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In a recent paper [arXiv:1001.0785], Verlinde has shown that the Newton gravity appears as an entropy

force. In this paper we show how gravity appears as entropy force in Einstein’s equation of gravitational

field in a general spherically symmetric spacetime. We mainly focus on the trapping horizon of the

spacetime. We find that when matter fields are absent, the change of entropy associated with the trapping

horizon indeed can be identified with an entropy force. When matter fields are present, we see that heat

flux of matter fields also leads to the change of entropy. Applying arguments made by Verlinde and

Smolin, respectively, to the trapping horizon, we find that the entropy force is given by the surface gravity

of the horizon. The cases in the untrapped region of the spacetime are also discussed.
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I. INTRODUCTION

Quantum mechanics together with general relativity
predicts that a black hole behaves like a black body, emit-
ting thermal radiations, with a temperature proportional to
its surface gravity at the black hole horizon and with an
entropy proportional to its horizon area [1,2]. The Hawking
temperature and horizon entropy together with the black
hole mass obey the first law of black hole thermodynamics
[3]. Since these seminal works in the 1970s, the relation
between thermodynamics and spacetime horizons has been
widely discussed, and further developments can be found
in a nice review [4].

The study on the relation between thermodynamics and
gravity theory can be classified into two categories: One is
to discuss thermodynamics associated with spacetime ho-
rizons in the Einstein general relativity or in generalized
gravity theories. The study of stationary black hole ther-
modynamics belongs to this category. Recently the discus-
sions on thermodynamic properties associated with event
horizon of stationary black holes have been generalized to
various horizons of dynamical spacetimes [5]. For ex-
ample, it has been shown that there also exists Hawking
radiation associated with an apparent horizon of a
Friedmann-Robertson-Walker (FRW) universe [6]. The
other is more interesting: to derive equations of motion
of the gravitational field from thermodynamics. In 1995,
Jacobson derived the Einstein equation by employing the
fundamental Clausius relation �Q ¼ TdS together with
the equivalence principle [7]. Here the key idea is to
demand that this relation should hold for all the local
Rindler causal horizons through each spacetime point,
with �Q and T interpreted as the energy flux and Unruh

temperature seen by an accelerated observer just inside the
horizon. The entropy S is assumed to be proportional to the
area of the Rindler horizon. In this way, the Einstein
equation is nothing but an equation of state of spacetime.
In addition, assuming the apparent horizon of a FRW
universe has temperature T and entropy S satisfying T ¼
1=ð2�~rAÞ and S ¼ A=ð4GÞ, where ~rA is the radius of the
apparent horizon and A is the area of the apparent horizon,
Cai and Kim [8] are able to derive Friedmann equations of
the FRW universe with any spatial curvature by applying
the Clausius relation to the apparent horizon of the FRW
universe. This approach also holds for Gauss-Bonnet grav-
ity and the more general Lovelock gravity. For more dis-
cussions on the relation between the first law of
thermodynamics and Friedmann equations in diverse grav-
ity theories, see [9,10] and references therein. In the black
hole spacetimes, the relation between the first law of
thermodynamics and gravitational field equations has
also been studied [11]. For a recent review on this topic
and some relevant issues, see [12].
In a recent paper by Verlinde [13], with the holographic

assumption, gravity is explained as an entropic force
caused by changes in the information associated with the
positions of material bodies. Among various interesting
observations made by Verlinde, here we mention two of
them. One is that with the assumption of the entropic force
together with the Unruh temperature [14], Verlinde is able
to derive the second law of Newton. The other is that the
assumption of the entropic force together with the holo-
graphic principle and the equipartition law of energy leads
to the Newton law of gravitation. Similar observations are
also made by Padmanabhan [15]. He observed that the
equipartition law of energy for the horizon degrees of
freedom combined with the thermodynamic relation S ¼
E=2T also leads to the Newton law of gravity. Here S and T
are thermodynamic entropy and temperature associated
with the horizon and E is the active gravitational mass
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producing the gravitational acceleration in the spacetime
[16]. Some very recent discussions on entropic properties
of gravity can be found in [17–30].

On the other hand, it is well known that the Einstein
general relativity describes gravity quite well, at least
classically. Therefore the Einstein equation should imply
some implications of gravity as an entropy force. Note that
various discussions made by Verlinde are focused on the
Newtonian gravity, namely, in the nonrelativistic case.
Therefore it is quite interesting and important to see how
gravity appears as an entropic force in the relativistic
gravity theory. In this paper we will focus on the Einstein
theory of gravity, namely, general relativity.

Note that the entropy force for a system (with many
degrees of freedom) is a macroscopic force, and it is
induced by the statistical tendency to increase the entropy
of the system. So a natural starting point to consider in the
Einstein general relativity is causal horizon of spacetimes
because there exist well-understood temperature and en-
tropy associated with the causal horizon. In this paper, we
will mainly focus on the trapping horizon of a general
spherically symmetric dynamical spacetime and explore
how the Einstein equation shows as an entropy-force-like
equation. We will also discuss the case away from the
trapping horizon.

This paper is organized as follows: In Sec. II, starting
from the Einstein equation, we show thermodynamics
associated with the trapping horizon in a general spheri-
cally symmetric dynamical spacetime. In Sec. III, we
define a gravitational potential by employing the Kodama
vector and generalize Verlinde’s argument to dynamical
spacetimes, which relates the gravitational potential to the
surface gravity of the trapping horizon. In Sec. IV, we
discuss how the gravity on the trapping horizon appears
as an entropy force. In Sec. V, we use a Smarr-like formula
and the holographic assumption of horizon entropy to
derive the Newton gravity. In Sec. VI, following Verlinde
[13] and Smolin [20], we give some discussions on the
entropy force from the point of view of quantum fluctua-
tion. Section VII is devoted to the conclusion and
discussion.

II. GENERAL SPHERICALLY SYMMETRIC
SPACETIME

Let us consider a general spherically symmetric space-
time ðMn; g��Þ with the metric

g ¼ habdx
adxb þ r2ðxÞd�2

n�2; (2.1)

where d�2
n�2 is the line element of an (n� 2)-sphere, and

xa, a ¼ 1, 2 are coordinates of the two-dimensional space-
time which is normal to the sphere. Assume the connection
of the two-dimensional space is Da (which is associated
with the two-dimensional metric hab). In this spacetime the
Einstein equation can be decomposed as

Gab ¼ � n� 2

r
DaDbr�

�
1

2
ðn� 2Þðn� 3Þ

�
�
1�DcrD

cr

r2

�
� n� 2

r
DcD

cr

�
hab

¼ 8�GnTab; (2.2)

Gi
j ¼

�
� 1

2
Rð2Þ � ðn� 3Þðn� 4Þ

2

�
1�DcrD

cr

r2

�

þ n� 3

r
DcD

cr

�
�i
j

¼ 8�GnT
i
j; (2.3)

where Gn is the n-dimensional Newton constant, and
T�� ¼ ðTab; TijÞ is the energy-momentum tensor. The

term Rð2Þ in Eq. (2.3) is a scalar curvature of the two-
dimensional spacetime described by hab. It is obvious
that one has Tab ¼ TabðxÞ and Ti

j ¼ �ðxÞ�i
j in this case.

Substituting the relation

Rð2Þ ¼ Rþ 2ðn� 2Þ
r

DcD
cr� ðn� 2Þðn� 3Þ

� 1�DcrD
cr

r2
; (2.4)

one can find that Eq. (2.3) is trivially satisfied if Eq. (2.2)
holds. So Eq. (2.2) is the master equation we will analyze.
The Misner-Sharp energy inside the sphere with radius r

is given by [31]

E ¼ 1

16�Gn

ðn� 2Þ�n�2r
n�3ð1�DarD

arÞ: (2.5)

This is active energy inside the sphere. The properties of
this energy are discussed in some detail in Refs. [31,32].
With the energy-momentum tensor Tab, one can define two
physical quantities:

w ¼ �1
2T

a
a; (2.6)

which is called work density, and

c a ¼ Tb
aDbrþ wDar; (2.7)

which is called energy supply. It follows from (2.2) and
(2.3) that

w ¼ 1

16�Gn

�
� n� 2

r
DcD

crþ ðn� 2Þðn� 3Þ

�
�
1�DcrD

cr

r2

��
; (2.8)

and

c a ¼ 1

16�Gn

n� 2

r
½ðDbD

brÞDar�DaðDbrDbrÞ�:
(2.9)

Combing Eqs. (2.5), (2.8), and (2.9), one has [33,34]
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DaE ¼ Ac a þ wDaV; (2.10)

where A ¼ �n�2r
n�2 and V ¼ �n�2r

n�1=ðn� 1Þ are area
and volume of the sphere with radius r, respectively. We
can also express this equation in the form dE ¼ Ac þ
wdV by defining one-form c ¼ c adx

a and differential
operator d ¼ dxaDa.

To study causal structure of the spacetime (2.1), it is
convenient to introduce two null vector fields ‘a and ka,
and write the two-dimensional metric as hab ¼ �‘akb �
ka‘b, where ‘ak

a ¼ �1. By calculating the extrinsic cur-
vature of the (n� 2)-sphere, one gets the value of the
extrinsic curvature along the ‘a and ka directions, and
then gets the expansions of the corresponding null con-
gruences. These two expansions are denoted by �ð‘Þ and
�ðkÞ, respectively.

An (n� 2)-dimensional sphere is called marginal if
�ð‘Þ�ðkÞ ¼ 0. Similarly, an untrapped sphere is given by

�ð‘Þ�ðkÞ < 0, and a trapped sphere is given by �ð‘Þ�ðkÞ > 0.
It is found that �ð‘Þ�ðkÞ � �DarD

ar. Therefore the mar-

ginal sphere satisfies DarD
ar ¼ 0. The hypersurface foli-

ated by the marginal spheres is called a trapping horizon.
This means that DarD

ar always vanishes on this hyper-
surface. Let � be a vector field which is tangent to the
trapping horizon. We then have

L �ðDbrD
brÞ ¼ �aDaðDbrD

brÞ ¼ 0: (2.11)

Considering Eq. (2.9), on the trapping horizon, we find

Ac a�
a ¼ �H

2�
L�S; (2.12)

where L� is a Lie derivative along �, and

�H ¼ 1

2
DaD

ar; S ¼ AH

4Gn

: (2.13)

The �H is called surface gravity [33] and AH is the area of
the trapping horizon. By defining TH ¼ �H=2�, along the
vector �, we have

L �E ¼ THL�Sþ wL�V: (2.14)

This is the first law of the dynamical black holes [33]. S
and T are the Bekenstein-Hawking entropy and Hawking
temperature associated with the trapping horizon [35].

The surface gravity (2.13) can also be understood from
the so-called Kodama vector field [36]:

Ka ¼ �	abDbr; KaK
a ¼ �DarD

ar: (2.15)

So the Kodama vector is null on the trapping horizon and
timelike in the untrapped region. In addition, on the trap-
ping horizon one has Ka ¼ Dar. By this vector, one can
define a surface gravity on the trapping horizon as

KbD½bKa� ¼ �HKa: (2.16)

A straightforward calculation shows that this gives the
same result of �H as (2.13). In the following discussions,

we will also use the notation � ¼ ð1=2ÞDaD
ar. � reduces

to the surface gravity (�H) on the trapping horizon, while
the physical meaning of � will be shown shortly.

III. SURFACE GRAVITYAND GRAVITATIONAL
POTENTIAL

In this section, we discuss the relation between surface
gravity and gravitational potential. We note that Eq. (2.9)
can be rewritten as

�Dar� 1

2
DaðDbrD

brÞ ¼ 8�Gn

n� 2
rc a: (3.1)

This equation holds not only on the trapping horizon but
also in the untrapped region. Actually, it is just a part of the
Einstein equation and is valid at each point of spacetime.
Let us first consider the vacuum case in which the

energy-momentum tensor vanishes. Then Eq. (3.1) gives

�Dar ¼ 1
2DaðDbrD

brÞ ¼ 1
2Dað�KbK

bÞ: (3.2)

Defining e2
 � �KaKa ¼ DarDar, we have

�Dar ¼ e2
Da
; or � ¼ DarDa
: (3.3)

In the static case, the Kodama vector reduces to a timelike
Killing vector, and 
 is the generalized Newton potential
in general relativity. Here, by using the Kodama vector, we
have generalized to the dynamical spacetime from the
static one discussed by Verlinde [13], where a timelike
Killing vector is employed to relate the Newton potential to
gravitational acceleration.
Let na be an arbitrary vector field. We then have

�Lnr ¼ e2
Ln
;�
�

2�

�
LnS ¼ Ana

�
n� 2

8�Gn

�
e2


r

�
Da


�
;

(3.4)

where S is given by A=ð4GnÞ.
Next, to discuss the general case with matter fields, let us

assume that the metric hab and the energy-momentum
tensor Tab can be written as

hab ¼ �uaub þ vavb; (3.5)

and

Tab ¼ �uaub þ �ðuavb þ vaubÞ þ 
vavb; (3.6)

where uau
a ¼ �1, vav

a ¼ 1, and uav
a ¼ 0. The quanti-

ties �, �, and 
 are functions of the two-dimensional
coordinates xa. In that case we have

w ¼ 1
2ð�� 
Þ; (3.7)

c au
a ¼ �1

2ð�þ 
ÞLur� �Lvr; (3.8)

c av
a ¼ 1

2ð�þ 
ÞLvrþ �Lur: (3.9)

Further we can obtain
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�Lur ¼ e2
Lu
� 4�Gn

n� 2
r½ð�þ 
ÞLurþ 2�Lvr�;

(3.10)

�Lvr ¼ e2
Lv
þ 4�Gn

n� 2
r½ð�þ 
ÞLvrþ 2�Lur�;

(3.11)

and then

L uE ¼ �
LuV � �LvV;

LvE ¼ �LvV þ �LuV:
(3.12)

Thus, when the energy-momentum tensor does not vanish,
the relation between the surface gravity � and gravitational
potential in Eq. (3.4) has to be modified. One has to
consider the contribution of the matter fields.

In a general case, c a’s do not vanish. In some special
cases, for example, Reissner-Nordström spacetime, how-
ever, one has vanishing c a with a nonvanishing w (see the
Appendix). Note that for a FRW universe with � ¼ 0 and
�þ 
 ¼ 0, one has also c a ¼ 0. In those special cases,
(3.4) still holds, although matter fields are not absent.

IV. GRAVITYAS ENTROPY FORCE

On the trapping horizon, Eq. (3.4) implies some relation
between the change of entropy and the gravitational po-
tential. For an arbitrary vector field n, from Eq. (3.1), we
find

L nS ¼ ð’g þ ’mÞA; (4.1)

where

’g ¼ sagna; ’m ¼ samna: (4.2)

Here ’m is the value of entropy flux sam induced by the
matter field along the n direction [37,38], and sam is defined
as �

�

2�

�
sam ¼ c a: (4.3)

Similarly’g can be understood as the entropy flux s
a
g given

by the change of gravitational potential along the n direc-
tion. sag is defined by�

�

2�

�
sag ¼

�
n� 2

8�Gn

��
e2


r

�
Da
: (4.4)

We may understand that the term A’g corresponds to the

work done by gravity. The reason is that the gravitational
potential will change along the n direction for an arbitrary
n. This suggests that on the trapping horizon we have

THLnS ¼ naFa þ �nQ; (4.5)

where �nQ ¼ Ac an
a. To understand the meaning of Fa in

this equation, let us define

Ua ¼ e2
Da
: (4.6)

Obviously, this Ua has a dimension of gravitational accel-
eration. Note that on the trapping horizon, we have

E ¼ 1

16�Gn

ðn� 2Þ�n�2r
n�3; (4.7)

which leads to

naFa ¼ nað2EUaÞ: (4.8)

This suggests that Fa is a force—the force acting on the
active energy inside the marginal sphere.
Equation (4.5) is valid on the trapping horizon only. The

term �nQ ¼ Ac an
a is nothing, but heat flux caused by the

matter fields.
Here some remarks are in order.
(1) When the vector field n is tangent to a surface with a

fixed gravity potential (equipotential surface, the
trapping horizon is a kind of equipotential surface),
the force along the n direction does not exist. In this
case, under the Lie derivative Ln, the marginal
sphere changes to another marginal sphere (of
course inside the trapping horizon). The modified
Clausius relation (4.5) becomes a normal one, i.e.,
THLnS ¼ �nQ.

(2) If n has a component which is normal to the trapping
horizon, the marginal sphere tends to change to an
untrapped sphere. There is a change of gravitational
potential along the n direction. In this case, the work
term of gravity appears. In other words the force Fa

is present in this case. It is clear from (4.5) that the
force appears when the entropy associated with the
trapping horizon changes. In this way the force can
be understood as an entropy force in the spirit of
arguments by Verlinde.

(3) At the moment, it is not clear whether it is valid that
the force acts as an entropy force on the untrapped
sphere because in that case it is not clear whether the
surface gravity � and A=ð4GnÞ have the interpreta-
tion as temperature and entropy for an untrapped
sphere. On this point we will have more discussions
below.

(4) Combing Eqs. (2.10) and (4.5), we have

L nE ¼ THLnSþ wLnV � naFa: (4.9)

This equation is a consequence of the Einstein equa-
tion on the trapping horizon. Along an arbitrary
vector field n, we should consider not only the
work done by the matter fields, i.e., wLnV, but
also the work made by gravity, which is just the
term naFa.
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(5) Since the surface gravity can be expressed as

�

2�
¼ 1

4�
DaD

ar

¼ 4Gn

n� 2

��
n� 3

�n�2

��
E

rn�2

�
� rw

�
; (4.10)

we may define a new surface gravity �� as

�� ¼ �þ 8�Gn

n� 2
rw ¼ 8�Gn

�n�2

�
n� 3

n� 2

��
E

rn�2

�
:

(4.11)

On the tapping horizon, this new surface gravity is
just the so-called ‘‘effective surface gravity’’ pro-
posed by Ashtekar et. al. [5]. From the definition
(4.11), this effective surface gravity reduces to the
Newton surface gravity if we take a nonrelativistic
limit of E (that is, replacing the energy E by massM
times c2). Thus, the term wLnV in Eq. (4.9) can be
absorbed into THLnS to give �THLnSwith definition

�T H ¼ ��H

2�
¼ ðn� 3Þ

4�rH
:

The first law (4.9) then becomes

L nE ¼ �THLnS� naFa: (4.12)

Along the trapping horizon, the force disappears and
this equation changes to

L nE ¼ �THLnS: (4.13)

Everything becomes simple with this effective sur-
face gravity ��H. Although this effective surface
gravity does not reduce in the static limit to the
standard surface gravity of static black holes, for
example, Reissner-Nordström black holes (see the
Appendix), it is enlightening when studying dy-
namical spacetimes. With this effective surface
gravity, one immediately has LnE ¼ �nQ, and the
work term wLnV disappears. Unfortunately, for
dynamical black holes, the definitions of the surface
gravity are far from clear so far [39]. Namely it is
still not very clear which definition of surface grav-
ity is indeed related to Hawking temperature asso-
ciated with a trapping horizon.

(6) From Eqs. (4.5) and (4.8), when c a vanish, we have

THLnS ¼ naFa ¼ nað2EUaÞ: (4.14)

This clearly indicates that the gravity comes from
the entropy force: gravity appears as a change of
entropy. However, when the energy support c a do
not vanish, one has to consider the contribution of
the heat flux �nQ, which also causes the change of
entropy. In addition, on the trapping horizon, if the
Kodama vector is a Killing vector, the gravity in-
deed appears as an entropy force.

In a general case when matter fields are present, on
the trapping horizon, we have

THLnS ¼ naFa þ �nQ ¼ nað2EUaÞ þ �nQ

¼ 2�HELnr: (4.15)

It should be stressed here that we have

THLnS ¼ 2�HELnr; (4.16)

even when c a do not vanish. In this case, however,
the term 2�HELnr includes the contributions from
the heat flux given by the matter fields and the work
done by gravity. Therefore only when c a vanish,
2�HELnr stands for the work done by gravity.

(7) To further understand the gravitational acceleration
Ua, let us consider the case without matter. This
means c a ¼ w ¼ 0. In this case, E is a constant
[this can be seen from Eq. (2.10) or (3.12)]. The
gravitational acceleration Ua can be expressed as

Ua ¼ e2
Da
 ¼ 1

2
DaðDbrD

brÞ

¼ � 8�Gn

ðn� 2Þ�n�2

Da

�
E

rn�3

�
: (4.17)

Considering E is a constant, we have

Ua ¼
�
n� 3

n� 2

�
8�Gn

�n�2

�
E

rn�2

�
Dar: (4.18)

This is the gravitational acceleration on the trapping
horizon provided by the energy E. In the nonrela-
tivistic limit, E reduces to the Newton mass M (the
light velocity is set to be unity). So Ua indeed gives
us the correct gravitational acceleration. Note that
this calculation is also valid in the untrapped region.
On the trapping horizon, we have

naFa ¼ nað2EUaÞ

¼ 2

�
n� 3

n� 2

��
8�Gn

�n�2

��
E2

rn�2

�
Lnr: (4.19)

Remarkably, this force has the form of the Newton
gravity if we take the nonrelativistic limit where E is
replaced by massM. But there is an additional factor
2 in the second and last terms, compared to the
standard form of the Newton gravity. The factor 2
might come from the self-gravitating effect here
since the Newton force appears as a probe
approximation.

From the above discussions, we can conclude that grav-
ity indeed can be viewed as an entropy force on the trap-
ping horizon; it is particularly clear when the energy
supply c a is absent on the trapping horizon. This conclu-
sion is based on the definition of the quasilocal energy E in
Eq. (2.5) and the temperature TH in Eq. (2.13).
Furthermore, if one uses the effective surface gravity ��H
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and the corresponding temperature �TH when matter fields
are present, gravity can be viewed as an entropy force if the
variation of the energy LnE vanishes on the trapping
horizon.

V. SMARR-LIKE EQUATIONS AND
HOLOGRAPHIC ASSUMPTION OF ENTROPY

It is interesting to note that the relation among the
thermodynamical quantities discussed in the previous sec-
tions can be put in a simple form. On the trapping horizon,
we find from the expression of the surface gravity (4.10)
that

�H

2�
¼ 4Gn

n� 2

��
n� 3

�n�2

��
E

rn�2

�
� rw

�
: (5.1)

A straightforward calculation gives�
�H

2�

��
A

4Gn

�
¼

�
n� 3

n� 2

�
E�

�
n� 1

n� 2

�
wV: (5.2)

Identifying TH ¼ �H=2� and S ¼ AH=4Gn, we get

ðn� 2ÞTHS ¼ ðn� 3ÞE� ðn� 1ÞwV: (5.3)

Further if we use the effective surface gravity �� instead of
�, Eq. (5.3) changes to

ðn� 2Þ �THS ¼ ðn� 3ÞE: (5.4)

Equations (5.3) and (5.4) are very similar to the Smarr
formula in general relativity, and we call them Smarr-like
equations. Note here that they take the quasilocal form.
These relations among energy, temperature, and entropy
give us a lot of implications. For instance, since the entropy
is determined by the area of the marginal sphere, it means
that the physical degrees of freedom are determined by the
marginal surface. One can imagine that there are some bits
living on the marginal sphere which give the same amount
of the entropy. If we further assume there are no interac-
tions among these bits, from statistic physics, at least at
high temperature, we can use the equipartition of energy to
link the energy E and TH. This idea is used to investigate
gravity as an entropy force by Padmanabhan [15] and
Verlinde [13].

Now let us consider the case without matter with w ¼ 0.
Assume there are N bits associated with the marginal
surface with [13]

N ¼ 1

2

�
n� 2

n� 3

��
A

Gn

�
: (5.5)

The relation of the entropy and N is given by

S ¼ 1

2

�
n� 3

n� 2

�
NkB; (5.6)

where the Boltzmann constant kB is recovered. Because N
bits have the energy ð1=2ÞNkBTH, this gives

1

2
NkBTH ¼

�
n� 2

n� 3

�
THS ¼ E: (5.7)

Thus when the matter fields are absent, the assumption of
the equipartition of energy is consistent with the Smarr-like
equation.
In the presence of matter, the law of the equipartition of

energy is broken by the term includingwV. However, since
the Smarr-like equation (5.3) is always satisfied, with the
holographic assumption that the entropy is given by (5.6),
we still have

1

2
NkBTH ¼

�
n� 2

n� 3

�
THS ¼ E�

�
n� 1

n� 3

�
wV: (5.8)

It follows from Eq. (5.4) that the equipartition of energy
can be always used if we use the effective surface gravity
��H and the corresponding temperature �TH.
It is interesting to study the entropy force by using this

description of the physical degrees of freedom. Can we get
the relation (4.16) just from the above holographic sce-
nario? We can imagine that there are N bits living on the
marginal surface. Every bit has energy 1

2 kBTH. So along the

direction normal to the trapping horizon, it will feel force
1
2�HkBTH, and the total force is given by

Nð12�HkBTHÞ ¼ �HE � 2�HE: (5.9)

However, it is different from the result (4.16) by a factor 2.
In fact, it is expected because the simple counting does not
include the self-gravitating effect and the result (5.9) ap-
pears in the probe approximation.

VI. ENTROPY FORCE FROM QUANTUM
FLUCTUATION

When c a ¼ 0, it can be clearly seen that the gravita-
tional force appears as an entropy force (4.14) in the
Einstein general relativity. However, it should be noted
that this is just a consequence of the Einstein equation
together with thermodynamic properties of the horizon.
The change of the entropy in (4.14) actually comes from
the change of the area of the marginal sphere. So the
variation of the entropy is geometric, and has no direct
relation to quantum behavior of the black hole horizon.
However, it is clear that there must exist underlying micro-
scopic degrees of freedom associated with black hole
horizon entropy.
We now apply a similar discussion made by Verlinde

[13] (the so-called thought experiment of Bekenstein) to
the trapping horizon of the dynamical spacetime. Consider
a test particle (with rest mass m) staying just outside the
trapping horizon with some distance,�x, from the trapping
horizon. As a test particle, we assume that it will not
change the background geometry. However, if the value
of the distance �x is about the Compton wavelength of the
particle, this particle should be viewed as a part of the
dynamical black hole. Then the entropy of the black hole
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has a fluctuation �S even though the geometry of the
trapping horizon is not supposed to change. Here let us
concentrate only on the four-dimensional case, with gen-
eralization to other dimensions being straightforward. The
change of the entropy is given by

�S ¼ 2�kB
mc

@
�x: (6.1)

The temperature of the system is given by

kBTH ¼ 2

�
E

N

�
: (6.2)

This is correct only for the case without matter field. Note
that the number N is given by

N ¼ AHc
3

G4@
: (6.3)

Substituting the expression of N and TH into Eq. (6.1), we
have

TH�S ¼ G4

mE=c2

r2
�x: (6.4)

Thus, one can identify the right-hand side of the above
equation as the work done by some entropy force. It is clear
that this force is similar to the Newton force

f ¼ G4

mE=c2

r2
: (6.5)

We emphasize that our discussion is restricted to the region
near the trapping horizon because TH is the Hawking
temperature of the dynamical black hole.

Note that in the case without matter, the relation
2ð�=2�ÞS ¼ E is also valid in the untrapped region. If
we assume that there is a ‘‘temperature’’ T associated
with � and the entropy is S ¼ A=4G, by using a similar
reasoning, we find the corresponding gravitational accel-
eration is given by �=c2 which is similar to (4.18):

G4

E=c2

r2
: (6.6)

This is just the Newton gravitational acceleration provided
by the active energy E inside the untrapped sphere with
radius r. We will give more discussions on this temperature
T later.

Let us now turn to the case with matter. In this case, the
equipartition law of energy is violated, but the Smarr-like
formula together with the holographic assumption of the
entropy can be used. For the case of n ¼ 4, Eq. (5.8)
becomes

2THS ¼ 1
2NkBTH ¼ E� 3wV: (6.7)

By using a similar discussion, we arrive at

f ¼ G4

mðE� 3wVÞ=c2
r2

¼ G4m

�
E

r2
� 4�rw

�
=c2

¼ m�H=c
2; (6.8)

where we have used V ¼ 4�r3=3. So the force is nothing
but the surface gravity �H times the rest mass m. Note that
we have used the unit of c ¼ 1 in the discussion of pre-
vious sections. It should be noted that we have not used any
nonrelativistic limit till now.
Our conclusion (in units of c ¼ 1) is that near the

trapping horizon, for the test particle with rest mass m,
the entropy force given by Verlinde is just the Newtonian
force �Hm=c2 with gravitational acceleration �H=c

2.
We can understand the entropy force from another point

of view which is similar to the discussion by Smolin [20]:
Suppose that there is a particle with massm ‘‘pulled away’’
from the horizon. This pulling away should be understood
as quantum fluctuations. Assume that the distance of the
particle from horizon is given by �x. This �x should be
within the Compton wavelength of the particle, so the
particle still belongs to the horizon. So the passive energy
of this system will not change, and the change of the active
energy E is then just given by

�E ¼ F�x ¼ TH�S: (6.9)

Assume the change of the entropy is still given by Eq. (6.1).
Then similar discussions can lead to

F ¼ G4

ðE� 3wVÞ=c2
r2

m ¼ m�H=c
2: (6.10)

Assume that the mass m carries q (q � N) bits of infor-
mation, and we then have

mc2 ¼ 1
2qkBTH; (6.11)

and we obtain the force per bit as

f ¼ F

q
¼

�
1

2
kBTH

�
�H=c

4: (6.12)

Namely one bit information on the horizon will feel a force
ð12 kBTHÞ�H=c

4. As we have mentioned at the end of Sec. V,

there is a factor 2 difference between this kind of probe
approximation and our result (4.16). In this holographic
description, the procedure to get results (4.16) should be
understood as extract all bits on the marginal sphere to a
very nearby untrapped sphere. Obviously, the probe (or test
particle) approximation is not valid in this case.

VII. CONCLUSION AND DISCUSSION

In this paper we mainly investigated the issue that
gravity appears as an entropy force from Einstein’s equa-
tion in a general spherically symmetric spacetime. On the
trapping horizon of the spacetime, we found that the grav-
ity acting on the marginal sphere indeed can be identified
as an entropy force when the energy supply c a vanishes on
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the trapping horizon. We noticed that when matter fields
are present, the heat flux also leads to the change of
entropy. With the holographic assumption of the entropy,
following Verlinde and Smolin, we showed that the entropy
force induced by quantum fluctuations is measured by the
surface gravity on the trapping horizon.

We give further remarks here.
In most parts of this paper, we have focused on the

trapping horizon, because on the trapping horizon, we
have well-defined temperature and entropy associated
with the trapping horizon. Off the trapping horizon,
although the surface gravity (4.10) on the untrapped sphere
has a dimension of gravitational acceleration, its physical
meaning is still not very clear. In the static case, the
temperature at a fixed r surface outside the horizon is given
by the Tolman redshift relation e�
TH with a redshift
factor e�
, provided the system is in a thermal equilib-
rium. This is the temperature measured by a static observer
at the constant r surface. Obviously, it is not equal to T ¼
�=2�, while in the case without matter, this � indeed
reduces in the nonrelativistic limit to the Newton gravity
acceleration at the surface with radius r. Therefore the
temperature T ¼ �=2� can be understood as a local
Unruh temperature given by a Rindler observer with ac-
celeration �. Indeed, as it is well known that some curved
spacetimes like a Schwarzschild spacetime can be em-
bedded in a higher-dimensional flat spacetime, a static
observer at the constant r surface is mapped into a
Rindler observer in the higher-dimensional spacetime.
The surface gravity � is just the Unruh temperature mea-
sured by the Rindler observer in the higher-dimensional
spacetime. Once accepting T as a real temperature in the
above sense, we have from Einstein’s equation that

ðn� 2ÞTS ¼ ðn� 3ÞE� ðn� 1ÞwV; (7.1)

which reduces to Eq. (5.3) on the trapping horizon. Here
now E is just the Misner-Sharp energy given by (2.5), and
S ¼ A=4Gn for the sphere with an arbitrary radius r.
Employing (7.1) with the holographic assumption of S,
one can find the force m�=c2 acting on a test particle
with mass m. From the expression (4.10), we find that
this is just the Newton gravity produced by E when the
matter fields are absent.

Ashtekar’s effective surface gravity �� (4.10) is simple,
which has a similar form to the Newton gravity accelera-
tion if we take the nonrelativistic limit of E. With this
definition of surface gravity, the corresponding tempera-
ture �TH, entropy and energy satisfy the relation (5.4). In
this case since we have (5.4), the equipartition law of
energy holds and on the trapping horizon, we can obtain

m ��H=c
2 ¼ G4

mE=c2

r2
: (7.2)

This is just the Newton gravity produced by the active
energy E. With the same argument as the above, defining

the temperature �T ¼ ��=2� on the untrapped surface, and
still employing the relation (5.4), we can obtain the Newton
gravity (7.2) on an arbitrary sphere with radius r.
In addition, in this paper, we have focused on the future

outer trapping horizon of spacetime, and there the surface
gravity �H > 0. In fact, our discussion is also valid on the
inner trapping horizon, where surface gravity �H is nega-
tive. The apparent horizon of the FRW universe is just this
case [6,8]. In this case, the temperature is defined as TH ¼
j�Hj=2�, and Eq. (4.15) then becomes

THLnS ¼ nað2j�HjEUaÞ � �nQ: (7.3)

The entropy force also appears naturally. This is particu-
larly clear in the case of the de Sitter spacetime, in which
case c a ¼ 0 and �nQ ¼ 0, and gravity appears as an
entropy force.
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APPENDIX: REISSNER-NORDSTRÖM BLACK
HOLES

In this Appendix, we consider the Reissner-Nordström
spacetime as an example to show some results discussed in
this paper. In this case, the trapping horizon coincides with
the event horizon of the black hole. The two-dimensional
part of the solution is

habdx
adxb ¼ �fdt2 þ 1

f
dr2; (A1)

where f is given by

f ¼ 1� 2M

rn�3
þ e2

r2n�6
: (A2)

The Kodama vector is just the timelike Killing vector @t
and the trapping horizon is given by f ¼ 0. The horizon

radius is given by rn�3
H ¼ Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � e2

p
. Further it is

easy to show

TH ¼ �H

2�
¼ n� 3

4�rH

�
1� e2

r2n�6
H

�
;

w ¼ 1

16�Gn

ðn� 2Þðn� 3Þe2
r2n�4
H

:

(A3)
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The energy supply c a vanishes on the horizon. The Smarr-
like equation is given by

ðn� 2ÞTHS ¼ ðn� 3ÞE� ðn� 1ÞwV

¼ ðn� 2Þðn� 3Þ�n�2

8�Gn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � e2

p
; (A4)

where E is just the Misner-Sharp energy inside the horizon,
which is given by (c ¼ 1)

E ¼ 1

16�Gn

ðn� 2Þ�n�2r
n�3
H

¼ ðn� 2Þ�n�2

16�Gn

M

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

M2

s �
: (A5)

Obviously, this energy includes the contribution of the
Maxwell field. From this relation and holographic assump-
tion of entropy, we can obtain the entropy force given by
m�H, where m is the rest mass of the test particle.
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