34), then �2 ¼ KðkÞ=	 ¼ ��=2þ �, or

�2

�
¼ 1

2

��

�
þ 1: (59)

In Table XI, we present the values of �2. Tables X and
XI are to be used in conjunction with Table IX that give the
coordinates of the constant k2 curves. Examples of these
terminating orbits obtained from Eq. (36) are shown in
Figs. 7(b)–7(d). Again the dotted line shows the continu-
ation of the orbit beyond �2. A planet coming from very
far away, i.e. an unbounded orbit with e ¼ 1, with an initial
trajectory perpendicular to the line joining it to the black
hole, can terminate at the black hole; the condition for this
to happen is s > 0:25. Figures 8(a)–8(c) show three un-
bounded orbits (e ¼ 1) as s increases from just below to
just above the critical field parameter s ¼ 0:25. Figure 8(a)
also shows an example of a precession angle in which the
planet makes more than three revolutions around a black
hole before assuming a distance equal to its initial distance
(which is infinity) from the black hole. As noted after
Eq. (25), the actual precession angle in this case should
be more appropriately given by 2KðkÞ=	� 6� which can
be obtained from the presented value of ��=� ¼ 4:6378
[where �� is defined by Eq. (25)] and gives 0:6378�.
Thus, for Fig. 8(a), 0:6378� gives the angle between the
initial incoming trajectory from very far away at � ¼ 0
and the final outgoing trajectory going to infinity, i.e.
0:6378� is the polar angle of the direction of the outgoing
trajectory going to infinity with respect to the x axis (but
we have not extended the outgoing trajectory far enough to
show the accuracy of this angle).

TABLE IX. Values of s for various values of e and k2 in Region II.

s e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 1:0 0.272 166 0.271 828 0.270 840 0.269 276 0.267 232 0.264 812 0.262 116 0.259 225 0.256 209 0.253 120 0.250 000

k2 ¼ 0:9 0.297 739 0.297 917 0.298 442 0.299 293 0.300 443 0.301 865 0.303 537 0.305 444 0.307 575 0.309 927 0.312 500

k2 ¼ 0:8 0.329 945 0.330 718 0.333 024 0.336 843 0.342 169 0.349 050 0.357 613 0.368 098 0.380 913 0.396 727 0.416 667

k2 ¼ 0:7 0.371 926 0.373 406 0.377 868 0.385 401 0.396 232 0.410 826 0.430 060 0.455 531 0.490 285 0.540 844 0.625 000

k2 ¼ 0:6 0.429 234 0.431 592 0.438 767 0.451 100 0.469 328 0.494 871 0.530 424 0.581 374 0.659 978 0.802 847 1.25 000

k2 ¼ 0:5 0.512 730 0.516 250 0.527 046 0.545 908 0.574 478 0.615 920 0.676 462 0.769 603 0.930 895 1.30 267 -

k2 ¼ 0:4 0.646 974 0.652 192 0.668 307 0.696 858 0.741 019 0.806 949 0.907 116 1.07 001 1.37 756 2.21 530 -

k2 ¼ 0:3 0.901 890 0.910 054 0.935 412 0.980 848 1.05 231 - - - - - -

TABLE X. Values of q2 for various values of e and k2 in Region II.

q2 e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 1:0 9.0000 9.1814 9.7429 10.745 12.317 14.722 18.514 25.013 38.209 78.095 1
k2 ¼ 0:9 7.6760 7.7965 8.1685 8.8291 9.8596 11.426 13.833 18.073 26.550 52.109 1
k2 ¼ 0:8 6.4074 6.4806 6.7060 7.1041 7.7200 8.6471 10.084 12.507 17.353 31.823 1
k2 ¼ 0:7 5.1997 5.2381 5.3557 5.5620 5.8780 6.3467 7.0597 8.2346 10.522 17.148 1
k2 ¼ 0:6 4.0606 4.0750 4.1191 4.1959 4.3120 4.4809 4.7310 5.1276 5.8592 7.8120 1
k2 ¼ 0:5 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 -

k2 ¼ 0:4 2.0324 2.0259 2.0059 1.9717 1.9217 1.8523 1.7574 1.6241 1.4235 1.0692 -

k2 ¼ 0:3 1.1805 1.1733 1.1516 1.1148 1.0618 - - - - - -
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We now present some useful simple expressions for the
following special cases.
(i) Special Case on the Upper Boundary of Region II

Given By Eq. (57)

TABLE XI. Values of �2=� for various values of e and k2 in Region II.

�2=� e ¼ 0:0 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:4 e ¼ 0:5 e ¼ 0:6 e ¼ 0:7 e ¼ 0:8 e ¼ 0:9 e ¼ 1:0

k2 ¼ 1:0 1 1 1 1 1 1 1 1 1 1 1
k2 ¼ 0:9 2.6599 2.6469 2.6099 2.5551 2.4890 2.4176 2.3448 2.2733 2.2043 2.1385 2.0761

k2 ¼ 0:8 2.1586 2.1480 2.1175 2.0711 2.0132 1.9479 1.8781 1.8055 1.7309 1.6541 1.5742

k2 ¼ 0:7 1.8169 1.8079 1.7819 1.7412 1.6889 1.6274 1.5584 1.4822 1.3977 1.3010 1.1817

k2 ¼ 0:6 1.5360 1.5283 1.5060 1.4703 1.4231 1.3654 1.2977 1.2186 1.1237 1.0002 0.78496

k2 ¼ 0:5 1.2822 1.2758 1.2569 1.2262 1.1843 1.1315 1.0671 0.98 815 0.88 720 0.7 4053 -

k2 ¼ 0:4 1.0373 1.0321 1.0166 0.99 105 0.95 540 0.90 923 0.85 112 0.77 757 0.68 006 0.53 257 -

k2 ¼ 0:3 0.78 606 0.78 213 0.77 030 0.75 047 0.72 230 - - - - - -

FIG. 7 (color online). Terminating orbits in Region II (a–d)
and Region II’ (e). (a) k2¼1, e ¼ 1, s ¼ 0:25, ’2

� ¼ 1, q2 ¼ 1.

(b) k2¼0:6, e¼1, s¼1:25, ’2

� ¼ 0:78 496, q2¼1. (c) k2¼0:5,

e ¼ 0:5, s ¼ 0:615 920, ’2

� ¼1:1315, q2 ¼ 3. (d) k2¼0:3, e¼0,

s ¼ 0:901 890, ’2

� ¼ 0:78 606, q2 ¼ 1:1805. (e) k2 ¼ 0:095 385,

e ¼ 0, s ¼ 10, ’2

� ¼ 0:13 684, q2 ¼ 0:03 267.

FIG. 8 (color online). Unbounded orbits for (a) k2 ¼ 0:99, e ¼
1, s ¼ 0:2 499 968 435, �’

� ¼ 4:6378. (b) k2 ¼ 1, e ¼ 1, s ¼
0:25, �’

� ¼ 1. (c) k2 ¼ 0:9 998 000 799, e ¼ 1, s ¼ 0:2501,
’2

� ¼ 5:0816.
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We show in Appendix D that on the upper boundary of
Region II given by Eq. (57), the values of k2 and 	 given by
Eqs. (35) and (34) become

k2 ¼ 1

2
� 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3� g2

p ; (60)

	 ¼
�
1

4

�
1

3
� g2

��
1=4

; (61)

where the s values for g2 are given by Eq. (57).
(ii) Special Case for e ¼ 1 of Region II
Just as for Region I, there are simple and interesting

relations among k2, s and 	 on the right boundary e ¼ 1 of
Region II, and they are shown in Appendix D. In particular,
we have, on e ¼ 1 in Region II, that for s > 1=4,

k2 ¼ 1

2
þ 1

8s
; (62)

or that, for 1 � k2 > 1=2,

s ¼ 1

8ðk2 � 1=2Þ ; (63)

and that

	 ¼
ffiffiffi
s

2

r
: (64)

Appendix E presents a special case given by s2 ¼ 1=12
in Region II that is notable, which has been associated with
the case of so-called innermost stable circular orbit in the
literature.

While we may call the entire sector s > s1 given by
Eq. (40) above Region I in Fig. 2 just one region that
allows only terminating orbits given by Eq. (36), it is useful
to divide it into Regions II and II’ using the curve s ¼ s2
given by Eq. (57). Region II’ is the region of parameter
space in ðe; sÞ for which s > s2 and 0 � e < 1. The heavy
solid curve labeled s2 in Fig. 2 delineates the boundary of
Region II’, which separates it from Region II. Despite the
apparent large size of Region II’, the terminating orbits
here have little variety in the sense that the range of initial
distances q20 that are given by 1=q20 ¼ 1=3þ 4a [see
Eq. (37)], is limited (0 � q20 < 1), and the range of the
angle �20 ¼ KðkÞ=	 at which the planet enters the black
hole is also limited. It can be shown that the range of�20 is
0 � �20 < 0:789�. An example of a terminating orbit
obtained from Eq. (36) in Region II’ is shown as the solid
line in Fig. 7(e); the dotted line shows the continuation of
the orbit beyond �20 . It may be of some mathematical
interest to note that as s ! 1 in Region II’, the modulus
of the Jacobian elliptic functions used to describe the orbits

does not go to zero; instead k2!ð2� ffiffiffi
3

p Þ=4¼0:0669873,
and thus k2 in Region II’ is restricted to the range
0:0 669 873 � k2 < 0:5.

The analytic orbit Eqs. (20) and (29) for � � 0, and
Eq. (36) for �> 0, that we have considered for the case of

0 � e � 1, will now be considered for the case of e > 1 in
the following section.

V. REGIONS I AND II FOR e > 1

We now consider the orbits given by Eqs. (20), (29), and
(36) for e > 1. The region covered by1 � e > 1 and1 �
s � 0 is again divided into Regions I and II by a boundary
curve s1 given by Eq. (40) which extends from s1 ¼ 0:25 at

e ¼ 1 to s1 ¼ 0 at e ¼ 1 as s1 ! ð ffiffiffiffiffiffi
27

p
eÞ�1 when e ! 1.

Just as for the case of 0 � e � 1, Region I is the sector 0 �
s � s1 and Region II is the sector s1 < s � 1. There is no
Region II’ because the s2 curve from the sector 0 � e � 1
never reaches the sector e > 1. Equation (20) describes the
hyperbolic-type orbits in Region I, Eq. (29) describes the
terminating orbits in Region I, and Eq. (36) describes the
terminating orbits in Region II.
For the orbit described by Eq. (20) in Region I, we find

that e3 is less than�1=12 for e > 1, and q becomes infinite
when the polar angle � ¼ �1, where �1 is given by

sn2ð	�1; kÞ ¼ C;

where

C ¼ � 1=3þ 4e3
4ðe2 � e3Þ ;

and where 	 and k are defined by Eqs. (21) and (22). As �
increases from �1, 2KðkÞ=	��1 is the next value of �
for q to become infinite. Thus Eq. (20) gives the
hyperbolic-type orbit for �1 � � � 2KðkÞ=	��1 in
Region I. The minimum distance qmin of the planet from
the star or black hole is given by Eq. (27) when the polar
angle of the planet is given by KðkÞ=	, where dr=d� ¼ 0
at q ¼ qmin (see a corresponding description given at the
end of Sec. II). On the other hand, the planet intersects the
horizontal axis at a distance qh from the star or black hole,
which can be obtained from Eq. (20) by setting the polar
angle � ¼ �. It is clear that qh is not equal to qmin

generally except in the Newtonian limit.
The Newtonian limit corresponds to the case of very

small s (k2 ’ 0). It can be shown that the equation for �1

becomes

sin 2 �1

2
¼ 1

2
� 1

2e
;

from which we find

�1 ¼ cos�1

�
1

e

�
:

The approximate orbit Eqs. (14) and (13) for very small
s and k2 hold for e � 1 for which E0 � 0 as well as for
0 � e < 1 for which E0 < 0. Thus, ignoring � in Eq. (14),
we get the Newtonian hyperbolic orbit given by

1

r
¼ GM

h2
ð1� e cos�Þ;
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where cos�1ð1=eÞ � � � 2�� cos�1ð1=eÞ with e > 1,
for which the minimum distance rmin of the planet from
the star equal to h2=½GMð1þ eÞ� occurs at the polar angle
� ¼ �. The angle �1 ranges from 0 for e ¼ 1 to �=2 for
very large e.

For the special case of k2 ¼ 1 (where s ¼ s1) which is
the boundary between Regions I and II, the angle �1 is
given by

tanh 2ð	�1Þ ¼ 2

3
� 1

18

ffiffiffiffiffi
3

g2

s
;

where g2 ¼ 1=12� s21 and s21 is given by Eq. (40), and 	
by Eq. (44). The angle�1 for k

2 ¼ 1 can range from 0 for

e ¼ 1 (parabolic-type orbit) to 2tanh�1ð1= ffiffiffi
3

p Þ ¼
1:31 696 ¼ 75:456� for very large e. Because Kð1Þ ¼ 1,
the orbit equation given by Eq. (43) describes the trajectory
of a planet that comes from infinity at an angle �1 to the
horizontal axis and goes around the black hole located at
the origin counter-clockwise as � increases, and finally
circles around the black hole with a radius that approaches
qmin given by Eq. (46). It can be called an asymptotic
hyperbolic orbit.

Generally for 0< k2 < 1, the angle�1 can range from 0
to 90� but the second angle 2KðkÞ=	��1 at which �
becomes infinite can be an angle of any value because
�=2<KðkÞ<1, and thus the planet executing the
hyperbolic-type orbit can go around the black hole many
times as � increases from �1 to 2KðkÞ=	��1 before
going off to infinity. We have seen a similar behavior for a
parabolic-type orbit (see Fig. 4 a3–g3 and Fig. 8(a)) for
which a planet comes from infinity at a polar angle � ¼ 0,
and can go around the black hole many times, before going
off to infinity at a polar angle � ¼ 2KðkÞ=	.

A difference between the initial trajectories of a para-
bolic- and hyperbolic-type orbit may be noted as follows.
For a parabolic-type orbit with the planet coming from
infinity at the polar angle � ¼ 0, it can be thought of as a
limiting case of an elliptic-type orbit with qmax ! 1 on the
horizontal axis, and thus the initial trajectory of the planet
is perpendicular to the line joining it to the black hole at the
origin. For a hyperbolic-type orbit, the initial trajectory of
the planet coming from infinity is along a line that makes
an angle �1 > 0 with the horizontal axis.

Region I also allows terminating orbits given by Eq. (29)
for which the planet starts from � ¼ 0 at a distance q1
from the black hole given by Eq. (30) [with an initial
trajectory perpendicular to the line joining the planet to
the black hole] and terminates at the black hole with an
angle �1 ¼ KðkÞ=	.

Region II allows only terminating orbits given by
Eq. (36). We find that a is less than �1=12 and that q ¼
1 when the polar angle � ¼ �2, where �2 is given by

cnð2	�2; kÞ ¼ 1�D

1þD
;

where

D ¼ � 1

	2

�
1

12
þ a

�
;

and where 	 and k are given by Eqs. (34) and (35). The
planet comes from infinity at a polar angle� ¼ �2, and as
� increases, the orbit terminates at the black hole at a polar
angle �2 ¼ KðkÞ=	. As s ! 1, we find from Eqs. (32)–

(35) that k2 ! ð2þ ffiffiffi
3

p Þ=4 ¼ 0:933 012 702, and from the
equations for �2 and �2 that �2 ! 0 and �2 ! 0, and
thus the trajectory approaches that of a purely radial tra-
jectory along a path that is very close to the horizontal axis.
A more detailed description and tabulation of all the

orbits for e > 1 in Regions I and II similar to those we give
for 0 � e � 1 will be presented in a future publication.
The orbit Eqs. (20), (29), and (36), and the description of

the orbits and the three regions where these orbit equations
apply in Regions I, II, and II’ for 0 � e � 1, and 0 � s �
1, complete our characterization of all possible planetary
orbits in the Schwarzschild geometry.
We now briefly discuss how all this may be used for the

Kerr geometry when the spinning black hole has a spin
angular momentum per unit mass of the black hole that is
relatively small compared to the orbital angular momen-
tum per unit mass of the planet.

VI. KERR GEOMETRY

The spinning black hole is assumed to have a spin
angular momentum J given by [1]

J ¼ Mac; (65)

where ac can be identified as the spin angular momentum
per unit mass of the black hole and is the quantity to be
compared with h, the orbital angular momentum per unit
mass of the planet. Considering the Kerr geometry only in
the equatorial plane, it becomes the Schwarzschild geome-
try in the limit ac=h ! 0.
The worldline of a particle moving in the equatorial

plane � ¼ �=2 satisfies the equations [1]

_t ¼ 1

D

��
r2 þ a2 þ �a2

r

�
�� �ah

cr

�
; (66)

_� ¼ 1

D

�
�ac�

r
þ

�
1� �

r

�
h

�
; (67)

whereD � r2 � �rþ a2. For the equatorial trajectories of
the planet in the Kerr geometry, the combined energy
equation is

_r 2 þ h2 � a2c2ð�2 � 1Þ
r2

� �ðh� ac�Þ2
r3

� c2�

r

¼ c2ð�2 � 1Þ: (68)

Provided that a2=�2 < 1 and ac�=h 	 1, to the first
order in ac�=h, it is not difficult to see, by comparing
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Eqs. (66)–(68) with Eqs. (3)–(6), that we can rescale � to
�0 ¼ �ð1� 2ac�=hÞ, s to s0 ¼ sð1� ac�=hÞ, and � to
�0 ¼ �½1� bðac�=hÞ�, where b is some approximation
constant, such that the results we have presented for the
orbits in the Schwarzschild geometry are approximately
applicable for the orbits in the Kerr geometry in terms of
the scaled parameters. That is, the orbits in the equatorial
plane and their characterization for the Schwarzschild and
Kerr geometries are qualitatively very similar to the first
order in ac�=h except that the basic parameters s, � and�
have to be slightly rescaled. Again, we emphasize that the
analogy is restricted to the Kerr geometry in the equatorial
plane. Levin and Perez-Giz [5] obtained their orbits in the
Kerr geometry from numerically integrating Eqs. (66)–(68)
and it would be interesting to study and examine when and
how the planet’s orbits in the Kerr geometry that they
obtained can be related with our results with the scaled
parameters, and when and how they begin to differ signifi-
cantly from those in the Schwarzschild geometry that we
presented in this paper.

VII. TRAJECTORY OF LIGHT

We now consider the deflection of light by a gravita-
tional field. We cannot use the proper time � as a parame-
ter. So we use some affine parameter � along the geodesic
[1]. Considering motion in the equatorial plane, the geo-
desic equations give Eqs. (3) and (5), and we replace the
r-equation (4) by the first integral of the null geodesic
equation, and we have [1]�

1� �

r

�
_t ¼ �; (69)

c2
�
1� �

r

�
_t2 �

�
1� �

r

��1
_r2 � r2 _�2 ¼ 0; (70)

r2 _� ¼ h; (71)

where the derivative _ represents d=d�. Substituting
Eqs. (69) and (71) into (70) gives the combined energy
equation

_r 2 þ h2

r2

�
1� �

r

�
¼ c2�2: (72)

Substituting dr=d� ¼ ðdr=d�Þðd�=d�Þ ¼ ðh=r2Þ�
ðdr=d�Þ and u ¼ 1=r into the combined energy equation
gives the differential equation for the trajectories of light in
the presence of a gravitational field�

du

d�

�
2 ¼ �u3 � u2 þ c2�2

h2
: (73)

The constants � and h have a physical significance
through their ratio �=h as follows: Let R denote the dis-
tance of the light beam to the center of a star or black hole
when the trajectory of the light beam is such that du=d� ¼

0. R can either be associated with the distance of closest
approach of the light beam to the black hole or with the
initial distance to the black hole of the light beam. The
latter case is associated with light trajectories that termi-
nate at the black hole. With R so defined and letting u1 �
1=R, we can set c2�2=h2 to be equal to u21 � �u31 [8].
It is again convenient to consider the problem in terms of

the dimensionless inverse distance U defined by

U ¼ �

r
¼ �u ¼ 1

q
: (74)

U defined here is slightly different from theU defined by
Eqs. (8) and (19) previously. In terms of U of Eq. (74),
Eq. (73) becomes�

dU

d�

�
2 ¼ U3 �U2 þ c2�2�2

h2
: (75)

Since dU=d� ¼ 0 at r ¼ R, one root U, which we call

U1 � �

R
� �u1 (76)

of the cubic equation U3 �U2 þ c2�2�2=h2 ¼ 0 is
known, and the term c2�2�2=h2 on the right-hand side of
Eq. (75) can be replaced by �U3

1 þU2
1, and the other two

roots of the cubic equation U3 �U2 �U3
1 þU2

1 ¼ 0 can

be found from solving a quadratic equation. We denote the
three roots of the cubic equation by e1, e2, e3. Thus, writing
Eq. (75) as �

dU

d�

�
2 ¼ U3 �U2 �U3

1 þU2
1; (77)

the trajectory of light represented by an equation forU as a
function of the polar angle � obtained from integrating
Eq. (77) can be characterized by a single parameter U1,
which essentially specifies either the distance of the closest
approach or the initial distance of the light beam to the
black hole. (These distances are scaled by the
Schwarzschild radius of the black hole.) As in our discus-
sion of the planets, our references to the initial position of
the light beam assume that the trajectory of the light beam
at that initial position is perpendicular to the line joining
that position to the star or black hole. The range of U1 is
clearly between 0 and 1, where U1 ¼ 0 means that the
light beam is infinitely far away from the black hole, U1 ¼
1 means that the light beam is at the Schwarzschild radius
at its closest approach or its initial position, and U1 ¼ 1
means that the light beam is at the center of the black hole.
As we show in the following, the region 0 � U1 � 1 can
be appropriately divided into three sectors which we again
call Regions I, II, and II’. The similarity between the
characterization of these three regions with that for the
planetary orbits discussed in the previous sections will
become apparent. Not surprisingly perhaps, only a single
parameter which we choose to be U1, is needed for the
characterization of the trajectories of a light beam in con-
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trast to the two parameters (which we choose to be e and s),
which we needed for the characterization of the orbits of a
planet. The relationship between U1 and R, from Eqs. (76)
and (2), is

R ¼ 2

U1

�
GM

c2

�
:

Region I: 0 � U1 � 2=3, or 1> R � 3GM=c2

Here, R denotes the distance of closest approach of a
light beam that comes from a great distance. We let

e1 ¼ 1
2½1�U1 þ ð1þ 2U1 � 3U2

1Þ1=2�; e2 ¼ U1;

e3 ¼ 1
2½1�U1 � ð1þ 2U1 � 3U2

1Þ1=2�; (78)

with e1 > e2 > e3, and we consider the region e1 > e2 >
U � e3, and write Eq. (77) as�

dU

d�

�
2 ¼ ðe1 �UÞðe2 �UÞðU� e3Þ: (79)

Equation (79) can be integrated [7] with � expressed in
terms of an inverse sn function. After a little algebra and
re-arrangement, we find the trajectory’s equation in terms
of the Jacobian elliptic functions of modulus k to be

1

q
¼ ðe1 � e3Þe2 � ðe2 � e3Þe1sn2ð	�; kÞ

ðe1 � e3Þ � ðe2 � e3Þsn2ð	�; kÞ ; (80)

where

	 ¼ ðe1 � e3Þ1=2
2

; k2 ¼ e2 � e3
e1 � e3

: (81)

The angle of deflection �� can be obtained as follows:
If we set q ¼ 1 and also set � ¼ �=2þ��=2 as the
incoming angle in Eq. (80) [see Fig. 9(a) for the special
case of��=2 ¼ 45�], where�� denotes the total angle of
deflection of light by the mass M, we get the following
equation for determining �� exactly:

sn2
�
	

�
�

2
þ ��

2

�
; k

�
¼ ðe1 � e3Þe2

ðe2 � e3Þe1 ;

where e1, e2, e3, 	, k, are given by Eqs. (78) and (81). It can
also be expressed as

�� ¼ ��þ 2

	
sn�1ðc ; kÞ; (82)

where

c ¼
�ðe1 � e3Þe2
ðe2 � e3Þe1

�
1=2

:

Equations (80)–(82) were first given by one of us in
Ref. [6]. Examples of these trajectories obtained from
Eq. (80) are presented in polar coordinates ðq;�Þ in
Fig. 9, where the black hole is located at the origin. By
setting the angles of deflection�� presented in Fig. 9 to be
�=2, �, 3�=2, 2�, the corresponding values of U1 can be

determined from Eqs. (82) and (78) using the MAPLE

FSOLVE program, and they are found to correspond to the

distances of closest approach R ¼ 4:6596GM=c2,
3:5206GM=c2, 3:2085GM=c2, 3:0902GM=c2, respec-
tively. The case of R ¼ 3:5206GM=c2 is interesting as it
corresponds to the light ray being turned around by 180�,

FIG. 9 (color online). Trajectories of light (with Schwarzschild
radius marked on axes) for (a) U1 ¼ 0:42 922, �’ ¼ �=2.
(b) U1 ¼ 0:56 808, �’ ¼ �. (c) U1 ¼ 0:62 334, �’ ¼ 3�=2.
(d) U1 ¼ 0:64 720, �’ ¼ 2�.
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which is called retro-lensing [9]. That the upper boundary
of Region I characterized by U1 ¼ 2=3 or R ¼ 3GM=c2 is
a very special case can be seen mathematically because it
results in e1 ¼ e2 ¼ 2=3, e3 ¼ �1=3, and hence k2 ¼ 1,
	 ¼ 1=2 and U ¼ 2=3 ¼ const from Eqs. (81) and (80).
Physically, it results in the light circling the black hole with
a radius R ¼ 3GM=c2 even though the trajectory has been
shown to be an unstable one [1]. This known result can also
be simply obtained from the equation of motion
d2U=d�2 ¼ ð3=2ÞU2 �U for U ¼ const and thus U ¼
2=3. If one compares the size of the unstable circular
photon orbit with the allowed limiting radii of the planetary
asymptotic periodic orbits (2 � qmin � 2:25 or
4GM=c2 � rmin � 4:5GM=c2), one can see that the radius
of the asymptotic circular path of a planet around a black
hole is still a little larger than that for a photon, but not by
much.

The lower boundary of Region I characterized by U1 ¼
0 or R ¼ 1 gives e1 ¼ 1, e2 ¼ e3 ¼ 0, k2 ¼ 0 and 	 ¼
1=2, and thus gives U ¼ 0 or r ¼ 1, which is a limiting
case as the light ray that is infinitely far away at its closest
approach to the black hole is completely undeflected.

As in the case of the Region I particle orbits discussed in
Sec. III, the squared modulus k2 of the elliptic functions
that describe the trajectories of light here also covers the
entire range 0 � k2 � 1; it varies from 0 at the lower
boundary to 1 at the upper boundary.

For smallU1, the trajectory of light given by Eq. (80) has
been shown [6] to reduce to

1

r
’ cos�

R
þ GM

c2R2
ð1þ cos�þ sin2�Þ; (83)

and the total deflection of light to reduce to the well-known
result

�� ’ 4GM

c2R
: (84)

It can be shown from our exact result given by Eq. (82)
that this approximate expression (84) still gives an accu-
racy of two significant figures for U1 ¼ 0:1 or R ¼
20GM=c2.

As U1 approaches 2=3, or as R approaches 3GM=c2, we
may let U1 ¼ 2=3� �, where � � ð2=3Þð1� 3GM=c2RÞ
is a small positive number. From Eqs. (78) and (81), we can
express the quantities 2=	, c and k appearing in Eq. (82)
in power series in � and find, to the first order in �, 2=	 ’
4ð1� �=2þ . . .Þ, c ’ 1� �=2þ . . . , and k ’
1� �þ . . . . Substituting these into Eq. (82) immediately
gives an expression for �� which is correct to the first
order in �. If an attempt is made to find an expansion of

sn�1ðc ; kÞ near k ¼ 1, since sn�1ðc ; 1Þ ¼ tanh�1c ¼
ln½ð1þ c Þ=ð1� c Þ�1=2, the expansion would involve
terms in ln� (which is a large number for small �) and
ordering the expansion terms in the right way can be tricky.
Different forms of such expansions have been given and

studied by various authors [10]. As we showed above and
in Fig. 9, our exact expressions given by Eqs. (80) and (82)
can be used simply and directly for all cases in Region I.
As U1 increases beyond 2=3 or as the distance of closest

approach R of the light beam to the black hole becomes
smaller than 3GM=c2, the light is not just deflected but is
absorbed by and terminates at the black hole. It is useful to
divide the region 2=3<U1 � 1 or 3GM=c2 > R � 0 into
two regions that we call Regions II and II’ that are sepa-
rated by the Schwarzschild horizon, as we discuss below.
Region II is for R from 3GM=c2 up to the Schwarzschild
horizon, and Region II’ is for R from the Schwarzschild
horizon up to the center of the black hole.
Region II: 2=3<U1 � 1, or 3GM=c2 >R � 2GM=c2

Here, R denotes the initial distance to the black hole of
the light beam which has initial trajectory (as � increases
from 0) perpendicular to the line joining it to the black
hole.
As U1 increases beyond 2=3, U1 becomes greater than

½1�U1 þ ð1þ 2U1 � 3U2
1Þ1=2�=2, and the order of the

three roots must be changed to maintain the inequality
e1 > e2 > e3. We write

e1 ¼ U1; e2 ¼ 1
2½1�U1 þ ð1þ 2U1 � 3U2

1Þ1=2�;
e3 ¼ 1

2½1�U1 � ð1þ 2U1 � 3U2
1Þ1=2�: (85)

We consider the region U > e1 > e2 > e3, and write
Eq. (77) as

�
dU

d�

�
2 ¼ ðU� e1ÞðU� e2ÞðU� e3Þ: (86)

Equation (86) can be integrated [7] with � expressed in
terms of an inverse sn function. After some rearrangement,
we find

1

q
¼ e1 � e2sn

2ð	�; kÞ
cn2ð	�; kÞ ; (87)

where 	 and k2 are calculated using the same expressions
given by Eq. (81) but with e1, e2, e3 given by Eq. (85).
The expressions for e1, e2, e3 given by Eqs. (78) and (85)

coincide at k2 ¼ 1 for which e1 ¼ e2 ¼ 2=3, e3 ¼ �1=3,
and both Eqs. (80) and (87) give U ¼ 2=3 or r ¼ 3GM=c2

independent of �.
Equation (87) gives a trajectory of light which termi-

nates at the black hole when � ¼ �2 ¼ KðkÞ=	. As in our
discussion of the terminating orbits for the planet, the
terminating light ray trajectories can be characterized by
the angle�2 with which the light beam enters the center of
the black hole.
AsU1 increases from 2=3 to 1, k2 covers the entire range

1 � k2 � 0; it decreases from 1 to 0. When U1 ¼ 1, i.e.
when the light beam grazes the Schwarzschild horizon,
e1 ¼ 1, e2 ¼ e3 ¼ 0, k2 ¼ 0, 	 ¼ 1=2, and we have the
trajectory of light given by
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1

q
¼ 1

cos2ð�=2Þ ; (88)

which gives, for � ¼ 0, U ¼ 1 or r ¼ �, and for � ¼ �,
U ¼ 1 or r ¼ 0, i.e. the light is absorbed at the center of
the black hole. Examples of the trajectories of light ob-
tained from Eqs. (87) and (88) for U1 ¼ 5=6 ¼ 0:83 333
(R ¼ 2:4GM=c2) and 1 (R ¼ 2GM=c2) in Region II are
shown as the solid lines in Fig. 10(a) and 10(b). The path
that emerges from the center of the black hole when � is
continued beyond �2 (shown as a dotted line in Fig. 10)
again may be interesting if the concept of white hole is of
any physical relevance.

When the distance R to the black hole at� ¼ 0 is inside
the Schwarzschild horizon, the terminating path takes on a
somewhat different form as we show below.

Region II’: 1<U1 � 1, or 2GM=c2 > R � 0
Here, R has the same meaning as that in Region II. As

U1 increases beyond 1, i.e. when R is less than the
Schwarzschild radius, e1 in Eq. (85) remains real, while
e2 and e3 become complex. We now write the three roots of
the cubic equationU3 �U2 �U3

1 þU2
1 ¼ 0 as a, b, and �b

given by

a ¼ U1; b ¼ 1
2½1�U1 þ ið3U2

1 � 2U1 � 1Þ1=2�;
�b ¼ 1

2½1�U1 � ið3U2
1 � 2U1 � 1Þ1=2�: (89)

We consider the region U > a, and write Eq. (77) as�
dU

d�

�
2 ¼ ðU� aÞðU� bÞðU� �bÞ: (90)

This equation can be integrated [7] with � expressed in
terms of an inverse cn function. After a little algebra, we
find

1

q
¼ aþ 	2 1� cnð	�; kÞ

1þ cnð	�; kÞ
¼ aþ 	2tn2ð	�; kÞdn2ð	�; kÞ; (91)

where

	 ¼ ½U1ð3U1 � 2Þ�1=4 (92)

and

k2 ¼ 1

2
� 3U1 � 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1ð3U1 � 2Þp ¼ 1

2
� 3a� 1

4	2
: (93)

Equation (91) gives the trajectory of light when R is
inside the Schwarzschild horizon and it terminates at the
black hole when � ¼ �20 ¼ 2KðkÞ=	, where k and 	 are
given by Eqs. (93) and (92). On the boundary with
Region II where U1¼1, and k2¼0, 	¼1 from Eqs (93)
and (92), Eq. (91) becomes Eq. (88) and thus there is no
discontinuity in the orbit as it makes a transition from
Region II to Region II’ across U1 ¼ 1.

We note that as in the case of Region II’ for the planetary
orbits, Region II’ for light trajectories covers a semi-

infinite range of the parameter characterizing it (1<U1 �
1) but is of relevance only to a very small physical region
2GM=c2 >R � 0 for the initial position of a light beam
inside the Schwarzschild horizon. The terminating orbits
of light rays in Region II’ are also of very little variety as
�20 is restricted to a limited range of 0 � �20 � �. An
example of a terminating trajectory obtained from Eq. (91)
is shown as the solid line in Fig. 10(c) for U1 ¼ 10 (R ¼
0:2GM=c2); the dotted line again represents a trajectory of
light coming out from the center of the black hole as � is
continued beyond �20 . It may be of some mathematical
interest to note that as U1 ! 1 or R ! 0, the squared
modulus of the Jacobian elliptic functions used to describe

the trajectories k2 approaches a value ð2� ffiffiffi
3

p Þ=4 ¼
0:0 669 873 that is the same as that given in Sec. IV for
the case of Region II’ for the planetary orbits. Thus, the

FIG. 10 (color online). Trajectories of light that terminated
(dotted line represents trajectory beyond r ¼ 0)
(a) U1 ¼ 0:8333, ’1 ¼ 3:8345. (b) U1 ¼ 1, ’1 ¼ �.
(c) U1 ¼ 10, ’1 ¼ 0:78 133.
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squared modulus of the elliptic functions that describe the
terminating light trajectories in Region II’ is restricted to a
very small range 0< k2 � 0:0 669 873 even as Region II’
consists of a very large interval 1<U1 � 1.

VIII. SUMMARY

We have presented exact analytic expressions given by
Eqs. (20), (29), and (36) for the planetary orbits in the
Schwarzschild geometry. The equations relate the distance
r of the planet from the star or black hole to the polar angle
� and are described explicitly by Jacobian elliptic func-
tions of modulus k. Equation (20) gives a nonterminating
orbit that can be referred to as an elliptic, parabolic or
hyperbolic-type, including an asymptotic one, while
Eqs. (29) and (36) give terminating orbits that describe a
planet plunging into the center of a black hole. One of the
most important aspects of our analysis is the construction
of a map with coordinates ðe; sÞ that we use to view all
possible orbits in their entirety, where the two dimension-
less parameters e and s are defined by Eqs. (11) and (12)
which we call the energy and field parameters, respec-
tively. For 0 � e � 1, we show that there are three regions
which we call Regions I (0 � s � s1), II (s1 < s � s2) and
II’ (s2 < s � 1) where these orbits are applicable, and
where s1 and s2 that depend on e are given by Eqs. (40) and
(57), respectively, (Fig. 2). For 0 � e � 1, Region I has
periodic (elliptic-type) and unbounded (parabolic-type)
orbits given by Eq. (20) and terminating orbits given by
Eq. (29), while Regions II and II’ have terminating orbits
only given by Eq. (36). We have divided Region I into grids
that consist of lines of constant precession angle 0 �
�� � 1 given by Eq. (25) and lines of constant true
eccentricity 0 � " � 1 defined by Eq. (28) [Fig. 3]; the
lines of constant �� are obtained from solving Eqs. (38)
and (A6), and those of constant " from solving Eqs. (38)
and (B1). These grids make the identification of all pos-
sible periodic orbits convenient and precise. Numerous
numerical results for orbits in Region I are presented in
Tables I, II, III, IV, V, and VI, and examples of precessing
orbits, including the unbounded ones, are shown in Figs. 4
and 5. Among the interesting results, for example, Table VI
for �� ¼ 2�, e ¼ 1, s ¼ 0:248 804 and Fig. 4 f3 show
that a planet coming from infinity at zero polar angle,
makes a complete loop about the black hole, and returns
to infinity with a polar angle that approaches 2�. Figure 3,
or a more refined version of it that can be constructed using
the expressions for �� and " that we presented, can be
fruitfully used with the experimental observation data. The
terminating orbits of Region I and those of Region II’
require the planet to be initially very close to the black
hole or within the Schwarzschild horizon. The terminating
orbits of Region II, on the other hand, are more interesting
as the planet can be initially at a distance 1< q2 � 1. We
have shown how the periodic orbits of Region I become the
asymptotic periodic orbits as s ! s1, and then become

terminating orbits as s becomes greater than s1. For e >
1, we have Region I ð0 � s � s1Þ where there are
hyperbolic-type orbits given by Eq. (20) and terminating
orbits given by Eq. (29), and Region II ðs1 < s � 1Þwhere
there are only terminating orbits given by Eq. (36).
We have also presented exact analytic expressions given

by Eqs. (80), (87), and (91) for the trajectories of light in
the presence of a star or black hole depending on the value
of one parameter U1 that has a range which can be divided
into three regions: Regions I (0 � U1 � 2=3), II (2=3<
U1 � 1) and II’ (1<U1 � 1), where U1 is defined by
Eq. (76). In Region I, the deflection of light can range from
small angles to going continuously around the star or black
hole in a circle. In Regions II and II’, light is absorbed into
the center of the black hole. Among the interesting results,
a deflection of light by 180� requires a distance of closest
approach R to the black hole equal to 3:5206GM=c2

[Fig. 9(b)], and for R< 3GM=c2 , light will be absorbed
by the black hole.
We have thus presented a complete map that can help to

identify characteristics of stars and black holes (that are not
spinning too fast) from the observed characteristics of
objects or light beams that are affected by them.
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APPENDIX A: RELATION AMONG s, e AND k2

In this Appendix, we derive the relation among s, e and
k2 given by Eqs. (38) and (39). Substituting Eq. (23) into
Eq. (22) and after a little algebra, we find

tan
�

3
¼

ffiffiffi
3

p
k2

2� k2
; (A1)

and hence we find

sin
�

3
¼

ffiffiffi
3

p
k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p ; (A2)

cos
�

3
¼ 2� k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p : (A3)

We then find

cos

�
�

3
þ 4�

3

�
¼ �1þ 2k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p ;

cos

�
�

3
þ 2�

3

�
¼ �1� k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p :

(A4)

Equations (A3)–(A5) and (23) allow e1, e2, e3 to be
expressed in terms of g2 and k2 as
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e1 ¼
ffiffiffiffiffiffi
g2
12

r
2� k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 þ k4
p ; e2 ¼

ffiffiffiffiffiffi
g2
12

r �1þ 2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p ;

e3 ¼
ffiffiffiffiffiffi
g2
12

r �1� k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p : (A5)

Substituting Eq. (A3) into the relation cos� ¼
�3 cosð�=3Þ þ 4cos3ð�=3Þ, and substituting the result
into Eq. (24) gives the relation among s, e and k2 given
by Eqs. (38) and (39). For k2 ¼ 1, we get cos� ¼ �1 from

Eqs. (38) and (39), and from Eq. (A5) we get e1 ¼ e2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=12

p ¼ �ð1=2Þe3.
From Eqs. (25), (21), (A5), and (10), we find an ex-

pression for the precession angle �� given by Eq. (25) in
terms of k and s to be

�� ¼ 4KðkÞ
�
1� k2 þ k4

1� 12s2

�
1=4 � 2�: (A6)

APPENDIX B: THE ENERGY PARAMETER e AND
THE TRUE ECCENTRICITY " IN REGION I

In this Appendix, we show the relation between the
energy parameter e and the true eccentricity ". The energy
parameter e in all three Regions I, II, and II’ is defined by
Eq. (11). The general or true eccentricity " is defined by
Eq. (28). From Eq. (28), (26), and (27) and using the
expressions (A5) of e1, e2, e3 in terms of k2 given in
Appendix A, we find that " can be expressed as

" ¼ 6ðe2 � e3Þ
1þ 6ðe2 þ e3Þ

or

" ¼ 3k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12s2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p
� ð2� k2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 12s2
p : (B1)

For small s2 and k2, we find that

" ’ 3k2=2

1� ð1� 6s2Þ ’
k2

4s2
’ e (B2)

because k2 ’ 4es2 for very small k2 and s2 [6]. We thus
confirm the identification of e defined in Eq. (11) with the
eccentricity of the orbit in Newtonian mechanics. As we
pointed out in the text, " is generally not equal to e.
However, as we show below, " ¼ e exactly when e ¼ 1
and in this case the orbits are unbounded.

For the possibility of unbounded orbits in Region I, we
set the initial q ¼ 1 at � ¼ 0 in Eq. (20), and get

1
3 þ 4e3 ¼ 0; (B3)

or

e3 ¼ � 1
12: (B4)

Using Eqs. (23), (10), and (A4) that give e3 in terms of s
and k2, and after a little algebra, we find the simple

equation that relates s to k2 on e ¼ 1 to be given by
Eq. (51).
This simple Eq. (51) between s and k2 for e ¼ 1 can be

used for any 0 � k2 � 1. For example, we find that for

k2 ¼ 1, s ¼ 1=4 ¼ 0:25, and for k2 ¼ 1=2, s ¼
1=ð3 ffiffiffi

2
p Þ ¼ 0:235 702. For e ¼ 1, and for small k2, we

have s2 ’ k2=4 which is a special case of k2 ’ 4es2 that
is valid more generally for 0 � e � 1.
In addition, we find g2 ¼ 1=12� s2 ¼ 1=12�

k2=½4ð1þ k2Þ2� and therefore

g2 ¼ 1� k2 þ k4

12ð1þ k2Þ2 ; (B5)

and from the expression for e1 and e2 given by Eq. (A5),
we find

e1 ¼ 2� k2

12ð1þ k2Þ ; e2 ¼ �1þ 2k2

12ð1þ k2Þ : (B6)

Thus, from the expressions (27), (30), and (21) for qmin,
q1, and 	, we find that when e ¼ 1, they have the simple
expressions given by Eqs. (53), (54), and (52).
Also, substituting Eq. (48) into Eq. (B1) shows that " ¼

1 when e ¼ 1, i.e. " and e coincide at e ¼ 1.

APPENDIX C: SOME SIMPLE RELATIONS FOR
THE SPECIAL CASE OF k2 ¼ 1=2

It is known that in elliptic functions, the squared modu-
lus k2 ¼ 1=2 is a special value for which many simple
relations arise. We first consider the case of k2 ¼ 1=2 in
Region I. We note that substituting k2 ¼ 1=2 into Eq. (22)
gives a relation e1 þ e3 ¼ 2e2, and substituting the ex-
pressions of e1, e2, e3 from Eq. (23) into this relation gives
�=3 ¼ �=6, or � ¼ �=2. Thus, cos� ¼ 0, which results in

g3 ¼ 0 (C1)

from Eq. (24), which in turn gives a simple relationship

s2 ¼ 1

6ð1� e2Þ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e2

3

s �
: (C2)

For example, we have s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� ffiffiffi

3
p Þ=18

q
¼ 0:265 408

for e ¼ 0, and s ¼ 1=ð3 ffiffiffi
2

p Þ ¼ 0:235 702 for e ¼ 1 (using
L’Hospital rule). These two values represent the two ter-
minal coordinates of the constant k2 ¼ 1=2 line in Region I
(see Fig. 1). The other solution of Eq. (C1) is Eq. (58),
which is applicable for Region II as we shall show later in
this Appendix.
We also find from Eq. (23) that

e1 ¼ �e3 ¼
ffiffiffiffiffi
g2

p
2

; e2 ¼ 0; (C3)

and

	 ¼ ffiffiffiffiffi
g24

p
; (C4)
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and the orbit Eq. (20) becomes

1

q
¼ 1

3
� 2

ffiffiffiffiffi
g2

p
cn2ð	�; 1=

ffiffiffi
2

p Þ;

where the s value for g2 in this case is given by Eq. (C2) for
Region I. The precession angle �� can be found from

Eq. (25) and from Kð1= ffiffiffi
2

p Þ ¼ 1:85 407. It is given by

��

�
¼ 1:18 034ffiffiffiffiffi

g24
p � 2:

From Eqs. (26)–(28) and (C3), we find

" ¼ 6ðe2 � e3Þ
1þ 6ðe2 þ e3Þ ¼

3
ffiffiffiffiffi
g2

p
1� 3

ffiffiffiffiffi
g2

p ; (C5)

which can be inverted and solved for s in terms of ", giving

s2 ¼ 3þ 6"� "2

36ð1þ "Þ2 : (C6)

Substituting Eq. (C6) into Eq. (C1) gives e in terms of "
as

e2 ¼ 1� 12ð1þ "Þ2ð1� "Þð1þ 3"Þ
ð3þ 6"� "2Þ2 : (C7)

Since for e ¼ 0, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� ffiffiffi

3
p Þ=18

q
when k2 ¼ 1=2 as

we showed above, substituting this s value into Eq. (C1)

gives " ¼ ð2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3þ 2

ffiffiffi
3

pp
� 1Þ�1 ¼ 0:516 588. For e ¼

1, s ¼ 1=ð3 ffiffiffi
2

p Þ when k2 ¼ 1=2, and substituting this s
value into Eq. (C1) gives " ¼ 1 as it should. Thus,
Eqs. (C6) and (C7) are the parametric equations for the
line of constant k2 ¼ 1=2, which can be used instead of
Eq. (C2) as " takes the values between 0.516 588 and 1.

Also, substituting e2 ¼ 0 from Eq. (C3) into Eq. (27)
gives

qmin ¼ 3 (C8)

independent of e for k2 ¼ 1=2, as shown in Table III.
We now consider k2 ¼ 1=2 in Region II. From Eqs. (35)

and (33), we have

a ¼ Aþ B ¼ 0: (C9)

From Eq. (32), and from A ¼ �B, and A3 ¼ �B3, we
arrive again at Eq. (C1) with the same g3 given by Eq. (10).
This explains why we stated after Eq. (C2) that the other
solution of Eq. (C1) given by Eq. (58) gives the relation
between s and e for Region II. The two Eqs. (C3) and (58)
that give simple relations between s and e in two different
regions and that arise as two different solutions of the same
Eq. (C1) show a rather remarkable symmetry exhibited by
the special case k2 ¼ 1=2.

It also follows from Eqs. (32) and (34) that

A ¼ 1

2

��g2
3

�
1=2 ¼ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s2 � 1

p
; (C10)

	 ¼ ð3A2Þ1=4 ¼ 1
2 ½13ð12s2 � 1Þ�1=4; (C11)

and that the orbit Eq. (36) becomes

1

q
¼ 1

3
þ 4	2 1� cnð2	�; 1=

ffiffiffi
2

p Þ
1þ cnð2	�; 1=

ffiffiffi
2

p Þ ; (C12)

where the s value for the above equations is given by
Eq. (58) for 0 � e � 1.
Since a ¼ 0, the initial distance q2 of the planet from the

black hole is q2 ¼ 3 from Eq. (37), independent of e, as
shown in Table X.

APPENDIX D: THE BOUNDARY OF REGION II

On the upper boundary s22 ¼ 1=ð1� e2Þ of Region II,
the planet starts from the Schwarzschild horizon given by
q ¼ 1, which implies that for � ¼ 0, 1=q ¼ 1=3þ 4a
from Eq. (36), or

1 ¼ 1
3 þ 4a: (D1)

Hence,

a ¼ Aþ B ¼ 1
6: (D2)

Since from Eqs. (32) and (17),

AB ¼ 1

4

�
g23 �

�

27

�
1=3 ¼ g2

12
; (D3)

we can conclude from Eqs. (35) and (34) that k2 and 	 are
given on the boundary s22 ¼ 1=ð1� e2Þ of Region II by
Eqs. (60) and (61).

In particular, for e ¼ 0, s ¼ 1, we find 	 ¼ ð5=16Þ1=4 ¼
0:747 674, k2 ¼ ð1� 1=

ffiffiffi
5

p Þ=2 ¼ 0:276 393, and this is the
minimum value of k2 in Region II.
We now consider the special case of e ¼ 1 of Region II.

Consider the unbounded orbit of a planet coming from
infinity at � ¼ 0 that requires, from Eq. (36), that

1
3 þ 4a ¼ 0; (D4)

or

a ¼ � 1
12: (D5)

From

Aþ B ¼ a ¼ � 1
12; (D6)

and

AB ¼ g2
12

; (D7)

and from Eqs. (34) and (35), we find Eqs. (62) and (64) that
give k2 and 	 in terms of s for e ¼ 1 of Region II.

APPENDIX E

The special case of g3 ¼ 0 has been shown in
Appendix C to correspond to the special case of k2 ¼
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1=2 that gives the curves given by Eqs. (C2) and (58) in

Regions I and II. The case of g2 ¼ 0 or s2 ¼ 1=12 (s ¼
1=2

ffiffiffi
3

p ¼ 0:288 675 135) in Region II is also interesting
and significant. If g2 of Eq. (10) is equal to zero, then � ¼
27g23 from Eq. (17), and from Eqs. (32)–(35), we find A ¼
ð2g3Þ1=3=2, B ¼ 0, a ¼ A, 	 ¼ ð3A2Þ1=4, and noting that
A < 0 for s2 ¼ 1=12 and 0 � e � 1, we have

k2 ¼ 1

2
�

ffiffiffi
3

p
A

4 j A j ¼
1

2
þ

ffiffiffi
3

p
4

¼ 0:933 012 702;

which is independent of e, i.e. the constant k2 ¼
ð2þ ffiffiffi

3
p Þ=4 curve in Region II just above the boundary

curve of Regions I and II in Fig. 2 is a horizontal line. Thus,
the terminating orbits represented by Eq. (36) for any point
along this horizontal line (i.e. for any 0 � e � 1, s ¼
0:288 675 135) are represented by elliptic functions of the

same squared modulus given above. The initial position of
the planet still depends on e; it is finite for e < 1 and is
infinite for e � 1 (the initial trajectory of the planet is
perpendicular to the line joining the planet to the black
hole for 0 � e � 1 but is at an angle� for e > 1 described
in Sec. V).
If the cubic polynomial on the right-hand side of Eq. (9)

is denoted by fðUÞ, requiring f0ðUÞ ¼ f00ðUÞ ¼ 0 gives

g2 ¼ 0 which in turn gives s ¼ 1=2
ffiffiffi
3

p
. From the analysis

of the ‘‘effective potential energy curves’’ that made use of
a cubic polynomial equivalent to fðUÞ, this special value of
s ¼ 1=2

ffiffiffi
3

p
has been obtained and associated with the so-

called innermost stable circular orbit of radius q ¼ 3 [1].
As our analysis clearly identifies this value of s to be in
Region II where all the orbits are terminating, we are
unable to identify it with any stable circular orbit.
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