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We explored the motion of test particles near slowly rotating relativistic star having a uniform

luminosity. In order to derive the test particle’s equations of motion, we made use of the radiation

stress-energy tensor first constructed by Miller and Lamb [3]. From the particle’s trajectory obtained

through the numerical integration of the equations of motion, it is found that for sufficiently high

luminosity, ‘‘suspension orbit’’ exists, where the test particle hovers around at uniform angular velocity in

the same direction as the star’s spin. Interestingly, it turned out that the radial position of the suspension

orbit was determined by the luminosity and the angular momentum of the star alone and was independent

of the initial positions and the specific angular momentum of the particle. Also found is that there exist not

only the radiation drag but also ‘‘radiation counter drag,’’ which depends on the stellar radius and the

angular momentum, and it is this radiation counterdrag that makes the test particle in the suspension orbit

hover around at a uniform angular velocity that is greater than that induced by the Lense-Thirring effect

(i.e., general relativistic dragging of inertial frame).
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I. INTRODUCTION

Astrophysical accretion flow onto massive or compact
stars is one of the major concerns in astronomy and astro-
physics. In the present work, we explore the ground work
for the full understanding of the accretion flow onto highly
luminous slowly rotating relativistic stars. In the current
treatment of the accretion process, the effect of radiation
pressure on the inflow has not been fully addressed.
Therefore, in the present work, we attempt to include
systematically the role of the radiation pressure in the
accretion process. To this end, we explore the effect of
the radiation pressure on the motion of a single test parti-
cle. Eventually we hope that this elementary study of ours
will be extended to the case of actual accretion flow, which
can be thought of as consisting of large number of con-
stituent single particles.

We now begin with the summary of the present status of
the research in the literature along this line. In their pio-
neering work, Abramowicz, Ellis, and Lanza [1] demon-
strated that radiation from the highly luminous nonrotating
spherical massive star generates a ‘‘critical point’’ above
the stellar surface, but they limited the motion of the
particles to one-dimensional radial direction alone and
did not deal with the case of rotating central stars emitting
isotropic radiation. Later on, Miller and Lamb [2] extended

one-dimensional motion to a two-dimensional one and
pointed out that the trajectory of the particle is significantly
affected by the radiation from the nonrotating star if the
luminosity of the star is greater than�1% of the Eddington
luminosity. They, however, confined themselves to the
spherical symmetric spacetime describing the nonrotation
of the central star. Some time later, they considered [3] the
effects of slow rotation of the central star and constructed
the radiation stress-energy tensor describing the radiation
field from the slowly rotating central star. They, however,
failed to notice the emergence of critical radius (which
corresponds to the critical point reported in Abramowicz
et al. [1]) as they considered the setup in which the lumi-
nosity is well below Eddington’s critical value.
In the present work, in order to understand the effects of

the radiation pressure on the accretion onto the highly
luminous rotating relativistic stars in a rigorous and com-
plete manner, we employ the radiation stress-energy tensor
that is given by Miller and Lamb [3] as an elaboration on
that given originally by Abramowicz et al. [1] to describe
the radiation emitted from the slowly rotating central stars,
and derive the equation of motion.
By integrating numerically the equations of motion, we

realized that there exists the suspension orbit (where the
test particle hovers around the central star) that corre-
sponds to the ‘‘critical point’’ in [1]. And it turns out that
the radial position of this suspension orbit depends on the
luminosity and the angular momentum of the central star
alone, and does not depend on the initial position and the
initial angular momentum of the test particles.
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In addition, it is realized that the test particle in the
suspension orbit has uniform azimuthal velocity in the
same direction as the star’s spin motion. It is interesting
to note that the uniform azimuthal velocity of the test
particle at the suspension orbit is greater than that due to
the Lense-Thirring effect.

In Sec. II, we provide the derivation of the equations of
motion from the known radiation stress-energy tensor and
discuss the usual radiation drag terms and the newly dis-
covered radiation counter-drag terms. In Sec. III, we
present the results of the numerical integrations showing
the emergence of the suspension orbit. In Sec. IV, we
analyze the motion of the particle in the suspension orbit,
and finally, in Sec. V, we end with a discussion of our
results.

II. EQUATIONS OF MOTION

To derive the equations of motion that govern the tra-
jectory of the test particles in the presence of radiation
from the slowly rotating relativistic star, we assume that
the radiation source emits isotropically the radiation from
the whole stellar surface, and we employ the following
metric obtained from the Kerr black hole metric ([4]) by
retaining its terms to the first order in the Kerr parameter a
to represent the spacetime exterior to the slowly rotating
star,

ds2 ¼ g��dx
�dx�

¼ �ð1� 2M=rÞdt2 þ ð1� 2M=rÞ�1dr2 þ r2d�2

þ r2sin2�ðd�2 � 2!d�dtÞ; (1)

where ! ¼ 2J=r3 is the Lense-Thirring angular velocity
[5] arising due to the frame-dragging effect of a stationary
axisymmetric spacetime, which can be identified with the
orbital angular velocity of the LNRF (locally non-rotating
frame); see [6,7]. M and J are the gravitational mass and
angular momentum of the star, respectively. Wework in the
geometric units, where G ¼ c ¼ 1 (G is the gravitational
constant and c is the speed of light). Following Miller and
Lamb [3], we introduce a dimensionless angular momen-

tum j � cJ=ðGM2Þ and dimensionless velocity v �
hv�̂i=c as a convenient measure of the rotation rate of
the star and the rotation rate of the radiation source,

respectively, where hv�̂i is the appropriate average (see

[3]) of v�̂ (azimuthal linear velocity) over the emitting
surface visible from the test particle. The hat denotes the
physical quantity measured in the LNRF. In this paper
‘‘slow rotation’’ means j � 1 and v � 1, and we keep
terms that are only first order in j and v. For a neutron star
with radius R � 10 km, mass M � 1:4M�, and spin fre-
quency �s � 600 Hz (i.e., a millisecond pulsar), the di-
mensionless angular momentum j is approximately 0.2.

The equations of motion (which actually is the geodesic
equation) are given by

a� ¼ f�

m
; (2)

where f� denotes a radiation force exerted by the radiation
(or luminosity) on the test particle,m is the rest mass of the
particle, and

a� ¼ dU�

d�
þ ��

��U
�U� (3)

is the acceleration, with U� being the four-velocity of the
particle, ��

�� ¼ 1
2g

��ðg��;� þ g��;� � g��;�Þ being the

Affine connection, with a comma (,) denoting partial
derivatives.
For the sake of computational convenience, like in [3],

we assumed that the radiation scatters off the test particles
and the momentum-transfer cross section � of the test
particle is independent of energy (frequency) and direction
of the radiation. Hence, the radiation force f� due to
scattering of the radiation is proportional to and in the
direction of the radiation flux in the comoving frame
(particle’s rest frame), and is given by (see [8])

f� ¼ �F�; (4)

where F� is the quantity obtained by transforming the

radiation energy flux Tî 0̂
co measured in the comoving frame

using the orthonormal tetrad ~e�
î
associated with the parti-

cle’s rest frame as follows:

F� ¼ ~e�
î
Tî 0̂
co ¼ �h��T

��U�; (5)

where h�� ¼ 	�
� þU�U� is the projection tensor that

projects onto each spacelike hypersurface, and T�� is the
radiation stress-energy tensor in first order (in j) Boyer-
Lindquist coordinates (see [3]) (for j � 0).
According to [3], the components of the radiation stress-

energy tensor T�̂ �̂ as measured in LNRF are given by

Tt̂ t̂ � 2
I0ðrÞð1� cos�0Þ;
Tt̂ r̂ � 
I0ðrÞsin2�0;

Tt̂ �̂ � 


3
I0ðrÞJ ðrÞðcos3�0 � 3 cos�0 þ 2Þ;

Tr̂ r̂ � 2


3
I0ðrÞð1� cos3�0Þ;

Tr̂ �̂ � 


4
I0ðrÞJ ðrÞsin4�0;

T�̂ �̂ � 


3
I0ðrÞðcos3�0 � 3 cos�0 þ 2Þ;

T�̂ �̂ � 


3
I0ðrÞðcos3�0 � 3 cos�0 þ 2Þ;

(6)

where the subscript 0 denotes the quantity for the case of
nonrotating star, �0 is an apparent viewing angle of the star
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seen by a locally static observer in Schwarzschild space-

time and is given by sin�0 ¼ ðRrÞð1�2M=r
1�2M=RÞ1=2 (see [1]) for

the radius of the star R � 3M, and I0ðrÞ is the frequency-
integrated specific intensity at the radial position r and is
given by (see Appendix A in [3])

I0ðrÞ ¼ ð1� 2M=RÞ
ð1� 2M=rÞ2

mM


�R2

�
L1

L1
Edd

�
; (7)

where the Eddington luminosity L1
Edd � 4
mM=� is the

luminosity of a spherically symmetric source such that at
infinity the outward radiation force balances the inward
gravity (see [8]), and L1 is the luminosity of the star as
measured by an observer at infinity, and J ðrÞ is given by

J ðrÞ ¼ 8j

�
r

M

��
M3

R3
�M3

r3

�
þ 4v

�
r

R

�
ð1� 2M=RÞ1=2:

(8)

By transforming the above radiation stress-energy tensor
T�̂ �̂ to the LNRF using tetrad e��̂ (which is given below)

associated with the LNRF, the radiation stress-energy ten-
sor T�� in the first-order Boyer-Lindquist coordinates (see
[3]) is obtained as

T�� ¼ e��̂e
�
�̂ T

�̂ �̂; (9)

where the tetrad associated with the LNRF are

e0̂ ¼ ð1� 2M=rÞ1=2dt; e1̂ ¼ ð1� 2M=rÞ�1=2dr;

e2̂ ¼ rd�; e3̂ ¼ �2j
M2

r2
sin�þ r sin�d�: (10)

We now focus our attention on the orbits confined to the
equatorial plane (� ¼ 


2 , U� ¼ 0). The decomposition into

each component of the equations of motion (5) in tensor
form is given in the Appendix. It should also be noted that
as the radiation stress-energy tensor [Eq. (6)] first con-
structed by Miller and Lamb [3] is valid up to j ¼ 0:20,
and the equations of motion derived from it are also valid
within the above ranges.

Since the background spacetime of Eq. (1) has a rota-
tional isometry, the Killing theorem states that there exists
a rotational Killing field �� ¼ 	

�
� such that the test

particle’s specific angular momentum l ¼ g���
�U� ¼

g��	
�
�U

� ¼ g��U
� ¼ U� is conserved. Therefore, the

azimuthal component [Eq. (A3)] of the equations of mo-
tion in the Appendix governs the time evolution of the test
particle’s specific angular momentum and can be rewritten
as

dU�

d�
¼�L

3

fðrÞ
ð1�2M=rÞ

�
Að�0ÞU2

t þ
�
1�2M

r

�
2

�ðcos�0sin
2�0ÞU2

r

�
U��L

3

fðrÞ
ð1�2M=rÞ

�
�
4j

�
M2

r3

�
Að�0ÞU2

�þ rJ ðrÞBð�0Þ

þ
�
2

r

�
J ðrÞBð�0ÞU2

�

�
Ut

�LfðrÞ
�
ð2sin2�0ÞUtU�þ4j

�
M2

r3

�
ðsin2�0ÞU2

�

�
Ur

�LfðrÞ
��

r

4
þ 1

2r
U2

�

��
J ðrÞðsin4�0ÞUr; (11)

where Að�0Þ ¼ cos3�0 � 9 cos�0 þ 8, Bð�0Þ ¼
cos3�0 � 3 cos�0 þ 2, L � ð L1

L1
Edd
Þ is the luminosity pa-

rameter, and fðrÞ ¼ M
R2

ð1�2M=RÞ
ð1�2M=rÞ2 .

We are now ready to envisage the features of the solution
to the azimuthal component of the equation of motion
given in Eq. (11). Obviously, however, the analytic solution
to this coupled nonlinear ordinary differential Eq. (11) is
not readily available. Therefore, we shall look for its
numerical solution in the next section. However, even
before that we can read off the essential features of the
solution. To this end, we will interpret this azimuthal
component of the equation of motion as the equation that
determines the time evolution of the test particle’s specific
angular momentum as U� ¼ l. To summarize, this azimu-

thal component of equation of motion breaks into three
parts: the first part is line one of Eq. (11) and the two terms
in this line are responsible for the radiation drag, that is, the
well-known Poynting-Robertson effect since it is manifest
that the overall sign of this line is negative definite, and
these two terms are linearly proportional to the test parti-
cle’s specific angular momentum U� and the star’s lumi-

nosity. The second part is line two of Eq. (11) and the three
terms in this line are responsible for the radiation counter
drag that has the effect opposite to the Poynting-Robertson
effect since it is obvious that the overall sign of line two is
positive definite. The third part consists of line three and
line four of Eq. (11), and terms with opposite signs can be
regarded as being responsible for, say, radiation drag for
one sign and radiation counter drag for the other. Now, in
what follows, let us be more specific about the nature of
each term in these lines. For instance, the first term in line
two is due to the Lense-Thirring effect, that is, the dragging
of inertial frame and the second and third terms in line two
are due to the spin of the central star. Next, the second term
in line three is due to the Lense-Thirring effect and the two
terms in line four are due to the spin of the central star.
It is interesting to note that although the radiation drag or

the Poynting-Robertson effect has been long known, the
nature of this effect has not been unveiled manifestly thus
far. In Eq. (11) above, however, we were successful in
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quantifying this Poynting-Robertson effect by explicitly
identifying the terms in line one that are responsible for
the effect. In other words, by examining the equation of
motion of a test particle placed in the background of a
luminous relativistic spinning star, we demonstrated man-
ifestly that the Poynting-Robertson effect actually takes
place. Interestingly, however, this is not the end of the
story. Remarkably, in the test particle’s equation of motion,
there are also terms that appear to be responsible for the
effect just opposite to the Poynting-Robertson effect, that
is, terms in line two and some more terms in lines three and
four. This last point appears to imply that particularly for
the luminous relativistic spinning star, the new effect just
opposite to the Poynting-Robertson effect, which will be
coined henceforth as the ‘‘radiation counter drag,’’ takes
place as well. To the best of our knowledge, the counter-
drag effect of this sort has never been reported in the
literature so far. Therefore, in the following sections, we
will solve the test particle’s equation of motion numeri-
cally to construct and investigate quantitative solutions that
will support our analysis of the features of the solutions
stated above. What is more, based on both this numerical
analysis and analytical approach, we will report on the
emergence of the suspension orbit (which turns out to be
the extension of the critical point pointed out in earlier
study [1] in the absence of star’s rotation).

III. NUMERICAL INTEGRATION

In this subsection, we shall present the numerical solu-
tion to the equations of motion derived in Sec. II. We begin
with a brief description of our treatment of this numerical
analysis. Using the equations of motion derived in Sec. II,
we have followed the trajectory of the particle in the
presence of radiation from the slowly rotating star. We
confine the motion of the particle onto the equatorial plane
so that the polar angle component of the velocity U� is set
to be zero (U� ¼ 0). We assume that the star has uniform
density, so the angular velocity of the star and the angular
velocity of the LNRF at the stellar surface are given,

respectively, by � ¼ 5
2 jðMR2Þ and ! ¼ 2jðM2

R3 Þ. Thus, the
average azimuthal velocity v�̂ of the radiation source as
measured by an observer in the LNRF is calculated to be

v ¼ 1



j

�
M2

R2

��
1� 2M

R

��1=2
�
5

�
R

M

�
� 4

�
:

Figure 1 shows the trajectories of the particles starting at
the position of r ¼ 6M, where the particles have three
azimuthal velocities of 0.10 (dotted curve), 0.25 (dashed
curve), and 0.30 (dashed-dotted curve), respectively. Initial
radial velocities of all the particles are equal to zero, and
the luminosity parameter of the star with R ¼ 4M is L ¼
0:75. The solid line with a radius of 4M denotes the stellar
surface, and the long dashed circle is the virtual circular
orbit with radius of r ¼ 6M (i.e., ISCO; innermost stable

circular orbit). The starting point of all the particles are the
same as ð6M; 0Þ in Cartesian coordinates ðx; yÞ. The rota-
tion of the star is counterclockwise. Hence, the particles
start at counterclockwise rotational motion.
As can be seen in Fig. 1, although the three particles start

out in different azimuthal velocities, they end up being
along the same circular orbit, which we henceforth shall
refer to the suspension orbit. It turns out that this suspen-
sion orbit lies in between the stellar surface (i.e., r ¼ 4M)
and the ISCO (i.e., r ¼ 6M). According to the numerical
analysis, its radius is given by r ¼ 4:66M.
Figure 2 shows the radial velocities of the particles in

Fig. 1 inflowing toward the stellar surface from r ¼ 6M as
a function of the radius. Numerical integration demon-
strates that the radial velocities of the particles at the
suspension orbit vanish, and the time rate of change of

FIG. 1. shows the trajectories of the particles having three
azimuthal velocities of 0.10 (dotted curve), 0.25 (dashed curve),
and 0.30 (dashed-dotted curve), respectively, when they initially
corotate with the star (which is rotating counterclockwise all the
way) having angular momentum j ¼ 0:1.

FIG. 2. shows locally measured radial velocities as functions
of radius for particles in Fig. 1 inflowing from r ¼ 6M toward
the suspension orbit.
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the radial velocities is also equal to zero, i.e., Ur ¼ 0 and
dUr

d� ¼ 0 at the suspension orbit.

Figure 3 shows the azimuthal velocities of the particles
in Fig. 1 as a function of the radius, and there we can figure

out that the azimuthal velocities v
~� of the particles at the

suspension orbit as measured by a locally static observer

are all equal to v
~� ’ 0:056 in units of c (the speed of light),

and the time rate of change of the azimuthal velocities is

equal to zero, i.e., U� ¼ constant and
dU�

d� ¼ 0 at the

suspension orbit. These indicate that the particles orbit at
constant speed there. Remarkably, essentially the same is
true for the case where the central star is not rotating. This
point appears to indicate that the emergence of both the
critical point for the case of the nonrotating central star and
the suspension orbit for the present case of the rotating
central star are indeed a generic feature that a high lumi-
nosity relativistic star exhibits.

Thus far in Figs. 1–3, we have studied the case where the
central star and the test particles ‘‘corotate’’ all the way.
Next, we move on to the other case where they counter-
rotate initially but end up corotating eventually and here,
the rotation of the star is counterclockwise all the way. The
result is given in Figs. 4–6.

To summarize, in Figs. 1–3, we have studied the case
where the central star and the test particles corotate all the
way. In Figs. 4–6, however, we have studied the other case
where they counter-rotate initially but end up corotating
eventually. Namely, regardless of initial conditions, i.e.,
whether they are initially corotating or counterrotating, the
system reaches the same final equilibrium state where the
test particles end up corotating with the central star. This
result indeed is very interesting and curious particularly for
the case when the central luminous star is spinning since
the eventual fate of the test particles is the corotation with
the central star at the suspension orbit. Therefore, we need
a careful understanding of the underlying physics, and our
interpretation is based upon the geodesic equation of the

test particles at the suspension orbit given in Eq. (13)
below, and it can be described as follows.
First, the first line term in Eq. (13) plays the role of

radiation drag because its overall sign is negative definite
due to Ut < 0 and is proportional to the test particle’s
specific angular momentum U�. Note that the radiation

drag of the first line term works on the test particle regard-
less of the spin of the central star.
Secondly, fourth line terms, on the other hand, play the

role of radiation counter drag because its overall sign is
positive definite and is proportional to the central star’s
angular momentum j. Note that the radiation counter drag
of these fourth line terms work on the test particle regard-
less of the test particle’s specific angular momentum U�.

FIG. 3. shows locally measured azimuthal velocities as func-
tions of radius for particles in Fig. 1 inflowing from r ¼ 6M
toward the suspension orbit.

FIG. 4. shows the trajectories of the particles having three
azimuthal velocities of �0:10 (dotted curve), �0:25 (dashed
curve), and �0:30 (dashed-dotted curve), respectively, when
they initially counter rotate with the star (which is rotating
counterclockwise all the way) having angular momentum j ¼
0:1 but end up being corotating with the star mainly due to the
radiation counter drag.

FIG. 5. shows locally measured radial velocities as functions
of radius for particles in Fig. 4 inflowing from r ¼ 6M toward
the suspension orbit.
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Indeed, the radiation drag term in the first line of
Eq. (13), which represent the Poynting-Robertson effect,
is well known, and it is generic as it is independent of the
central star’s angular momentum. The radiation counter-
drag terms in the fourth line have been neglected in our
conventional understanding of the Poynting-Robertson ef-
fect and hence is rather unfamiliar. Besides, it is not so
generic as it appears only in the presence of the central
star’s angular momentum. Therefore, unlike the case where
the central luminous star is nonrotating, for the case at hand
where the central star is spinning, not only the radiation
drag term in the first line but the radiation counter-drag
terms in the fourth line operate as well and indeed they
would affect the motion of the test particle on equal footing
to determine its trajectory. Interestingly enough, our nu-
merical study above exhibits that once the test particle
arrives at the suspension orbit, it never comes to a complete
stop. Rather, it keeps corotating with the central luminous
spinning star, and this is the new discovery of the present
work, which has not been realized in the previous literature
addressing similarly related issues.

As can be noticed from the numerical integration, the
radiation from the slowly rotating star makes the test
particles hover around the star with uniform azimuthal
velocity regardless of the initial position, and the initial
angular momentum of the particle and the particle’s motion
in the suspension orbit is characterized by the following
conditions:

Ur ¼ 0 U� ¼ constant
dUr

d�
¼ dU�

d�
¼ 0:

IV. EXAMINATION OF THE MOTION IN THE
SUSPENSION ORBIT

In order to understand the nature of ‘‘forces’’ exerted on
the particle hovering around the suspension orbit, let us

examine the equations of motion using the conditions
mentioned above in Sec. III and then determine the coor-
dinate radius of the suspension orbit and the azimuthal
velocity of the particle as measured by the locally static
observer.

By inserting Ur ¼ 0 and
dU�

d� ¼ 0 of the conditions for

the suspension orbit into the� component [Eq. (11)] of the
equations of motion, we obtain the following:

�
4j

M2

r2
Að�0Þ þ 2J ðrÞBð�0Þ

�
U2

� þ rAð�0ÞU�Ut

þ r2J ðrÞBð�0Þ ¼ 0; (12)

where the luminosity parameter L as a common factor is
omitted. Then, plugging J ðrÞ in Eq. (8) into the above
Eq. (12) gives, after some manipulation,

0 ¼ dU�

d�

¼ Að�0ÞUtU� þ 4j

�
M2

r3

�
½Að�0Þ � 4Bð�0Þ	U2

�

þ 8Bð�0Þ
�
2j

�
M2

R3

�
þ v

�
1

R

�
ð1� 2M=RÞ1=2

�
U2

�

þ 8j

�
r2

R3
� 1

r

�
M2Bð�0Þ

þ 4v

�
r2

R

�
ð1� 2M=RÞ1=2Bð�0Þ: (13)

First, terms in line one in Eq. (13) play the role of
radiation drag because its overall sign is negative definite
due to Ut < 0 and is proportional to the test particle’s
specific angular momentum U�. Therefore, the radiation

drag terms in line one work on the test particle having the
azimuthal velocity U� regardless of the spin of the central

star. Second, as ½Að�0Þ � 4Bð�0Þ	 of line two in Eq. (13)
has positive value for�0 � 0, the overall sign of line two is
positive definite, thus this line serves as the radiation
counter drag that speeds up the azimuthal motion. It should
also be noted that this line two is proportional to the Lense-

Thirring angular velocity! ¼ 2jðM2

r2
Þ and the test particle’s

specific angular momentum square U2
�, thus the radiation

counter drag of line two is due to the Lense-Thirring effect
arising from the rotation of the central star. Unfortunately,
line two in Eq. (13) has a very tiny contribution to the
azimuthal velocity of the particle because of U� � j � 1

in the suspension orbit. This proportionality relation be-
tween U� and j can be noticed from the fact that the

suspension orbit in slow rotation case amounts to a critical
point (see [1]) in the nonrotating case, and U� at the

critical point is equal to zero, and also can be supported
by subsequent calculation in Eq. (15). Therefore, all terms
including U2

� are negligible in the suspension orbit.

However, in the case where it is not allowed to ignore
U� such as in the initial trajectory at r ¼ 6M, all the

FIG. 6. shows locally measured azimuthal velocities as func-
tions of radius for particles in Fig. 4 inflowing from r ¼ 6M
toward the suspension orbit.
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radiation counter-drag terms, including U2
�, could contrib-

ute somewhat to the azimuthal velocity of the particle.
Third, two terms in line three in Eq. (13) have overall
positive definite sign, and thus line three behaves as the
radiation counter drag. Since line three is proportional to
the central star’s angular momentum, j, the radiation
counter drag of line three is due to the rotation of the
central star. Also, as line three is proportional to U2

�, its

contribution is negligible in the suspension orbit. Lastly,
two terms of line four in Eq. (13) have overall positive
definite sign, thus line four serves as the radiation counter
drag. Since line four is linearly proportional to the central
star’s angular momentum j like the third line, the radiation
counter drag of line three is also due to the rotation of the
central star. However, the radiation counter drag of the
fourth line acts on the test particle regardless of the velocity
of the particle. Also, they are comparable to the radiation
drag term of line one. Therefore, the uniform azimuthal
velocity of the particle in the suspension orbit can be
attributed to the terms of line four. In other words, the
balance between the first line term (radiation drag) and
fourth line terms (radiation counter drag) makes the parti-
cle hover around the central star with uniform azimuthal
velocity. Since the radiation drag term of the first line
exerts on the test particle having the specific angular
momentum U� regardless of the spin (j) of the central

star, this term exists even when the central star is not
rotating, whereas the radiation counter-drag terms in line
two through four are linearly proportional to the central
star’s angular momentum (j), if the central star is non-
rotating, all the radiation counter-drag terms disappear.
Therefore, the emergence of the radiation counter drag is
attributed to the rotation of the central star. It also is of
interest that there is another radiation counter-drag term
proportional to the Lense-Thirring angular velocity ! and
the particle’s specific angular momentum square (U2

�).

Next, in order to calculate particularly the azimuthal
velocity as measured by a locally static observer, we
make use of normalization condition g��U�U� ¼ �1.

That is, plugging Ur ¼ 0 of the conditions for the suspen-
sion orbit into the normalization condition yields

�
1� 2M

r

�
U2

� � 4j
M2

r
UtU� þ r2

�
1� 2M

r

�
� r2U2

t ¼ 0:

(14)

It is difficult to obtain analytically U� and Ut from the

combination of Eqs. (12) and (14). Therefore, by assuming
that U2

� is negligible from our experience in the case of a

nonrotating star, i.e.,U2
� � 0 and neglecting terms of order

higher than linear in j, we can get approximate U� and Ut,

respectively, as,

U� � r

�
1� 2M

r

��1=2
J ðrÞ

�
Bð�Þ
Að�Þ

�
; (15)

Ut � �2j

�
M2

r3

�
U� �

�
1� 2M

r

�
1=2

: (16)

Using J ðrÞ � j in Eq. (8), Eq. (15) indicates U� � j,

which is consistent with our assumption above.
The azimuthal velocity of the test particle as measured

by a locally static observer is given by

v
~� ¼ U 
 e ~�

U 
 e~t

¼ � 1

r

�
1� 2M

r

�
1=2

�
U�

Ut

�
þ 2j

�
M2

r2

��
1� 2M

r

��1=2
;

(17)

where e
~� and e~t are tetrad associated with the locally static

observer. Substitution of
U�

Ut
� �rð1� 2M

r Þ�1J ðrÞ Bð�0Þ
Að�0Þ ob-

tained from Eqs. (15) and (16) into Eq. (17) yields the
azimuthal velocity of the particle in the suspension orbit as
measured by the locally static observer to be

v
~�
att �

�
1� 2M

r

��1=2
J ðrÞBð�0Þ

Að�0Þ þ 2j

�
M2

r2

��
1� 2M

r

��1=2
:

(18)

The first term in Eq. (18) indicates the contribution to the
azimuthal velocity of the particle in the suspension orbit
due to the combination of the rotation of the star and the
rotation of the radiation source which rotates with the star
by being attached to the stellar surface. Since the second
term in Eq. (18) is equal to the azimuthal velocity of the
LNRF measured by the locally static observer, it is the
contribution due to the Lense-Thirring effect (dragging of
inertial frame) arising from the slow rotation of the star.
In order to obtain the coordinate radius from the center

of the star to the suspension orbit, we make use of Ur

d� ¼ 0

andUr ¼ 0 of the conditions characterizing the suspension
orbit together with U� in Eq. (15) and Ut in Eq. (16). By

inserting these into Eq. (A2) in the Appendix, that is, the r
component of the equations of motion, we get

�
L1

L1
Edd

�
�

�
1� 2M

r

�
1=2

�
1� 6j

�
M

r

�
J ðrÞBð�Þ

Að�Þ
�
; (19)

and the solution of Eq. (19) is the coordinate radius
rsuspension from the center of the star to the suspension orbit.

As we can notice from Eq. (19), it is noteworthy that the
coordinate radius rso of the suspension orbit indicating the
circular orbit of the particle hovering around the slowly
rotating massive star depends on the luminosity parameter
ð L1
L1
Edd
Þ and the dimensionless angular momentum j of the

star alone, and does not depend on the initial position and
the initial velocity (angular momentum) of the particles.
Also, since Eq. (A1) in the Appendix, that is, the t compo-
nent of the equations of motion, is satisfied by Eqs. (12)
and (14), the problem of overdetermining Ut and U� does
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not occur. For ð L1
L1
Edd
Þ ¼ 0:75 and j ¼ 0:10, Eq. (19) gives

rso ’ 4:63M, which is similar to the value (rso ’ 4:66M) in
the numerical integration of Sec. III. Then, plugging rso ’
4:63M and j ¼ 0:10 into Eq. (18) yields v

~�
suspension ’

0:056 ¼ 0:044þ 0:012, which is also very similar to the

value (v
~� ’ 0:056) obtained from the numerical integra-

tion in Sec. III, where 0.044 is the contribution from
Doppler shift resulting from the combination of the rota-
tion of the star and the radiation source, and 0.012 is the
contribution from the Lense-Thirring effect due to the
rotation of the star. Thus, we can find that the Doppler
shift due to the rotation of both the central star and the
radiation source have even larger contribution to the azi-
muthal velocity of the test particle than Lense-Thirring
effect by the rotation of the central star.

In Fig. 7, as can be seen from the comparison of the
solid line [the plot of the approximate expression given by
Eq. (19)] and numerical values (triangles and asterisks)
obtained by the numerical integration for j ¼ 0:10, above
approximate Eq. (19) is valid only for j < 0:10. If j ¼ 0
and v ¼ 0, i.e., the star is nonrotating, and the radiation
source does not rotate either, Eq. (19) reduces to

�
L1

L1
Edd

�
¼

�
1� 2M

r

�
1=2

: (20)

In this case, for ð L1
L1
Edd
Þ ¼ 0:75, Eq. (20) gives rso ¼

32M=7 ’ 4:57M, which is smaller than rso ’ 4:66M in
the slowly rotation case. Thus, the rotation of the star and
the radiation source makes the suspension orbit expand
outward, which is obvious from the fact that the rotation of
the particles generates centrifugal force, and this force is

balanced with the gravitational force and the radiation
pressure.
Also, if rso ¼ 4M (stellar radius) and rso ¼ 6M (ISCO)

in the case of j ¼ 0:10, then from Eq. (19) we can get
ð L1
L1
Edd
Þ ’ 0:70 and ð L1

L1
Edd
Þ ’ 0:80, respectively, so if the lumi-

nosity of the star measured at infinity lies within the range
of 0:70 � ð L1

L1
Edd
Þ � 0:80, the suspension orbit appears in

boundary layer between the stellar surface and the ISCO.
Therefore, if the slowly rotating central star with radius of
R ¼ 4M has luminosity of L ¼ 0:75 and angular momen-
tum of j ¼ 0:10, the test particle hovers around the star
with azimuthal velocity of about 0:05c in the boundary
layer between the stellar surface and the ISCO, where the
rotation direction of the particle is the same as that of the
star’s spin.

V. DISCUSSION

We now summarize what we have realized in the present
work, which are new ingredients that have not been ad-
dressed in the previous literature. The results presented in
Secs. III and IV show that there exists a suspension orbit
whose location is determined by the central star’s luminos-
ity L as measured at infinity and the star’s angular momen-
tum j and is independent of the initial positions and
velocities of test particles. To be more concrete, we have
explored the two-dimensional motion of test particles on
the equatorial plane around a slowly rotating star with the
asymptotic luminosity measured at infinity in the range of
0:70 � ð L1

L1
Edd
Þ � 1. We found out that for the luminosity in

the above range, there exist suspension orbit at which the
radial velocity of the test particle vanishes and the proper
time rate of change in the radial and azimuthal velocity
also vanish, and the particle’s azimuthal velocity U� is

constant, thus the test particle hovers around the star with
uniform azimuthal velocity regardless of their initial posi-
tions and velocities. And it is interesting to note that not
only the radiation drag but also the radiation counter drags,
which result from the central star’s spin exert on the
particle in the suspension orbit and the balance between
the radiation drag, and the radiation counter drags make the
particle hover around the star at a uniform azimuthal
velocity much greater than that due to the Lense-Thirring
effect (i.e., the dragging of inertial frame). Furthermore, it
is noticeable that there exists another radiation counter-
drag term that is proportional to the Lense-Thirring angular
velocity !.
Interestingly enough, Bini, Jantzen, and Stella [9] re-

ported a study that happens to be akin to the motivation of
our work and consistent with our results in some respects.
They found the existence of the critical radius at which the
test particle corotates with the geometry in the Kerr space-
time background. However, the radiation stress-energy
tensor they employed is valid for only the photons in
outward radial motion with zero angular momentum, and

FIG. 7. shows the coordinate radius of the suspension orbit rso
as a function of the luminosity L for the angular momentum of
the central star j ¼ 0:10 and 0.20, respectively. The solid line
denotes the plot of the approximate expression given by Eq. (19)
for j ¼ 0:10, and triangles (j ¼ 0:10) and asterisks (j ¼ 0:20),
respectively, denote values obtained through the numerical in-
tegration.
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thus is not appropriate to the applications to the accretion
process onto the rotating relativistic stars like the neutron
star. In the present study, on the other hand, since we
employed the radiation stress-energy tensor first con-
structed by Miller and Lamb [3], which has no limitations
whatsoever on the character of the emitted photons, our
results can be applied to the accretion process onto the
rotating relativistic stars.

Lastly, in the forthcoming article, we will report on our
result of the study where the central luminous star is non-
rotating (j ¼ 0).
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APPENDIX

The equations of motion (5) of a tensorial form is
decomposed into each components as follows:

dUt

d�
¼ �

m

�
1� 2M

r

�
Tt�U� þ 2j

�

m

�
M2

r

�
T��U� � �

m
UtT

��U�U�

¼ M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2 Að�0ÞUt þ M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ sin

2�0Ur

þ M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
2j

�
M2

r3

�
Að�0Þ þ

�
1

r

�
J ðrÞBð�0Þ

�
U� � M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3 Að�0ÞU3

t

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
ð2sin2�0ÞUt þ

�
1� 2M

r

�
ðcos�0sin

2�0ÞUr

�
UtUr

� M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3

�
4j

�
M2

r3

�
Að�0Þ þ

�
2

r

�
J ðrÞBð�0Þ

�
U2

t U�

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
4j

�
M2

r3

�
ðsin2�0Þ þ

�
1

2r

�
J ðrÞðsin4�0Þ

�
UtUrU�; (A1)

dUr

d�
¼ � 1

r
þ 1

r

�
1� 2M

r

��2
�
1� 3M

r

�
U2

t � 1

r

�
1�M

r

�
U2

r � 2j

�
M2

r4

��
1� 2M

r

��2
UtU� � �

m

�
1� 2M

r

��1
Tr�U�

� �

m
UrT

��U�U�

¼ � 1

r
þ 1

r

�
1� 2M

r

��2
�
1� 3M

r

�
U2

t � 1

r

�
1�M

r

�
U2

r � 2j

�
M2

r4

��
1� 2M

r

��2
UtU�

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3 sin

2�0Ut � M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2 ðcos�0sin

2�0ÞUr

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3

�
2j

�
M2

r3

�
ðsin2�0Þ þ

�
1

4r

�
J ðrÞðsin4�0Þ

�
U� � M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3 Að�0ÞU2

t Ur

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
ð2sin2�0ÞUt þ

�
1� 2M

r

�
ðcos�0sin

2�0ÞUr

�
U2

r

� M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3

�
4j

�
M2

r3

�
Að�0Þ þ

�
2

r

�
J ðrÞBð�0Þ

�
UtUrU�

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
4j

�
M2

r3

�
ðsin2�0Þ þ

�
1

2r

�
J ðrÞðsin4�0Þ

�
U2

rU�; (A2)
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dU�

d�
¼ 2j

�

m

�
M2

r

�
Tt�U� � �

m
r2T��U� � �

m
U�T

��U�U�

¼ � M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3 rJ ðrÞBð�0ÞUt � M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
r

4

�
J ðrÞðsin4�0ÞUr

� M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3 Að�0ÞU2

t U� � M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
ð2sin2�0ÞUt þ

�
1� 2M

r

�
ðcos�0sin

2�0ÞUr

�

�UrU� � M

3R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ3

�
4j

�
M2

r3

�
Að�0Þ þ

�
2

r

�
J ðrÞBð�0Þ

�
UtU

2
�

� M

R2

�
L1

L1
Edd

� ð1� 2M=RÞ
ð1� 2M=rÞ2

�
4j

�
M2

r3

�
ðsin2�0Þ þ

�
1

2r

�
J ðrÞðsin4�0Þ

�
UrU

2
�; (A3)

where Að�0Þ ¼ cos3�0 � 9 cos�0 þ 8, Bð�0Þ ¼ cos3�0 � 3 cos�0 þ 2, and sin�0 ¼ ðRrÞð1�2M=r
1�2M=RÞ1=2.
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