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The late part of the gravitational wave signal of binary neutron-star (or black-hole–neutron-star)

inspirals can in principle yield crucial information on the nuclear equation of state via its dependence on

relativistic tidal parameters. In the hope of analytically describing the gravitational wave phasing during

the late inspiral (essentially up to merger) we propose an extension of the effective one body (EOB)

formalism which includes tidal effects. We compare the prediction of this tidal-EOB formalism to recently

computed nonconformally flat quasiequilibrium circular sequences of binary neutron-star systems. Our

analysis suggests the importance of higher-order (post-Newtonian) corrections to tidal effects, even

beyond the first post-Newtonian order, and their tendency to significantly increase the ‘‘effective tidal

polarizability’’ of neutron stars. We propose to use the EOB description up to the moment where the

tidally deformed compact objects formally enter ‘‘into contact.’’ We compare the EOB predictions to

some recently advocated, nonresummed, post-Newtonian based (‘‘Taylor-T4’’) description of the phasing

of inspiralling systems. This comparison shows the strong sensitivity of the late-inspiral phasing to the

choice of the analytical model. A sufficiently accurate numerical–relativity–‘‘calibrated’’ EOB model

might, however, give us a reliable analytical description of the late inspiral of compact binaries (and might

also help in predicting the conditions necessary for the generation of short gamma-ray bursts).
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I. INTRODUCTION

Some of the prime targets of the currently operating
network of ground-based detectors of gravitational waves
(GWs) are the signals emitted by inspiralling and coales-
cing compact binaries. Here, compact binary refers to a
binary system made either of two black holes, a black hole
and a neutron star, or two neutron stars. The GW signal
emitted by binary black-hole (BBH) systems has been the
subject of intense theoretical studies, based either on ana-
lytical methods or on numerical ones. In particular, recent
progress in the application of the effective one body (EOB)
approach to BBH systems has led to a remarkable agree-
ment between the (analytical) EOB predictions and the
best current numerical relativity (NR) results [1,2] (see
also [3]). By contrast, much less work has been devoted
to the study of the GW signal emitted by compact binaries
comprising neutron stars: either black-hole–neutron-star
(BHNS) systems or binary neutron-star (BNS) ones.
During the inspiral phase (before merger), these systems
differ from the BBH ones by the presence of tidal inter-
actions which affect both the dynamics of the inspiral and
the emitted waveform. During the merger and coalescence
phase, the presence of neutron stars drastically modifies the
GW signal [4–6]. The coalescence signal involves (espe-
cially in the BNS case) a lot of complicated physics and
astrophysics, and is, probably, not amenable to the type of
accurate analytical description which worked in the BBH
case. Early works on this problem have tried to approxi-
mately relate some qualitative features of the merger GW
signal linked, e.g., to tidal disruption, to analytically de-
scribable inputs [7–9].

Recently, Flanagan and Hinderer [10–12] initiated the
program of studying the quantitative influence of tidal
effects [11,13,14] in inspiralling BNS systems. However,
they only considered the early (lower-frequency) portion of
the GW inspiral signal, mainly because they were using a
post-Newtonian (PN) based description of the binary dy-
namics whose validity is restricted to low enough frequen-
cies. In particular, one of the results of the recent work of
Hinderer et al. [12] is to show that the accumulated GW
phase due to tidal interactions is, for most realistic NS
models of massM� 1:4M� smaller than the uncertainty in
the PN-based description of GW phasing (see the central
panel of Fig. 4 in Ref. [12] where the thin-dashed and thin-
dotted lines are two measures of the PN uncertainty).
(These measures are larger than the inspiral tidal signal
except for the extreme case where the radius of the 1:4M�
NS is taken to be � 16 km.)
By contrast, our aim in this work is to propose a way of

describing the binary dynamics (including tidal effects)
whose validity does not have the limitations of PN-based
descriptions and therefore is not a priori limited to the low-
frequency part, but extends to significantly higher frequen-
cies. This might be crucial to increase the detectability of
the GW signal and thereby have a handle on the nuclear
equation of state (EOS). Indeed, our proposal consists in
extending the EOBmethod by incorporating tidal effects in
it. Our hope is that such a tidally extended EOB framework
will be able to describe with sufficient approximation not
only the early inspiral phase, but also the late inspiral up to
the moment (that we shall consistently determine within
our scheme) of ‘‘contact.’’ As we shall indicate, such a
framework might also give us an analytic handle on the
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possible formation of hot disks around merging systems.
We think that the present EOB description of tidal effects is
likely to be more accurate than any of the possible post-
Newtonian-based descriptions involving supplementary ti-
dal terms (such as [10] or [12]). This should be especially
true in the BHNS systems which, in the limiting case
mNS � mBH, are known to be well described by the EOB
approach (and rather badly described by post-Newtonian-
based approaches). We will give some evidence of the
validity of the EOB description of close neutron-star sys-
tems by comparing our analytical predictions to recently
calculated quasiequilibrium NS sequences of circular or-
bits [15] (see also [16]).

II. EFFECTIVE-ACTION DESCRIPTION OF TIDAL
EFFECTS IN TWO BODY SYSTEMS

A. General formalism

The general relativistic tidal properties of neutron stars
have been recently studied in Refs. [11–14]. As empha-
sized in [13], there are (at least) three different types of
tidal responses of a neutron star to an external tidal solici-
tation, which are measured by three different tidal coeffi-
cients: (i) a gravito-electric-type coefficient
G�‘ ¼ ½length�2‘þ1 measuring the ‘th-order mass multi-
polar moment GMa1���a‘ induced in a star by an external

‘th-order gravito-electric tidal field Ga1���a‘ ; (ii) a

gravitomagnetic-type coefficient G�‘ ¼ ½length�2‘þ1

measuring the ‘th spin multipole moment GSa1���a‘ in-

duced in a star by an external ‘th-order gravitomagnetic
tidal field Ha1���a‘ ; and (iii) a dimensionless shape Love

number h‘ measuring the distortion of the shape of the
surface of a star by an external ‘th-order gravito-electric
tidal field. It was found in [13,14] that all those coefficients
have a strong sensitivity to the value of the star’s compact-
ness c � GM=c20R (where we denote by c0 the velocity of

light,1 to be distinguished from the compactness c). This
means, in particular, that the numerical values of the tidal
coefficients of NS’s should not be evaluated by using
Newtonian estimates. Indeed, the dimensionless version
of �‘, traditionally denoted as k‘ (second Love number)
and defined as

2k‘ � ð2‘� 1Þ!! G�‘

R2‘þ1
; (1)

where R denotes the areal radius of the NS, is typically
3 times smaller than its Newtonian counterpart (computed
from the same equation of state). A similar, though less
drastic, quenching also occurs for the first Love number h‘.
In particular, though Newtonian h‘’s are larger than 1 [and
equal to 1þ 2k‘, see Eq. (81) of [13]], the typical relativ-
istic values of h‘ are smaller than 1. This will play a useful

role in our analysis below of the moment where the tidal
distortion of the NS becomes too large for continuing to
use an analytical approach.
It was shown in [17,18] that the motion and radiation of

two black holes can be described, up to the fifth post-
Newtonian (5PN) approximation, by an effective action
of the form

S0 ¼
Z dDx

c0

c40
16�G

ffiffiffi
g

p
RðgÞ þ Spoint mass; (2)

where

Spoint mass ¼ �X
A

Z
MAc

2
0dsA; (3)

is a skeletonized description of black holes, as point
masses. Here dsA denotes the proper time along the world-

line of A normalized as dsA ¼ c�1
0 ð�g��ðzAÞdz�Adz�AÞ1=2.

To give meaning to the addition of point-mass sources to
the nonlinear Einstein equations, one needs to use a cova-
riant regularization method. References [17,18] mainly
used Riesz’s analytic regularization, but it was already
mentioned at the time that one could equivalently use
dimensional regularization. The efficiency and consistency
of the latter method was shown by the calculations of the
dynamics, and radiation, of BBH systems at the 3PN level
[19–21]. Let us also recall that the limitation to the 5PN
level in Ref. [18] is precisely linked to the possible appear-
ance of ambiguities in BBH dynamics appearing at the
level where tidal effects start entering the picture. Indeed, it
is well known in effective field theory that finite-size
effects correspond to augmenting the point-mass action
(2) by nonminimal (worldline) couplings involving
higher-order derivatives of the field (see [22,23] and
Appendix A of Ref. [24]). More precisely, the two tidal
effects parametrized by�‘ and �‘ correspond to augment-
ing the leading point-particle effective action, (2) and (3),
by the following nonminimal worldline couplings:

�Snonminimal ¼
X
A

�
1

2

1

‘!
�A

‘

Z
dsAðGA

LÞ2 þ
1

2

‘

‘þ 1

1

‘!

	 1

c20
�A

‘

Z
dsAðHA

LÞ2
�
: (4)

Here2 GA
L � GA

a1���a‘ and HA
L � HA

a1���a‘ are the gravito-

electric and gravito-magnetic external tidal gradients eval-
uated along the worldline of the considered star (labeled by
A), in the local frames (attached to body A) defined in [25].
If needed, they can be reexpressed in terms of covariant
derivatives of the Riemann (or Weyl) tensor. For instance,
using Eq. (3.40) of [25], the leading, quadrupolar terms in
Eq. (4) read

1In the following, we will often set the velocity of light c0 ¼ 1
when it is not useful to keep track of the PN order.

2We use here the notation of [25], notably for multi-indices
L � a1 � � � a‘.
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�Snonminimal ¼
X
A

�
1

4
�A

2

Z
dsAEA

��E
A��

þ 1

6
�A

2

Z
dsABA

��B
A�� þ � � �

�
; (5)

where EA
�� � ½u�u�C�����A,BA

�� � ½u�u�C

�����A, with

C

���� � 1

2 �����C
��

�� being the dual of the Weyl tensor

C, and u� ¼ dz�=ds (u2 ¼ �c20) being the four-velocity

along the considered worldline. As explained in
Appendix A of Ref. [24], one can, modulo some suitable
field redefinitions that do not affect the leading result,
indifferently use the Weyl tensor C���� or the Riemann

tensor R���� in evaluating the E�� and B�� entering

Eq. (5).
The effective-action terms (4) and (5) can be used to

compute the various observable effects linked to the rela-
tivistic tidal coefficients �‘ and �‘.

3 In particular, they
imply both (i) additional terms in the dynamics of the
considered binary system, and (ii) additional terms in the
gravitational radiation emitted by the considered binary
system. Both types of additional terms can, in principle, be
evaluated with any needed relativistic accuracy from
Eq. (4), i.e. computed either in a post-Minkowskian (PM)
expansion in powers of G=c20, or (after a further reexpan-

sion in powers of 1=c0), in a post-Newtonian (PN) expan-
sion in powers of 1=c20. Let us remark in passing that the

PM expansion can be conveniently expressed in terms of
Feynman-like diagrams, as was explicitly discussed (for
tensor-scalar gravity) at the 2PN level in [22].

Here we shall use the extra terms (4) and (5) as a way to
add to the description of binary black-hole systems the
effects linked to the replacement of one or two of the black
holes by a neutron star. From this point of view, we shall
conventionally consider that the tidal coefficients of a
black hole vanish: �BH

‘ ¼ 0 ¼ �BH
‘ [13,14]. However, as

emphasized in [13], more work is needed to clarify whether
this is exact, i.e. whether the description of BBH’s by an
effective action requires or not the presence of additional
couplings of the type of Eqs. (4) and (5), as counterterms to
absorb dimensional regularization poles / ðD� 4Þ�1

(such poles are indeed linked to the possible ambiguities
expected to arise at 5PN in the point-mass dynamics; see
the discussion in Sec. 5 of [18]; see also Sec. 7 of [26]). We
leave to future work a clarification of this subtle issue.

B. Leading-order (LO) tidal effects in the two body
interaction Lagrangian

Let us first consider the dynamical effects, implied by
(4) i.e. the tidal contribution to the Fokker Lagrangian
describing the dynamics of two compact bodies after hav-
ing integrated out the gravitational field, say

LðqA;vAÞ ¼ Lpoint mass þ Ltidal: (6)

Here, Lpoint massðq; vÞ denotes the (time-symmetric) inter-
action Lagrangian following from the point-mass action
(2) (say after a suitable redefinition of position variables to
eliminate higher derivatives). It is currently known at the
3PN level. The supplementary term Ltidal in Eq. (6) is of the
symbolic form (keeping only powers of G and 1=c0)

Ltidal �G2�2

�
1þ 1

c20
þGþ � � �

�

þG2�2

c20

�
1þ 1

c20
þGþ � � �

�

þG2�3

�
1þ 1

c20
þGþ � � �

�
þ � � � : (7)

Let us start by discussing the leading-order contributions
associated with each tidal coefficient�‘ or�‘. The leading
term in the contribution linked to �‘ is simply obtained
from (4) by inserting the leading-order value of GA

L, i.e.
(L � a1 � � � a‘)

GA
L ¼ ½@LUextðxÞ�A ¼ @AL

�
GMB

jzA � zBj
�
; (8)

where B � A denotes the companion of body A in the
considered binary system (A, B ¼ 1, 2), and jzA � zBj
the distance between the two bodies. In addition, @AL �
@Aa1���a‘ , with @Aa � @=@zaA, denotes the differentiation with

respect to zA that appear after taking the limit where the
field point x tends to zA on the worldline of body A. Using

@AL
1

rAB
¼ ð�Þ‘ð2‘� 1Þ!! n̂

L
AB

r‘þ1
AB

; (9)

where naAB � ðzaA � zaBÞ=rAB, rAB � jzA � zBj, and where
the hat denotes a symmetric trace-free (STF) projection,
and the fact that [see, e.g., Eq. (A25) of [27]]

n̂ L
ABn̂

L
AB ¼ n̂LABn

L
AB ¼ ‘!

ð2‘� 1Þ!! ; (10)

one easily finds that the leading Lagrangian contribution
proportional to �‘ reads

L�A
‘
¼ ð2‘� 1Þ!!

2
�A

‘

ðGMBÞ2
r2‘þ2
AB

¼ kA‘GðMBÞ2 R
2‘þ1
A

r2‘þ2
AB

: (11)

Here we have used (1) to replace G�A
‘ in terms of the

dimensionless Love number kA‘ , and of the areal radius RA

of the NS. Note that, in a BNS system, one has to add two

3More precisely, Eq. (4) describes only the effects that are
linear in tidal deformations (and which preserve parity). If one
wished to also consider nonlinear tidal effects one should aug-
ment the quadratic-only terms (5) by higher-order nonminimal
worldline couplings which are cubic, quartic, etc. . . . in C����

and its gradients. The coefficients of such terms would then
parametrize some nonlinear tidal effects, which have not been
considered in the linear treatments of Refs. [13,14].
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different contributions: L�A
‘
þ L�B

‘
. By contrast, in a

BHNS system one has only L�A
‘
if A denotes the NS.

Let us also evaluate the leading magnetic-type contribu-
tion, i.e. the term / �2 in (6). It is obtained by inserting in
(4) the Newtonian-level value of the gravito-magnetic

quadrupolar field HB=A
ab exerted by body B on body A.

This is given by Eq. (6.27a) of [28], namely,

HB=A
ab ¼ �2G@Aac

�
�bcdM

Bvd
BA

rAB

�
� 2G@Abc

�
�acdM

Bvd
BA

rAB

�
;

(12)

where vd
BA � vd

B � vd
A is the relative velocity between B

and A. A straightforward calculation then yields

L�A
2
¼ 12�A

2

ðGMBÞ2
r6AB

��
vAB

c0

�
2 �

�
nAB � vAB

c0

�
2
�
: (13)

Note that the leading quadrupolar gravito-magnetic con-
tribution (13) is smaller than the corresponding quadrupo-
lar gravito-electric contribution

L�A
2
¼ 3

2
�A

2

ðGMBÞ2
r6AB

(14)

by a factor

8
�A

2

�A
2

��
vAB

c0

�
2 �

�
nAB � vAB

c0

�
2
�
: (15)

In terms of the corresponding dimensionless Love numbers
j2 (defined in [13]) and k2, the prefactor 8�

A
2=�

A
2 is equal

to the dimensionless ratio j2=ð4k2Þ. However, it was found
in [13,14] that the magnetic Love number j2 was much
smaller than k2. Typically, for a 	 ¼ 2 �-polytrope and a
compactness cA � 0:15, one has j2 ’ �0:02, while k2 �
0:1, so that 8�2=�2 ¼ j2=ð4k2Þ ’ �0:05. In other words,
the leading gravito-magnetic interaction (13) is equivalent
(say for circular orbits) to a 1PN fractional correction
factor, 1þ �ðvAB=c0Þ2, modifying the leading gravito-
electric contribution (14), with � ¼ 8�2=�2 ¼
j2=ð4k2Þ � �0:05. As we shall discuss below, the 1PN
correction to (14), implied by (4), involves coefficients
�1PN of order unity. We will therefore, in the following,
neglect the contribution (13) which represents only a small
fractional modification to the 1PN correction to (14). On
the other hand, we shall retain some of the higher-degree
gravito-electric contributions. Indeed, though, for instance,
L�A

3
/ 1=r8AB formally corresponds to a 2PN correction to

L�A
2
/ 1=r6AB, its coefficient is much larger than that cor-

responding to an order-unity 2PN correction to Eq. (14)
(see Table I).

Summarizing: the leading-order tidal contributions to
the two body interaction Lagrangian are [from Eq. (11)]

Ltidal ¼ þG
X
‘�2

�
kA‘ ðMBÞ2 R

2‘þ1
A

r2‘þ2
AB

þ kB‘ ðMAÞ2 R
2‘þ1
B

r2‘þ2
AB

�
; (16)

where kA‘ denotes the ‘th dimensionless Love number of a

NS [11,13,14]. Note that the plus sign in Eq. (16) expresses
the fact that the tidal interactions are attractive.

C. Structure of subleading (post-Newtonian) dynamical
tidal effects

Leaving to future work [29] a detailed computation of
higher-order relativistic tidal effects, let us indicate their
general structure. Here, we shall neglect the effects which
are nonlinear in the worldline couplings�A

‘ of Eq. (4) (e.g.

effects / �A
2�

A
2 ) for two reasons. On the one hand, such

effects are numerically quite small, even for close neutron
stars (as we shall check below). On the other hand, a fully
consistent discussion of such effects requires that one
considers a more general version of nonminimal worldline
couplings, involving terms which are cubic (or more non-
linear) in the curvature tensor and its covariant derivatives.
Indeed, it is easily seen that a nonminimal coupling which
is cubic in Gab � E�� contributes to the dynamics at the

same level that a 1PN correction to the coupling quadratic
in Gabc.
In the quadratic-in-curvature approximation of Eq. (4),

the part of the tidal interaction which is proportional to �A
‘

will have the symbolic structure

S�A ��AðGMBÞ2½1þGMA þGMB

þ ðGMA þGMBÞ2 þ � � ��; (17)

where we indicate only the dependence onGMA andGMB,
leaving out all the coefficients (symbolically replaced by
1), which depend on positions and velocities. The presence
of an overall factor ðGMBÞ2 comes from the fact that
GA

‘ ðz�Þ in Eq. (4) (which denotes the regularized value

of some gradient of the curvature tensor as the field point x
tends to z�A ðsAÞ on the worldline of MA) is proportional to

GMB, so that it is vanishing whenMB ! 0, i.e. in the limit
of a one body system. [We are considering here a two body
system; in the more general case of an N body system we
would have GAðzAÞ / P

B�AGM
B.] In a diagrammatic lan-

guage (see e.g. [22]) the higher-order terms on the right-
hand side (rhs) of Eq. (17) correspond to diagrams where,
besides having the basic (quadratic in h��) vertex �A on

the A worldline being connected by two gravity propaga-
tors to two GMB sources on the B worldline, we also have
some further gravity propagators connecting one of the
worldlines either to one of the worldline vertices, or to
some intermediate field vertex. Note that the information
about the 1PN corrections to both gravito-electric (�‘) and
gravito-magnetic (�‘) multipolar interactions (of any de-
gree ‘) is contained in the work of Damour, Soffel, and Xu
[28,30,31]. We shall discuss below the effect of the sub-
leading (post-Newtonian) terms in (17) on the EOB de-
scription of the dynamics of tidally interacting binary
systems.
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III. INCORPORATING DYNAMICAL TIDAL
EFFECTS IN THE EFFECTIVE ONE BODY

FORMALISM

A. General proposal

The EOB formalism [32–34] replaces the two body
interaction Lagrangian (or Hamiltonian) by a
Hamiltonian, of a specific form, which depends only on
the relative position and momentum of the binary system,
say ðq;pÞ. For a nonspinning BBH system, it has been
shown that its dynamics, up to the 3PN level, can be
described by the following EOB Hamiltonian (in polar
coordinates, within the plane of the motion):

HEOBðr; pr
 ; p’Þ ¼ Mc20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
; (18)

where

Ĥ eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r
 þ AðrÞ

�
1þ p2

’

r2
þ z3

p4
r

r2

�s
: (19)

HereM ¼ MA þMB is the total mass, � � MAMB=ðMA þ
MBÞ2 is the symmetric mass ratio, and z3 � 2�ð4� 3�Þ. In
addition we are using rescaled dimensionless (effective)
variables, notably r ¼ rABc

2
0=GM and p’ ¼

P’c0=ðGMAMBÞ, and pr
 is canonically conjugated to a

tortoise modification of r [35].
A remarkable feature of the EOB formalism is that the

complicated, original 3PN Hamiltonian (which contains
many corrections to the basic Newtonian Hamiltonian
1
2p

2 � 1=r) can be replaced by the simple structure (18)

and (19) whose two crucial ingredients are (i) a double

square-root structure HEOB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ � � �pq
, and

(ii) the condensation of most of the nonlinear relativistic
gravitational interactions in one function of the (EOB)
radial variable: the basic radial potential AðrÞ. In addition,
the structure of the function AðrÞ is quite simple. At the
3PN level it is simply equal to

A3PNðrÞ ¼ 1� 2uþ 2�u3 þ a4�u
4; (20)

where a4 ¼ 94=3� ð41=32Þ�2, and u � 1=r ¼
GM=ðc20rABÞ. It was recently found [1] that an excellent

description of the dynamics of BBH systems is obtained by
(i) augmenting the presently computed terms in the PN
expansion (20) by additional 4PN and 5PN terms, and by
(ii) Padé resumming the corresponding 5PN Taylor expan-
sion of the A function. In other words, BBH (or point-mass)
dynamics is well described by a function of the form

A0ðrÞ ¼ P1
5½1� 2uþ 2�u3 þ a4�u

4 þ a5�u
5 þ a6�u

6�;
(21)

where Pn
m denotes an ðn;mÞ Padé approximant. It was

found in Ref. [1] that a good agreement between EOB
and numerical relativity binary black-hole waveforms is
obtained in an extended bananalike region in the ða5; a6Þ

plane approximately extending between the points
ða5; a6Þ ¼ ð0;�20Þ and ða5; a6Þ ¼ ð�36;þ520Þ. In this
work we shall select the values a5 ¼ �6:37, a6 ¼ þ50
which lie within this good region.
Our proposal for incorporating dynamical tidal effects in

the EOB formalism consists of preserving the simple gen-
eral structure (18) and (19) of the EOB Hamiltonian, but to
modify the BBH radial potential (21) [which corresponds
to the point-mass action (2)] by augmenting it by some
tidal contribution. In other words the proposal is to use
Eqs. (18) and (19) with

AðrÞ ¼ A0ðrÞ þ AtidalðrÞ: (22)

B. Incorporating LO dynamical tidal interactions

Let us show that, at the LO, one can use a tidal contri-
bution of the form

Atidal
LO ðrÞ ¼ �X

‘�2


T
‘u

2‘þ2; (23)

with some dimensionless coefficient 
T
‘ .

Indeed, if we keep only the Newtonian approximation of
the full EOB Hamiltonian (18) and (19) [using AðrÞ � 1þ
�AðrÞ with �AðrÞ ¼ �2GM=ðc20rABÞ þ � � � being 1PN small

as 1=c20 ! 0] one finds (with � � MAMB=M the reduced

mass of the system)

HEOB ’ Mc20 þ
1

2
�p2 þ 1

2
� �AðrÞ þO

�
1

c20

�
; (24)

which exhibits the role of 1
2�

�AðrÞ as being the interaction

energy. Decomposing �AðrÞ ¼ �A0ðrÞ þ AtidalðrÞ, and re-
membering that there is a sign reversal between the inter-
action energy and the interaction Lagrangian, we see that
the terms (16) can be converted in a contribution to the AðrÞ
potential of the form (23), if the coefficients 
T

‘ take the

values


T
‘ ¼ 2kA‘

MB

MA

�
RAc

2
0

GðMA þMBÞ
�
2‘þ1 þ 2kB‘

MA

MB

	
�

RBc
2
0

GðMA þMBÞ
�
2‘þ1

¼ 2
MBM

2‘
A

ðMA þMBÞ2‘þ1

kA‘
c2‘þ1
A

þ 2
MAM

2‘
B

ðMA þMBÞ2‘þ1

kB‘
c2‘þ1
B

:

(25)

In the second form, we have introduced the compactness
parameters of the stars: cA � GMA=ðRAc

2
0Þ. It is interesting

to note that the dimensionless tidal parameters that enter
the EOB dynamics are (when MA �MB) the ratios
kA‘ =c

2‘þ1
A , rather than the Love numbers kA‘ . Let us also

note that the velocity of light c0 formally appears in the
numerator of 
T

‘ . This is related to the fact that, contrary to

the coefficients of the successive powers of u that enter the
BBH EOB potential A0ðrÞ which are (roughly speaking)
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pure numbers of order unity, the coefficients 
T
‘ entering

the tidal contribution AtidalðrÞ will tend to be much larger
than unity (and to increase with ‘). For instance, we shall
typically find that 
T

2 ¼ Oð100Þ. This numerical difference
makes it consistent to add to A0ðrÞ (which is known for sure
only up to u4 terms, i.e. the 3PN level) additional terms /
u6 þ u8 þ � � � that would formally correspond to 5PNþ
7PNþ � � � contributions if their coefficients were of order
unity (at least in the parametric sense).

Finally, to illustrate the typical numerical values of the
EOB tidal parameters we give in Table I the values of 
T

2

for five paradigmatic systems, one equal-mass BNS, and
four BHNS systems of mass ratios q � MBH=MNS taking
the values q ¼ ð1; 2; 4; 10Þ. For simplicity the neutron-star
EOS is taken to be a polytrope p ¼ K�� with � ¼ 2 (here
� denotes the rest-mass density). As Table I is plotting
dimensionless quantities, the value of the polytropic con-
stant K is not important, only the compactness of the NS
matters: we have taken it to be cA ¼ 0:15. This value, for
instance, corresponds to a NS of mass 1:35M� and radius
13.3 km. Note that the main dependence on the EOS in 
T

‘

(say for the equal-mass BNS case) comes from 
T
‘ /

ð1=cAÞ2‘þ1. Therefore, if one were considering a NS of
different compactness, 
T

2 would be approximately given
by 
T

2 � 116ð0:15=cAÞ5.
One sees in Table I that the dimensionless tidal parame-

ter 
T
2 is a strongly decreasing function of the mass ratio.

This is analytically understood by looking at Eq. (25).
When the label B refers to a black hole (so that kB‘ ¼ 0),
denoting q � MBH=MNS ¼ MB=MA, we have 
T

‘ ¼ 
A
‘

where


A
‘ ¼ 2

kA‘
c2‘þ1
A

q

ð1þ qÞ2‘þ1
: (26)

Here cA denotes as above the compactness of the NS.
Therefore, as soon as the mass ratio q is significantly larger
than 1, we see that 
A

‘ contains a small factor q�2‘ that

suppresses the tidal contribution. As a consequence, GW-
observable tidal effects will be strongly suppressed in
realistic BHNS systems. Note, however, that it might be
quite useful to compare numerical relativity simulations of
artificial BHNS systems of mass ratio q� 1 to their EOB
description to probe the analytical understanding of the late
inspiral and plunge phase. In particular, we note that, as a
function of q, 
T

2 / q=ð1þ qÞ5 vanishes both when q ! 0
and q ! 1 and reaches a maximum value when q ¼
MBH=MNS ¼ 1=4. Moreover the maximum value of 
T

2 is
larger than the value of 
T

2 for a corresponding equal-mass
BNS system by a factor 46=55 ¼ 1:311. We suggest that
the numerical study of such astrophysically irrelevant
BHNS systems (withMBH=MNS � 1=4) can be quite useful
for improving our understanding of tidal interactions in
strongly interacting (near contact) regimes.

C. Parametrizing higher-order dynamical tidal
corrections

Above we discussed the LO contribution of tidal inter-
actions to the EOB radial potential AðrÞ. We also discussed
the structure of subleading (post-Newtonian) contributions
to tidal interactions, Eq. (17). Comparing the structure (17)
to the part of the EOB action linear in Atidal, which is
proportional to the product of Atidal by the reduced mass
� ¼ MAMB=ðMA þMBÞ, we see that the general structure
of the tidal contributions to the AðrÞ potential is

Atidal
�A

�MA þMB

MAMB

�A ðGMBÞ2
r‘þ2

�
1þGMA

r
þGMB

r

þ
�
GMA

r
þGMB

r

�
2 þ � � �

�
; (27)

where we invoked dimensional analysis to insert appropri-
ate powers of the (EOB) radial separation r. [Contrary to
the action (17) which also depends on velocities (and
higher-derivatives), the EOB radial potential depends
only on the radius r.]
In other words, if we separate, for each multipolar order,

the �A and �B contributions to Atidal,

Atidal ¼ X
‘�2

A�A
‘ þ X

‘�2

A�B
‘ ; (28)

we can write

A�A
‘ ¼ A

�A
‘

LO½1þ �Að‘Þ
1 uþ �Að‘Þ

2 u2 þ �Að‘Þ
3 u3 � � ��; (29)

where

A
�A

‘

LO � �
A
‘u

2‘þ2 (30)

is the part of Atidal
LO , Eq. (23), which is linear in �A

‘ , or k
A
‘ ,

i.e.


A
‘ ¼ 2kA‘

MB

MA

�
RAc

2
0

GðMA þMBÞ
�
2‘þ1

: (31)

Similarly, one will have

A�B
‘ ¼ A

�B
‘

LO½1þ �Bð‘Þ
1 uþ �Bð‘Þ

2 u2 þ �Bð‘Þ
2 u3 þ � � ��:

(32)

The coefficient �Að‘Þ
1 represents the next-to-leading order

(NLO) fractional correction to the leading-order A
�A

‘

LO (i.e. a

1PN fractional correction), while �Að‘Þ
2 represents the next-

to-next-to-leading-order (NNLO) correction (i.e. a 2PN
fractional correction), etc. These coefficients are not pure
numbers, but rather function of the two dimensionless
mass ratios

XA � MA

MA þMB

; (33)
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XB � MB

MA þMB

� 1� XA: (34)

The coefficients entering Eq. (32) are obtained from those
entering (29) by the interchange of XA and XB, i.e.

�Að‘Þ
n ðXA; XBÞ ¼ �Bð‘Þ

n ðXB; XAÞ. The symbolic structure

(27) would naively suggest that �Að‘Þ
1 is a linear combina-

tion of XA and XB and that �Að‘Þ
2 is a combination of X2

A,

XAXB, and X2
B. However, as the reformulation of (17) in

terms of an EOB potential (27) involves a contact trans-
formation that depends on the symmetric mass ratio � �
XAXB (see Ref. [32]), the mass-ratio dependence of �Að‘Þ

n

might be more complicated. Note that, by using the iden-

tity XA þ XB � 1, one can, e.g., express �Að‘Þ
n in terms of

XA only. (Then �Bð‘Þ
n will be the same function of XB as

�Að‘Þ
n of XA.) Note also that, if one wishes, one can, for each

value of ‘ factorize the total LO terms�
T
‘u

2‘þ2, and write

Atidal ¼ X
‘�2

� 
T
‘u

2‘þ2Âtidal
‘ ; (35)

where

Â tidal
‘ � 1þ ��ð‘Þ

1 uþ ��ð‘Þ
2 u2 þ � � � ; (36)

with

�� ð‘Þ
n � 
A

‘�
Að‘Þ
n þ 
B

‘�
Bð‘Þ
n


A
‘ þ 
B

‘

: (37)

Using Eqs. (4.27) and (4.29) of [30], or Eq. (3.33) of [31],
together with effective-action techniques, a recent calcu-
lation [29] gave the following result for the 1PN coefficient

of multipolar order ‘ ¼ 2, �Að2Þ
1 , namely,

�Að2Þ
1 ¼ 5

2XA: (38)

More work is needed to determine the higher-degree and/or

higher-order coefficients �Að‘Þ
n ðXA; XBÞ, and thereby the

coefficients ��ð‘Þ
n entering Eq. (37). Below, we shall focus

on the equal-mass case where the coefficients�Að‘Þ
n become

pure numbers.
Here we shall explore several possible proposals for

including higher-order PN corrections in tidal effects.
The first proposal consists of truncating Eq. (36) at 1PN
order in a straightforward Taylor way, i.e. to consider a PN
correcting factor to the EOB radial potential of the form

Â tidal
‘ ¼ 1þ ��ð‘Þ

1 u: (39)

The second proposal consists of considering a PN correct-
ing factor which has a Padé-resummed structure, i.e.

Â tidal
‘ ¼ ð1� ��ð‘Þ

1 uÞ�1: (40)

Our third proposal consists of considering a PN correcting
factor which would result from having a shift between the
EOB radial coordinate and the radial coordinate appearing

most naturally in a Newtonian-like tidal interaction ( /
1=r2‘þ2),

Â tidal
‘ ¼ ð1� ~�ð‘Þ

1 uÞ�ð2‘þ2Þ: (41)

We use here a different notation for the 1PN coefficient,

~�ð‘Þ
1 , as a reminder that, for instance, when ‘ ¼ 2, the

parametrization (41) corresponds to a 1PN coefficient in
the parametrization (39) given by

�� ð2Þ
1 ¼ 6~�ð2Þ

1 : (42)

Finally, we shall also consider an additional, fourth, pro-
posal consisting of taking a PN correction function of the
form

Â tidal
‘ ¼ 1þ ��ð‘Þ

1 uþ ��ð‘Þ
2 u2; (43)

where ��ð‘Þ
1 is analytically computed by means of Eqs. (37)

and (38); i.e., ��ð‘Þ
1 ¼ 1:25 in the equal-mass case.

IV. COMPARING EOB TO NUMERICAL
RELATIVITY RESULTS IN WAVELESS CIRCULAR

BINARIES

The aim of this section is to compare stationary quasi-
circular configurations of neutron-star binaries computed,
on the one hand, in the analytical framework outlined
above and, on the other hand, in the numerical framework
recently implemented by Uryū et al. [15] (see also [16]).
The quantity from both frameworks that we shall compare
is the binding energy Eb as a function of the orbital
frequency �. (In the following, we generally set c0 to 1,
except when it is useful to indicate the PN order.)

A. Tidally interacting BNS circular configurations in
the EOB framework

1. BNS binding energy in the EOB framework

As an application of the formalism discussed so far, we
consider in this section binaries in exactly circular orbits,
in absence of radiative effects (these will be discussed in
the following section).
As the EOB formalism is based on a Hamiltonian de-

scription of the conservative dynamics, the stable circular
orbits correspond to minima, with respect to r, of the radial
potential Hradial

EOB ðr; p’Þ � HEOBðr; pr
 ¼ 0; p’Þ. Minimiz-

ing Hradial
EOB ðr; p’Þ is equivalent to minimizing the corre-

sponding effective Hamiltonian Ĥeff , or, its square, i.e.

ðĤradial
eff Þ2ðr; p’Þ ¼ AðrÞ

�
1þ p2

’

r2

�
� AðuÞ þ p2

’BðuÞ:
(44)

Here, we have used the shorthand notation u � 1=r ¼
GM=R and BðuÞ � u2AðuÞ. Minimizing (44) with respect
to r (or, equivalently, u), for a given (scaled) total angular
momentum p’ � Jtot=GM�, yields the following equa-

tion:
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A0ðuÞ þ p2
’B

0ðuÞ ¼ 0; (45)

where the prime denotes a u derivative. This leads to the
following parametric representation of the squared angular
momentum:

j2ðuÞ ¼ � A0ðuÞ
ðu2AðuÞÞ0 ðcircular orbitsÞ; (46)

where we use the letter j to denote the value of p’ along

the sequence of circular orbits. Inserting this u-parametric
representation of j2 in Eq. (19) defines the u-parametric

representation of the effective Hamiltonian ĤeffðuÞ. We

can then obtain (at least numerically) Ĥeff as a function

of� by eliminating u between ĤeffðuÞ and the correspond-
ing u-parametric representation of the frequency obtained
by the angular Hamilton equation of motion in the circular
case

GM�ðuÞ ¼ 1

�

@HEOB

@j
¼ MAðuÞjðuÞu2

HEOBĤeff

; (47)

where Hreal denotes the real EOB Hamiltonian

HEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
: (48)

In this situation, the binding energy Eb of the system is
simply given by

Ebð�Þ ¼ HEOB �M ¼ Mf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
� 1g;

(49)

whereM denotes, as above, the total massM ¼ MA þMB

of the system, and where one must eliminate u between
Eqs. (47) and (49) to express the rhs in terms of �. Note
that the function Ebð�Þ depends also on the choice of the

following parameters: 
T
‘ , �

Að‘Þ
1 , and �Bð‘Þ

1 . Here we shall

focus on the equal-mass case, and consider the dependence
of Ebð�Þ only on ð
T

2 ; 

T
3 ; 


T
4 Þ and restrict the parametri-

zation of 1PN tidal effects to the consideration of a single
1PN tidal parameter ��1 that is taken to be the same for the
three values of ‘ that we consider. In addition, we will
incorporate 1PN corrections to tidal effects in the three
aforementioned functional forms, Eqs. (39)–(41) and con-
trast their performances.

2. BNS binding energy in the PN framework

We also want to contrast the performance of the EOB
approach (which represents a resummation of the dynam-
ics of the binary system) with the standard nonresummed
PN-based description of the binding energy of tidally
interacting BNS, as used for instance in Ref. [36,37]. The
PN-expanded binding energy is written in the form

Ebð�Þ ¼ Epoint massð�Þ þ Etidalð�Þ; (50)

where

Epoint massð�Þ ¼ ��

2
x

�
1�

�
3

4
þ 1

12
�

�
x�

�
27

8
� 19

8
�

þ 1

24
�2

�
x2 �

�
675

64
�

�
34 445

576

� 205

96
�2

�
�þ 155

96
�2 þ 35

5184
�3

�
x3
�
(51)

is the 3PN accurate post-Newtonian binding energy of two
point masses as a function of the dimensionless orbital
frequency parameter [19,38]

x ¼
�
GM�

c30

�
2=3

: (52)

The expression of the tidal contribution Etidalð�Þ can be
obtained for all values of the multipolar index ‘ by noting
the following. Any (perturbative) power-law radial contri-
bution to the interaction Hamiltonian of the form

�HðrÞ ¼ � cn
rn

(53)

is easily shown to contribute a corresponding term

�Ebð�Þ ¼ þ
�
2

3
n� 1

�
cn
rn�

; (54)

where it should be noted that the sign of the tidal contri-
bution flips between the Hamiltonian and the binding
energy expressed as a function of the orbital frequency
(r� denoting the Newtonian value of r corresponding to a
given circular orbit of frequency �). As a result, we have
the leading-order contribution to the PN-tidal contribution

Etidal
LO ð�Þ ¼ þ�

2

X
‘�2

�
2

3
ð2‘þ 2Þ � 1

�

T
‘ x

2‘þ2: (55)

We shall also explore the effect of correcting Etidal
LO by a

fractional 1PN contribution, i.e. to employ a PN-tidal
contribution of the form

EtidalðxÞ ¼ ð1þ ��0
1xÞEtidal

LO ðxÞ; (56)

where the (approximate) link with the previously defined
��1 is

�� 0
1 ¼

11

9
��1: (57)

Here the numerical coefficient 11=9 arises as a conse-
quence of the factor 2n=3� 1 in the result above (consid-
ered for n ¼ 6 and n ¼ 7).

B. BNS circular configurations in numerical relativity

1. Numerical framework of Uryū et al.

In a recent paper, Uryū et al. [15] constructed BNS
systems in quasicircular orbits by solving numerically the
full set of Einstein’s equations. The important advance of
this work with respect to previous analyses is the fact that
Einstein equations are solved for all metric components,
including the nonconformally flat part of the spatial metric.
This goes beyond the common conformally flat approxi-
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mation that is usually employed for the spatial geometry.
The conformally flat approximation introduces systematic
errors which enter the PN expansion already at the 2PN
level (see the detailed calculation in Appendix B of
Ref. [39]). Consistently with this analytical argument, it
was found in Ref. [15] that the difference between con-
formally flat and nonconformally flat calculations is so
large that it can mask the effect of tidal interactions for
close systems. See, in this respect, the location of the
conformally flat Isenberg-Wilson-Mathews (IWM)
[40,41] binding energy curves in the two upper panels of
Fig. 3 in Ref. [15]. Below we shall however emphasize that
the nonconformally flat calculations of [15] still introduce
significant systematic errors which enter the PN expansion
at the 3PN level.

Since the new nonconformally flat results of Uryū et al.
represent a definitive improvement with respect to previous
calculations, it is appealing to see to what extent these new
results agree with existing analytical descriptions. We
extracted from Ref. [15] the six models which present
the highest computational accuracy. These models were
obtained by using EOS labeled 2H, HB, 2B, SLy, FPS, and
BGN1H1. These labels refer to piecewise polytropic EOS.
Note that in the cases of SLy, FPS, and BGN1H1 the
corresponding piecewise polytropic EOS were proposed
in Ref. [42] as approximations, above the nuclear density,
to original tabulated EOS. On the other hand, Ref. [15]
uses, below the nuclear density, a simplified monopoly-
tropic EOS. In the cases of FPS and SLy, this implies that
the tidal coefficients k‘ that we have computed for this
work differ (by �20%) from the ones that we had previ-
ously computed in Ref. [13] that used the original tabulated
EOS. For example, in the case of a neutron-star model
described by the SLy EOS and having a compactness cA ¼
0:176 (which corresponds to a mass of MA ¼ 1:4M�), we
obtain a dimensionless Love number kðtabÞ2 ¼ 0:076 99
(which is consistent with the first line of Table I of
Ref. [12]) if we use the tabulated EOS, while we obtain

kðppolyÞ2 ¼ 0:091 23 if we use the piecewise polytropic EOS

used in Ref. [15]. Note that the piecewise polytropic result
is 18.5% larger than the tabulated one. Note, however, that
the original paper [42] offered the possibility to use piece-
wise polytropic representations both for the (subnuclear)
low-density EOS and for the higher density part. Using
such more complete piecewise polytropic EOS representa-
tions then yields values of the k2 Love number which are in
good agreement with the ones computed from the original
tabulated EOS [43].4 We recommend in the future to use
such more accurate piecewise polytropic representations
that also cover the low-density EOS.

Among the six EOS that we retain, three, i.e. 2H, HB,
and 2B, use two polytropic intervals, while the other three,
i.e. SLy, FPS, and BGN1H1, use four polytropic intervals.
We will thus have one dividing density,5 denoted by �0, for
2H, HB, and 2B, and three dividing densities, ð�0; �1; �2Þ,
for SLy, FPS, and BGN1H1. Here, �0 indicates the divid-
ing density between the lower density interval that approx-
imates the subnuclear density part of the EOS (the crust)
and the supernuclear density part. The values of (the base-
ten logarithm of) �0 (in g=cm3) are displayed in the
first column of Table I. For all EOS, the lower density
interval (crust) is approximated by setting ð�0; K0Þ ¼
ð1:356 92; 3:593 89	 1013Þ, where K0 (here in cgs units)
gives the pressure p in dyn=cm2. The other dividing den-
sities (for the four-parameter EOS) are fixed as �1 ¼
1014:7 g=cm3 and �2 ¼ 1015 g=cm3. The corresponding
adiabatic indices, f�1;�2;�3g, taken from [15,42] are also
given in Table I. For the implementation of the piecewise
polytropic EOS we follow the procedure explained in
Sec. III of [42] and in Sec. IID of [15].
For each selected EOS, we computed the sequence of

equilibrium models with the related Love numbers k‘ up to
‘ ¼ 4. For the compactnesses corresponding to those used
in [15] we display in Table II the kA‘ ’s together with the

values of mass and radius that we obtained from our
calculation, to check consistency with the corresponding
values of Table III of [15]. The small differences (at the
10�3) level are probably due to the fact that we use the
finite-digit value of the dividing density �0 that they
published.

2. Subtracting tidal effects from numerical relativity data

Let us start by noting two facts, that can be checked from
the analytical expressions above, about the dependence of
the binding energy on the tidal parameters 
T

‘ : (i) this

dependence is to a very good approximation linear and
(ii) the numerical effect of the 
T

2 strongly dominates over

TABLE I. Comparing and contrasting tidal properties of BNS
and BHNS systems. The NS model is obtained using a � ¼ 2
polytropic EOS (p ¼ k��) with compactness cA ¼ 0:15. We
consider one (equal-mass) binary neutron-star system and sev-
eral mixed black-hole–neutron-star binary systems with mass
ratios q ¼ MBH=MNS varying between 1 and 10.

Model q 
T
2 
T

3 
T
3

BNS 1 116.4635 373.791 8 1654.937 6

BHNS 1 58.2318 186.895 9 827.468 8

BHNS 2 15.3368 21.877 2 43.048 7

BHNS 4 2.3852 1.224 8 0.867 7

BHNS 10 0.1157 0.012 28 0.001 797

4It is also remarked by Lackey that even when using the
simplified, high-density only, piecewise polytropic EOS the
combined tidal coefficient �2 � k2R

5
A is more accurately repre-

sented than k2 itself.

5Here, following the notation of [42], we use the letter � to
denote the rest-mass (baryon) density which was denoted by �
in our previous work [13].
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that of the higher degree 
T
‘ ’s. For example, if we take the

tidal coefficients listed in Table I (which correspond to the
SLy EOS, which yields a radius �11:5 km for 1:35M�,
which is in the middle of the realistic range of NS radii), we
find that the tidal contributions to the binding energy would
reach, if they were extended to the maximum frequency
that we shall explore here, namely, GM�max ¼ 0:060, the
following values: the 
T

2 contribution to Eb=M is �3:6	
10�4, the 
T

3 contribution is smaller than the 
T
2 by a factor

0.053, and the 
T
4 is smaller than the 
T

2 one by a factor
�3:85	 10�3.

These two facts allow us to approximately subtract tidal
effects from NR data. Indeed, if we assume that the binding
energy computed with a certain equation state ðEOSÞI is
approximately given by

Ebð�; IÞ � h0ð�Þ þ ð
T
2 ÞIh2ð�Þ; (58)

we can use the NR data for two different EOS, labeled by
ðI; JÞ to compute, separately

h0ð�Þ � ð
T
2 ÞIEbðJÞ � ð
T

2 ÞJEbðIÞ
ð
T

2 ÞI � ð
T
2 ÞJ

; (59)

h2ð�Þ � EbðIÞ � EbðJÞ
ð
T

2 ÞI � ð
T
2 ÞJ

: (60)

Most importantly we see that Eq. (59) allows us to
compute from the binding energies of two BNS sequences
a third binding energy function, h0, which approximately
represents the binding energy of nontidally interacting
neutron stars, i.e. the binding energy curve of two point
masses. The result of computing the rhs of Eq. (59) for five
pairs ðI; JÞ of EOS having sufficiently different 
T

2 ’s is
displayed in the top-left panel of Fig. 1. Two important
lessons can be drawn from this figure: (i) The subtraction
procedure defined by Eq. (59) is remarkably able to define
‘‘tidal-free’’ energy curves that are essentially on top of
each other; this confirms that our procedure succeeds in
subtracting out the EOS dependence of the binding energy
curves. (ii) However, the resulting universal h0 curve still
differs significantly both from the EOB point-mass curve

(black solid lines) and the PN point-mass one (black
dashed lines). This second issue will be addressed in the
next section.
We shall not display here the result of computing the h2

part of the binding energy curve, Eq. (60), because it is
more sensitive than h0 both to numerical noise (in the
original NR data) and to the presence of higher-order tidal
PN contributions. Below, we shall address the issue of
determining the tidal contributions to Eb with a different
approach.

3. Detecting and subtracting systematic errors in NR data

Here we address the issue (ii) mentioned in the previous
section. Indeed, our subtraction procedure has given us
access to the ‘‘universal,’’ EOS-independent part of the
energy curve h0. However, we have seen that h0 still
significantly differs from the analytical point-mass models.
We think that the origin of this discrepancy is the presence
of remaining systematic errors in the current nonconfor-
mally flat approach to BNS systems. Though the noncon-
formally flat integration scheme of Uryū et al. is an
improvement over previous work, it is however still only
an approximation to the exact solution describing two BNS
interacting in a (conservative) time-symmetric manner
(half-retarded–half-advanced). Here we shall only use the
data obtained by Ref. [15] called the waveless approxima-
tion. In their approach, waveless means setting to zero the
time derivative of the conformal spatial metric (in a certain
gauge): @t ~	ab ¼ 0. As the NR gauge is rather similar to the
Arnowitt-Deser-Misner transverse-traceless (ADM-TT)
gauge used in the 3PN calculation of the interaction
Hamiltonian of a two point-mass system in Refs. [19,45],
we can see, by looking at the analytical expression of the
3PN-accurate ADMHamiltonian, that neglecting the terms
containing �TT

ab � @t ~	ab means neglecting some of the

terms that contribute at the 3PN level. [The simplest of
these terms is the kinetic field energy term proportional toR
d3xð�TT

ab Þ2.] This analytical argument suggests that the

current NR data miss some 3PN contributions, i.e. they
miss some terms proportional to x4 in the binding energy
curve. We are therefore entitled to assume that the discrep-

TABLE II. Properties of NS models considered discussed in the numerical analysis of Ref. [15]. The EOS are represented as
piecewise-polytropic functions (on four intervals) [42,44]. For the models considered, the present table is compatible with Table III of
[15]. From left to right, the columns report the dividing density (in g cm�3) between the low-density part (the crust) and the higher
density part of the EOS; the four adiabatic indices for each polytropic interval, f�0;�1;�2;�3g; the compactness cA ¼ GMA=ðc20RAÞ;
the NS mass MA (in M�) and the NS radius RA (in km); and the Love numbers kA2 , k

A
3 , and kA4 .

Model logð�0Þ �0 �1 �2 �3 c MA RA kA2 kA3 kA4

2H 13.847 1.356 92 3.0 3.0 3.0 0.130 97 1.3507 15.229 0.1342 0.0407 0.0168

HB 14.151 1.356 92 3.0 3.0 3.0 0.171 81 1.3507 11.608 0.0946 0.0260 0.0097

2B 14.334 1.356 92 3.0 3.0 3.0 0.205 00 1.3505 9.728 0.0686 0.0174 0.0059

SLy 14.165 1.356 92 3.005 2.988 2.851 0.173 85 1.3499 11.466 0.0928 0.0254 0.0095

FPS 14.220 1.356 92 2.985 2.863 2.600 0.186 31 1.3511 10.709 0.0805 0.0214 0.0077

BGN1H1 14.110 1.356 92 3.258 1.472 2.464 0.157 92 1.3490 12.614 0.1059 0.0307 0.0120
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ancy displayed in the top-left panel of Fig. 1 between the
NR h0 and the point-mass analytical curves is, to leading
order, given by an expression of the type �Ebð�Þ ¼ �x4

with an EOS-independent numerical coefficient � that we
expect to be of order unity. Indeed, the lower-left panel of
Fig. 1 exhibits the fact that, by subtracting �Ebð�Þ ¼ �x4,
with � ¼ 0:8 (see below) from all the individual h0 curves,
we can reach a good visual agreement with both analytical
point-mass models. (Note that the approximate best-fit
value of � is mainly determined by the discrepancy nu-
merical relativity/analytical relativity on the lower-
frequency part of the panel, say for M�< 0:035 where
the contribution to tidal effects is relatively negligible.)

The remaining differences in this right panel are com-
patible with the known level of numerical errors in the NR
data (see Fig. 4 of Ref. [15]). Indeed [15] has used the virial
theorem to gauge some of the numerical errors in their
calculation by comparing two measures of the total mass of
the system (Komar and ADM). The resulting (absolute
value) differences in binding energy, say �vEb, are in
general at the level 10�4M. We used these differences to
estimate formal error bars on the various energy curves that
we use in this work. More precisely, in Eb energy curves
we add (starting with Fig. 1) error bars of one-sided
amplitude � 1

2�
vEb, so that the length of the two-sided

error bars corresponds to the virial error. As Fig. 1 concerns

FIG. 1 (color online). Comparison between various �-corrected h0’s [defined in Eq. (59)] and the EOB (resummed, solid lined) and
3PN (nonresummed, dashed lined) point-mass representations of the binding energy. The top-left panel illustrates (i) the universality of
the tidally corrected energy curve h0ðM�Þ and (ii) the fact that it is in significant disagreement with all the analytical predictions,
notably on the low-frequency side. The value � ¼ 0:8 (lower-left panel) for the correction �Ebð�Þ ¼ �x4 lies at the center of the
acceptable interval 0:4  �  1:2 illustrated in the other panels.
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a quantity, h0, defined as a linear combination of NR data
[see Eq. (59)], we conservatively estimated error bars on
the h0 curve corresponding to the pair 2B-FPS by linearly
combining in absolute values the corresponding individual
errors. We use these error bars to gauge the quality of the
other h0 curves (which do not extend as far in the high
frequency range). This conservative estimate of the total
error seems appropriate to the present situation where the
errors are not random, but rather systematic. (Note, how-
ever, that these error bars seem to be too conservative in the
lower-frequency part of the panels because they exceed the
distance between the h0 curves and the point-mass mod-
els.) Using these error bars we can now roughly estimate a
range of acceptable values of the NR correcting parameter
�. As illustrated in the four panels of Fig. 1, the range
0:4  �  1:2 is such that the �-corrected NR-deduced h0
curves are within one formal sigma from both point-mass
analytical models. We shall use this range below to esti-
mate a corresponding range of probable values of the 1PN

tidal parameter ��ð2Þ
1 .

4. Least-square analysis: constraining next-to-leading-
order (1PN) tidal effects from numerical relativity data

In this section we shall firm up the previous analysis and
make it more quantitative by using a least-square proce-
dure. For each EOS, labeled by index I, we have 20 NR
data points, Ref. [15], EUry�u, where the index nI varies from
1 to 20. We retain in our analysis six EOS; I ¼
ð2H;HB; 2B;FPS; SLy;BGN1H1Þ. Let us then define the
following formal �2 function, measuring the (squared)
distance between NR and EOB:

�2ð ��1; �Þ ¼
X
I;n

��
EUry�u
b ðxn; IÞ

M
� �x4n

�

� EEOB
b ðxn; ��1; IÞ

M

�
2
: (61)

Here, x is the frequency parameter defined in Eq. (52) and
the index n runs (for each EOS labeled I) over the sample
of numerical data from 1 to 20, so that �2 contains 120
terms in all. We are interested in studying the dependence
of �2 over the two variables ð�; ��1Þ. Here � denotes the
coefficient of a 3PN subtraction to NR data of the type that
we discussed in the previous section (as motivated by the
neglect of some 3PN terms in the waveless approximation).
As explained above, we shall restrict the variation of � to
the range 0:4  �  1:2. For simplicity, we shall actually
sample this interval through the three values � ¼
ð0:4; 0:8; 1:2Þ. On the other hand, the coefficient ��1 pa-
rametrizes a possible NLO 1PN correction to the tidal
effects. We will use the three different descriptions of
NLO tidal effects delineated in Eqs. (39)–(41).

We wish to use the least-square method, i.e., minimizing
the EOB-NR ‘‘distance’’ function �2ð ��1; �Þ, to constrain
the values of ð ��1; �Þ. However, we find that �2ð ��1; �Þ

remains close (on the scale of the NR error bars) to its
global minimum in a valley which extends over a signifi-
cant region of the ð ��1; �Þ plane. This means that, given the
present error level in numerical data, we cannot mean-
ingfully and simultaneously select preferred values for
ð ��1; �Þ. As a substitute, we shall exhibit the sections of
the �2 valley that correspond to the three values of �
selected visually in Fig. 1. In other words, we now fix �
(to one of its three values) in Eq. (61) and consider the
dependence of �2 on ��1. The resulting one-dimensional
plots are exhibited in Fig. 2.
Each panel of Fig. 2 corresponds to a different modeli-

zation of NLO tidal effects: Taylor [upper panel, Eq. (39)],
Padé (middle panel), Eq. (40) and radial shift (lower
panel), Eq. (41). [In the radial-shift case, one uses as the

horizontal axis ��1 the quantity ��ð2Þ
1 defined by Eq. (42).] In

addition, each panel contains three curves corresponding to
the three above-selected values of �: � ¼ 0:4 (dash-dotted
line, rightmost curve), � ¼ 0:8 (solid line, middle curve),
and � ¼ 1:2 (dashed line, leftmost curve).
Let us start by focusing on the (solid) curves correspond-

ing to the central value of �, � ¼ 0:8. We see that the
preferred values of ��1 that they select (minimum of the
curves) are ��1 � 7 for the Taylor model, ��1 � 3:5 for the
Padé model, and ��1 � 4:5 for the radial-shift model. This
shows that higher-order PN terms (differently included in
the different models) have a significant effect on the deter-
mination of ��1. Note also that when � ¼ 1:2 all the models
tend to favor a lower value: ��1 � 1. The value of �2 at
��1 ¼ 0 and � ¼ 1:2 is �2ð0; 1:2Þ ¼ 5:665	 10�7. This
formally corresponds to an average (squared) error level
on the individual NR-EOB energy differences summed in

�2 equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð0; 1:2Þ=120p ¼ 0:687	 10�4. This level is

comparable to the virial error on each individual NR data
point �vEb=M� 10�4. It is therefore reasonable to use
this level to select a range of values of ��1. Combining this
range with the range of values of �’s means that, at this
stage, the range of values of ��1 that is compatible with the
NR data is obtained by taking the level surface �2ð ��1; �Þ ¼
�2ð0; 1:2Þ as the admissible bottom of the valley in the
ð ��1; �Þ plane. This leads to the following admissible
ranges: 0 & ��1 & 15:7 for the Taylor model; 0 & ��1 &
4:8 for the Padé model; 0 & ��1 & 7:5 for the radial-shift
model. It is clear that at this stage the fact that (as we have
argued above) the NR data are polluted by some systematic
errors (notably linked to unaccounted 3PN effects) pre-
vents us from giving very significant constraints on the
value of ��1. Note, in particular, that the value ��1 ¼ 5=4 ¼
1:25 which follows (in the equal-mass case) from Eq. (38)
is compatible with the present NR data (if we allow � ¼
1:2). In this respect, it is interesting to note that if we
consider a model of the form Eq. (43) introduced above
as a fourth possibility

Â tidal ¼ 1þ ��1uþ ��2u
2; (62)
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with ��1 ¼ 1:25 and compute the corresponding �2 for the
central value � ¼ 0:8, we find that �2ð ��2; 0:8Þ reaches a
minimum around ��2 � 40. In addition the value of the
minimum of the �2 is 3:20	 10�7 which is slightly better
than the performance of the 1PN Taylor model in the upper
panel of Fig. 2. This shows again that higher-PN tidal
effects can play an important role and that the minimima
exhibited (for the central value � ¼ 0:8) in the three panels
of Fig. 2 should be viewed as effective values of ��1. We
note in this respect that a situation where higher-PN cor-
rections dominate over the 1PN one is not at all excep-
tional. For instance, the 1PN contribution to the EOB radial
potential AðrÞ vanishes; its 2PN contribution has a rather
small coefficient, 2�, while the numerical coefficient of the
3PN contribution �a4 is quite large and significantly modi-
fies the conclusions that one might draw from the first two
PN contributions.
Further aspects of the comparison between numerical

data and analytical models are illustrated in Figs. 3 and 4.
Figure 3 focuses on the 2B EOS model and contrasts

(resummed) EOB (top panel) and (nonresummed) PN
(bottom panel) analytical representations of the binding
energy. In both cases, the NR binding energy is corrected
by the same amount, namely, we assume that � takes its
central value � ¼ 0:8. We see from this figure that the
effect of the � correction is comparable (in absolute value)
to that of the added 1PN tidal contribution. Note that the
value of the ��0

1 parameter needed in the PN-expanded case

(bottom panel) is significantly larger than the one needed in
the EOB case (this was found to be true for all ways of
modeling 1PN tidal contributions).
The �2 minima exhibited in Fig. 2 are at a similar level,

�2
in � 5	 10�7 (for all �’s in the range we considered),

which corresponds to an average error level
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
min=120

q
�

0:65	 10�4. The fact that this average error level is com-
parable to the virial error indicates that, all along the
extended valley in the ð ��1; �Þ plane, shown in Fig. 2, there
is an excellent agreement between the EOB predictions
and the numerical data for all the EOS. (In view of Fig. 3
the same would hold for the NR/PN agreement, at the cost,
however, of using, on average, significantly larger values of
��1.) As a particular illustration of the excellent possible
NR/EOB agreement we exhibit in Fig. 4 the particular case
� ¼ 1:2 and ��1 ¼ 1:25. By contrast to the central case
� ¼ 0:8 illustrated (for the 2B EOS) in Fig. 3 in which the
(downward) � correction was comparable to the (upward)
effect of ��1, the more extreme � ¼ 1:2 correction is here
doing most of the work in bringing the NR data points
down to the LO EOB level (which corresponds to the
dashed line in the upper panel of Fig. 3.
Summarizing: the recent numerical data of Uryū et al.

exhibit the influence of tidal interactions in close BNS
systems. However, the presence of systematic errors in
the data (due to an imperfect satisfaction of the helical-
Killing-vector condition) partially masks the tidal interac-

´

FIG. 2 (color online). Sections of the function �2ð ��1; �Þ for
three values of the correction parameter �. The figure displays
the corresponding ranges of allowed values of the 1PN tidal
parameter ��1. Note that, for all models, the minima are rather
shallow.
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tions and does not allow for a clean determination of the
coefficients parametrizing tidal effects (and notably their
1PN contributions). The results of Fig. 1 suggest however
that the NR data must be corrected by a term ��x4 with
� � 0:8. Then, this value of � suggests the presence of
significant higher-PN corrections that amplify the LO tidal
effects.

We recommend that new nonconformally flat simula-
tions be performed for several values of the radius r0 at
which the helical-Killing-vector condition is cut off. By
studying the dependence of the results on r0, it might be
possible to extrapolate the results to an infinite value of r0

(as used in analytical calculations), and thereby eliminate
the 3PN-level systematic error �x4.

V. INCORPORATING RADIATIVE TIDAL
EFFECTS IN THE EOB FORMALISM

Besides the specific Hamiltonian (18) and (19), the other
key ingredients of the EOB formalism are (i) a specific,
factorized representation of the multipolar waveforms h‘m,
and (ii) a resummed estimate of the radiation reaction force
F , which must be added to the conservative Hamiltonian
dynamics (18) and (19). In the most recent, and seemingly
most accurate, version of the EOB formalism the radiation
reaction is analytically computed in terms of the multipolar
waveforms. Therefore, it will be enough to estimate here
the tidal correction to the multipolar waveforms h‘m.
Following the factorization philosophy of
Refs. [13,46,47] we shall look for tidal-correction factors
ftidal‘m ¼ 1þOð�;�Þ, such that the EOB waveform would

read

h‘m ¼ ftidal‘m h0‘m: (63)

Here h0‘m is the factorized BBH EOB waveform, intro-

duced in [46], and augmented by two next-to-quasi-
circular parameters ða1; a2Þ in Ref. [1]. [Note, however,
that, in view of the smallness of the tidal effects on the
waveform, ftidal‘m � 1 � 1, it would be equivalent to use [as
done for the AðrÞ potential] an additive ansatz: h‘m ¼
h0‘m þ htidal‘m .]

In principle, one can use the effective action (4) and (5)
to compute the tidal contributions to the waveform with
any required relativistic accuracy (post-Minkowskian and/
or post-Newtonian).
Here, we shall focus on the leading PN-order tidal

correction to the leading PN waveform, i.e. the ‘ ¼ 2,m ¼
2 partial wave h22. This will provide the leading tidal
correction to the radiation reaction (which is predomi-
nantly given by a contribution / j2�h22j2).
In that case, a shortcut for computing the tidal correction

ftidal22 consists of noting that the quadrupolar gravito-
electric contribution in the action (4) corresponds to adding
to the energy-momentum tensor of point masses an extra

contribution �T��ðxÞ � 2g�1=2��Snonminimal=�g��,

which describes the tidally induced quadrupole moment
in each body A. At the leading Newtonian order this means
that the quadrupole mass momentMij of the system will be

Mij ¼
X
A

STFij½MAz
i
Az

j
A þ�A

2G
A
ij�; (64)

where STF denotes a symmetric trace-free projection, and
where the second term is the tidally induced quadrupole
moment. Replacing the Newtonian value (8) of GA

ij [com-

puted using Eq. (9)] yields

FIG. 3 (color online). Explicit comparison (for the 2B EOS)
between various analytical representations of the binary binding
energy and (corrected) numerical relativity data. The correction
parameter is taken at its central value � ¼ 0:8. The upper panel
refers to EOB (resummed) models, and the lower panel to PN
(nonresummed) models. For EOBNLO effects, we use their Padé
representation, Eq. (40) with ��1 ¼ 3:5. For the 3PNNLO model,
we use ��0

1 ¼ 30.
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FIG. 4 (color online). Comparison between EOBNLO predictions and NR binding energies for the six EOS of Table III. Here one uses
the maximum acceptable value of � (see lower-right panel of Fig. 1). The EOB description uses the analytically suggested value
��1 ¼ 1:25 of the 1PN parameter and the linear NLO tidal model, Eq. (39). The 3PN point-mass curve is added to guide the eye.
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Mij ¼
X
A

STFij

�
MAz

i
Az

j
A þ 3�A

2GMB

ziABz
j
AB

r5AB

�

¼
�
�þX

A

3�A
2

GMB

r5AB

�
r2ABn̂

ij
AB; (65)

where � � MAMB=ðMA þMBÞ is the reduced mass of the
binary system, and where we reduced the first expression to
the center-of-mass frame. Equation (65) agrees with
Eq. (7) of [10] (in the limit where one neglects the excita-
tion of the internal radial modes: xn ! 0). In addition to
the explicit tidal modification / �A

2 that appears in the first
factor of Eq. (65), there is an implicit tidal effect coming
from the fact that the EOB waveform is conventionally
expressed in terms of the (instantaneous) orbital frequency
� of the binary system.Wemust then eliminate the relative
distance rAB in Eq. (65) in favor of�. This is done by using
the adiabatic (quasicircular) Kepler law. The latter is modi-
fied by tidal forces:

�2ziAB ¼ �d2ziAB
dt2

¼ � 1

�

@L

@ziAB
¼ GM

r3AB
ziAB � 1

�

@Ltidal

@ziAB
:

(66)

Differentiating the leading (‘ ¼ 2) tidal Lagrangian (16)
, and keeping only the leading (‘ ¼ 2) term yields a
modified Kepler law of the form

�2r3AB ¼ GM

�
1þ 9

MB

MA

G�A
2

r5AB
þ 9

MA

MB

G�B
2

r5AB

�
: (67)

Using (67) to solve rAB in terms of �, and replacing the
(tidally corrected) answer in (65) finally leads to a quad-
rupole moment of the form

Mij ¼ ftidal22 �r2ABn̂
ij
AB (68)

with a tidal-correction factor

ftidal22 ¼ 1þX
A

3
G�A

2

r5AB

�
MB

�
þ 2

MB

MA

�

¼ 1þX
A

3
G�A

2

r5AB

�
1þ 3

MB

MA

�

¼ 1þX
A

2kA2

�
RA

rAB

�
5
�
1þ 3

MB

MA

�
: (69)

The factor ftidal22 is the ‘ ¼ 2, m ¼ 2 tidal-correction
factor which was introduced in Eq. (63). It remains, how-
ever, to eliminate rAB in terms of �, or, as used in the
waveform of Ref. [46], in terms of the EOB variable v� �
r�� introduced in [48]: at the leading order it is enough to
use GM=c20rAB ¼ v2

�ð1þOð1=c20ÞÞ. This yields

ftidal22 ¼ 1þ
�X

A

2kA2

�
RAc

2
0

GðMA þMBÞ
�
5
�
1þ 3

MB

MA

��
v10
� :

(70)

The result (70) agrees (after squaring it) with Eq. (8c) of
Ref. [10] (in the limit xn ! 0).
Summarizing: we propose to incorporate radiative tidal

effects in the EOB formalism by inserting in the dominant
‘ ¼ 2, m ¼ 2 waveform, a factor of the form

ftidal22 ¼ 1þ
�X

A

2kA2

�
RAc

2
0

GðMA þMBÞ
�
5
�
1þ 3

MB

MA

��

	 v10
� ð1þ �1v

2
�Þ; (71)

where we included a possible 1PN correction to radiative
tidal effects. One then computes a tidal-corrected radiation
reaction by using this corrected waveform in the definition
of F given in [13,46]. In principle the (mass-ratio depen-
dent) coefficient �1 can be computed analytically. It can
also be calibrated by comparing NR data of inspiralling
BNS systems to the EOB predictions.

VI. EOB PREDICTIONS FOR THE MOTION AND
RADIATION OF INSPIRALLING COMPACT

BINARIES

Having defined a specific EOB way of incorporating
tidal effects in the motion and radiation of inspiralling
compact binaries (BNS or BHNS) let us study the predic-
tions made by the resulting tidally extended EOB
formalism.

A. ‘‘Contact’’: A criterion for ending the EOB de-
scription

The EOB description of tidally interacting systems that
we have introduced above assumes that the two considered
objects (NS or BH) behave essentially as point masses.
However, neutron stars are extended, and they are increas-
ingly tidally distorted as they get near their companion.
(This is also true for black holes, but their tidal distortion is
much smaller; see below.) The issue of determining the
moment when a neutron star is either too distorted to be
treated as a point mass or even starts undergoing tidal
disruption is a subtle one and is beyond the scope of this
work. In the case of BHNS systems Ref. [49] has attempted
to define an analytic indicator of the onset of tidal disrup-
tion [see their Eq. (30)] and has tried to delineate the
domain of values of the mass ratio and the compactness
for which tidal disruption was reached before encountering
the last stable (circular) orbit (LSO).6 Recent numerical
works [50–52] have made considerable progress in simu-
lating the dynamics of the merger of BHNS systems.
However, it is difficult to extract from the numerical results
a precise criterion for the eventual onset of tidal descrip-
tion. Leaving to future work a detailed comparison be-

6We note in passing that the fitting formula [their Eq. (33)]
proposed in [49] for the orbital frequency at the innermost stable
circular orbit is quantitatively quite different from the results
obtained in the next section from our EOB approach.
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tween the EOB description and numerical simulations of
merging BNS and BHNS systems, we shall content our-
selves here with a first cut at the problem of defining,
within the EOB formalism, a criterion for ending the
point-mass description phase of a BNS or BHNS system.

To orient our discussion, let us start by considering the
dimensionless parameter controlling the tidal deformation
of the NS labeled A by its companion B

�A ¼ MB

R3

R3
A

MA

: (72)

We recall that it was found in [13] that the fractional
deformation of the NS A is given by the product hA2�A,
where the shape Love number hA2 is of order 0.8 for a
typical NS compactness. Note, however, that the value of
hA2 computed in [13] corresponds to the situation where the
external mass distorting the NS labeled A is located far
away. In the case of the gravitational polarization of black
holes by an external test mass, it was found in [53] (see
Sec. 5 there) that the large separation shape Love number
h2 gets amplified by a separation-dependent factor t2ðbÞ
which increases as the separation decreases. The precise
value of this amplification effect is not known in the case
we are interested in, i.e., that of two comparable mass
objects. We shall try to approximately take it into account
by taking an effective shape Love number heff2 ¼ 1 (instead
of 0.8).

The deformation parameter �A increases as the radial
separation R between the two considered objects A and B
decreases. The smallest possible value of R is given, in
zeroth approximation, by the condition R ¼ RA þ RB, for-
mally expressing that the two objects enter into contact
(when B is a black hole we use simply7 RB ¼ 2GMB=c

2
0).

Using this zeroth-order contact condition one can express
the maximum value of �A in terms of the two compact-
nesses cA ¼ GMA=RA and cB ¼ GMB=RB as

�contact0A ¼ cB
cA

R2
ARB

ðRA þ RBÞ3
: (73)

For a symmetric, equal-mass BNS system, we see that,

upon contact, �contact0A ¼ �contact0B ¼ 1=8. Then, using an

effective shape Love number heff2 ¼ 1, we expect that, in
a symmetric (or near symmetric) BNS system each NS is
only deformed by about 12.5% at the moment of formal
contact.

In the case of an asymmetric BNS system one can,
however, obtain larger deformations. If, for instance, the

label A denotes the NS having a larger radius, we will have
RA > RB, and, correlatively, MA <MB and cA < cB (be-
cause of the properties of the mass-radius relation in neu-
tron stars). Then, one finds that the rhs of Eq. (73) is larger
than its symmetric value 1=8. For instance, if we consider
for simplicity as EOS for the neutron stars a � ¼ 2 poly-
trope, one finds that, for the extreme case where the mass
ratio MA=MB ¼ 1=1:6 one has RA=RB ’ 1:28, and

8�contact0A ’ 2:27. In other words, using as above heff2 ¼ 1,
the smaller-mass NS is now found to be deformed by about
28% at the moment of formal contact. This large value
corresponds, however, to a NS having an astrophysically
unrealistic small compactness cA ¼ 0:0925.
One can reach even larger deformations in the case of

BHNS systems. If A labels the NS and B the BH, let us start
by noticing that the dimensionless function R2

ARB=ðRA þ
RBÞ3 (which depends only on the ratio RA=RB) reaches a
maximum value of 22=33 ¼ 4=27 when RA ¼ 2RB. As a
consequence, we have the result

�
contact0
A;max ¼ 4

27

cB
cA

: (74)

In the present case, B denotes a BH (with cB ¼ 1
2 ) so that

�
contact0
A;max ¼ 2

27cA
¼ 0:074 074

cA
: (75)

Since NS compactnesses are expected to be larger than
about 0.13, we find that, upon multiplication by heff2 ¼ 1,
the NS in a BHNS system can be expected to be deformed
by up to 57% at the moment of formal contact with its BH
companion. Note that the reasoning above shows that such
large deformations are only attained when RA ¼ 2RB, i.e.
when the mass ratio is equal to

MB

MA

¼ cB
cA

RB

RA

¼ 1

2

cB
cA

¼ 1

4cA
: (76)

For typical NS compactnesses cA � 0:15, such a mass ratio
MB=MA � 1:67 would correspond to a BH of a small mass
(MB � 2:3M� if MA � 1:4M�).
This preliminary analysis indicates that one can obtain

very large distortions (probably quickly followed by tidal
disruption) of the NS in the case of BHNS systems with a
small mass ratio MB=MA � 2. This analytic finding is
consistent with the results of recent numerical simulations
[51,52]
In view of the large level of distortion that can occur in

such systems, one can try to refine the zeroth-
approximation definition of formal contact that we used

above (to estimate �
contact0
A ) by defining contact by the

improved condition8

R ¼ ð1þ hA2�AðRÞÞRA þ ð1þ hB2 �BðRÞÞRB; (77)

7It is interesting to notice that in the case of an equal-mass
BBH system the zeroth-approximation criterion for contact, R ¼
RA þ RB ¼ 2GMA þ 2GMB ¼ 2GM, is in good agreement with
the more sophisticated EOB definition of merger which consists
of locating the maximum of the orbital frequency. See in this
respect the penultimate row in Table III, which indicates the
value REOB merger ¼ 1:955GM.

8We thank an anonymous referee for suggesting such an
improvement.
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where �AðRÞ is the function of R defined in Eq. (72). Note
that this condition defines Rcontact only implicitly, as the rhs
depends on R. In the case of NS’s we shall take as shape
Love numbers, hA2 or hB2 , the effective value h

NSeff
2 ¼ 1. In

the case where one of the two objects is a BH (say B), we
shall take the (large distance) value hBH2 ¼ 1

4 derived in

[53].
In Table III we list various quantities referring to the

state of binary systems at the moment of contact as defined
by the improved condition (77) (with hNS2 ¼ 1 and hBH2 ¼
1=4). Here, we used as EOS for describing the NS interior a
� ¼ 2 rest-mass polytrope. In addition, we use here an
EOB description which includes NLO effects in the tidal
interaction energy. More precisely, we selected the 1PNþ
2PN Taylor correction factor, Eq. (43), with ��ð‘Þ

1 ¼ 1:25

and ��ð‘Þ
2 ¼ 40. [Rigorously speaking the value ��ð‘Þ

1 ¼ 1:25
follows from Eq. (38) only when ‘ ¼ 2 and when consid-

ering an equal-mass system, and the value ��ð‘Þ
1 ¼ 40 was

obtained by fitting equal-mass data. We use them anyway
here, even for unequal-mass systems, as a semiquantitative
example of the type of amplification factor implied by
higher-PN tidal effects.]

We selected a small sample of representative systems:
two BNS systems (with mass ratios 1 and 1.384), and three
BHNS systems. We also included (for comparison pur-
poses) two paradigmatic BBH systems. The two BNS
systems considered here have been recently numerically
simulated by Rezzolla et al. [54]. On the other hand, the
three BHNS systems of Table III have been chosen among
the ones recently simulated by Shibata et al. [52]. More
precisely they correspond to the cases (q ¼ 2, cA ¼
0:145), (q ¼ 2, cA ¼ 0:160), and (q ¼ 3, c ¼ 0:145).
Among these systems, the simulations of [52] suggest
that it is only for the first one, q ¼ 2, cA ¼ 0:145, that
the NS is disrupted in a way which creates, for a while, a

significant torus (M
baryon
torus * 0:01M

baryon
NS ) around the BH

(see Figs. 4 and 7 in Ref. [52]).
It is interesting to note that our rather coarse description

of the end of the inspiral phase is in rather good qualitative
(and semiquantitative) agreement with the recent numeri-
cal relativity results. Indeed, in the case of BNS systems,
the level of deformation of the largest (and lightest) NS
(always labeled A) is in qualitative agreement with the
recent results of [54] (see Figs. 1 and 2 therein, which
correspond to our two selected cases). In the case of BHNS
systems, we also seem to have good qualitative agreement
with the results of [52]. In particular, note that in the case of
q ¼ 2, c ¼ 0:145 the first panel of Fig. 4 of [52] suggests
that the contact happens when the (coordinate) separation
is Rcontact � 4M, with a quite large deformation. This is in
semiquantitative agreement with our EOB description
which predicts Rcontact ¼ 3:7M, and �contactA ¼ 0:47. In the
other BHNS cases, Table III predicts that contact occurs for
a smaller radial separation, which is in qualitative agree-
ment with, notably, Fig. 6 of [52]. It is physically clear that
the value of Rcontact=ðGMÞ is crucial in determining the size
of the formed torus. Only a relatively large Rcontact=ðGMÞ,
say large enough for a fraction of the mass of NS to be
outside the LSO, is a priori expected to form a torus.
Table III also contains information about the location of
the LSO that will be discussed below.
Note also that (twice) the orbital frequency at contact is

approximately given (if one uses the zeroth-approximation
Rcontact � RA þ RB and Kepler’s law) by the simple ana-
lytical formula

2GM�contact � 2

�
XA

cA
þ XB

cB

��3=2
: (78)

The main conclusion of this section is that the EOB formal-
ism can consistently define, within itself, when one should

TABLE III. EOB predictions for the characteristics of tidally interacting and near-merging binary systems (either BNS, BHNS, or
BBH). These characteristics concern both the state of the systems at contact [in the sense of Eq. (77)] and at the last stable orbit. The

EOB description is the NLO one of Eq. (43) with ��ð‘Þ
1 ¼ 1:25 and ��ð‘Þ

2 ¼ 40. The NS models are built using a � ¼ 2 rest-mass

polytropic EOS. From left to right, the columns report the type of binary, the name of the model (we use the same nomenclature as
Refs. [54] for BNS and [52] for BHNS), the mass ratio q ¼ MB=MA, the compactnesses cA and cB of the two objects, the values at
contact of the tidal deformation parameters �A and �B, Eq. (72), the radial distance Rcontact=GM (where M ¼ MA þMB) at contact,
twice the corresponding contact orbital frequency 2GM�contact, the adiabatic LSO radius rLSO=GM, and twice the corresponding
adiabatic orbital frequency. In the case of BBH systems the contact properties refer to the EOB-determined moment of merger, i.e., the
moment when the orbital frequency reaches a maximum.

Model Name q cA cB �contactA �contactB Rcontact=GM 2GM�contact RLSO=GM 2GM�adiab
LSO

BNS M3.6q1.00 1 0.13 0.13 0.0953 0.095 3 8.42 0.0832 7.235 0.108

BNS M3.4q0.70 1.384 0.0871 0.172 0.196 0.035 2 9.245 0.0738 8.685 0.0832

BHNS M20.145 2 0.145 0.5 0.474 0.005 78 3.714 0.230 5.412 0.159

BHNS M20.160 2 0.160 0.5 0.467 0.007 65 3.384 0.248 5.184 0.167

BHNS M30.145 3 0.145 0.5 0.546 0.01 3.041 0.252 5.246 0.164

BBH � � � 1 0.5 0.5 � � � � � � 1.955 0.352 4.619 0.193

BBH � � � 1 0.5 0.5 � � � � � � 3.0 0.272 6.0 0.136
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end the quasi-point-mass description of the binary inspiral.
It can be approximately defined as the moment of contact
between the two deformed objects, Eq. (77). We have
found that in all cases of astrophysical interest (say
MBH=MNS * 2 and cNS * 0:13) the analytically estimated
deformation of the NS’s was smaller than 55% at contact,
which suggests that the NS has probably not yet been
tidally disrupted in a well-detached state, but will start
being disrupted just around the moment of formal contact.
This tentative conclusion is preliminary because it is based
on a rough description of contact and tidal distortion. [In
particular, we evaluated the tidal distortion by using a
shape Love number which is physically meaningful only
for small deformations, and which was only minimally
modified in an attempt to reflect the separation-dependent
amplification factor t2ðbÞ found in [53].] It seems, however,
to be in semiquantitative agreement with recent numerical
simulations. To refine our analytical approach [and notably
for relating in a quantitative way Rcontact=ðGMÞ to the size
of the torus formed by the subsequent disruption of the
NS], it will be probably essential to compare in detail the
EOB predictions to numerical simulations, and to improve
our first-cut contact criterion, Eq. (77), by calibrating the
effective values of the shape Love numbers hA2 , h

B
2 against

numerical data.

B. Adiabatic inspiral and last stable orbit

Many previous works on binary systems involving NS
studied the location of the LSO (also called innermost
stable circular orbit, see e.g. Ref. [49]). In the case of
BBH systems, the EOB approach predicted that the cross-
ing of the LSO did not play a very important dynamical
role, as there was a blurred, continuous transition between
the early adiabatic quasicircular inspiral and the late non-
adiabatic, but still approximately quasicircular, inspiral
and plunge [33]. We similarly think that, in the case of
BNS or BHNS systems, the crossing of the LSO does not
play a crucial role in the orbital dynamics of the binary
system. However, it is still interesting to know where it is
located, and especially whether it occurs before or after
(formal) contact. In addition, knowing the location of the
LSO might be important for quantitatively discussing
which fraction of the matter of a disrupted NS might
form a relatively long-lived disk.

Let us then consider the adiabatic approximation to the
inspiral, i.e. the approximation in which the inspiral is
described as a sequence of circular orbits. It is indeed in
this approximation that the concept of the LSO can be
defined. We saw above the equation determining, in the
EOB formalism, the sequence of circular orbits, Eq. (45).
For large values of p’, and large values of r (i.e. small

values of u ¼ 1=r), Eq. (45) has a unique solution r ¼
1=u ’ p2

’, corresponding to Newtonian circular orbits.

However, when p2
’ decreases (as it does along the se-

quence of inspiralling orbits driven by radiation reaction),

the sequence of stable circular orbits will terminate at
certain values rLSO � 1=uLSO, p

2
’LSO

where there exists a

double root of Eq. (45), i.e. a common root of Eq. (45) and

A00ðuÞ þ p2
’B

00ðuÞ ¼ 0: (79)

The condition determining the radial location of the LSO is
the vanishing of the determinant�������� A0 B0

A00 B00

��������LSO
¼ A0ðuLSOÞB00ðuLSOÞ � A00ðuLSOÞB0ðuLSOÞ

¼ 0: (80)

For instance, in the test-mass limit, and in the absence of
tidal corrections, i.e. for AðuÞ ¼ 1� 2u, BðuÞ ¼ u2AðuÞ ¼
u2 � 2u3, Eq. (80) reads �4ð1� 6uLSOÞ ¼ 0, so that we

recover the classic result rLSO ¼ 1=uLSO ¼ 6 (i.e. rphysLSO ¼
6GM) for the LSO around a Schwarzschild black hole. On
the other hand, when inserting in Eq. (80) the complete
value of the A function, i.e. the sum (22), where A0ðr;�Þ is
given by Eq. (21), and AtidalðrÞ by Eq. (23), we see that the
LSO predicted by the EOB formalism will depend both on
the symmetric mass ratio �, and on the EOB tidal constants

T
‘ , Eq. (25). More precisely, these two types of effects (the

�-dependent ones which exist already in BBH systems, and
the tidal-dependent ones which exist only in BHNS and
BNS systems) act in opposite directions. Indeed, the
�-dependent contributions tend to make the radial potential
AðrÞ less attractive [see Eq. (20)], while the tidal ones make
AðrÞ more attractive. As a consequence, � effects tend to
move the radial location of the LSO toward smaller values
[rLSOð�Þ< 6GM], while tidal effects tend to move rLSO
toward larger values. To avoid gauge effects, it is conve-
nient to express the location of the (adiabatic) LSO in
terms of the corresponding (real) orbital frequency

� ¼ @HEOB

@pphys
’

¼ 1

GM�

@HEOB

@p’

: (81)

Finally, we conclude that the dimensionless orbital fre-
quencyGM� at the LSO is a function of the dimensionless
parameters �, 
T

‘ which tends to increase as � increases,

and to decrease as 
T
‘ increases. We have seen above that

the tidal coefficients 
T
‘ generically take rather large nu-

merical values, of order 
T
2 ¼ Oð100Þ, when ‘ ¼ 2; see

Table I. However, they enter the A function at a higher
order in u than the �-dependent effects. As a consequence,
the combination of the influences of � and 
T

2 ; 

T
3 ; . . . leads

to orbital LSO frequencies which are sometimes larger, and
sometimes smaller than the Schwarzschild value

GM�Schw ¼ 6�3=2 ¼ 0:068 04. This is illustrated in
Table III which lists the values of the LSO radial separation
RLSO=ðGMÞ, and of twice the orbital frequency (corre-
sponding to the adiabatic gravitational wave frequency
!‘m for the dominant mode ‘ ¼ m ¼ 2) for several para-
digmatic systems: two BNS systems, three BHNS ones,
and two BBH ones. If needed, one can convert the dimen-
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sionless frequency 2GM� in Hz by using GM� ¼
4:925 490 947 �s ( ¼ 1:476 625 038 km) so that the con-
version factor between !̂ ¼ GM! and f ¼ !=2� is

f ¼ !̂

2�GM
¼ 32:3125!̂

�
M�
M

�
kHz: (82)

We see that, in the considered BNS systems, the LSO
frequency is smaller than the Schwarzschild value

2GM�Schw ¼ 1=ð3 ffiffiffi
6

p Þ ¼ 0:136 083, and correspond-
ingly, the radius of the LSO is larger than the canonical
Schwarzschild 6GM. [We found that one needed to con-
sider BNS systems involving higher-compactness NS (ap-
proximately cA > 0:17), to have an LSO frequency larger
than the Schwarzschild value.] Note, by comparing BNS to
BBH ones, how tidal effects can significantly change the
LSO frequency by more than a factor of 2. In addition, note
that, in BNS systems, contact occurs before the crossing of
the LSO (so that the latter has no relevance). By contrast, in
BHNS systems contact occurs after the crossing of the
LSO. In other words the EOB predicts that, in BHNS
systems, the NS will not be disrupted in a well-detached
state (i.e., above the LSO), which would lead to the for-
mation of a large torus.

Summarizing, the main conclusions of this section are
that (i) the EOB formalism predicts that the quasi-point-
mass description can be applied up to contact (where the
tidal deformations can be large �50%, but not extremely
large, i.e. �100%), without the possibility of disruption of
the (lightest) NS in a well-detached state; (ii) the dimen-
sionless orbital frequency at contact, GM�contact, is sig-
nificantly larger in BHNS systems (where
GM�contact >GM�Schw ¼ 0:068 04) than in BNS sys-
tems (where GM�contact <GM�Schw); and (iii) the divide
between the systems that cross the LSO before contact, and
those that do not, depends strongly both on the composition
of the system, on the compactnesses, and on currently
unknown higher-PN corrections to tidal effects.

To end this section, let us mention that our results are
robust under the choice of the EOB parameters a5 and a6
entering the BBH radial A0ðrÞ potential, Eq. (21). The
comparison between the currently most sophisticated ver-
sion of the EOB formalism and the most accurate numeri-
cal relativity simulations has constrained the couple of

parameters ða5; a6Þ to lie within a rather thin bananalike
region in the ða5; a6Þ plane. We have checked that the
results that we present in this paper are quite insensitive
to the choice of a5 and a6 within this good region. The
default values that we use in the present paper are a5 ¼
�6:37, a6 ¼ þ50, which lie in the good region. To illus-
trate the insensitivity of our results to this choice, let us
mention that the value of twice the orbital frequency at
LSO, 2M�EOB

LSO ða5; a6Þ (for an equal-mass BNS system and

for c ¼ 0:17), changes from the value 0.136 05, to the new
value 0.136 03 for a5 ¼ �4 and a6 ¼ 24which lie near the
upper boundary of the good region of parameters discussed
in Ref. [1].
Note again that Table III was computed by assuming a

specific (NR-tuned) 1PNþ 2PN Taylor correction,
Eq. (43). We illustrate in Table IV the dependence of our
results on the choice of the NLO tidal-correction model.
Table IV lists the same models and the same corresponding
binary characteristics as Table III, but uses a different NLO
tidal-correction model: specifically, it uses the 1PN-only

model of Eq. (39) with the value ��ð‘Þ
1 ¼ 7, which was

found to provide the best fit to the data of Ref. [15] when
� ¼ 0:8 (see Fig. 2). The comparison of the results of
Table IV to those of Table III shows that (i) the character-
istics at contact are quite robust under the change of the
NLO model; (ii) on the other hand, the characteristics of
the LSO are more sensitive to the choice of the NLO
model. Note, in particular, that, in the case of unequal-
mass BNS, the relative locations of the LSO and of contact
are reversed. As, however, the location of the LSO does not
have (within the EOB framework) any sharply defined
physical meaning, these changes are probably of minor
significance. This comparison therefore suggests that our
physical predictions are robust under the change of the
NLO model, when one considers two models tuned to the
same NR data. On the other hand, one should keep in mind
that the use of a leading-order-only tidal interaction would
probably significantly affect the results listed in the tables.
Let us finally remark that the definition of contact used

above relies on the use of the EOB radial coordinate. As
this coordinate is a smooth deformation of the usual areal
coordinate, we think that it is a reasonable definition to use
as a first approximation. To refine it, it will be probably

TABLE IV. Same characteristics of binary systems as in Table III, but computed with ��ð‘Þ
1 ¼ 7 and ��ð‘Þ

2 ¼ 0.

Model Name q cA cB �contactA �contactB Rcontact=GM 2GM�contact RLSO=GM 2GM�adiab
LSO

BNS M3.6q1.00 1 0.13 0.13 0.0952 0.095 2 8.42 0.0834 7.789 0.0950

BNS M3.4q0.70 1.384 0.0871 0.172 0.195 0.035 1 9.247 0.0739 9.318 0.0736

BHNS M20.145 2 0.145 0.5 0.473 0.005 77 3.716 0.235 5.719 0.145

BHNS M20.160 2 0.160 0.5 0.466 0.007 63 3.386 0.255 5.423 0.156

BHNS M30.145 3 0.145 0.5 0.550 0.01 3.035 0.268 5.418 0.156

BBH � � � 1 0.5 0.5 � � � � � � 1.955 0.352 4.619 0.193

BBH � � � 1 0.5 0.5 � � � � � � 3.0 0.272 6.0 0.136
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necessary to compare in detail EOB predictions with re-
sults of NR simulations.

C. Phasing and waveform from the nonadiabatic
inspiral of tidally interacting compact binaries

Let us now consider the motion and radiation of tidally
interacting binaries predicted by the full EOB formalism,
i.e. beyond the adiabatic approximation. This is obtained
by integrating the EOB equations of motion

dr

dt
¼ aðrÞ@ĤEOB

@pR

;

dpr

dt

¼ �aðrÞ @ĤEOB

@r
;

d’

dt
¼ @ĤEOB

@p’

;
dp’

dt
¼ F̂ ’;

(83)

where aðrÞ � AD�1=2, ĤEOBðr; pr
 ; p’Þ � HEOB=�, with

HEOB defined by Eq. (18), and where the (scaled) radiation

reaction F̂ ’ ¼ F ’=� is defined in the way introduced in

[13] [see Eq. (3) there], i.e. by summing over ‘ and m the
adiabatic multipolar partial fluxes corresponding to the
newly resummed multipolar waves h‘m [including the tidal
correction (70) in h22]. In addition, we recall that r �
R=GM, t � T=GM, p’ � P’=GM�, and that the func-

tion AðrÞ is here defined as the sum (22). Concerning the
other metric coefficient D�1ðrÞ [entering the auxiliary

function a � ðA=BÞ1=2 � AD�1=2] we replace it by its
standard resummation (u � 1=r)

D�1ðrÞ ¼ 1þ 6�u2 þ 2ð26� 3�Þ�u3: (84)

The solution of the ordinary differential equations
(ODEs) (83) is then inserted in the newly resummed (and
tidally completed) multipolar waves h‘m to compute the
waveform emitted by the inspiralling compact binary.
Here, we shall focus on the ‘ ¼ 2, m ¼ 2 dominant
asymptotic waveform limR!1ðRh22Þ. Scaling it by G� �
GM� and decomposing it in amplitude and phase,

R

GM

h22
�

¼ A22ðtÞe�i22ðtÞ; (85)

we can then consider the dominant metric gravitational
wave frequency !22ðtÞ � d22ðtÞ=dt. (Note that all these

quantities are dimensionless. In particular, !22 �
GM!

phys
22 .)

Up to now we have discussed an extension of the EOB
formalism which incorporates tidal effects in both the
motion and the radiation of compact binaries. However,
it has been advocated [10,12,44] to incorporate tidal effects
as a modification of one of the nonresummed post-
Newtonian-based ways of describing the dynamics of in-
spiralling binaries. In particular, the recent Ref. [12] uses
as baseline a time-domain T4-type incorporation of tidal
effects. To be precise, let us recall that the phasing of the
T4 approximant is defined by the following ODEs:

dT4
22

dt
¼ 2x3=2;

dx

dt
¼ 64

5
�x5faTaylor3:5 ðxÞ þ atidalðxÞg;

(86)

where a
Taylor
3:5 is the PN-expanded expression describing

point-mass contributions, given by9

a
Taylor
3:5 ðxÞ ¼ 1�

�
743

336
þ 11

4
�

�
xþ 4�x3=2þ

�
34103

18144

þ 13661

2016
�þ 59

18
�2

�
x2�

�
4159

672
þ 189

8
�

�
�x5=2

þ
�
16447322263

139708800
� 1712

105
	� 56198689

217728
�

þ 541

896
�2� 5605

2592
�3þ�2

48
ð256þ 451�Þ

� 856

105
logð16xÞ

�
x3þ

�
�4415

4032
þ 358675

6048
�

þ 91495

1512
�2

�
�x7=2; (87)

and where atidal is given in the equal-mass case by [10]

atidalðxÞ ¼ 26
T
2x

5: (88)

Here we shall analyze the (metric) GW phase 22 as a
function of the corresponding dimensionless frequency
!22 and study the influence on it of tidal effects. More
precisely, we give here two different comparisons between
the EOB predictions and the T4 one. In these two com-
parisons, we keep T4 unchanged and defined by Eq. (86),
with a tidal contribution of the LO type (88). On the other
hand, we compare this tidal-T4 model to two different
tidal-EOB models; both models use a tidally modified A
function, Eq. (22). One model (EOBLO) uses the LO Atidal,
Eq. (23), while the other one (EOBNLO) uses the Taylor
NLO Atidal, Eq. (39), with ��1 ¼ 7. Here we consider a BNS
equal-mass system modeled using the 2H EOS with com-
pactness cA ¼ cB ¼ 0:130 97, massMA ¼ MB ¼ 1:35M�,
and radius RA ¼ RB ¼ 15:23 km.
The quantity which is plotted in Fig. 5 is the difference

�EOBT4
22 ð!22Þ � EOBX

22 ð!22Þ �T4
22 ð!22Þ, where the

label X on EOB takes two values, X ¼ LO for the
leading-order model and X ¼ NLO for the next-to-lead-
ing-order model. To compute this quantity we took into
account possible shifts in both tðtT4 ¼ tEOB þ �Þ and
ðT4 ¼ EOB þ �Þ. We use here the two-frequency
pinching technique of Ref. [56] to fix suitable values of
the shifts � and �. We use here two pinching frequencies
which are close to 450 Hz. In other words, the phase

9We take this opportunity to mention that the expression of
aTaylor3:5 displayed in Appendix B of Ref. [55] contains two
misprints: a missing ð59=18Þ�2 term in the coefficient of x2

and an incorrect 452� in the part of the coefficient of x3 which is
proportional to �2. Note however that the equations used in our
codes were correct.
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differences displayed in our figure show the phase differ-
ences accumulated for frequencies between 450 Hz and the
contact. Though, the figure does not display the phase
differences below 450 Hz we have checked that they
remain much smaller than what they become for frequen-
cies higher than 450 Hz.

In Fig. 5, the solid black line displays �EOBT4
22 ð!22Þ ¼

EOBLO

22 ð!22Þ �T4
22 ð!22Þ, and the dashed red line

�EOBT4
22 ð!22Þ ¼ EOBNLO

22 ð!22Þ �T4
22 ð!22Þ. The two

circles on the curves indicate the final moments of contact
[as defined using Eq. (77)]. We added two vertical dashed
lines corresponding to 500 Hz and 1 kHz.

The main messages that one can draw from this figure
are (i) the relative dephasing between EOB and T4 (using
the same tidal model) grows by about 1.5 rad up to contact;
(ii) the inclusion of higher-order PN-tidal contributions
further increases the relative dephasing by nearly 1.5 rad
more. Note that contact occurs just after the GW frequency
reaches 1 kHz (which is within the sensitivity of some
possible configurations of advanced LIGO). This indicates
that the GW phasing of the ultimate part of the BNS
inspiral is very sensitive to tidal effects and also very
sensitive to their precise analytical modeling, including
higher-order PN corrections. This makes it urgent to do
high-accuracy comparisons between accurate NR simula-
tions of BNS inspiral and EOB models, so as to accurately

calibrate the EOB description of higher-order PN-tidal
contributions.

VII. CONCLUSIONS

We discussed an extension of the EOB formalism which
includes tidal effects. The hope is that such a tidal-EOB
formalism will be able to go beyond the present PN-based
proposals whose validity is limited to the early (lower-
frequency) portion of the GW inspiral signal emitted by
BNS systems. This formalism allows naturally for the
presence of higher-order PN corrections to the leading
(Newtonian) effects. We compared tidal-EOB predictions
to recently computed numerical relativity data of quasie-
quilibrium circular BNS sequences [15]. We showed how
to subtract tidal effects from NR data. Even after this
subtraction, there remains a systematic difference between
the ‘‘point-mass’’ NR binding energy and its EOB (and
PN) analytical correspondent. We argue that this difference
is due to unaccounted 3PN-level effects linked to the
imperfect satisfaction of the helical-Killing-vector condi-
tion (which should be satisfied for physically waveless
solutions). We advocate that new nonconformally flat
simulations be performed for sequences of helical-
Killing-vector cutoff radii so as to allow extrapolation to
infinite radius. We also suggested to study BHNS circular
binaries for mass ratios MBH=MNS of order unity.
In absence of such physically waveless NR data, we

proposed to subtract from the current data a term �x4

representing a 3PN correction in the binding energy. We
could then do a least-square analysis to try to minimize the
(squared) distance �2 between NR data and tidal-EOB
predictions. Our analysis allowed for 1PN corrections to
tidal effects parametrized by ��1. We found that �2 remains
close to its global minimum in a flat valley that extends
over a significant region of the ð ��1; �Þ plane. This means
that, given the present error level in numerical data, we
cannot meaningfully and simultaneously select preferred
values for ��1 and �. Though this analysis is not fully
conclusive, it does suggest the need of including higher-
order PN correction to tidal effects that significantly in-
crease their dynamical effect. [In other words, the effective
value, say 
eff

2 ðuÞ ¼ 
T
2 ð1þ ��1uþ ��2u

2 þ � � �Þ, which is
relevant for the late inspiral is significantly larger, by a
factor �2, than 
T

2 .] These higher-order PN corrections
might come not from the 1PN level, but from higher-PN
levels (see, in particular, the end of Sec. IV, where a 2PN
completion of a recently computed 1PN correction of order
unity was shown to be fully compatible with current NR
data).
This emphasizes the need both of higher-order analytical

calculations of tidal effects and of high-accuracy numerical
relativity simulations of inspiralling BNS systems. (We
note in this respect that, when approximating a realistic
tabulated EOS by a piecewise polytropic EOS, one should
include an accurate description of the low-density EOS if

FIG. 5 (color online). Accumulated GW phase difference (ver-
sus the GW frequency !22) between two different tidal-EOB
(quadrupolar) waveforms and a Taylor-T4-based PN waveform
with (leading-order) tidal corrections, Eq. (86). The neutron star
is modeled by a 2H EOS (M ¼ 1:35M� and cA ¼ cB ¼
0:13097). The two EOB models differ in the treatment of the
NLO tidal effects: one uses only the leading-order tidal factor

Âtidal
‘ ¼ 1, while the other one uses Eq. (39) with ��ð‘Þ

1 ¼ 7.
Waveforms have been suitably aligned (subtracting a relative
time and phase shift) at low frequencies. The circles on the plot
indicate, for each curve, the dephasing accumulated up to the
contact frequencies.
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one wishes to accurately, and separately, reproduce the
correct k‘ and radius; see, e.g., Table II in Ref. [42].) We
argued that such a suitably tidally completed EOB formal-
ism will be able to describe the dynamics (and GW emis-
sion) of inspiralling BNS or BHNS systems essentially up
to the contact of the two objects. We emphasized that,
though below the dimensionless (quadrupolar) GW fre-
quency GM!22 � 0:04 (which corresponds to a frequency
of 480 Hz for the 1:35M� þ 1:35M� system), the present
analytical knowledge is possibly sufficient for accurately
describing the system, the GW phasing becomes uncertain
by a large amount (� 3 rad) during the late part of the
inspiral, because of our current lack of secure knowledge
of higher-order PN corrections to tidal effects. This makes
it urgent to do high-accuracy comparisons between accu-
rate NR simulation of BNS (or BHNS) inspiral and EOB
models. These comparisons might be useful both ways:
(i) in improving the EOB description, and (ii) in increasing
our understanding of the tidal distortion and disruption,
and of the possible formation of hot disks around merging
systems. When the EOB description of higher-PN-tidal
effects is ‘‘calibrated’’ with sufficient accuracy by using

such EOB/NR comparisons, we think it will be possible to
use the EOB formalism to extract from advanced-LIGO
data some accurate knowledge of the nuclear EOS (via the
measurement of the crucial parameter 
T

2 ). Such an NR-

calibrated EOB description might also be useful for delin-
eating which systems are likely to generate sizable disks,
and thereby short gamma-ray bursts.
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[16] K. Uryū, F. Limousin, J. L. Friedman, E. Gourgoulhon,

and M. Shibata, Phys. Rev. Lett. 97, 171101 (2006).
[17] T. Damour, C. R. Acad. Sci. Paris, Sér. A 291, 227 (1980).
[18] T. Damour, in Gravitational Radiation, edited by N.

Deruelle and T. Piran (North-Holland, Amsterdam,

1983), p. 59.
[19] T. Damour, P. Jaranowski, and G. Schaefer, Phys. Lett. B

513, 147 (2001).
[20] L. Blanchet, T. Damour, and G. Esposito-Farese, Phys.

Rev. D 69, 124007 (2004).
[21] L. Blanchet, T. Damour, G. Esposito-Farese, and B. R.

Iyer, Phys. Rev. Lett. 93, 091101 (2004).
[22] T. Damour and G. Esposito-Farese, Phys. Rev. D 53, 5541

(1996).
[23] W.D. Goldberger and I. Z. Rothstein, Phys. Rev. D 73,

104029 (2006).
[24] T. Damour and G. Esposito-Farese, Phys. Rev. D 58,

042001 (1998).
[25] T. Damour, M. Soffel, and C. Xu, Phys. Rev. D 43, 3273

(1991).
[26] T. Damour, Phys. Rev. D 81, 024017 (2010).
[27] L. Blanchet and T. Damour, Phil. Trans. R. Soc. A 320,

379 (1986).
[28] T. Damour, M. Soffel, and C.m. Xu, Phys. Rev. D 45,

1017 (1992).
[29] T. Damour and G. Esposito-Farèse (unpublished).
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