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Starting from pure multidimensional gravity with curvature-nonlinear terms but no matter fields in the

initial action, we obtain a cosmological model with two effective scalar fields related to the size of two

extra factor spaces. The model includes both an early inflationary stage and that of modern accelerated

expansion and satisfies the observational data. There are no small parameters; the effective inflaton mass

depends on the initial conditions which explain its small value as compared to the Planck mass. At the

modern stage, the size of extra dimensions slowly increases, therefore this model predicts drastic changes

in the physical laws of our Universe in the remote future.
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I. INTRODUCTION

The existence of an early inflationary stage has become a
conventional feature in modern descriptions of the
Universe due to great success of inflationary scenarios in
explaining the observational data (see, e.g., [1,2] for recent
reviews). A great number of inflationary scenarios have
been suggested by now, and this number is still rapidly
growing. It is really difficult to single out a scenario that
has been indeed realized by Nature. Another problem is
related to the origin of the scalar field (or fields), the so-
called inflaton(s), which are almost inevitable ingredients
of such scenarios.

On the other hand, the most important set of problems in
modern cosmology are related to the observed accelerated
expansion of the Universe. Its most popular explanation,
fitting all observational constraints, is the so-called�CDM
model, invoking a cosmological constant � as a material
source that causes the accelerated expansion via the
Einstein equations [3]. However, the hardest problem of
this model is the extremely small observed value of �
(usually ascribed to the physical vacuum density) as com-
pared to the Planck density, the natural vacuum energy
density of quantum fields: the corresponding ratio is about
10�123.

Of greatest interest are scenarios that try to jointly
describe the entire history of our Universe or at least
such its important stages as the early inflation and the
modern acceleration. A promising approach on this trend
is to use modified theories of gravity, e.g., multidimen-

sional ones. In our view, curvature-nonlinear multidimen-
sional gravity is a good candidate.
It has been recently argued [4–7] that multidimensional

gravity with curvature-nonlinear terms in the action can be
a source of a great diversity of effective theories able to
address a number of important problems of modern astro-
physics and cosmology using a minimal set of postulates.
Among such problems one can mention the essence of dark
energy, early formation of supermassive black holes
(which is a necessary stage in some scenarios of cosmic
structure formation), and sufficient particle production at
the end of inflation. In this approach, it is supposed that
essentially different classical universes emerge from
space-time foam due to quantum fluctuations, so that par-
ticular values of the total space-time dimension D> 4 and
the topological properties of space-time may vary from one
space-time region to another. Different effective theories
can take place even with fixed parameters of the original
Lagrangian. It can be shown that this approach, without
need for fields other than gravity, is able to produce such
different structures as inflationary (or simply accelerating)
universes, brane worlds [6], black holes etc. The role of
scalar fields is played by the metric components of extra
dimensions.
In the present paper, we show how pure nonlinear

multidimensional gravity, without invoking any material
source, makes it possible to describe, in a single scenario,
an inflationary stage of the early Universe and a late
accelerating stage with a sufficiently small effective cos-
mological constant. The model obtained agrees with the
observational data.
Let us mention some other approaches to obtaining such

joint scenarios. Reference [8] shows how to achieve this
goal in some models of nonlocally modified gravity theo-
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ries in four dimensions; in these models, the dark energy
effect is caused by a composite graviton degree of freedom.
In [9], the same goal is achieved using a Yang-Mills
condensate as a matter source. Reference [10] considers
a relationship between hybrid inflation and dark energy;
see there also numerous references on the subject.

The paper is organized as follows. In Sec. II, we describe
the general formalism. Section III shows how to obtain a
successful inflationary scenario in a Kaluza-Klein type
model with a single extra factor space. Section IV is
devoted to obtaining models with two extra factor spaces
able to unify inflation and modern acceleration. Section V
is a conclusion.

II. D-DIMENSIONAL GRAVITY

We will briefly describe a method of considering a wide
classes of Lagrangians in multidimensional gravity in a
Kaluza-Klein type approach, following [4,5]. Consider the
action1

S ¼ 1

2
mD�2

D

Z ffiffiffiffiffiffi
Dg

q
dDx½FðRÞ þ c1RABR

AB þ c2K� (1)

in D-dimensional space-time M with the structure M ¼
M0 �M1 � . . .�Mn, where dimMi ¼ di and mD is the
D-dimensional Planck mass (not necessarily coinciding
with the conventional Planck mass m4), and the metric

ds2D ¼ gabðxÞdxadxb þ
Xn
i¼1

e2�iðxÞgðiÞ; (2)

where (x) means the dependence on the first d0 coordinates

xa; gab ¼ gabðxÞ is the metric inM0, g
ðiÞ are x-independent

di-dimensional metrics of the factor spacesMi, i ¼ 1; n. In
(1), FðRÞ is an arbitrary function of the scalar curvature R
ofM; c1 and c2 are constants; RAB andK ¼ RABCDR

ABCD

are the Ricci tensor and the Kretschmann scalar of M,
respectively; capital Latin indices cover all D coordinates,
small Latin ones (a; b; . . . ) the coordinates of M0, and
ai; bi; . . . the coordinates of Mi. Let us note that terms
proportional to R2 and other powers of R, RABR

AB and
the Kretschmann scalar K ¼ RABCDR

ABCD and other
high-order curvature terms appear due to quantum correc-
tions in quantum field theory in curved space-times
[11,12].

The D-dimensional Riemann tensor has the nonzero
components

Rab
cd ¼ �Rab

cd;

Raai
bbi

¼ �ai
bi
Ba
b ðiÞ;

Ba
b ðiÞ :¼ e��irbðe�i�;a

i Þ;
Raibi

cidi
¼ e�2�i �Raibi

cidi
þ �aibi

cidi
�i;a�

;a
i ;

Raibk
cidk

¼ �ai
ci �

bk
dk
�i;��

;�
k ; i � k:

(3)

Here the bar marks quantities obtained from the factor

space metrics gab and gðiÞ taken separately, �;a � @a�,
�ab

cd � �a
c�

b
d � �a

d�
b
c and similarly for other kinds of

indices.
The nonzero components of the Ricci tensor and the

scalar curvature are

Rb
a ¼ �Rb

a þ
X
i

diB
b
aðiÞ;

Rbi
ai ¼ e�2�i �Rbi

ai þ �bi
ai½h�i þ �i;a�

;a�;
R ¼ �R½g� þX

i

e�2� �Ri þ 2h�þ ð@�Þ2 þX
i

dið@�iÞ2;

(4)

where
P

i means
P

n
i¼1 ; � :¼ P

idi�i; ð@�Þ2 � �;a�
;a and

similarly for other functions; h ¼ gabrarb is the
d0-dimensional d’Alembert operator; �R½g� and �Ri are the

Ricci scalars corresponding to gab and g
ðiÞ, respectively. In

what follows, we will assume that the factor spacesMi are
compact spaces of constant curvature Ki ¼ �1, so that, in
particular, �Ri ¼ Kidiðdi � 1Þ.

A. Slow-change approximation: Reduction to lower
dimensions

Let us suppose that all quantities are slowly varying, i.e.,
consider each derivative @a (including those in the defini-
tion of �R) as an expression containing a small parameter ",
and neglect all quantities of orders higher thanOð"2Þ. Then
we have the following decompositions:

R ¼ �þ �R½g� þ f1;

f1 :¼ 2h�þ ð@�Þ2 þX
i

dið@�iÞ2;

FðRÞ ¼ Fð�Þ þ F0ð�Þð �R½g� þ f1Þ þOð"4Þ;
RABR

AB ¼ X
i

1

di
�2

i þ 2
X
i

di�i½h�i þ ð@�i; @�Þ�

þOð"4Þ;

K ¼ 2
X
i

�2
i

diðdi � 1Þ þ 4
X
i

di�ið@�iÞ2 þOð"4Þ; (5)

where

�i :¼ Kim
2
Dðdi � 1Þe�2�i ; � :¼ X

i

di�i: (6)

1Our conventions are: the metric signature ðþ �� . . .Þ; the
curvature tensor R�

��� ¼ @��
�
�� � . . . ; R�� ¼ R�

���, so that
the Ricci scalar R > 0 for de Sitter space-time and the matter-
dominated cosmological epoch; the system of units c ¼ @ ¼ 1.
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The symbol ð@�; @�Þ means gab�;a�;b, and F0ð�Þ ¼
dF=d�.

As a result, neglecting oð"2Þ and integrating out all Mi,
we obtain the following purely gravitational action reduced
to d0 dimensions:

S ¼ 1

2
Vmd0�2

D

Z ffiffiffiffiffi
g0

p
dd0xfe�F0ð�Þ �R0

þ KJ � 2VJð�iÞg;
KJ ¼ F0ð�Þe�f1 þ 2e�

X
i

di�i½c1h�i

þ c1ð@�i; @�Þ þ 2c2ð@�iÞ2�;
�2VJð�iÞ ¼ e�

�
Fð�Þ þX

i

di�
2
i

�
c1 þ 2c2

di � 1

��
; (7)

where g0 ¼ j detðg��Þj andV is a product of volumes of n

compact di-dimensional spaces Mi of unit curvature. The
expression (7) is typical of a (multi)scalar-tensor theory
(STT) of gravity in a Jordan frame.

Subtracting a full divergence, we get rid of second-order
derivatives in (7), and the resulting kinetic term takes the
form

KJ ¼ F0e�
�
�ð@�Þ2 þX

i

dið@�iÞ2
�
� 2F00e�ð@�; @�Þ

þ 4e�ðc1 þ c2Þ
X
i

di�ið@�iÞ2; (8)

where F00 ¼ d2F=d�2.

B. Transition to the Einstein frame

For further analysis, it is helpful to pass on to the
Einstein frame using the conformal mapping

g�� � ~g�� ¼ jfð�iÞj2=ðd0�2Þg��; fð�iÞ ¼ e�F0ð�Þ:
(9)

The expression with the scalar curvature in (7) transforms
as follows:

ffiffiffiffiffi
g0

p
e� �R0 ¼ ffiffiffiffiffi

g0
p

f �R0

¼ ðsignfÞ ffiffiffi
~g

p �
~Rþ d0 � 1

d0 � 2

ð~@fÞ2
f2

�
þ div; (10)

where the tilde marks quantities obtained from or with ~g��

and div denotes a full divergence which does not contribute
to the field equations. The action (7) acquires the form

S ¼ 1

2
Vmd0�2

D

Z ffiffiffi
~g

p
dd0xf½signF0ð�Þ�½ ~Rþ KE�

� 2VEð�iÞg (11)

with the kinetic and potential terms

KE ¼ 1

d0 � 2

�
@�þ F00

F0 @�
�
2 þ

�
F00

F0

�
2ð@�Þ2

þX
i

di

�
1þ 4

F0 ðc1 þ c2Þ�i

�
ð@�iÞ2; (12)

�2VEð�iÞ ¼ e�2�=ðd0�2ÞjF0j�d0=d

�
�
Fð�Þ þX

i

di�
2
i

�
c1 þ 2c2

di � 1

��
; (13)

where the tildes are omitted though the metric ~g�� is used,

and the indices are raised and lowered with ~g��. The

original quantities �i and � are now expressed in terms
of n fields �i whose number coincides with the number of
extra factor spaces.
In what follows, we consider the most relevant case

d0 ¼ 4.
A further interpretation of the results depends on which

conformal frame is regarded physical (observational)
[13,14], and this in turn depends on the manner in which
fermions appear in the (so far unknown) underlying uni-
fication theory involving all interactions. We will restrict
ourselves to the simplest assumption, that the Einstein
frame is simultaneously the observational frame. It means,
in particular, that the effective Newtonian gravitational
constant G is a true constant in the course of the cosmo-
logical evolution. Moreover, we will assume for simplicity
that the D-dimensional Planck mass mD is equal to the

four-dimensional Planck mass m4 ¼ G�1=2; furthermore,
we put G ¼ 1, and numerical values of dimensionful pa-
rameters are thus expressed in Planck units.

III. A SINGLE EXTRA FACTOR SPACE AND
INFLATION

Now, our program is as follows:
(i) Choose the parameters of the original action (1) to

obtain a behavior of the potential (13) providing
primordial inflation.

(ii) Additionally vary the parameters to satisfy the infla-
tionary conditions conforming to observations.

(iii) Try to describe the modern acceleration stage, pro-
viding the ratio of the effective cosmological con-
stant to the Planck density �eff=m

4
4 of the order

10�123.
We begin with the case of one factor space. Then

Eqs. (12) and (13) simplify to give

S ¼ V
2

Z
d4x

ffiffiffi
~g

p ðsignF0ÞL;

L ¼ ~R4 þ Kð1Þ
E ð�Þð@�Þ2 � 2Vð1Þ

E ð�Þ;
(14)
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Kð1Þ
E ð�Þ ¼ 1

4�2

�
6�2

�
F00

F0

�
2 � 2d1�

F00

F0 þ
1

2
d1ðd1 þ 2Þ

�

þ c1 þ c2
F0�

; (15)

Vð1Þ
E ð�Þ ¼ � signF0

2F02

� j�j
d1ðd1 � 1Þ

�
d1=2

�
Fð�Þ þ cV

�2

d1

�
;

cV :¼ c1 þ 2c2
d1 � 1

: (16)

Here we take

F ¼ Fð�Þ ¼ �þ c�2 � 2�; c;� ¼ const; (17)

and, in accord with the definition (6), � ¼ d1�1.
In (14)–(16) we have actually changed the sign of the

Lagrangian in case F0 < 0; to preserve the attractive nature
of gravity for ordinary matter, the matter Lagrangian den-
sity should appear with an unusual sign from the begin-
ning. As a result, the sign of the whole action of gravity and
matter will be unusual, without any effect on the equations
of motion; one can show that quantum transitions are then
unaffected as well, see a discussion in [4].

The presence of the parameters c1 and c2 adds freedom
in choosing the shape of the potential. The kinetic term
also has a complex form which can significantly affect the
field dynamics. An analysis of kinetic terms like (15) of
variable sign can lead to possibilities of interest, and we
hope to return to this point in our future work.

Let us employ the fact that chaotic inflation with a
quadratic potential and the inflaton mass m’ � 10�6m4

well conforms to the observational data. Therefore our task
is simplified and reduced to finding such parameters c, c1
and c2 that the potential (16) near its minimum is approxi-
mated by a quadratic function with the above inflaton mass.
It turns out to be possible with the following parameter
values:

d1 ¼ 4; c ¼ 2:5� 104; c1 þ c2 ¼ 0:6;

ctot :¼ c1
d1

þ 2c2
d1ðd1 � 1Þ ¼ �0:62; � ¼ 0:2:

(18)

With these parameter values, all basic requirements to
inflation are satisfied. Thus, the duration of the inflationary
period exceeds 60 e-folds, the temperature fluctuations are
�6� 10�5, and the spectral index is ns ¼ 0:943, within
observational bounds, ns ¼ 0:958� 0:016 [15]. Thus a
single factor space is sufficient for obtaining a fairly
good inflationary scenario.

Since the constant c has actually the dimension of length
squared, it is

ffiffiffi
c

p � 100 that should be compared with the
Planck length. So this model does not contain unnaturally
large or small parameters.

A serious shortcoming of this model is that it is unable to
solve the problem of modern acceleration, including small-
ness of dark energy density. Indeed, it is easy to prove that

slight variations of the parameters c, c1 and c2 could give
rise to an arbitrarily small potential value at the minimum.
However, though the values of these parameters are quite
moderate, they should be extremely ‘‘fine-tuned’’ to fit the
modern value of vacuum energy density. An attempt to
solve this problem in a slightly more complex model is
undertaken in the next section.

IV. TWO FACTOR SPACES: INFLATION AND
MODERN ACCELERATION

A. Inflation

Additional opportunities emerge if the extra space is a
product of two factor spaces,Md1 �Md2 of dimensions d1
and d2. For further analysis, let us make the situation more
specific by putting K1 ¼ K2, d1 ¼ d2 and choosing the
function

FðRÞ ¼ R2: (19)

(Note that one of the coefficients in the initial Lagrangian
can be chosen at will, e.g., equal to unity, without affecting
the field equations; it simply specifies the scale for other
coefficients.)
Figure 1 presents the potential of the effective scalar

fields for this model with the following choice of the
parameter values:

d1 ¼ d2 ¼ 5; cV ¼ �10:001;

c1 þ c2 ¼ 1:25� 103:
(20)

All further numerical estimates will be obtained with these
values. As follows from the above-said, at low energies (as
compared to the Planck scale mD) this model is equivalent
to Einstein gravity with two scalar fields. In full similarity
with Sec. III, the constants c1 and c2 have actually the

FIG. 1 (color online). Potential of the effective scalar fields for
the model (1) and (19) with the parameter values given in
Eq. (20).
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dimension of length squared, and their square roots are not
unnaturally large or small.

Note that, with the cV value chosen, a positive potential
V (hence a positive effective cosmological constant) is
obtained with K1 ¼ 1, i.e., spherical extra factor spaces.
For other values of cV , e.g., cV > 0 we would need hyper-
bolic factor spaces.

The inflationary period is characterized by moving down
one of the steep slopes of the valley. The inflaton mass
squared is proportional to the second-order derivative of
the potential in the direction perpendicular to the valley (its
bottom is located at �1 ¼ �2 ¼ �0). It is this direction in
which the field moves during inflation and oscillates during
reheating at the post-inflationary stage. The specific value
of �0 depends on the initial value of the inflaton field at
which the classical universe was born.

Figure 2 shows the dependence of the effective inflaton
mass on the parameter �0. In the framework of chaotic
inflation, universes are created with different inflaton val-
ues under the horizon, leading to different values of�0 and
hence different inflaton masses. This is how this model
solves the problem of smallness of the inflaton mass in
Planck units.

Post-inflationary particle production is a result of oscil-
lations in the direction across the valley. The conditions
suitable for our Universe correspond to the value�0 ’ 0:5.
It is just such a value that, according to Fig. 2, the inflaton
mass, related to the second-order derivative of the potential
in the direction across the valley, is �10�6 � 1013 GeV,
which satisfactorily explains the observational data on the
CMB temperature fluctuations.

It is of interest to which extent the values of c1 and c2 (or,
more conveniently, their combinations cV and cK ¼ c1 þ
c2) in Eq. (20) are fine-tuned. An inspection shows that

with cV in the range ð�10:2;�10Þ the potential provides
all three necessary stages of evolution: inflation, reheating
and the present expansion, in agreement with the observa-
tional data under proper initial conditions. Larger devia-
tions destroy the valley of the potential surface thus
drastically changing the whole picture. As an example,
we present the potential for the same value of cK but cV ¼
�10:5 (Fig. 3). There is no valley, hence a reheating stage
is impossible.
The admissible range of cK is wider: its value may vary

by an order of magnitude with respect to the one given in
(20). Within this area, the predictions are actually the
same, within uncertainties in the observational data.

B. Matter dominated stage

The inflationary stage ends with rapid field oscillations
across the valley in Fig. 1, on whose bottom, by our
assumptions, �1 ¼ �2 ¼ �=ð2d1Þ. These oscillations are
accompanied by effective particle production in full agree-
ment with the standard version of chaotic inflation with a
quadratic potential. In the model under discussion, the
energy density of the produced particles makes the mate-
rial content of the Universe and affects not only the cos-
mological expansion rate but also the scalar field
dynamics. The latter now corresponds to slow rolling
down along the bottom of the potential valley.
We assume a spatially flat cosmology in four dimen-

sions, with the Einstein-frame metric d~s24 ¼ dt2 �
a2ðtÞd~x2. So, with the choice (19), the action (11) leads
to the Lagrangian

LE ¼ R4 þ Kð�Þðd�Þ2 � 2Vð�Þ (21)

and
FIG. 2. Dependence of the effective inflaton mass (Planck
units) on the parameter �0.

FIG. 3. Potential of the effective scalar fields for the model (1),
with d1 ¼ d2 ¼ 5, cV ¼ �10:5, c1 þ c2 ¼ 1:25� 103.
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Kð�Þð@�Þ2 ¼ K0ð@�Þ2=�2 ¼ 4K0ð@�Þ2;
2K0 ¼ d21 � d1 þ 3þ 4ðc1 þ c2Þ;

(22)

Vð�Þ ¼ V0j�jd1 ¼ V1e
�2d1�;

V1 ¼ �K1

8

�
1þ cV

2d1

�
;

V0 ¼ V1½2d1ðd1 � 1Þ��d1 ; (23)

where K1 ¼ sign� ¼ signF0ð�Þ and �ðtÞ ¼ �1ðtÞ is, as
before, the logarithm of the extra-dimension scale factor
(which is in the present case the same for all extra dimen-
sions), such that d�=� ¼ �2d�, and cV has been defined
in (16). One can also notice that a usual form of the
Lagrangian with a scalar field � and a potential V� is
obtained if we substitute

2
ffiffiffiffiffiffi
K0

p
� ¼ ffiffiffiffiffiffiffiffiffiffi

8	G
p

�; VE ¼ 8	GV�:

With (21), we can write two independent components of
the Einstein-scalar equations for �ðtÞ and aðtÞ as follows:

3H2 ¼ 2K0
_�2 þ V1e

�2d1� þ 8	�m (24)

2K0½ €�þ 3H _�� ¼ d1V1e
�2d1�; (25)

where H ¼ _a=a is the Hubble parameter.
Let us begin with considering the matter dominated

stage, which is the longest. The subsequent dark energy
(DE) dominated stage will be discussed in the next sub-
section. The following simplifying assumptions will be
used: (i) we neglect the pressure of matter, treating it as
dust from the very beginning (t ¼ t1) thus ignoring a
radiation-dominated stage; (ii) we neglect a possible direct
interaction between matter and the scalar field; (iii) we
neglect the scalar field contribution to the dynamics of aðtÞ
at the matter dominated stage t1 < t < t2 ’ 1010 years and,
vice versa, we neglect the contribution of matter at the DE
dominated stage t > t2.

So, neglecting the contribution of � in Eq. (24), we
obtain for times t1 < t < t2, as in the usual big bang
scenario,

H ¼ 2=ð3tÞ at t1 < t < t2: (26)

To solve Eq. (25) numerically, we take the following initial
data corresponding to the end of the post-inflationary
epoch:

�1ðt1Þ ¼ �2ðt1Þ ¼ �ðt1Þ
2d1

¼ 0:05;

d�

dt
ðt1Þ ¼ 0 ) e�ðt1Þ ¼ 4

ffiffiffi
5

p
; _�ðt1Þ ¼ 0:

(27)

The initial time t1 is chosen to be t1 ¼ 2:82� 1010 for
definiteness.

The numerical solution of Eq. (25) then gives the fol-
lowing value of � at t ¼ t2:

e �ðt2Þ ¼ 5:48255� 1011 ’ 5:5� 1011 ) �ðt2Þ
’ 1:3� 10�22: (28)

This value of � will be used in analyzing its dynamics at
the modern stage for which the equations simplify and can
be solved analytically.

C. Modern stage

The modern epoch t > t2 is DE dominated. In the
present approach, DE is represented by the scalar field �
(or equivalently � or b ¼ e�) with the potential (23), and
the Universe dynamics is described by Eqs. (24) and (25).
In (24) we now neglect the matter contribution.
It is hard to solve this set of equations exactly. However,

as the � field decreases (which corresponds to a growing
size of the extra dimensions) along with a decreasing value
of the potential (related to the effective cosmological con-
stant), at some stage it becomes possible to treat this
process as secondary slow rolling, for which the field
dynamics is sufficiently simple and may be described
analytically. Indeed, let us suppose

j €�j � 3ð _a=aÞ _�; K0
_�2 � 3ð _a=aÞ2 (29)

and drop the corresponding terms in Eqs. (24) and (25).
Then we can express _a=a from (24) and insert it to (25),
getting

d1 _�ed1� ¼ B0 :¼ d21
ffiffiffiffiffiffi
V1

p
2

ffiffiffi
3

p
K0

; (30)

whence we find the evolution law for the extra-dimension
scale factor

e � ¼ ½B0ðt� t	Þ�1=d1 ; (31)

where t	 is an integration constant (t	 ¼ t2 �
B�1
0 ½bðt2Þ�d1). Substituting this result to (24), we find the

evolution law for aðtÞ:
aðtÞ ¼ a	ðt� t	Þp; p :¼ 2K0=d

2
1; (32)

where a	 is an integration constant.
With the parameters (20), some relevant constants are

V1 ¼ 1:25� 10�4; 2K0 ¼ 5023;

p ¼ 5023

25
� 201; B0 � 3:2� 10�5:

(33)

Equation (31) with the initial value (28) gives the present
size of the extra dimensions, at t ¼ t0 ¼ 13:7 
 109 yr:

bðt0Þ ¼ 5:48259� 1011 ’ 5:5� 1011 � 9� 10�22 cm;

(34)

well within the observational limits. From (32) we find the
Hubble constant H0 ¼ _aðt0Þ=aðt0Þ and the Hubble time
tH ¼ 1=H0:
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H0 � 1:25� 10�61; tH � 8� 1060 � 13:8� 109 yr;

(35)

in agreement with observations. The potential energy den-
sity V, coinciding with the DE density,

VEð�ðt0ÞÞ ’ 5:1� 10�123; (36)

also well agrees with observations.
One can notice that in our model with d1 ¼ 5 the

function (31) grows extremely slowly. The present value in
(34) differs from that in (28) only in the fifth decimal digit,
so that the change is actually indistinguishable. The same
is true for the DE density which thus behaves like a
cosmological constant. The expansion law (32) with the
exponent p ¼ 201 is really almost exponential, i.e., de
Sitter, and the DE equation-of-state factor w ¼ pDE=�DE

is very close to minus unity. Indeed, in the DE epoch,

aðtÞ � t2=ð3þ3wÞ, hence

2=ð3þ 3wÞ ¼ 201 ) w � �0:9967:

Last, one can verify that this solution fairly well satisfies
the slow-rolling conditions (29), which hold as long as
p � 1. or, in terms of the input parameters of the theory,
if c1 þ c2 � d21.

It is of interest that models of gravity (1) where FðRÞ
contains a linear term do not lead to similar attractive
results in the present approach.

V. CONCLUSION

In the framework of pure curvature-nonlinear gravity
with extra dimensions, it has been possible to describe
(though in a rough approximation) the entire evolution of
the Universe beginning with an inflationary stage and
ending with the modern accelerated stage with sufficiently
small dark energy density. In doing so, it has been possible
to avoid unnaturally small or large parameter values in the
initial Lagrangian. The small values of the inflaton mass
and especially that of DE density agreeing with observa-
tions have been obtained from a Lagrangian whose dimen-
sionless parameters differ from unity by no more than 2
orders of magnitude.

Using a single extra factor space, it appears possible to
explain the emergence of an inflaton, and choosing proper
values of the parameter, it is possible to fulfil all require-
ments applicable to inflationary models and achieve an
agreement with the observational data. However, to solve
the problem of small DE density, it is necessary to invoke
(at least) two extra factor spaces.

The inflationary stage with an appropriate inflaton mass
is again well described. Indeed, field fluctuations create
universes with different initial field values. the potential in
Fig. 1 (i.e., at fixed values of the initial Lagrangian pa-
rameters) has different curvatures at different points of the
valley, which correspond to different inflaton masses. We

live in a universe created by a suitable field fluctuation
whose evolution leads to the observable inflaton mass.
As to late-time evolution, it becomes possible to obtain

in a natural way a small current value of the effective
potential which plays the role of DE density (effective
cosmological constant), �eff � 10�123m4

4). The form of

our late-time solution shows that the size of the extra
dimensions is slowly growing in the modern epoch. In
the remote future, this size, which is so far invisible for
modern instruments, is to grow to such values that will lead
to drastic changes in the physical laws of our Universe. Let
us stress, however, that such a model is only one particular
opportunity contained in our approach. There are other
models where the extra dimensions are stable at late times
[4] making the effective physical constants also invariable.
Our model with two factor spaces has the following

advantages:
(a) Its low-energy limit represents the Hilbert-Einstein

action with appropriate accuracy.
(b) It describes inflation with an inflaton mass agreeing

with observations;
(c) The size of the extra dimensions bðtÞ never exceeded

the experimental threshold �10�17 cm (though
should exceed it in the remote future).

(d) At the modern stage, the scalar field density (ac-
tually, the potential Vð�Þ in proper units) describes
the modern DE density �10�123m4

4;
(e) The DE equation-of-state parameter w satisfies the

observational constraint w<�0:8.
This model has a somewhat unusual total dimension

D ¼ d0 þ 2d1 ¼ 14. With such a choice, it is clear that
we keep aside from the ideas of string theory in this study,
which makes our model less restrictive in the choice of the
dimensionality. We believe that other choices of parameter
sets, including dimensionality, can also lead to good po-
tentials in the low-energy limit, and this can be a subject of
future work. However, the particular values d1 þ d2 ¼ 3þ
3, leading to D ¼ 10 (the ‘‘string’’ dimension), are proba-
bly unsuitable in our case since then cV ¼ cK ¼ c1 þ c2
(see the notations above), which leaves one independent
parameter instead of two thus substantially restricting the
choice of effective potentials.
Since we have been working in the Einstein conformal

frame, the problem of varying physical constants (above
all, the effective Newtonian constant of gravity Geff) did
not emerge. One should note that even remaining in the
Einstein frame, we could assume mD � m4, which would
affect the estimated boundary between the classical and
quantumworlds. In a more general framework, interpreting
another conformal frame (possibly but not necessarily the
original Jordan frame) as the observational one, we would
obtain a dependence of the constantGeff (hence the current

Planck mass m4 ¼ G�1=2
eff ) on the size of extra dimensions,

which in general can be not only time-dependent but also
vary from point to point in space. In the cosmological
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context, models with variable Geff should not only satisfy
the observational bounds on the variation rate _Geff=Geff

( & 10�13 according to the recent tightest constraint [16])
but also take into account the effect of GðtÞ on stellar
evolution and processes in the early Universe.
(Therefore, models with self-stabilizing extra dimensions
like those discussed in [4,5] can be more attractive.) In still
more general models of this sort even the Planck constant @
can be variable. A discussion of these problems is out of

the scope of this paper and can be found, e.g., in [13,14,17–
19].
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