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We discuss the linearization of Einstein equations in the presence of a cosmological constant, by

expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can

find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz

gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that

the components of the gravitational field satisfying the appropriate Poisson equations have the property of

ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and

�> 0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in

which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild–de Sitter

exact solution of Einstein’s equations (due to a generalization of Birkhoff’s theorem) in the domain

between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is

conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge

conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild–

de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting

metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that

solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the

physical energy density is positive.

DOI: 10.1103/PhysRevD.81.084002 PACS numbers: 04.20.Jb, 04.25.Nx, 04.40.Nr

I. INTRODUCTION

De Sitter space has become physically relevant in the
last decade, after the extraordinary discovery, based on
astrophysical and cosmological observations, that our
Universe is accelerating at late eras. A diverse range of
results [1], from cosmic microwave background tempera-
ture fluctuation measurements to high-redshift supernova
measurements, baryon acoustic oscillation measurements
and weak lensing techniques (such as cosmic shear and
red-shift space distortion), has indicated that a global best
fit for cosmology is provided by a simple Friedman-
Robertson-Walker Universe with a positive cosmological
constant� [2], whose dominance over matter at late eras is
held responsible for the Universe acceleration. In fact,
according to this simple and successful scenario, the best
fitting of the data says that over 70% of the current-epoch
Universe energy-density budget is dominated by this mys-
terious form of dark energy, which is compatible with a
cosmological constant �.

Once � is included in the Einstein equations for general
relativity, its implications are not limited to cosmological
problems. The observable effects of the cosmological con-
stant for orbits in the solar system and double pulsars exist
[3], but are too small to be detected. Its effect becomes

more important for extended galaxy clusters through a
correction to the Virial relation [4]. In this paper we
address the problem of understanding the consistency of
the theory, in the presence of �, when applied to local
gravity and whether the steps of linearizing gravity and
going to the Lorentz gauge lead to a sound description of
the gravitational field within special relativity, and to a
Newtonian form for the metric, in terms of a unique scalar
potential. The prevalent view [5] is that the effects of the
cosmological constant are equivalent locally, i.e., within
the distances of galaxies or galaxy clusters, to those cor-
responding to a repulsive tidal force, of a conservative
nature, being derived from a unique scalar potential ��

of the form

��=c
2 ¼ �1

6�r2: (1)

The correspondence principle demands that the theory
should contain the Newtonian limit for weak classical
gravity, with a relative motion of the source much smaller
than c and with the material stresses much smaller than the
mass-energy density. In absence of �, general relativity
satisfies this limit. The requirement of the Newtonian
limit is made explicit by linearizing the theory for weak
gravity, expanding around the flat Minkowski space-time

PHYSICAL REVIEW D 81, 084002 (2010)

1550-7998=2010=81(8)=084002(7) 084002-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.084002


��� ¼ ð1;�1;�1;�1Þ, writing in Cartesian components

g�� ¼ ��� þ h�� (2)

and assuming that both h�� and the derivatives are small

with respect to unity, so only first-order terms are kept.
With the transformation to the Lorentz gauge and the
dominance of the mass-energy density for the gravity
source, one derives the ‘‘Newtonian metric’’ for the gravi-
tational field

ds2 ¼ ð1þ 2�=c2Þc2dt2 � ð1� 2�=c2Þd~x2; (3)

where � is the unique scalar potential, obtained as a
solution of the Poisson equation with the appropriately
linearized source. One should notice that the 3-space met-
ric in (3) is conformally flat. If these conditions are met, the
constant � of general relativity in the Einstein equations,
R�� � 1

2g��R ¼ ��T��, describing the coupling of the

source to the gravitational field, is identified with Newton
constant G as

�ð� ¼ 0Þ ¼ 8�G=c4: (4)

In using (3) and (4) for the geodesics of a test particle in
nonrelativistic motion, the result is Newton equation of

motion with a force ~F ¼ � ~r�. In that nonrelativistic
limit, only the h00 component of the gravitational field is
operative. Equation (3), however, is more general and it
applies, for example, to the problem of light bending
within special relativity.

How is this picture modified, if any, by the presence of
the (positive) cosmological constant � � 0? It is quite
frequent to see in the literature that the above results are
preserved and, then, one adds the �-term a posteriori. We
emphasize, however, that the conditions to arrive to (3) are
not guaranteed in the presence of � and, in particular, that
the theory contains two fundamental constants: � and �.
Without the Newtonian limit, the identification (4) finds no
justification.

The language of a gravitational field necessitates the
introduction of a space-time background metric. For the
purpose of this work, the background will still be
Minkowski’s, so that weak gravity means first order in
both � and �. In this view, � is sitting in the right-hand
side of Einstein equations, with the meaning of an unavoid-
able gravity source as ‘‘dark energy.’’ We first find in
Sec. II the new solutions for linearized gravity assuming
that the conditions for the choice of coordinates in the
Lorentz gauge are satisfied. We shall see that we have to
depart from strict spherical symmetry, finding some com-
ponents of the field with cylindrical symmetry. In Sec. III
we linearize the Schwarzschild–de Sitter solution and pro-
ceed, first, to transform it to a gauge in which the 3-space
metric is conformally flat and, then, make an additional
coordinate transformation leading to the Lorentz gauge
conditions. We compare the solution found in Sec. II
with that for the linearized Schwarzschild–de Sitter metric

[6] when the latter is appropriately transformed to the
Lorentz gauge. We investigate whether the resulting metric
is Newtonian, i.e., with the structure shown in (3) in terms
of a unique scalar potential. In the physically meaningful
coordinate frame where the metric of 3-space is confor-
mally flat, we examine effects to first order in both � and
m, wherem is the mass of a massive celestial object, on the
photon orbit, thus demonstrating the existence of nontrivial
effects of the cosmological constant on it. These findings
are relevant for the ongoing debate in the literature about
the rôle of � on the deflection of light. Finally, Sec. IV
presents a discussion of the results and some open issues.

II. LINEARIZED GRAVITY IN THE PRESENCE OF
A COSMOLOGICAL CONSTANT

The Newtonian gravitational field is described by a
single scalar potential �ð ~xÞ which is a solution of the
Poisson equation, with a matter source given by the mass
density �m

r2�ð ~xÞ ¼ 4�G�m: (5)

The coupling of the source to the gravitational field is
determined by the Newton constant G.
Einstein equations, derived from the Einstein-Hilbert

four-dimensional action, read

R�� � 1
2g��Rþ�g�� ¼ ��T��; (6)

where �> 0 is the cosmological constant, which has the
dimensions of a curvature, namely ½length��2, T�� is the

stress-energy tensor of matter in the gravitational field
generated by the metric tensor g�� and � is a dimensionful

constant defining the coupling of gravity to matter.
Clearly Eqs. (6) do not permit a flat spacetime in the

absence of matter sources, when they reduce to

R�� ¼ �g�� (7)

which implies curvature. In spite of this, we still insist on
the possibility of connecting (6) with a linearized theory
around Minkowski flat space-time, within special relativ-
ity, using the expansion (2): h�� would be the metric

perturbation, a tensor under global Lorentz coordinate
transformations, This approach necessarily implies that
the cosmological constant� is not a mere geometric effect
but has to be put on the right-hand side of (6) and inter-
preted as a form of dark energy, i.e., as an additional source
of gravity beyond matter. The consistency of the linearized
theory requires the limit of weak gravity, with the source
being of first order, as is the field h�� and its derivatives. As

a consequence, we have to stay in first order in both � and
�, without any back-reaction of the gravitational field on
T�� and g�� in the right-hand side of Eq. (6).

Upon defining the trace-reversed version of the h’s as

~h �� ¼ h�� � 1
2���h; (8)
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it follows that:

h � h�� ¼ �~h�� � �~h h�� ¼ ~h�� � 1
2���

~h; (9)

where it is understood the indices are raised and lowered
with the Minkowski metric. One observes that the Ricci
tensor R�� can be written as

R�� ¼ 1
2ðhh�� � h;�� � h��;�� � h��;��Þ (10)

to leading order in the field and its derivatives, with h �
���@�@� denoting the D’Alembertian operator.

A suitable coordinate transformation can get rid of the
last two terms of Eq. (10) if we choose the following
condition

~h �
�;� ¼ 0: (11)

This is called the Lorentz gauge, in analogy with
electromagnetism.

In the Lorentz gauge, the Einstein tensor G�� ¼ R�� �
1
2 g��R becomes

G�� ¼ 1
2h

~h��; (12)

so that the full field equations (6) now reduce to

h~h�� ¼ �2�T�� � 2���� (13)

Equations (13), plus the gauge condition (11), constitute
the basic ingredients for our study. These linear field
equations are also decoupled when they are written in

terms of ~h��. As a consequence, the trace-reversed ~h��

has the meaning of the gravitational field and Eq. (13) is the
relativistic generalization of the Newtonian gravity equa-
tion (5).
We are interested in the solution for the linearized

metric, in the Lorentz gauge, for a weak static field gen-
erated by a point massM located at r ¼ 0: all components
of T�� vanish except

T00 ¼ Mc2	ð ~xÞ (14)

In terms of m � �Mc2=8�, we find the static solutions to
(13) and (11) in diagonal form in the presence of �. Each

diagonal component ~h�� (no sum over �) is independent

of the specific coordinate x�. This condition implies that

the space components of the gravitational field ~hii (no sum
over i), if they exist, have to depart from spherical sym-
metry. The solution is

~h �� ¼
� 4m

r þ 1
3�r2 0 0 0

0 � 1
2�ðy2 þ z2Þ 0 0

0 0 � 1
2 �ðz2 þ x2Þ 0

0 0 0 � 1
2�ðx2 þ y2Þ

0
BBB@

1
CCCA (15)

We observe that these components of the field, each of
them solution of Poisson’s equations, satisfy the following:

(1) The scalar potential � ¼ 1
4 c

2 ~h00 gets modified by

an attractive effect induced by a positive energy
density due to �, besides that generated by (14)
due to ordinary matter;

(2) there is a novel tensor potential 
ij ¼ 1
4 c

2 ~hij with a

repulsive effect induced by the negative pressure
density due to �;

(3) whereas the scalar potential presents a rotational
symmetry, the components of the tensor potential
have a cylindrical symmetry around the correspond-
ing principal axis. The cylindrical symmetry is, in
fact, the same for the three principal axes, a remnant

of the rotational symmetry. This breaking of the
rotational symmetry is an artifact of the gauge fixing
imposed by the Lorentz condition.

From Eq. (15) we find the complete trace of the field and
the 3-space trace of the tensor potential as

~h �
� � ~h ¼ � 4m

r
þ 4

3
�r2 
ii � 
 ¼ þ 1

4
c2�r2:

(16)

From these results it becomes already apparent that the
metric is not Newtonian when � � 0. In going from the

trace-reversed gravitational field ~h�� to the metric pertur-

bation in the Lorentz gauge, we find

h�� ¼
2�� 2
 0 0 0

0 2�þ 2
þ 4
11 0 0
0 0 2�þ 2
þ 4
22 0
0 0 0 2�þ 2
þ 4
33

0
BBB@

1
CCCA (17)

with the property h ¼ �~h for the complete trace, as re-
quired. Equation (17) gives the solution for the metric
within special relativity. It is neither conformally flat nor
of the form we have for � ¼ 0, i.e. g00 ¼ 1þ 2�=c2,
gii ¼ �1þ 2�=c2 (no sum over i), i ¼ 1, 2, 3. The con-

tribution of the modified scalar potential � to the metric
(17) is still as in the Newtonian form (3), but all the
diagonal components get additional contributions from
the tensor potential. We realize, in particular, that the h00
component acquires an effective �-term, which originates
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from both the attractive scalar potential and the trace of the
repulsive tensor potential: its net effect is repulsive and
given by (1). One should notice that, whereas

h00 ¼ �2
m

r
� 1

3
�r2; (18)

is the only component of the metric entering the geodesic
equation for the motion of a nonrelativistic body, given by
d2xi

dt2
’ �c2�i

00, where �
�
�� is the Christoffel symbol, the 3-

space components of the metric

hii ¼ �2
m

r
þ 1

6
�ðr2 þ 3x2i Þ;

i ¼ 1; 2; 3 ðno sum over iÞ
(19)

are also intervening for a test-body in relativistic motion.
For the case of light bending, we shall discuss the effects of
the cosmological constant �> 0 on the photon orbit in
Sec. III. We note at this point that within the
Schwarzschild–de Sitter metric, the magnitude of the ef-
fects of the cosmological constant�> 0 on the bending of
light from distant galaxies is still an open issue. At present,
there are several approaches to the subject, giving different
answers, in which the order of magnitude of the effects
ranges from zero [7] or unobservably small [8] to appre-
ciable one [9,10].

Our considerations in this paper pertain to local effects
of the cosmological constant, which are discussed within
the special relativity framework. As we show in the next
Sec. III, our linearized solution (17) can be obtained from
the Schwarzschild–de Sitter solution upon appropriate co-
ordinate transformations.

III. THE LINEARIZED SCHWARZSCHILD–
DE SITTER SOLUTION

At this point one should investigate the connection of the
linearized gravity solution found in Sec. II with the
Schwarzschild–de Sitter metric. We do know that, under
the conditions we have imposed for the source of coupling
with gravity, there is a theorem analogous to Birkhoff’s for
the Schwarzschild metric, stating [6] that there is a unique
static solution with spherical symmetry of the form1:

ds2 ¼
�
1� 2

m

�r
���r2=3

�
c2dt2 �

�
1� 2

m

�r
���r2=3

��1

� d�r2 � �r2ðd ��2 þ sin2 ��d ��2Þ: (21)

This is the Schwarzschild–de Sitter metric, in which the
Schwarzschild space coordinates define �r as the ‘‘area
distance,’’ i.e., the distance for which the surface is given
by the Euclidean measure 4� �r2. The presence of horizons

at the approximate values �r ¼ 2m and �r ¼ ffiffiffiffiffiffiffiffiffi
3=�

p
should

be noted along with the fact that the observer is actually
required to live in the space between them, for our weak-
gravity analysis to be valid. Indeed, in the domain

2m � �r �
ffiffiffiffiffiffiffiffiffi
3=�

p
(22)

we can linearize the components of the metric (21) around
Minkowski background space-time. Even for the case� ¼
0 and a fortiori for � � 0, the result for the metric (21) is
neither conformally flat nor of the Newtonian form (3) with
a single scalar potential. We notice, in particular, that the
lack of a conformally flat metric in these Schwarzschild
coordinates implies that the metric is not diagonal when
written in Cartesian components, even if it is so in spheri-
cal components. One can check that the corresponding
linearized metric does not satisfy the Lorentz gauge
condition.
At this point it is natural to ask whether it is possible to

reach the Lorentz gauge by a coordinate transformation. To
this end, we proceed in two steps:
(i) First, we move from the Schwarzschild coordinates to

fully symmetric spherical coordinates leading to a confor-
mally flat metric in 3-space. This transformation exists
because, with � � 0, we are in a case of constant curva-
ture. With the transformation

�r ! r0 ¼ �r

�
1�m

�r
þ 1

12
��r2

�
(23)

the resulting metric becomes

ds2 ¼
�
1� 2

m

r0
� 1

3
�r02

�
c2dt2

�
�
1þ 2

m

r0
� 1

6
�r02

�
d~x02 (24)

In Eq. (24), both Cartesian and spherical components of the
3-space metric are diagonal. In spite of this property, the
metric is not of the form of Eq. (3) in terms of the r0
coordinate, i.e. ð1þ 2�0ðr0ÞÞ vs ð1� 2�0ðr0ÞÞ, if � � 0.
One can check, in fact, that the Lorentz gauge condition is
not satisfied for the metric (24) in the presence of a nonzero
cosmological constant, � � 0, which is to be contrasted
with the � ¼ 0 case, for which the two gauges coincide.
The trace of the linearized metric perturbation is given by

h0 ¼ 4
m

r0
� 5

6
�r02 (25)

1According to the analysis in [6], if one relaxes the assumption
of staticity, the spherical symmetry implies two types of solu-
tions in the case of positive �> 0: (i) a static solution (21),
expressing the field around a spherically symmetric mass, where,
as in the Schwarzschild case, the mass is an integration constant
of the Einstein equations; (ii) a nonstatic, time-dependent solu-
tion, distinct from that due to the field around a spherical
distribution of masses, which consists of successive identical
spheres, that is, a cylindrical Universe of Bertotti-Kasner type:

ds2 ¼ dt2 � e2
ffiffiffi
�

p
tdr2 � 1

�
ðd�2 þ sin2�d�2Þ; (20)

In view of the last term, the reader should understand now why
this solution exists only in the case of positive �.
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so that the trace-reversed gravitational field (8) is given, in
these coordinates, by

~h 0
�� ¼

�4m
r0 þ 1

12�r02 0 0 0

0 � 1
4�r02 0 0

0 0 � 1
4�r02 0

0 0 0 � 1
4�r02

0
BBB@

1
CCCA

(26)

Notice that, for � ¼ 0, this field would be described by a
unique scalar potential solution of the Laplace equation for
r0 > 0. However, for � � 0, the field components do not
satisfy the Lorentz gauge condition for the coordinates
ðx0; y0; z0Þ.

In this fully symmetric gauge, the scalar �0 and tensor

0ij ¼ 
0�ij=3 potentials, with 


0 the corresponding 3-space
trace, are given by

�0=c2 ¼ �m

r0
þ 1

48
�r02 
0=c2 ¼ þ 3

16
�r02: (27)

They satisfy the following coupled Equations in terms of
the sources

r02ð�0 þ 1
3


0Þ ¼ 1
2�c

2T00 þ 1
2�c2; r02
0 ¼ 9

8�c2:

(28)

The corresponding 3-space conformally flat metric (24)
can then be written in the simple form

ds2 ¼
�
1þ 2ð�0 � 
0Þ

c2

�
c2dt2 �

�
1� 2�0

c2
� 2
0

3c2

�
d~x02:

(29)

This coordinate frame is the appropriate one for measure-
ments using standard clocks and rods, due to the fully
isotropic 3-space metric components. In the case of pho-
tons, the null geodesics, derived from (24), can be easily
constructed, leading to a direction-independent speed of
light, a feature that is not valid on other coordinate frames..
The geodesics encompass, as usual, the two first integrals
of motion related to the photon energy and angular mo-
mentum. The orbit r0ð�; � ¼ �

2Þ can be expressed as an

equation for the function uð�Þ � R
r0 , which to first order in

m and � reads:

�
du

d�

�
2 þ u2 � 1 ¼ 4m

R
ðu� 1Þ þ 1

6
�R2

�
1

u2
� 1

�
; (30)

where R is the radius of the spherical mass distribution and
we consider a path of the photon that grazes its surface at
� ¼ �

2 . A symmetric solution about the axis � ¼ �=2, as

required by the geometry, can be found analytically around
� ’ 0 and � ’ �, to leading order in sin� � 1 for the
first-order terms proportional to m and �:

uð�Þ ’ sin�þ 2m

R
� 1

12

�R2

sin�
: (31)

For the case � ¼ 0, there is an asymptotic u ! 0 solution,
leading to the one-sided bending angle �1 ¼ � 2m

R , thus

reproducing the standard Einstein’s result in general
relativity.
However, in the presence of the �-term, there is no

asymptotic limit, due to the de-Sitter horizon. As we ob-
serve from Eq. (31), there are nontrivial effects of order �
to the photon orbit in our 3-space conformally flat coor-
dinate system, which comewith opposite sign to the� ¼ 0
General Relativity contribution. Indeed, the one-sided
bending angle �ðr0Þ obtained from (31), with �> 0, is:

�ðr0Þ ’ � 2m

R
þ 1

12
�Rr0; r0 � R: (32)

Given that a conformal transformation of the 3-space
coordinates preserves the angles, the above result would
also be valid in flat space-time, which is the background
space-time in our linearized gravity approximation. On the
other hand, as shown in Ref. [11], if one writes the orbit of
the photon in the original (nonconformal) Schwarzschild
coordinates, the orbit appears to be independent of �.
Our conclusion that� is contributing through Eq. (32) to

the deflection of light by a spherical mass distribution is in
line with the claims [8–10] that the effect exists, in spite of
the �-independent equation in Schwarzschild coordinates.
A more detailed analysis of this and other observational
effects of a gravitating � will be presented elsewhere.
(ii) As a second step, we make the coordinate trans-

formation

x0 ! x ¼ x0 þ 1
12�x03 y0 ! y ¼ y0 þ 1

12�y03

z0 ! z ¼ z0 þ 1
12�z03;

(33)

which definitively leads to the Cartesian components of the
field (15) in the coordinates ðct; x; y; zÞ. These ones are the
coordinates associated with the Lorentz gauge and the
discussion after Eq. (15) follows. We conclude that the
solution found in Section II is precisely the linearized
Schwarzschild–de Sitter metric, written in a new set of
appropriate coordinates that correspond to the Lorentz
gauge.

IV. CONCLUSIONS

In this work we have discussed a first-order solution to
the Einstein equations in the presence of a small positive
cosmological constant �> 0, in the case where the equa-
tions are linearized about flat Minkowski space-time.
Usually, in the literature, this problem is associated
straightforwardly with the presence of a repulsive force
in the ‘‘Newtonian limit.’’ As we emphasized in this note,
however, since there is no proper Newtonian metric in the
case � � 0, the linearization procedure has to be applied
with care, and the identification of what plays the rôle of a
repulsive ‘‘potential’’ presents subtleties. In particular, we
have found that in this case there are scalar and tensor
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potentials, which both describe the gravitational field in
special relativity in the presence of a nontrivial (no matter
how small) cosmological constant. As we have discussed,
with � � 0 there is no Newtonian form for the metric in
any gauge. The Lorentz gauge, for � � 0, does not lead to
a 3-space conformally flat metric.

If one insists on the requirement of a Newtonian form for
the metric, in agreement with the correspondence princi-
ple, then one has to conclude that � cannot be a classical
geometric effect, but rather a relativistic quantum effect,
which should vanish (formally) for @ ! 0. From dimen-
sional arguments, by writing � ¼ ���, the dark energy
density �� is given by

�� � @c=‘4 (34)

where ‘ should be a characteristic length, whose micro-
scopic origin, and hence its order of magnitude, is a
mystery. In this case, the relation (4) of � with Newton
constant G would still be valid for � � 0.

Our discussion in this note has been concentrated solely
on local effects of the cosmological constant. At this point
we feel that we should contrast our findings with the tradi-
tional point of view adopted in the literature, in which a
‘‘Newtonian scalar potential’’ is constructed from the h00
component of the metric perturbation by looking only at
the nonrelativistic geodesics, i.e. from Eq. (18). Using the
metric for the Schwarzschild–de Sitter solution (21) [5,6],
in the limit ofm ! 0, or equivalently in the case where the
� term dominates over the mass term, it is often stated that
the resulting ‘‘energy density’’ appears negative, thereby
indicating an instability. Indeed, this line of thinking
prompted the elevation of the Schwarzschild–de Sitter so-
lution from a local to a global one, relevant for an expand-
ing Universe, where this instability is remedied, in the
sense that the cosmological de Sitter solution has still
positive energy, but negative pressure.

However, as our analysis in this article has shown [cf.
discussion following Eq. (15)], this ‘‘instability’’ arises
from a misinterpretation of what energy density means in
the linearized solution. In our case, precisely due to the
absence of a proper Newtonian form of the metric, the
correct identification of the energy density can only be
made via the Poisson equation for the gravitational field
~h��, Eq. (13). From this point of view, our solution appears

stable. The corresponding dark energy density is indeed
proportional to �> 0, and originates from an attractive

contribution to the scalar potential defined via ~h00 in (15),
even in the case m � � [i.e. when j�T��j � j����j in
(13)], and hence is positive.
A final comment before closure. The cosmological

de Sitter solution, in the context of a Friedman-
Robertson-Walker universe, is an entirely different prob-
lem. The precise connection from the global solution to the
local one, by means of space-dependent cosmological
perturbations, is a complicated issue, which is still un-
solved. One might hope that, by perturbing the
�-de Sitter–FRW appropriately, it would be possible to
make a connection with the local gravity case and thus
compare the results with the analysis presented here.
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