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The energy-momentum and angular momentum contained in a spacelike two-surface of spherical

topology are estimated by joining the two-surface to null infinity via an approximate no-incoming-

radiation condition. The result is a set of gauge-invariant formulas for energy-momentum and angular

momentum which should be applicable to much numerical work; it also gives estimates of the finite-size

effects.
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I. INTRODUCTION

The exciting successes in recent years of numerical
treatments of general-relativistic systems have given point
to long-standing theoretical challenges involved in expli-
cating Einstein’s theory. Numerical relativists are now able
to calculate with good accuracy solutions to the field
equations. But how is one to extract from all these data
the key physically significant quantities?

Energy-momentum and angular momentum would be
among the most important, and the strongest hope is that
good definitions of these will exist at the quasilocal level,
that is, on generic acausal two-surfaces (perhaps restricted
to have spherical topology). If such definitions do exist,
and if, moreover, they can be formulated in such a way that
it is possible to meaningfully compare the quasilocal quan-
tities associated with different surfaces, they would be a
powerful tool for understanding the exchange of energy-
momentum and angular momentum between strongly gen-
erally relativistic astrophysical systems. At present, how-
ever, the problems involved in developing a quasilocal
kinematics seem so profound that one is driven to look
for more modest approaches which will still provide useful
results in broad categories of cases of current interest.

The goal of this paper is to get working approximations
for the total energy-momentum and angular momentum of
isolated systems which are suitable for contemporary nu-
merical use. Most numerical codes only evolve the system
throughout a finite volume of space-time, so one has avail-
able data on large but finite two-surface S. I shall show that
there is a reasonable ‘‘poor man’s’’ no-incoming-radiation
condition which can be used to extrapolate the data on S to
future null infinity Iþ, where the Bondi-Sachs definition of
energy-momentum and twistorial treatment of angular mo-
mentum apply. It turns out—nontrivially—that this ap-
proach allows for a comparison of the energy-momentum
and angular momentum as S is moved forward in time; one
thus has measures of the energy-momentum and angular
momentum emitted in gravitational radiation.

While a certain amount of work is required to derive
these measures, the result is a compact set of gauge-
independent formulas which should be usable by numeri-
cal relativists.

A. No-incoming-radiation condition

The state of a general-relativistic system is specified not
only by its material degrees of freedom but by its gravita-
tional data. In principle, for most modeling one would like
to fix those data to correspond to no incoming radiation.
To implement the no-incoming-radiation condition ex-

actly would be very difficult. (One would have to solve a
hard inverse problem, finding what constraints on Cauchy
data led to the required behavior of the solution in the
distant past. Numerical workers typically specify the data
as well as they can before there are strong interactions, and
then discard any early transients as potentially due to
spurious incoming radiation.) However, this is a practical
difficulty and does not affect the validity of the condition as
the correct restriction on the data.
We may make use of this observation at the two-surface

S (assumed to be large and approximately spherical), as
follows. Consider the null hypersurface N phys orthogonal

outward from S. Radiation incoming to the future of S
would leave its profile on this surface, the transverse
component being measured by the Weyl component �0

in the standard Newman-Penrose formalism. (One has
�0 ¼ �ABCDo

AoBoCoD, where oA is a tangent spinor to

N phys, that is, one has l
AA0 ¼ oAoA

0
for la the null tangent

to N phys.) We may thus take as an approximate, poor

man’s, no-incoming-radiation condition that

�0 ¼ 0 on the null hypersurface outgoing from S (1)

(and there is no matter crossing this hypersurface). More
precisely, we consider embedding S in a space-time with
the same first and second fundamental forms, but we dis-
card N phys and replace it with a null hypersurface N
(orthogonally outward from S) with�0 identically zero on
N . [Note that condition (1) is imposed only on the single
hypersurfaceN determined by S. We shall take up below
the question of what to do when S is evolved.]*helfera@missouri.edu
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The spin-coefficient equations that effect transport out-
ward from S along N can be integrated, so one can work
out the asymptotic behavior of the fields as one approaches
null infinity on S. One can then use the Bondi-Sachs
energy-momentum and the twistorial angular momentum.

A number of remarks should be made about this.
First, according to the Sachs peeling property, it is the

component �0 that has the most rapid falloff along out-
going null geodesics (�0 � r�5 where r is an affine pa-
rameter), and so one has good reason to think that if S can
be regarded as in the asymptotic regime, then �0 ¼ 0
should be a good approximation.

Second, another way of viewing the nature of the ap-
proximation is that, because N phys is at a finite location,

the incoming waves need not be exactly transverse. That is,
the extent to which �0 ¼ 0 fails to implement the exact
no-incoming-radiation condition is the extent to which
incoming waves would not be transverse at N phys. (This

means, in particular, that the approximation might be a
poor one if S were substantially wrinkled. However, in
numerical work one typically has surfaces S which are
very nearly spherical. If one did have to deal with substan-
tially wrinkly surfaces, one could generalize the present
method by considering an outgoing null congruence other
than the one orthogonal to S, adapted to the ambient
geometry.)

Finally, one might consider using the asymptotics of the
field alongN for waveform extraction; cf. e.g. [1]. [Since
these asymptotics only give the field at an instant of
retarded time determined by S, to really extract a wave-
form one would need to apply the procedures here for an
evolving family of surfaces Sð�Þ with associated null
hypersurfaces N ð�Þ, for � in some interval J.] Such a
procedure would not be exact, of course; its validity would
be limited by the applicability of (1). While this is certainly
natural, it raises issues beyond those treated in this paper.
This is because the points which are presently problematic
in the case of waveform extraction and in the case of
computation of energy-momentum and angular momen-
tum are different. For energy-momentum and angular mo-
mentum, resolving gauge ambiguities is essential, and
condition (1) allows us to do this (as a mathematical
procedure, irrespective of the degree to which the condition
accurately models the physical space-time); for wave-
forms, the gauge choices for the observer are trivial.
Thus the definitions here allow one both to compute the
energy-momentum and angular momentum, and to esti-
mate the finite-size effects involved, from data on surfaces
Sð�Þ, but the problem of waveform extraction necessarily
involves additionally the question of how accurately con-
dition (1) models the geometry of the physical space-time.
One should also bear in mind that, for present work,
computations of (say) the energy-momentum or angular
momentum emitted in gravitational waves which were
accurate to a few per cent would typically be quite ade-

quate; whereas extraction of physical information from
waveforms may require rather more accurate modeling.
Because of this sensitivity, if the ideas used for asymptotics
here are to be helpful to the waveform extraction problem,
they will probably be so when combined with other physi-
cal insights. One should probably use data, not just on the
surfaces Sð�Þ, but from the portion of the physical space-
time interior to them, to extrapolate the waveforms.

B. The role of idealization

The procedure used here turns on embedding the two-
surface S of interest in a mathematically constructed
space-time and then evaluating that space-time’s kinemat-
ics. One might think at first that this is less desirable than
actually working out the asymptotics along N phys to infer

the Bondi-Sachs energy-momentum and twistorial angular
momentum in the physical space-time. For most purposes,
this is not the case, however.
The point is that the Bondi-Sachs treatment applies to

idealized isolated systems; for practical purposes one must
choose which portion of a real (or numerical) system is to
be regarded as the isolated component, and there may be
several such choices. Consider, for instance, a system
which at several widely separated intervals emits bursts
of gravitational radiation. Each of these bursts contains, not
just the outgoing transverse wave front, but smaller trail-
ing, nontransverse, pieces; also each of these bursts will
generate a certain amount of backscatter via nonlinearities.
If one wanted to truly be in the mathematically exact
Bondi-Sachs asymptotic regime for this system, one would
have to go outward so far alongN phys that one had passed

any slight trailing fields and backscatters due to very early
emissions—in principle, one would have to know the
history of the system in the arbitrarily distant past to do
this. One rarely wants to do this; one would rather think of
the system as to good approximation isolated in the interval
around one burst—and if necessary then worry about the
fact that the isolation is not perfect.
Thus in most situations the task is not to construct the

null infinity and kinematics of the entire space-time, but to
determine how to measure the kinematics of a large but
finite accessible region. On the other hand, the main reason
for considering null infinity (together with the Bondi-Sachs
energy-momentum and the twistorial angular momen-
tum)—that it provided an invariant treatment of quantities
of interest—remains valid. So our approach is based on
constructing a strictly well-defined null infinity from the
data on the finite surface S, in order to have an invariant
energy-momentum and angular momentum. These are the
energy-momentum and angular momentum which would
be ascribed to S, were it in a space-time satisfying (1).
The question of whether one really is in a regime which

satisfies the Bondi-Sachs asymptotics to a given approxi-
mation—which is the question of whether the energy-
momentum and angular momentum constructed here are
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stable when S is moved outward along N phys—is impor-

tant but lies beyond the scope of this paper, for one cannot
investigate this stability based on data at a single surface S
[nor from a finite family of Sð�Þ’s].

C. Contemporary numerical work

Numerical relativists who work with codes aimed at
treating generic space-times have recognized the impor-
tance of invariant and theoretically justified measures of
energy-momentum and angular momentum. Indeed, this
concern plays a part in the choice of some groups to use
characteristic (or mixed Cauchy-characteristic) codes.
Such codes, if cast in a form admitting a clean extension
to null infinity, ought to allow the extraction of the Bondi-
Sachs energy-momentum and twistorial angular
momentum.

Characteristic (or mixed) code computations of the
Bondi energy (often referred to in the literature as the
Bondi mass, for historical reasons) have been done in a
number of cases, although typically they are hampered by
the fact that the codes themselves are not usually cast in
Bondi coordinates, so that nontrivial gauge transforma-
tions are required. These also make the computation of
the Bondi momentum and the angular momentum difficult.
(See Ref. [2] for a review.) The results here may help
streamline such computations, for the formalism to be
developed automatically produces the required gauges.

A great body of numerical work, however, is based on
‘‘3þ 1’’ formalisms rather than characteristic or mixed
ones. For these formalisms, the problem of gauge invari-
ance for energy-momentum and angular momentum has
been more severe.

Most contemporary attempts to extract information
about the total energy-momentum in the 3þ 1 formalisms
can be usefully thought of as based on the Bondi-Sachs
energy-momentum loss formula.1 (They have often been
justified by other means; however, the Bondi-Sachs for-
mula would be the broadest and most theoretically secure
starting point.) This formula identifies the rate of change of
the Bondi-Sachs energy-momentum, with respect to Bondi
retarded time, as an integral of the squared modulus of the
‘‘news function’’ with respect to the measure induced on an
asymptotically large sphere by the Bondi coordinates. Thus
to use this formula to recover the radiated energy-
momentum one must know (a) that one is in the asymptotic
regime; (b) the Bondi coordinate system, both to identify
the measure on the sphere correctly and to do the integral

over retarded time; and (c) the news function. (The news
function can be given as the integral of a curvature com-
ponent—the component depending on the Bondi coordi-
nates—with respect to Bondi retarded time.)
Numerical work in the 3þ 1 formalism has not yet

implemented any systematic transition to Bondi coordi-
nates. Thus what is actually done is to use the numerical
angle and time coordinates to compute the curvature com-
ponent and integrals required for the energy-momentum-
loss formula and its integral (e.g. [3,4]). Consistency
checks are then done by studying the stability of the result
as the extraction radius is increased. However, the lack of
gauge control makes it impossible to know what these
numbers really signify. The stability of the actual, gauge-
invariant, energy-momentum could be either better or
worse than the cited numbers, depending on whether the
gauge freedoms exacerbate or mask extraction problems.
The present approach overcomes the concerns about

gauge by giving formulas for the Bondi-Sachs energy-
momentum and its evolution in terms of gauge-invariant
quantities on the extraction surface S. As far as the ques-
tion of the stability of the results with increasing extraction
radius goes, this is an issue which one can only investigate
directly, by considering larger and larger surfaces.
However, the present work does give one the confidence
that in such an investigation other potential error sources
have been controlled.
The situation for angular momentum has been more

difficult than for energy-momentum. In the first place,
there has been for some time no really theoretically sat-
isfactory formula; and in the second, the angular momen-
tum depends on curvature terms deeper in the asymptotic
expansion, which are still more sensitive to the correct
choice of the Bondi frame. The approach given here over-
comes these difficulties. We use the recent twistorial defi-
nition of angular momentum, which appears to be
theoretically satisfactory. We identify the Bondi frame
exactly on N , and the finite-size contributions may be
read off directly from the formulas here.

D. Recent theoretical work

The problem of estimating kinematic quantities in terms
of numerical data has been taken up by two sets of authors
recently.
Gallo, Lehner, and Moreschi [5] (see also [6]) raised

many of the concerns motivating the present work. They
emphasized the importance of extracting invariant infor-
mation, and also of considering finite-size effects. They
gave an approach to estimating the Bondi momentum
which (while presented somewhat differently) can be
viewed as assuming that the two-surface S is only infini-
tesimally separated from Iþ, and computing the Bondi-
Sachs energy-momentum at the corresponding cut. (While
it may seem odd to speak of a two-surface infinitesimally
separated from infinity, it is a well-defined concept from

1When the objects of interest are black holes, there are also
some specialized techniques for estimating their masses.
However, these rely strongly on stationarity. The problem of
identifying the corresponding energy-momenta as elements of a
suitable space in the asymptotic regime is unaddressed, too, so
one does not have a good way of comparing the energy-momenta
of several interacting holes, or even one radiating one at different
times.
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the point of view of the conformally completed manifold,
and amounts to assuming that one only needs leading terms
in the appropriate asymptotic expansions.) Their results
therefore correspond to a limiting case of some of those
here.

Deadman and Stewart [7] recently discussed the estima-
tion of the Bondi-Sachs energy from numerical data. Their
approach is rather different; it is based on constructing a
transformation from the coordinates of the numerical evo-
lution to Bondi-like coordinates. As these formulas are
deduced by considering finitely many terms in the asymp-
totic expansions and extrapolating, this work could also be
viewed as based on the notion that S was infinitesimally
separated from Iþ.

E. Some technical points

A significant feature of the present approach is that, with
it, all the quantities of interest can be expressed in terms of
standard Geroch-Held-Penrose (GHP) (the boost-weight-
covariant version of the Newman-Penrose calculus) quan-
tities at S, and the energy-momentum and angular momen-
tum are given as natural integrals of these at S. The
formulas derived here include within themselves all neces-
sary changes to refer to Bondi frames; no separate compu-
tation of Bondi coordinates is necessary.

The question of how accurately the Geroch-Held-
Penrose quantities can be computed at S of course depends
on the particular code. Presumably the most difficult one to
measure accurately is �1, which is central in computing
the angular momentum (and also, because of finite-size
effects, contributes to the energy-momentum). It should be
emphasized that the question here is only that of the
computation of �1 at S, not of its inferred asymptotic
value (an issue raised by Deadman and Stewart [7]).

A second point is that we need not take up the delicate
questions of just what degree of smoothness or peeling is
encoded in the numerical solution. This is because we have
separated the question of computing the energy-
momentum and angular momentum from the question of
finding their limiting values at Iþ: our results are given
entirely in terms of data at S.

The approach here also allows one to quantify finite-size
effects, and so provides a useful consistency check on the
degree to which S is ‘‘effectively at infinity’’ (using only
data at S). The integrals for the energy-momentum and
angular momentum at null infinity are given in terms of the
asymptotic values of the curvature quantities �1, �2, and
�3; here, those asymptotic values appear as the values at S
(suitably scaled) plus correction terms. Those correction
terms, then, are a measure of how removed S is from null
infinity. We also, as importantly, are able to quantify how
strongly the inferred structure of null infinity is subject to
finite-size effects as evolution proceeds.

In numerical work, the surfaces S are typically large
coordinate spheres, and their first and second fundamental

forms appear as slight perturbations of the values they
would have for large spheres in Minkowski space. In
particular, the convergence �S of the outgoing congruence
is a slight perturbation of �R�1 [by OðR�2Þ or less], and
the shear �S is expected to be OðR�2Þ if there is no
incoming radiation; here R is the radius of the sphere.
Thus to good approximation

j�Sj � j�Sj: (2)

(If there were incoming radiation, one would expect �S to
go like a dimensionless number—the news function of that
radiation—over R. Thus a small amount of incoming ra-
diation would not upset this inequality.) This is helpful, for
the asymptotic forms of �2, �3 on N are simplified in
this case, and we make this approximation in computing
them. If more accuracy is needed for particular work,
probably the most efficient approach would be to compute
�2, �3 perturbatively in �S=�S to the required order. (In
such computations, note that while j�Sj � j�Sj, the an-
gular derivatives of �S and �S may very well be of the
same size. Thus one must be careful not to discard at one
stage terms whose angular derivatives may be essential
later.) Curiously, while �2, �3 are very complicated, all
other elements of the calculation are manageable; in par-
ticular, even the exact forms of the asymptotic spinors and
twistors are simple.

F. Evolution

I have so far emphasized that, by casting the problem of
measuring energy-momentum and angular momentum at a
finite two-surface in a certain form, one can defer the
difficult questions surrounding quasilocal kinematics.
However, these questions must be faced to some degree
when we consider the evolution of the system, and the
question of how to compare the energy-momenta and
angular momenta at two different two-surfaces. This is
because the auxiliary space-times constructed via the
poor man’s no-incoming-radiation condition from the
two surfaces are not the same, and so it is not obvious
how to identify the spaces on which their energy-momenta
and angular momenta take values. Indeed, we must antici-
pate on physical grounds that unless the extraction surfaces
are large enough there will be no way of identifying their
auxiliary null infinities which preserves all of the usual
structures.
This is an instance of a more general problem for

quasilocal kinematics: how is one to compare the kine-
matic quantities associated with different two-surfaces?
Quasilocal kinematic proposals are not well enough devel-
oped at present to take up this problem, but the degree to
which quasilocal kinematics will be useful depends very
largely on the degree to which it can be solved.
It turns out that, for us, there is a natural approach to this

problem which fits well with structures previously devel-
oped for treating angular momentum at null infinity. We
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shall see that there is a natural way to compare the null
infinities from two surfaces S, S0 infinitesimally separated
in time; this procedure can then be integrated. Potential
finite-size effects show up in that the identifications of the
null infinities are not via Bondi-Metzner-Sachs transfor-
mations, but via more complicated motions, unless the
extraction surfaces are large enough. Thus one can say
that while a single null infinity is being used, to the extent
that finite-size effects are important the null infinity has a
weaker structure than is conventional.

More precisely, we suppose we have a one-parameter
family of two-surfaces Sð�Þ (for � in some interval J)
foliating a timelike three-surface T, with � increasing
toward the future. Each two-surface Sð�Þ is embedded
(with the same first and second fundamental forms) in an
auxiliary space-timeMð�Þ defined by taking�0 ¼ 0 along
a null surface N ð�Þ orthogonally outward from Sð�Þ.
Then the constructions already described give a null infin-
ity Iþð�Þ for each Mð�Þ, with the null geodesics orthog-
onally outward from Sð�Þ defining a preferred cut
Cð�Þ � Iþð�Þ. Thus really we have a bundle of space-
times fMð�Þ j � 2 Jg.2 (We do not have a single space-
time for which the condition �0 ¼ 0 holds on a local
foliation of null surfaces; that would generally be far too
restrictive a condition to impose.)

With these structures, it turns out that there is a natural
way to identify the null infinities Iþð�Þ for the different
�’s. The key step is to make the identifications at an
infinitesimal level; one can then integrate. The main issue
then comes down to understanding how one should define
the cut of Iþð�Þ corresponding to the null geodesics
orthogonally outward from the two-surface Sð�þ d�Þ,
that is, for �þ d� infinitesimally differing from �. Once
this is done, one can fix both the identification of the
generators (because one gets a point-to-point mapping of
the cuts) and the supertranslation freedom.

The actual identification we need arises from natural
isomorphisms. Let us begin with a vector field wa inMphys

connecting Sð�Þ to Sð�þ d�Þ. (That is, the field wa is
tangent to T and wara� ¼ 1.) At each point of Sð�Þ, we
may consider the Jacobi field along the outgoing null
geodesic in Mphys whose initial value is wa at that point

[and whose initial velocity is chosen to make the field
represent a null geodesic outward orthogonal to Sð�þ
d�Þ]. We thus get a family of Jacobi fields, over Sð�Þ,

which represent null geodesics orthogonally outward from
Sð�þ d�Þ. All of this so far is in Mphys.

Now, any Jacobi field is specified by its initial data. By
the construction ofMð�Þ, there is a natural isomorphism of
the tangent bundles TðMphysÞjSð�Þ ffi TðMð�ÞÞjSð�Þ. [See

footnote 2. The symbol T which occurs as part of the
notation TðXÞ, the tangent bundle of X, should not be
confused with the isolated T representing the timelike
three-surface foliated by the Sð�Þ’s.] Thus we may natu-
rally identify the Jacobi fields we found above with fields
in the auxiliary space-time Mð�Þ. The limiting values of
these fields at Iþð�Þ we take to define the displacement of
the cut corresponding to Sð�þ d�Þ from Cð�Þ. (This will
be well defined independent of questions about the asymp-
totic behavior of the original Jacobi fields in the physical
space-time.) It is this definition we required for the iden-
tification of Iþð�Þ with Iþð�þ d�Þ, and its subsequent
integration to give identifications of the null infinities
Iþð�0Þ for different values of �0.
As noted above, these identifications will not be perfect

Bondi-Metzner-Sachs motions, because of finite-size ef-
fects. The formulas we derive for the evolution of energy-
momentum and angular momentum apply even in this
case. However, for purposes of extracting the total
energy-momentum and angular momentum, substantial
finite-size effects (that is, non-Bondi-Metzner-Sachs iden-
tifications) should be regarded as signaling that the extrac-
tion surfaces have not been taken to be distant enough. The
finite-size results are more of interest at present in that they
may provide clues about how to develop quasilocal kine-
matics generally.
Having discovered that there is a well-defined null in-

finity (if with somewhat weaker than usual properties) for
the family of extraction surfaces fSð�Þ j � 2 Jg, it is
natural to ask if one cannot construct a single asymptotic
regime for the physical space-timeMphys to which this null

infinity is attached? In some sense, this is provided by the
bundle fN ð�Þ j � 2 Jg, which can be attached to Mphys

along T. However, this bundle is not usually a space-time
[it does not admit a metric structure compatible with the
geometry of the N ð�Þ’s, since the condition �0 ¼ 0 is
generally too strong to impose on a foliating family of
hypersurfaces]. While such constructions might be of some
interest in the general problem of defining asymptotic
regimes, in this paper there is no reason to make use of
them; considering the individual auxiliary space-times
Mð�Þ and the identifications of their null infinities will
be what is relevant.

G. Outline and conventions

The next section of this paper outlines the integration of
the Newman-Penrose equations under the poor man’s no-
incoming-radiation condition. In Sec. III, the asymptotic
reference frames of Bondi and Sachs are introduced.
Section IV gives the computation of asymptotically con-

2One technicality may be worth mentioning: As usual, when
one writes of ‘‘preserving the second fundamental form’’ under
an embedding [here Sð�Þ ! Mð�Þ], one really means that the
embedding is accompanied by an isomorphism of the ambient
tangent spaces [here �ð�Þ: TðMð�ÞÞjSð�Þ ! TðMphysÞjSð�Þ, an
isomorphism of spatially and temporally oriented Lorentzian
vector bundles]. Thus strictly speaking we consider, for each
� 2 J, not just the space-time Mð�Þ but a pair ðMð�Þ; �ð�ÞÞ,
and we should work with the bundle fðMð�Þ; �ð�ÞÞ j � 2 Jg of
such pairs. However, we shall not need such an explicit
formalism.
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stant spinors and the kinematic twistor. Section V gives the
Bondi-Sachs energy-momentum, and Sec. VI the twistorial
angular momentum. Section VII derives the formulas for
comparing the energy-momentum and angular momentum
(as well as the deformation of the numerical coordinates
relative to the Bondi coordinates) as the two-surface is
moved forward in time. Section VIII is a users’ guide to
the results; it summarizes what procedures and equations
would be needed in numerical work.

A reader wishing simply to use the results here can use
Sec. VIII as an index to the paper. (Since the twistorial
angular momentum is new, the reader wishing to use this
will probably want to read the introduction to Sec. VI and
also Sec. VIA.)

All material necessary for understanding this paper and
not otherwise cited can be found in Ref. [8], whose nota-
tion and conventions are used. Reference [9] gives the
twistorial treatment of angular momentum at Iþ;
Ref. [10] is an account of it for nonspecialists.

The standard literature uses the symbol � for three
different things: a spin coefficient, a rescaling factor for
the spinor dyad, and the angular potential for the shear. We
shall use �B for the angular potential for the shear and � for
the rescaling oA � �oA. (The spin coefficient will be��0;
it will play little explicit role in this paper.)

The metric signature is þ��� . The symbol � will
be used to denote asymptotic equality as one moves out-
ward along null geodesics. The symbol� stands for equal-
ity modulo oðj�Sj=j�SjÞ. All logarithms are natural.

II. ASYMPTOTICS FROM LOCAL DATA

The aim here is to compute those asymptotic quantities
we will need—enough to find the energy-momentum and
angular momentum at Iþ alongN—in terms of local data
on S. This can be reduced to a series of integration prob-
lems. Some of the details of the (lengthy, but straightfor-
ward) integrations are omitted.

What we require are the asymptotic forms of the curva-
ture quantities �1, �2, and �3, as well as the operators ð,
ð0, and the shear �. (We also must verify that certain other
spin coefficients have an appropriate asymptotic decay,
even if we do not use their values; however, these decays
will be obvious from the general forms of the integrals
determining them, except in one case, which we shall treat
explicitly.) And we must identify the correct Bondi frame,
that is, we must be sure that when we take the asymptotic
limits, by looking at two-surfaces receding to infinity in
null directions orthogonally outward from S, their null
inward normals are compatible with those used in the
standard analysis.

In this section, the subscript S is used to indicate the
value of a quantity at S rather than at an arbitrary point of
N . However, having found the expressions for all quan-
tities of interest in terms of data at S, in later sections

almost all computations will be expressed in terms of these
data, and the subscript will be omitted.

A. The integration scheme

Let S be a spacelike two-surface of spherical topology in

a vacuum region of space-time, and let oA, �A and lAA
0 ¼

oAoA
0
, mAA0 ¼ oA�A

0
, �mAA0 ¼ �AoA

0
, and nAA

0 ¼ �A�A
0
be a

spinor dyad and vector tetrad associated with it, so la is the
outgoing null congruence and na is the ingoing null con-
gruence. Assume next that this surface is embedded in a
space-time with the same first and second fundamental
forms, and with the same values of �n for 1 � n � 4 at
S. (Actually, the value of �4 will not enter.) We further
assume that oA, �A are propagated parallel along the out-
going null congruence from S, and that �0 vanishes along
this congruence. This leaves a freedom oA � �oA, �A �
��1�A, where � is a function of the generator only.
We have then that � ¼ �� on the null congruence, and

also that �0
S ¼ ��0

S, where the subscript indicates restriction

to S. The conditions for oA, �A to be propagated parallel
along la mean the spin coefficients �, �, 	0, and 
0 all
vanish. The choices so far apply to the spin frame on N ,
but it will also be convenient to restrict its behavior to first
order off N . We require that r½alb� ¼ 0, which implies


 ¼ ��þ �.
The restrictions � ¼ 0, 	0 ¼ 0, and 
 ¼ ��þ � break

the strict boost invariance of the Geroch-Held-Penrose
calculus. However, a modified invariance still holds. If
we consider rescaling oA � �oA, �A � ��1�A, where �
is a nonzero complex-valued function on N which de-
pends on the generator only, then the conditions � ¼ 0,
	0 ¼ 0 are preserved. If we consider that, accompanying
any such rescaling the spinor field oA is changed to first
order off N by D0oA � ���1ðD0oA � ���2ðð� ��Þ�AÞ, then
we find 
 � � ���1ð
þ ð� ��Þ�1ð� ��Þ, ��þ � � � ���1	
ð ��þ �Þ þ ���2ð� ��, and 
 ¼ ��þ � is preserved. Since
this modified transformation law for the spinor dyad differs
from the simple rescaling of the GHP scheme only by
altering the derivative D0oA by a multiple of �A, the only
spin coefficient inhomogeneously affected onN is 
; also
the operators ð, ð0 on N retain their usual GHP trans-
formation rules. (The behavior of 
 adopted here is natural
within the context of the characteristic initial-value prob-
lem; see [11,12].)
Let s be an affine parameter along the outgoing null

geodesics normalized so that laras ¼ 1 and vanishing at
S. We may think of s as having Geroch-Held-Penrose type
fp; qg ¼ f�1;�1g (given our restrictionsDoA ¼ 0,D�A ¼
0). (It is conventional to use r for an affine parameter if the
boost freedom in the spin frame is fixed to give the standard
Bondi-Sachs asymptotics. However, as we shall have not
fixed the spin frame in this way, we use s to avoid potential
confusions.)
All of the computations are built on the integration of the

optical equations, which can be written as
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D
� �
�� �

� �
¼ � �

�� �

� �
2

; (3)

since �0 ¼ 0 and �00 ¼ 0. The solution to this is

� �
�� �

� �
¼

�
�s

1 0
0 1

� �
þ � �

�� �

� ��1

S

��1
: (4)

Notice that these matrices, for different values of s, all
commute, since they lie in the commutative algebra gen-
erated by the identity and the single matrix

0 �

�� 0

" #
S :

It is this which allows the integration of the system
explicitly.

It is easy to see that � and � will be nonsingular for s 

0 if and only if �S <�j�Sj � 0, which is the condition
that no conjugate points develop. In practice one expects
�S to fall off as 1=r and�S to fall off as 1=r

2 where peeling
holds (where r is the affine parameter in the physical
space-time, not the mathematical stand-in with �0 ¼ 0),
so for large enough surfaces S which are close enough to
spheres one should have j�Sj � j�Sj. This means that for
such surfaces it should be a good approximation to neglect
the effects of � relative to � on propagation outward. In
this approximation, we have

� �
�� �

� �
� �Sð1� s�SÞ�1 �Sð1� s�SÞ�2

��Sð1� s�SÞ�2 �Sð1� s�SÞ�1

� �
: (5)

Here and throughout, we shall use � to indicate the con-
dition j�Sj � j�Sj.

The remaining equations are integrated successively, as
follows. (The results are given in Tables I and II.) From the
equation

D�1 ¼ 4��1; (6)

one finds �1. With that in hand, one takes up that for the
spin coefficients � and �, which we write as

D
�
�

� �
¼ � ��

� �

� �
�
�

� �
þ 0

�1

� �
: (7)

This, and others to follow, can be integrated using the result

exp
Z s

0

� ��
� �

� �
ðs0Þds0 ¼ � ��

� �

� �
� ��
� �

� ��1

S
: (8)

(Recall that the matrices in the exponential all commute, so
there is no need to take a path-ordered exponential.)

One next takes up the transport of the operators 
, 
0 up
the generators. Lie transport along la, the vector tangent to
these, establishes a canonical diffeomorphism of the out-
going null surface N with S 	 fs j s 
 0g. Using this
diffeomorphism, we may extend 
S ¼ ma

Sra from its

definition on S to N ; this is equivalent to extending it
by requiring it to be Lie transported along la. If we put
ma

S ¼ Ama þ B �ma þ Cla, then using the standard spin-

coefficient commutators we find the conditions being Lie
transported are

D
A
B
C

2
64

3
75 ¼ �

� �� 0
� � 0

�ð�þ ��Þ �ð ��þ �Þ 0

2
64

3
75 A

B
C

2
64

3
75; (9)

which can be integrated using (8) and the initial conditions
A ¼ 1, B ¼ 0, and C ¼ 0.
With the results of these integrations, one can find the

remaining quantities of interest. For �2, we integrate

D�2 ¼ ð
0 � 2�Þ�1 þ 3��2: (10)

With this, we can integrate the transport equation for the
optical scalars of the ingoing congruence:

D
�0
�0

� �
¼ � �

�� �

� �
�0
�0

� �
þ ��2

0

� �
: (11)

In fact, of these, we only need �0 as a datum for the next
equation, and we need to note that �0 and �0 will have, by
virtue of (8), the asymptotic behavior Oðs�1Þ. Then one
can integrate

D�3 ¼ 
0�2 þ 2��3 þ 2�0�1: (12)

Recall that we are interested in the asymptotic forms of
those spin coefficients and operators necessary to define
the asymptotic spinors and twistors, and also the curvature
quantities�1,�2, and�3. Table I gives these results. The
asymptotic values of the quantities �, �, A, B, and C enter
into the determination of the asymptotic spinors and twist-
ors, and there is little point in discussing them before those
results are at hand. The asymptotic values of �1, �2, and
�3 are of some interest, however. For�2 and�3, we see a
leading term which is the value on S multiplied by the
power of (1� s�) dictated by peeling, plus correction
terms. One can check that, if the usual peeling assumptions
hold in the physical space-time, then the scaling of these
correction terms with the position of S is subdominant to
that of the leading term. Thus the terms represent finite-
size effects due to the distance of S from Iþ, and, despite
their complexity, should be small for large enough S. The
complicated nonlinear forms of these corrections are also
of some interest.
While we expect the results of Table I to suffice for most

numerical work, it is of some conceptual interest to extend
these by dropping the assumption j�Sj � j�Sj. This is
done for those quantities needed to determine the asymp-
totic spinors and twistors in Table II. Expressions for the
curvature quantities �2 and �3 in this case are prohibi-
tively lengthy; if any are needed, the best approach is to do
the corresponding integrals as a power series in �S=�S,
keeping as many terms as required.

B. Transformation to a Newman-Unti frame

The asymptotics of the tetrad and curvature components
computed above can all be examined as s ! þ1, and
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compared with the requirements for a Bondi-Sachs frame,
as given, for example, in Ref. [8]. There are three sorts of
adaptations which are necessary to make the tetrad accord
with the standard formulas.

One of these is to shift the zero of s to eliminate the s�2

term in the asymptotic expansion of �. However, this only
alters subdominant terms in the expansions, and we will
only need the dominant terms, so we omit this. The second
change is to replace the spinor �A by one which becomes
tangent to future null infinity as s ! 1; this can be accom-
plished by a null rotation. The final change is to break the
local boost invariance of the dyad so as to achieve the
standard asymptotic scaling �0 � ð2sÞ�1. This requires
solving an elliptic equation on S (equivalent to confor-
mally uniformizing the sphere).

Because of the additional computational resources re-
quired to solve the elliptic equation on the sphere, we will
distinguish here between the two stages of the passage to
the Bondi-Sachs frame. When the frame has been adjusted
by a null rotation so one spinor is tangent to null infinity,
we call it a Newman-Unti frame and indicate it by the
postscript NU; after the rescaling, the Bondi-Sachs frame
is indicated by B. Formulas valid in Newman-Unti frames
will thus automatically be valid in Bondi-Sachs frames. We
shall give the transformation to a Newman-Unti frame in

this section; the next section will cover Bondi-Sachs
frames.
The spinor �A representing the ingoing null congruence

has been fixed by the geometry of the two-surface S, and
propagated outward along null geodesics; there is no rea-
son to expect it to be asymptotically tangent to null infinity.
We must therefore anticipate making a null rotation �A !
�ANU ¼ �A þQoA in order to achieve this. To preserve the
parallel-propagation condition D�ANU ¼ 0, we shall need
DQ ¼ 0.
The equation determining Q comes from the fact that

(with the correct choice of �ANU) the quantity 
 must vanish
at least as Oðs�2Þ as s ! 1 (cf. [8,13]). (Note that this
means Q will not transform homogeneously under rescal-
ings of the dyad.) Since we have 
 ¼ oAD0oA, we find

NU ¼ oAðDþQ
þ �Q
0ÞoA ¼ 
þQ�þ �Q�. Setting
the lead asymptotic term of this to zero and using the
asymptotic forms of �, �, and 
, we see that

Q ¼ ð�2 � j�j2Þ�1

�
� �

� � ��þ �

��� ��

" #

� �

�
�2 � j�j2
4j�j3 log

�þ j�j
�� j�j �

�

2j�j2
�
�1

�								S
: (13)

TABLE II. Exact leading spin coefficients and coefficients of operators in the parallel-transported frame. In the right-hand column,
all quantities are to be evaluated at the surface S (and so would, in the notation of this section, ordinarily carry the subscript S, but this
is omitted here).

Coefficient Value in terms of data at S

½�
0

�0 � �ð�2 � j�j2Þ�1½ � � ��
�� �

�f½�
�
� þ ð�2�j�j2

4j�j3 log�þj�j
��j�j � �

2j�j2Þ½
0
�1

� � ð �
4j�j3 log

�þj�j
��j�j � 1

2j�j2Þ½
��
�
��1g

½A
0

B0 � �½ �
�
�

C0 f ��þ �� ð��1 þ ��1Þð �
4j�j3 log

�þj�j
��j�j � 1

2j�j2Þ þ ð�2�j�j2
4j�j3 log�þj�j

��j�j � �
2j�j2Þ�1g

�0 �1
�0 ð�2 � j�j2Þ�1�

TABLE I. Asymptotic forms of the relevant spin coefficients, coefficients of operators, and curvature, in the parallel-transported
frame, in the case j�Sj � j�Sj. The left-hand column gives the asymptotic form of each quantity X for large affine parameter s in
terms of a leading coefficient X0; the coefficient is given in the right-hand column. In the right-hand column, all quantities are to be
evaluated at S (and so would, in the notation of this section, ordinarily carry the subscript S, but this is omitted here).

Quantity X Leading coefficient X0, assuming j�Sj � j�Sj
�� �0s�1 ð��Þ�1�
�� �0s�1 ð��Þ�1f�� ð2�Þ�1�1g
A� A0s ��
B� B0s 0

C� C0s ��þ �
�� �0s�1 �1
�� �0s�2 ð��Þ�2�
�1 ��0

1s
�4 ð��Þ�4�1

�2 ��0
2s

�3 ð��Þ�3f�2 � ��1ð0�1 þ 2��2�1ð
0�þ 2ð3�Þ�2j�1j2g

�3 ��0
3s

�2 ð��Þ�2f�3 þ ��1�0�1 þ ð1=6Þð0½�4��3�1ð
0�þ 3��2ð0�1 � ��3j�1j2 � ��1�2� þ ð30�4Þ�1ðð0�Þ	

½15�1ð
0�� 10�ð0�1 þ 4j�1j2 þ 15�2�2� þ ð30�4Þ�1½15j�1j2ð0�þ 4�1ð�1Þ2 � 10��1ð

0�1 þ 15�2�1�2�g
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Now let us work out the operator 
 for this frame, which
we denote 
NU ¼ 
þ �QD. We first invert the definition of

S to get





0

" #
¼ ðjAj2 � jBj2Þ�1

A �B

� �B �A

" #

S � CD


0
S � �CD

" #

��s�1ð�2
S � j�Sj2Þ�1

� ��

� �� �

" #
S

	 
S � CD


0
S � �CD

" #
(14)

(where � denotes asymptotic equality as s ! þ1), so


NU


0
NU

" #
��s�1ð�2

S � j�Sj2Þ�1
� ��

� �� �

" #
S

	 
S � CD


0
S � �CD

" #
þ

�Q

Q

" #
D: (15)

Inserting the asymptotic values from Table II, we find that
the coefficients of D cancel, and we are left simply with


NU


0
NU

� �
��s�1ð�2

S � j�Sj2Þ�1 � ��
� �� �

� �
S


S


0
S

� �
:

(16)

This cancellation is not a surprise; it arises from the fact
that the s ¼ const surfaces can be taken as the approaching
cuts of Iþ.

We now find the spin coefficients �NU, �NU in the
Newman-Unti frame. (We shall not use these explicitly,
but we give them both for completeness and for purposes of
comparison with other work.) The transformation rules for
these are

�NU ¼ �þQ�; (17)

�NU ¼ �þQ�: (18)

Using the results from Table II, we find

�NU ��s�1ð�2
S � j�Sj2Þ�1f�� ��þ ��þ ð1=2Þ�1gjS ;

(19)

�NU ��s�1ð�2
S � j�Sj2Þ�1f��� ��� ð1=2Þ�1gjS;

(20)

the results in the approximation j�Sj � j�Sj are listed in
Table III.
The fact thatQ remains bounded as s ! 1 (in fact, Q is

constant along the generators of N ), together with the
peeling property, means that transformation to the
Newman-Unti frame does not affect the asymptotic forms
of �1, �2, and �3. Also �NU ¼ � and �NU ¼ �, since
these only involve derivatives of oA.
The transformations for the optical coefficients for the

ingoing congruence are more complex. We have �0
NU ¼

�0 � ðQ�Q2�, and �0
NU ¼ �0 � ð0Q�Q2�. We shall

not need these, but for completeness their asymptotic
forms are given in Table III.

III. BONDI-SACHS FRAMES

In this section, we complete the transformation to a
Bondi-Sachs frame, and also establish some of the calculus
of these frames which will be required for the analysis of
energy-momentum and angular momentum. The Bondi-
Sachs frames are essentially equivalent to the notion of an
‘‘asymptotic laboratory frame.’’
From this point on, we will omit the subscript S for spin-

coefficient quantities (including operators 
, 
0, ð, and ð0)
at the two-surface, unless explicitly indicated otherwise.
Quantities considered at other points on N will either be
in the Newman-Unti or the Bondi-Sachs frames and will be
indicated by subscripts NU or B.

A. Transformation to a Bondi-Sachs frame

We recall that the Newman-Unti frame established in the
previous sections is very nearly a Bondi-Sachs frame; what
remains is to adjust the spin frame, or equivalently con-
formally transform, in order to make the s ¼ const cross
sections unit spheres.
Let us begin with the metric structure. This is charac-

terized by the intrinsic 
 operators of the s ¼ const sur-
faces. Equation (16) expressed these in terms of the
structure at S; let us put 
NU ¼ Mara, so

TABLE III. Leading forms of the spin coefficients and operators in the Newman-Unti frame, under the assumption j�Sj � j�Sj.
Each of these quantities falls off as s�1 with the corresponding coefficient. Thus �NU � s�1�0, etc. In the right-hand column, all
quantities are to be evaluated at S.

Quantity Value


0 ���1
S


0
0 ���1
0

S
�0 ���1f� ��þ ð2�Þ�1�1g
�0 ���1f�� ð2�Þ�1�1g
ð�0Þ0 ��1f��0 � 2ð3�2Þ�1j�1j2 þ ð2�2Þ�1ðð0�1 þ ð�1Þ � ð2�Þ�1ð�2 þ�2Þ � 5ð6�3Þ�1ð�1ð

0�þ�1ð�Þ � ð2�Þ�1 	
ðð �
þ ð0
Þ þ ð2�2Þ�1ð �
ð�þ 
ð0�Þ þ ð2�2Þ�1ð�1 �
þ�1
Þ þ ð2�2Þ�1ð
ð ��þ �
ð0�Þ � ð6�3Þ�1ð�1ð ��þ�1ð

0�Þg
ð�0Þ0 ���1f�0 � ððð2�2Þ�1�1 � ��1
Þ � �ðð2�2Þ�1�1 � ��1
Þ2g
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Ma ��s�1ð�2 � j�j2Þ�1ð�ma � � �maÞ: (21)

Then �2Mða �MbÞ gives the intrinsic inverse metric on the
s ¼ const surfaces. The intrinsic metric is �2Mða �MbÞ,
where Ma, �Ma are not defined via lowering with gab, but
via the duality relations Ma

�Ma ¼ �1,MaM
a ¼ 0; explic-

itly

Ma � sð��ma � � �maÞ; (22)

and

� 2Mða �MbÞ � �2s2ð�mða þ � �mðaÞð� �mbÞ þ ��mbÞÞ:
(23)

Under a change of scale oA � �oA, �A � ��1�A, the
factor ð�mða þ � �mðaÞð� �mbÞ þ ��mbÞÞ will be multiplied by

j�j4; we may therefore regard the change of scale as
equivalent to a conformal transformation by �2 ¼ j�j4.
More precisely, for each choice of scale we have a family
of metrics on the s ¼ const surfaces which are scalar
multiples of each other. When we change the scale we
also change the choices of the s ¼ const surfaces (since
s � j�j�2s), and it is the metrics on these (pulled back to
S) which are conformally rescaled by j�j4 (relative to the
pullback of the metric on the original surface at the same
numerical value of s).

The conformal structure is characterized by the complex
structure. Wemay introduce a complex stereographic (anti-
holomorphic) coordinate3 � on the s ¼ const surfaces by
requiring Mara� ¼ 0, that is,

ð�
� �
0Þ� ¼ 0 (24)

and requiring that � be regular over S except for a simple
pole (equivalently, that ��1 vanishes at a single point and
in the limit of approach to this point its argument has
winding number �1, the minus sign on account of its
antiholomorphic character).

The coordinate � is unique up to a fractional linear
transformation. In order to keep its interpretation as direct
as possible, when S is approximately a round sphere the
coordinate � should be taken to be close to a stereographic
coordinate ei� cotð�=2Þ on S. One way to fix the freedom
would be to require the pole to lie on the þz coordinate
axis, the zero to lie on the �z axis, and the point � ¼ 1 to
lie on theþx axis. With these choices we effectively fix an
asymptotic laboratory frame. (The time axis is fixed by the
requirement that j�j ¼ 1 be a great circle.)

For numerical work, it may be more convenient to recast
Eq. (24) in terms of regular quantities. If we let �0 be any
smooth function on S with a simple pole and simple zero of

the required type and write � ¼ �̂�0, then �̂ is smooth over

S and satisfies the everywhere-regular equationMara�̂ ¼
��̂Mara log�0. There will be a one-complex-dimensional
space of everywhere-regular nowhere-vanishing solutions

to the equation for �̂ . These solutions will give � ¼ �̂�0 the
same pole and zero as �0; thus, if these have been chosen as
in the previous paragraph, one has simply to adjust the

multiplicative constant in �̂ to achieve the final normaliza-
tion � ¼ 1 on the þx axis. We shall assume from now on
that a solution � to (24) has been found.
Now let us turn to the metric structure. As is conven-

tional, put Ma ¼ � �P�1d� , so that

� 1 ¼ �MaMa � �P�1s�1ð�2 � j�j2Þ�1ð�
0 � ��
Þ�
� �P�1s�1��1
0�

and

P��s�1��1
 ��: (25)

Then the metric is �� 2jPj�2d�d �� .
Now let us consider a change of scale to achieve a

Bondi-Sachs frame. Let this be oA � oAB ¼ �oA. We
may keep � unchanged (it is a conformal invariant); we
have then P � PB ¼ �s�1

B ��1
B 
B

�� �� ���2s�1
B ��1
 �� .

We rescale the metric to a sphere of radius sB with PB ¼
2�1=2s�1

B ð1þ j�j2Þ. This will align the time axis of the
Bondi-Sachs system with that of the laboratory frame,
and give the standard spin frame adapted to the coordinate
� . We then find

�2 ¼ �21=2��1ð1þ j�j2Þ�1
0�: (26)

With � known, we may read off the value of any spin- and
boost-weighted quantity in the Bondi-Sachs frame from its
value in a Newman-Unti frame. (Note that the original oA,
�A may be any spin frame for which ma is tangent to S;
Eq. (26) provides the correct transformation to the frame
adapted to � .)
In what follows, we shall need the shear in a Bondi-

Sachs frame. We have, from Table II, that�NU � s�2ð�2 �
j�j2Þ�1�. Inserting the appropriate rescalings, we find

�B � s�2
B � ���3ð�2 � j�j2Þ�1� (27)

with � given by (26). In particular, the Bondi shear is the
coefficient of s�2

B , that is,

�0
B ¼ � ���3ð�2 � j�j2Þ�1�: (28)

Finally, we remark that an alternative (and somewhat
more traditional) route to fixing the conformal factor is to
require that the Gaussian curvature of the s ¼ const sur-
faces becomes asymptotically constant. Since the Gaussian
curvature is �� 2�NU�

0
NU and �NU ��s�1, this leads to

the requirement that �0
NU � ð2sÞ�1. One can use Table III

and the transformation rules discussed at the beginning of
Sec. II A to write this as a second-order partial differential

3The orientation on the sphere induced from its embedding in
space-time (or in a spacelike hypersurface with its induced
orientation) is opposite to the one used in ordinary complex
analysis, and so what is antiholomorphic from the space-time
point of view is holomorphic for ordinary complex analysis.
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equation for j�j, which is equivalent to the usual equation
for finding a conformal transformation uniformizing the
Gaussian curvature. The formulas for this are rather more
complicated than those given in the present section,
however.

B. The angular potential for the shear

The Bondi shear, being a spin-weight two quantity,
admits an angular potential �B such that

s2Bð
2
B�B ¼ �0

B (29)

(or equivalently ð2B�B ¼ �B). The use of this potential
facilitates the computation of the Bondi-Sachs energy,
and the potential also plays a central role in the analysis
of angular momentum. The electric and magnetic parts of
the shear are �el ¼ ð2B Re�B and �mag ¼ ið2B Im�B.

Equation (29) is easily solved when PB ¼ 2�1=2s�1
B ð1þ

j�j2Þ. In this case, it can be written as

ð1=2Þ@ �� ð1þ � ��Þ2@ ���B ¼ �0
B; (30)

and a Green’s function for the operator can easily be

derived from the relation @ ��
���1 ¼ �
ð2Þð�; ��Þ (where the

right-hand side is the usual 
 function in the � plane). We
find

�Bð�; ��Þ ¼
Z

Gð�; �� ; ��; ���Þ�0
Bð ��; ���Þd �� ^ d ���=ð2iÞ; (31)

where

Gð�; �� ; ��; ���Þ ¼ ���1ð� � ��Þ�1

� ��

1þ j�j2 �
���

1þ j ��j2
�
;

(32)

and

ð2iÞ�1d� ^ d �� ¼ ð1� j�=�j2Þj
 ��j2dS: (33)

An alternative means of solving Eq. (29) would be to
resolve �0

B into spin-weighted spherical harmonics 2Yj;m

and then use the relation

ð2B 0Yj;m ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� 1Þjðjþ 1Þðjþ 2Þ

q
2Yj;m

to infer the corresponding resolution of �B. Thus one
would have

�0
j;m ¼ 21=2

Z
2Yj;mð1þ j�j2Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
0�Þ3
ð
 ��Þ

s
��1�dS; (34)

�j;m ¼ 2ððj� 1Þjðjþ 1Þðjþ 2ÞÞ�1=2�0
j;m ðj 
 2Þ;

(35)

�B ¼ X
�j;m 0Yj;m: (36)

The terms �j;m with j ¼ 0, 1 are freely specifiable. We take

these terms to vanish, which will simplify the coordinati-
zation of the twistor space, below.
The phases of the spin-weighted spherical harmonics

depend on the spin frame. There are two common choices:
that adapted to the complex coordinate � , and that adapted
to �, �. Because the analysis has been given here in terms
of � , it is that spin frame and those spherical harmonics
which are used in Eq. (34). To use the harmonics with
respect to �, � one must, besides replacing �2Yj;mð�; ��Þ
with �2Yj;mð�;�Þ, also include a factor of ð�= ��Þ2 in the

integrand of (34). (See the Appendix; see Ref. [14] for a
detailed discussion of the harmonics.)

IV. ASYMPTOTIC TWISTORS AND SPINORS

The Bondi-Sachs energy-momentum is a covector in a
certain vector space, the space of asymptotically constant
covectors. This space is most easily constructed from the
space of asymptotically constant spinors. Similarly, the
twistorial angular momentum is defined on the space of
asymptotic twistors. In fact, the asymptotic spinors are
naturally defined in terms of a canonical fibration of twistor
space, so we shall start by constructing the twistors and
then specialize to the spinors. We conclude this section by
giving the kinematic twistor, in terms of which the energy-
momentum and angular momentum will be defined.

A. The twistor space

The twistor space TðCðSÞÞ of the cut CðSÞ of null infinity
associated with S is the set of solutions of the two-surfaces
twistor equation at CðSÞ. These equations are

ð0B ~!0
B ¼ 0; (37)

sðB!
1
B ¼ �0

B ~!
0
B; (38)

where ~!0
B ¼ s�1!0 is rescaled to attain a finite limit at

CðSÞ, and sðB tends to an operator depending on angle
only; cf. Eq. (25). There is a four-complex-dimensional
space of solutions to these which we shall give shortly. For
completeness, we note the forms of these equations in
terms of the spin coefficients at S are

� ð�ð0 � ��ðþ ð1=2Þ�1Þ ~!0 ¼ 0; (39)

� ð�ð� �ð0 þ ð1=2Þ�1Þ!1 ¼ � ~!0: (40)

(The minus signs are included because � is negative.)

B. Solving the twistor equation

Solutions to the twistor equation are easily found.
Equation (37) for ~!0 has as its space of solutions the
spherical harmonics of spin weight �1=2; thus

~! 0
B ¼ 21=2ð1þ j�j2Þ�1=2ðZ3 þ Z2 ��Þ; (41)

where Z2 and Z3 are constants. To solve the remaining
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equation, we adopt a device of Tod and set

!1
B ¼ ~!0

BðB�B � �BðB ~!
0
B þ �B; (42)

where �B is an angular potential for the shear (Sec. III B),
and �B is a spin-weight þ1=2 quantity to be determined.
We note that

ðB ~!
0
B ¼ ð1þ j�j2Þ�1=2ðZ2 � Z3�Þ: (43)

Then the remaining equation (38) is equivalent to ð0B�B ¼
0, and the solutions to this are

�B ¼ �ið1þ j�j2Þ�1=2ð�Z0 þ Z1�Þ: (44)

Thus ðZ0; Z1; Z2; Z3Þ coordinatize the twistor space; the
factors have been chosen to make them in accord with
those induced from the standard Cartesian basis of
Minkowski space if the cut of null infinity is gotten from
the light cone of the origin (cf. [14], Sec. 4.15 and [8],
Sec. 6.1).4

C. Structures on twistor space

There are three important structures on twistor space: a
fibration, an infinity twistor, and a certain reality structure.
The fibration and the infinity twistor allow the definition of
asymptotic spinors; the reality structure defines the null
geodesics which play the roles of origins for the definition
of angular momentum. Finally, the reality structure and the
infinity twistor combine to define a certain twistor opera-
tion, the ‘‘hook,’’ which enters in the definition of energy-
momentum.

1. The fibration, the infinity twistor, and spinors

The most primitive and important structure on twistor
space is the fibration, which is defined by simply keeping
the ~!0 field of the twistor. This is just ðZ0; Z1; Z2; Z3Þ �
ðZ2; Z3Þ in our coordinates, since ~!0 is specified by Z2 and
Z3. We see then that the space of fibers is a two-complex-
dimensional space; it is naturally identifiable with the
space of (dual, primed) asymptotically constant spinors
SA0 . Asymptotic spinors of other valences and asymptotic
vectors and tensors are defined as usual by tensor opera-
tions from SA0 .

Closely related to the fibration is the infinity twistor

IðZ; �ZÞ ¼ I��Z
� �Z�. In our coordinates, it is simply given

by

IðZ; �ZÞ ¼ Z2 �Z3 � Z3 �Z2: (45)

This evidently defines a skew form on SA0 , which repre-

sents the asymptotically constant spinor �A
0B0
. Its negative

inverse is �A0B0 ; the spinor �AB�A0B0 represents the asymp-
totic metric gab ¼ gAA0BB0 . One often puts Z2 ¼ �00 , Z

3 ¼

�10 and then one has

IðZ; �ZÞ ¼ �A
0B0
�A0 ��B0 (46)

with �0
010 ¼ 1 as usual.

One can also define spin space SA directly in twistor
terms, as the kernel of the fibration; thus SA is identified
with the set of spinors whose coordinates are ðZ0; Z1; 0; 0Þ.
However, it will be more natural for us to work with SA0 ,
especially when we take up evolution.

2. The reality structure

The twistor space for Minkowski space is equipped with
a sesquilinear form of signatureþþ��whose zero set is
the set of real twistors. In general relativity, there is also a
reality structure, but it is more nonlinear when spin is
present. The analytic manifestation of this is that the
candidate expression for the norm

ið �!10
BðB ~!

0
B � ~!0

BðB �!10
B þ �~!00

Bð
0
B!

1
B �!1

Bð
0
B
�~!00
B Þ (47)

is not in general constant over S. It turns out that we get a
good theory of angular momentum, however, by simply
evaluating this expression at the point on the sphere for
which ~!0

B, or equivalently ~!0, vanishes. (There always will
be a unique such point, unless the field ~!0 vanishes iden-
tically, in which case the result is taken to be zero by a
continuity argument.) Wewill denote the point at which ~!0

vanishes by 	ð ~!0Þ, the restriction of (47) to 	ð ~!0Þ by
�ðZÞ. A twistor is real if and only if �ðZÞ ¼ 0. The real
twistors correspond to real null geodesics meeting null
infinity; they take the place of space-time points as ‘‘ori-
gins’’ for the evaluation of angular momentum.
Using the formulas above we find that

�ðZÞ ¼ ½�2 Im�jðB ~!0
Bj2 þ ið ��ðB ~!0

B þ �ð0B �~!00
B Þ�j	ð ~!0Þ:

(48)

The stereographic coordinate of 	ð ~!0Þ is � ¼ �Z3=Z2 and
a brief calculation gives

ðB ~!
0j	ð ~!0Þ ¼

Z2

jZ2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jZ2j2 þ jZ3j2

q
: (49)

Using these, we find

�ðZÞ ¼ �2 Im�j	ð ~!0ÞðjZ2j2 þ jZ3j2Þ
þ Z0Z2 þ Z1Z3 þ Z2Z0 þ Z3Z1: (50)

Here the second line is the usual twistor norm in special
relativity; the contribution on the first line is an essentially
general-relativistic effect. We recall that Im� is the angular
potential for the magnetic part of the shear; it is this
magnetic shear which distorts the twistor norm. (The mag-
netic shear is found to be the j 
 2 components of the
specific—that is, per unit mass—spin.)

4This differs slightly from the basis common for work near
null infinity, with our oA being 2�1=4 of that one and our �A being
21=4 of that one.

ADAM D. HELFER PHYSICAL REVIEW D 81, 084001 (2010)

084001-12



3. The hook operation

While, as discussed above, the special-relativistic
twistor norm does not extend to general relativity, enough
of the structure does survive that a certain antilinear op-
eration does carry over to general relativity. This is the
hook of a twistor Z�, denoted by I�� �Z�. (Owing to the

nonexistence of a norm, the quantity �Z� does not have any

separate meaning for us, but we shall keep the special-

relativistic notation.) If we set �Z� ¼ I�� �Z�, then the defi-

nition of the hook is

�~! 0 ¼ 0; (51)

�~! 1 ¼ �i �~!00 : (52)

In our coordinates, the hook operation is ðZ0; Z1; Z2; Z3Þ �
ð�Z3; Z2; 0; 0Þ. (The hook of any twistor is an element of
SA.)

D. The kinematic twistor

In twistor theory, the energy-momentum and angular
momentum are encoded in a kinematic twistor AðZÞ ¼
A��Z

�Z�, defined by

AðZÞ ¼ �ið4�GÞ�1
I
f�NU

1 ð!0
NUÞ2 þ 2�NU

2 !0
NU!

1
NU

þ�NU
3 ð!1

NUÞ2gdSNU; (53)

where the limit as the surface tends to null infinity is
understood. The kinematic twistor satisfies the

Hermiticity property A��
�Z�I	� �Z	 ¼ A��Z

�I	� ��Z	, which

in our coordinates is

A00 ¼ A01 ¼ A11 ¼ 0; (54)

A02 ¼ �A13; A12 ¼ A12; A03 ¼ A03: (55)

To work out the kinematic twistor explicitly, let us first
insert the asymptotic forms of the quantities; we find

AðZÞ ¼ �ið4�GÞ
I
ð�2 � j�j2Þf�0

1ð ~!0Þ2 þ 2�0
2 ~!

0!1

þ�0
3ð!1Þ2gdS; (56)

in terms of data on S.
We next express the twistors in terms of their forms in

the Bondi-Sachs frame, taking into account the rescaling
relative to the Newman-Unti one (recall that ~!0, !1 have
Newman-Penrose types f0; 1g, f1; 0g, respectively):

AðZÞ ¼ �ið4�GÞ
I
f�0

1
���2ð ~!0

BÞ2 þ 2�0
2ð� ��Þ�1 ~!0

B!
1
B

þ�0
3�

�2ð!1
BÞ2gð�2 � j�j2ÞdS: (57)

At this point, we may substitute the explicit forms of the
solutions of the twistor equation given in this section to
compute the components A�� of the kinematic twistor.

Because of round-off errors (and also the approximation
j�j � j�j, if used), the numerical computation of A��

directly from (57) could fail to satisfy the Hermiticity
conditions (54) and (55); we therefore enforce these con-
ditions at the levels of the integrands. The results of this are
given in Table IV.

V. ENERGY-MOMENTUM

The Bondi-Sachs energy-momentum Pa is most natu-

rally viewed as a function PAA0
��A�A0 on the space SA0 of

asymptotically constant spinors. In twistor terms, this is

PAA0
��A�A0 ¼ A��Z

�I	� �Z	; (58)

where the right-hand side represents the contraction of the
kinematic twistor once with Z� and once with its hook
I	� �Z	; the result (58) is real and depends only on the

projection �A0 of the twistor Z; that is, if the twistor
components are ðZ0; Z1; Z2 ¼ �00 ; Z

3 ¼ �10 Þ, the choice
of Z0 and Z1 is immaterial.
Using the formula for the hook map in coordinates [just

below Eq. (52)], we find explicitly

TABLE IV. Integrands for the computation of the potentially nonzero components A�� ¼ A�� of the kinematic twistor. Each term
on the right is to be multiplied by the common factor �ið4�GÞ�1ð1þ j�j2Þ�1ð�2 � j�j2Þ and integrated with respect to dS over the
sphere. In this table, the Hermiticity conditions A12 ¼ A12, A03 ¼ A03, and A02 ¼ �A13 have been enforced at the level of the
integrands.

Component Quantity to be multiplied by �ið4�GÞ�1ð1þ j�j2Þ�1ð�2 � j�j2Þ and integrated with respect to dS

A02 ¼ �A13 21=2i ��j�j�2Re�0
2 þ i ��Reð�0

3�
�221=2ðB�BÞ þ 2�1ið ��2 � 1ÞReð�0

3�
�2�BÞ � 2�1ð ��2 þ 1ÞImð�0

3�
�2�BÞ

A03 21=2ij�j�2Re�0
2 þ iReð�0

3�ð21=2ðB�B þ ��BÞÞ
A12 �21=2ij�j2j�j�2Re�0

2 � iReð�0
3�ð21=2 ��ðB�B � �BÞÞ

A22 2�0
1
���2 ��2 þ 23=2�0

2j�j�2 ��ð21=2 ��ðB�B � �BÞ þ�0
3�

�2ð21=2 ��ðB�B � �BÞ2
A23 2�0

1
���2 �� þ 21=2�0

2j�j�2ð23=2 ��ðB�B þ ðj�j2 � 1Þ�BÞ þ�0
3�

�2ð21=2ðB�B þ ��BÞð21=2 ��ðB�B � �BÞ
A33 2�0

1
���2 þ 23=2�0

2j�j�2ð21=2ðB�B þ ��BÞ þ�0
3�

�2ð21=2ðB�B þ ��BÞ2
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P000 P010

P100 P110

" #
¼ 2�1=2 Pt þ Pz Px þ iPy

Px � iPy Pt � Pz

� �

¼ A12 A13

�A02 �A03

� �
: (59)

VI. ANGULAR MOMENTUM

In special relativity, the angular momentum is a
position-dependent skew tensor field MabðxÞ, or equiva-
lently a spinor �A0B0 ðxÞ, where MabðxÞ ¼ �A0B0 ðxÞ�AB þ
��ABðxÞ�A0B0 . In general relativity, as is well known, there is
no good set of ‘‘asymptotic origins’’ for the measurement
of angular momentum, and thus the special-relativistic
treatment does not apply.

A good treatment of angular momentum in general
relativity is possible, if we adjust our perspective a bit.
We first note that if � is a null geodesic in Minkowski space
and �A0 is a tangent spinor to it, then the component

�A0B0 ðxÞ�A0�B0 of the angular momentum is (by the
change-of-origin formula) independent of x, as long as x
lies on �. Thus we may think of the angular momentum
either as a spinor-valued function on space-time, or as

�ð�; �A0 Þ ¼ �A0B0 ðxÞ�A0�B0 , a function on the space of
null geodesics together with their tangent spinors. While
angular momentum does not extend to general relativity as
a spinor-valued function, it does extend as a function of the
null geodesic and the tangent spinor. Indeed, the expression
is very simple: we have

�ð�; �A0 Þ ¼ ð2iÞ�1A��Z
�Z�; (60)

where Z $ ð�; �A0 Þ is the real twistor defined by the null
geodesic � and the tangent spinor �A0 .

While the general-relativistic angular momentum is thus
an extension of the special-relativistic concept, some fea-
tures which are prominent on the special-relativistic case
do not extend to general relativity, and others which are
usually viewed as secondary become central in the general-
relativistic setting.

The root of this is that the general-relativistic angular
momentum is defined on the space fð�; �A0 Þg of null geo-
desics together with their tangent spinors. In the asymp-
totic regime, this space naturally fibers over the space SA0

of spinors, because there is a well-defined asymptotic spin

space. This contrasts with the usual view of�A0B0 ðxÞ�A0�B0

being defined on the spin bundle fðx; �A0 Þg of Minkowski
space, where the base space is Minkowski space and the
fibers are copies of SA0 . In practical terms, this means that
while the component of the angular momentum �ð�; �A0 Þ
in a direction corresponding to � and �A0 will be well
defined, there will be no natural way of simultaneously
varying � and�A0 so the angular momentum is specified by

a pure j ¼ 1 representation�A0B0
of the Lorentz group; the

angular momentum will inevitably (if a magnetic part of
the shear is present) have j 
 2 parts as well.

The reason for the appearance of these j 
 2 compo-
nents is that general relativity unifies the ‘‘ordinary’’ (j ¼
1) angular momentum with gravitational radiation. The
j 
 2 parts of the angular momentum correspond exactly
to the shear (times the Bondi mass). Because there is no
split of the angular momentum into j ¼ 1 and j 
 2 parts
with the appropriate geometric invariance (invariance
under the Bondi-Metzner-Sachs group), one must, to get
an invariant theory, consider all of the j 
 1 parts of the
angular momentum.
While the angular momentum does depend on the pairs

ð�; �A0 Þ, the dependence is not arbitrary: there is a general-
relativistic analog of the change-of-origin formula, which
says that the angular momenta at different points in a fiber
differ by appropriate multiples of the components of the
energy-momentum. Thus the full information in the angu-
lar momentum can be recovered by choosing any cross
section �ð�A0 Þ of the fibration and computing
�ð�ð�A0 Þ; �A0 Þ as �A0 varies. Because this is a homoge-
neous function (of degree 2) in �A0 , the essential informa-
tion in the angular momentum is that in one spin weight
minus one function on the sphere.
It is natural for us to choose the cross section to be given

by the congruence of null geodesics meeting the cut of null
infinity orthogonally (that is, the congruence specified by
la). This congruence then serves as a sort of origin for the
computation. (However, the present prescription differs
essentially from previous attempts to use cuts as origins.)
Then the electric and magnetic parts of �ð�ð�A0 Þ; �A0 Þ
represent the energy moments and spatial angular momen-
tum, respectively, of the system with respect to the asymp-
totic laboratory frame.
We will also want a general-relativistic extension of the

‘‘polarized’’ form �A0B0
�A0 ��B0 . This corresponds to a two-

point function

�ðð�; �A0 Þ; ð ��; ��A0 ÞÞ ¼ ð2iÞ�1A��Z
� �Z� (61)

on twistor space, where Z $ ð�; �A0 Þ, �Z $ ð ��; ��A0 Þ. In
special relativity we would have ð2iÞ�1AðZ; �ZÞ ¼
�A0B0 ðxavÞ�A0 ��B0 , where xav is any point on the world
line defined by ‘‘averaging’’ the geodesics �, �� with re-
spect to the energy-momentum [xav ¼ ðxþ �xÞ=2 where
x 2 �, �x 2 �� satisfy ðxa � �xaÞPa ¼ 0] [9]. While in gen-
eral relativity there is no similar invariant notion of aver-
aging null geodesics, that is a limitation only on
interpreting the origin of the angular momentum in direct
space-time terms and not on its well definition as a con-
served quantity.
If we fix a cross section of twistor space, then the angular

momentum �ðð�ð�A0 Þ; �A0 Þ; ð�ð ��A0 Þ; ��A0 ÞÞ can be thought
of as a two-point function on the sphere. However, the
essential information in it corresponds to functions of one
point on the sphere, not two. This is because the condition
(54) implies that the higher-j terms enter only in tensor
products with j ¼ 1=2, s ¼ �1=2 representations; that is,
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the angular momentum is in fact the symmetrized tensor
product of a single spin weight minus one-half function
with an ordinary spinor.

The intrinsic spin may be computed by passing to a
boosted frame in which the time axis is aligned with the
Bondi-Sachs energy-momentum; then the magnetic part of
the angular momentum is the spin. (The electric part of the
angular momentum in this frame has a natural interpreta-
tion, too. The twistorial construction makes the cut appear
as if it were a supertranslated cut in a stationary space-
time; the electric part is the Bondi mass times this
supertranslation.)

A. Reporting the angular momentum

Besides the need to accommodate j 
 1 representations,
there is another issue to address in choosing how to report
the angular momentum, which is a trade-off between in-
variance and intuitive familiarity. This issue already occurs
in special relativity, where the angular momentum is in-
variantly an element of the j ¼ 1, s ¼ �1 representation,
but when a reference frame is chosen we usually think of it
as two spatial vectors (really the elements of a complex
j ¼ 1, s ¼ 0 representation). We shall opt for the familiar
presentation, so that we can speak of the spatial angular
momentum and energy-moment (both with contributions
for j 
 1) parts of the full angular momentum.

Consider for a moment special relativity. Let ta be a unit
future-pointing timelike vector, and let za be a unit space-
like vector orthogonal to it. (For this paragraph only it will
be convenient to regard za as a variable direction on the

sphere.) Then 2�1=2ðta þ zaÞ is a future-directed null vec-

tor, say ��A�A0
(normalized by tAA0 ��A�A0 ¼ 2�1=2), and

tA
ðA0
�B0Þ ��A ¼ tAðA0

zB
0ÞB�AB. It follows that

21=2�A0B0 tA
A0
��A�B0 ¼ Mabt

AðA0
zB

0ÞB

¼ Mabð1=2Þðtazb � ði=2Þ�abcdtczdÞ
¼ ð1=2ÞðMtz � iMxyÞ; (62)

where ðx; y; zÞ form a right-handed spatial triad. Thus,
having fixed ta, as �A0 varies, one gets the energy moment
Mtz and spatial angular momentum Mxy in the direction

zAA
0 ¼ 21=2 ��A�A0 � tAA

0
it determines.

We shall do the same thing in general relativity. We take
for ta the time direction determined by the asymptotic
laboratory frame, we allow Z2 ¼ �00 , Z

3 ¼ �10 to vary

(normalized to jZ2j2 þ jZ3j2 ¼ 1), and we take ��A0 ¼
21=2tAA0 ��A, that is ��00 ¼ ��1, ��10 ¼ � ��0. With these re-
strictions �ð�A0 Þ ¼ �ðð�ð�A0 Þ; �A0 Þ; ð�ð ��A0 Þ; ��A0 ÞÞ be-
comes a spin-weight zero function on the sphere, with
�þ �� giving the energy moment, and i�� i �� giving
the spatial angular momentum, in the direction determined
by �A0 (and ta). These may be reported as real functions on
the sphere, or resolved into spherical harmonics.

(Of course, there is some freedom in choosing how to
extend the terminology appropriate to a purely j ¼ 1

quantity to a j 
 1 one. For instance, what one chooses
to call the j 
 2 energy moments and spatial angular
momenta could be taken to be some function of j times
the ones used here. Such differences are unimportant here,
since what we are interested in is simply extracting the
invariant information.)

B. Derivation of the formula

The twistorial formula for the angular momentum is
simply

� ¼ ð2iÞ�1A��Z
� �Z�; (63)

where A�� is the kinematic twistor introduced earlier and

Z�, �Z� are twistors whose null geodesics meet the cut of
null infinity orthogonally (and satisfy jZ2j2 þ jZ3j2 ¼ 1,
�Z2 ¼ Z3, and �Z3 ¼ �Z2). The condition that Z� (say)
meets the cut at a point is that the fields ð ~!0

B; !
1
BÞ vanish

there; that the meeting be orthogonal means that the tan-
gent spinor to the geodesic must lie in the oA0 direction.
Let the point in question on the cut have stereographic

coordinate � . Then from the formulas (41)–(44) for the
twistor fields, we deduce that the conditions for � to meet
the cut are

� ¼ �Z3=Z2; (64)

�BðjZ2j2 þ jZ3j2Þ ¼ iðZ0Z2 þ Z1Z3Þ: (65)

The component of the tangent spinor in the �A
0

B direction,
which we require to vanish, was computed in Eq. (29) of
Ref. [9]. It is

ðjZ2j2 þ jZ3j2Þ�1=2jZ2j�1ðiðð0B�BÞðjZ2j2 þ jZ3j2ÞZ2

þ 2�1=2ðZ0Z3 � Z1Z2ÞZ2Þ; (66)

where ð0B�B is evaluated at (64).
After a little algebra, we find the equations for Z0, Z1 in

terms of Z2 ¼ �00 , Z
3 ¼ �10 :

Z0 ¼ �ið21=2Z2Z3ð0B�B þ jZ2j2�BÞ=Z2; (67)

Z1 ¼ ið21=2Z2ð0B�B � Z3�BÞ; (68)

where �B and ð0B�B ¼ 2�1=2ð1þ j�j2Þ@�B=@� are eval-
uated at � . Equations (67) and (68) determine the cross
section of twistor space as a bundle over spin space.
The same analysis applies, of course, with Z� replaced

by �Z�. We note that �� ¼ �1= �� is the point antipodal to �
on the sphere, and the quantities �B, ðB�B appearing in the

formulas for �Z0, �Z1 must be evaluated at this antipodal
point.
Substituting these formulas into Eq. (63) and collecting

like terms, we find (with the normalization jZ2j2 þ jZ3j2 ¼
1) that
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� ¼ 2�1ð1þ j�j2Þ�1f�½A13 þ ðA12 þ A03Þ� þ A02�
2�21=2ð0B�Bð�; ��Þ þ ½A03 þ A02� � A13

�� � A12j�j2��Bð�; ��Þ
þ ½A02 � ðA03 þ A12Þ �� þ A13

��2�ð�= ��Þ21=2ð0B�Bð�1= ��;�1=�Þ þ ½A12 þ A02� � A13
�� � A03j�j2��Bð�1= ��;�1=�Þ

þ iA22� � iA23ðj�j2 � 1Þ � iA33
��g: (69)

[Here we have followed the standard convention of writing
a nonholomorphic function f of the complex coordinate �
as fð�; ��Þ.] While the formula is lengthy, this is mostly due
to the appropriate factors of � , �� for weighting the compo-
nents A�� of the kinematic twistor; the only complicated
expressions are those involving �B, which encode the
shear.

Thus Eq. (69) allows one to report the angular momen-
tum as a function of the direction (with 2Re� giving the
energy moment in the direction, and �2Im� the spatial
angular momentum about the axis, specified by �).

If the resolution of �B in spherical harmonics is known,
one can use it to find the resolution of � into spherical
harmonics, by identifying the explicit functions of � in (69)
with particular spin-weighted harmonics and applying ten-
sor product formulas (‘‘Clebsch-Gordan decomposi-
tions’’). The computation is lengthy but straightforward
using the formulas derived in the Appendix; we find

� ¼ X
�̂j;m 0Yj;m þ ð2iÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2�=3

p ðA22 0Y1;1

þ 21=2A23 0Y1;0 þ A33 0Y1;�1Þ; (70)

where the last three terms are the �B-independent ones, and
the coefficient �̂j;m is a sum of terms, each of which is �j0m0

for j0 ¼ j� 1, j, jþ 1,m0 ¼ m� 1,m, andmþ 1 times a

factor; these are given in Table V (for j even) and Table VI
(for j odd).

VII. EVOLUTION

The usefulness of a definition of energy-momentum or
angular momentum in radiation problems depends consid-
erably on whether it admits a well-defined notion of evo-
lution. At null infinity, it is well known that the Bondi-
Sachs energy-momenta at two cuts can be compared. Many
proposed definitions of angular momentum at null infinity
took values in cut-dependent spaces, making tracking their
evolution problematic; the twistor-based definition solves
this problem. Here, however, because we are dealing with
energy-momentum and angular momentum at large but
finite spheres S, we must take up the problem anew, both
for energy-momentum and angular momentum.
Suppose we have a one-parameter family of surfaces

Sð�Þ (for � in some interval J) foliating a timelike surface
T, with � increasing toward the future (precisely, we
require vara� > 0 for every future-causal vector va tan-
gent to T). We may compute the energy-momentum and
angular momentum on each of these; the difficulty is that
these quantities are naturally defined on the null infinities
Iþð�Þ of the different auxiliary space-times Mð�Þ [each
defined by taking �0 ¼ 0 along the null hypersurface
N ð�Þ outward from Sð�Þ]. In order to compare the
energy-momenta and angular momenta for different �,
then, we must find a natural way of identifying the null
infinities Iþð�Þ for different �.
We could express this as a problem of finding transition

functions. The constructions above determine a preferred

Bondi coordinate system ð��; ��; u�Þ on Iþð�Þ. [We have

shown how to fix, for each Sð�Þ, a complex stereographic
coordinate � ¼ �� on Iþð�Þ, and we have chosen an

associated Bondi-Sachs frame by fixing the factor PB.
This determines the Bondi retarded time u ¼ u� up to a

TABLE V. Terms contributing to the �B-dependent part of the
angular momentum proportional to 0Yjm for even j. Each term is

the product of the component �j0;m0 in the left column by the

quantity in the right column. (We understand the term is zero
unless j0 ¼ 0; 1; 2; . . . , m0 ¼ �j0; . . . ; j0.)

Component �j0;m0 Factor it multiplies

�j;m�1 2�1A02ððj�mþ 1ÞðjþmÞÞ1=2
�j;m �2�1ðA03 þ A12Þm
�j;mþ1 �2�1A13ððjþmþ 1Þðj�mÞÞ1=2

TABLE VI. Terms contributing to the �B-dependent part of the angular momentum propor-
tional to 0Yjm for odd j. Each term is the product of the component �j0;m0 in the left column by the

quantity in the right column. (We understand the term is zero unless j0 ¼ 0; 1; 2; . . . , m0 ¼
�j0; . . . ; j0.)

Component �j0;m0 Factor it multiplies

�j�1;m�1 2�1A02ðj� 2ÞððjþmÞðj�mþ 1Þ=ð4j2 � 1ÞÞ1=2
�jþ1;m�1 2�1A02ðjþ 1Þððj�mþ 2Þðj�mþ 1Þ=ð4ðjþ 1Þ2 � 1ÞÞ1=2
�j;m 2�1ðA03 � A12Þ
�j�1;mþ1 2�1A13ðj� 2Þððj�mÞðj�m� 1Þ=ð4j2 � 1ÞÞ1=2
�jþ1;mþ1 2�1A13ðjþ 1Þððjþmþ 2Þðjþmþ 1Þ=ð4ðjþ 1Þ2 � 1ÞÞ1=2
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supertranslation; we fix this by requiring the preferred cut
Cð�Þ of Iþð�Þ—the limit of N ð�Þ—have u� ¼ 0.] Then

we wish to find formulas for ð��2
; ��2

; u�2
Þ in terms of

ð��1
; ��1

; u�1
Þ.

Structures preserved by the identifications.—I will dis-
cuss the way these identifications are made shortly. More
important, though, is the question, what structures are
preserved by the identifications? If the surfaces Sð�Þ
were actually cuts of the null infinity of the physical
space-time, we should expect the usual structures to be
preserved and the identifications to be Bondi-Metzner-
Sachs transformations. However, here we must expect a
weaker structure due to finite-size effects. The extent to
which these effects are significant should be interpreted as
the extent to which the extraction surfaces Sð�Þ are in-
sufficiently distant to capture the full radiative structure
(or, if the effects persist for arbitrarily large surfaces, the
extent to which the Bondi-Sachs asymptotics fail for the
physical space-time). Even with this interpretation, though,
in order to precisely quantify the finite-size effects we must
work out the structure in general.

The usual intrinsic structure of null infinity may be
regarded as determined by three elements: its set of gen-
erators, each with an affine structure; a conformal structure
on the set of generators (it is a remarkable feature of the
construction that the set does have a well-defined confor-
mal structure); and the ‘‘strong conformal geometry’’
(which links the scales of vectors up the generators with
the scales of the area forms transverse to them). In our case,
two of these three elements survive: there are natural
invariant definitions of the generators and of the strong
conformal geometry, but the conformal structure on the
space of generators is not preserved under the
identifications.

A priori, while for each value of � each generator of
Iþð�Þ has an affine structure, it is not evident that there is a
preferred way of identifying these for different values of �.
However, because the strong conformal geometry and the
space of generators are well defined, the identifications will
extend in a natural way to vectors tangent to the generators.
This means that supertranslations are well defined. We
shall see that there is a natural way of measuring the
supertranslation relating u�1

¼0 to u�2
¼0, and this will

allow us to appropriately account for the change of section
of the twistor space when we compare angular momentum.

The failure of an invariant conformal structure to exist
on the space of generators (that is, to be preserved under
evolution) turns out to mean that in comparing the energy-
momenta at different cuts higher-j representations appear.

To see this, let us first recall that, since the space of
generators has naturally the smooth structure of an oriented
sphere, a conformal structure on it is equivalent to a com-
plex structure. In the Bondi-Sachs case, the transition

functions ð��1
; ��1

Þ � ð��2
; ��2

Þ preserve this complex

structure, and are thus fractional linear transformations.

On the other hand, these fractional linear transformations
are isomorphic to the (proper, isochronous) Lorentz trans-
formations. Thus in the Bondi-Sachs case, the admissible
coordinate changes induce Lorentz transformations on the
space of generators. One builds up the spaces of asymptoti-
cally constant spinors, vectors, etc., as functions on the
space of generators, and it is the fact that the conformal
transformations induce Lorentz motions which is respon-
sible for these fields breaking neatly into Lorentz-invariant
representations.
Now let us turn to the present, non-Bondi-Sachs case. If

we compute the component Pð�1; ��1
; ��1

Þ of the energy-

momentum at �1 along the null vector determined by the

Bondi stereographic coordinates ð��1
; ��1

Þ in the chart at

�1, we find, as usual, that, as a function of ð��1
; ��1

Þ, the
energy-momentum consists of j ¼ 0 and j ¼ 1 compo-
nents, forming a covector. However, if we want to compare
the energy-momenta at �1 and �2, we must express them

both in a common chart, say the chart ð��2
; ��2

Þ on the
space of generators for Iþð�2Þ. Then of course

Pð�2; ��2
; ��2

Þ will have only j ¼ 0 and j ¼ 1 compo-

nents, but, because the change of variables ð��1
; ��1

Þ �
ð��2

; ��2
Þ will not be a fractional linear transformation, the

expression for Pð�1Þ in terms of ð��2
; ��2

Þ will generally
contain not just j ¼ 0 and j ¼ 1 components, but those for
all integral j. So comparison of energy-momenta at differ-
ent surfaces Sð�1Þ, Sð�2Þ, will require higher-j represen-
tations. (This sort of behavior occurs even strictly at null
infinity for angular momentum, but is a finite-size effect for
energy-momentum.)
Again, this potential failure of a linear identification

of asymptotic covectors (and elements of the spin-tensor
algebra generally) as � changes is a finite-size effect;
it will become negligible if one takes the family Sð�Þ
of extraction surfaces distant enough (that is, close enough
to the physical space-time’s null infinity), assuming
that the system is indeed isolated. Thus the occurrence
of these nonlinearities in a numerical computation would
be a signal that the extraction surface had not been
taken large enough that a model null infinity, with the
usual Bondi-Sachs structure, stable under evolution
existed.
Some further, more technical, discussion of structure is

given in Sec. VII E.
How the identifications are made.—A few words now

about how the identifications of Iþð�Þ for different � are
made. They all grow out of two considerations, which we
have already used extensively. The first of these is that at
any point pð�Þ 2 Sð�Þ, there is a null geodesic orthogo-
nally outward in Mð�Þ whose end point lies on Iþð�Þ;
holding � fixed but varying pð�Þ we get a preferred cut
Cð�Þ of Iþð�Þ. The second is that at any pð�Þ 2 Sð�Þ,
there is a canonical isomorphism TpðMphysÞ ffi TpðMð�ÞÞ
between the tangent space of the physical space-time and
that of the auxiliary space Mð�Þ (cf. footnote 2).
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We define the identifications at the infinitesimal level
(that is, for infinitesimally separated �), and then integrate.
At the infinitesimal level, the problem comes down to
understanding how the structures on Iþð�þ d�Þ are rep-
resented by quantities on Iþð�Þ.

Let us consider a one-parameter family of points pð�Þ 2
Sð�Þ (with � the parameter) in Mphys. At each point we

have the null normal la orthogonally outward from Sð�Þ,
and its associated null geodesic in Mphys. As � varies, the

vector uaphys connecting this family of geodesics is a Jacobi

field, which in turn is determined by its initial data
ðuaphys; _ubphysÞ at Sð�Þ. On the other hand, we may use the

isomorphism of tangent spaces to regard these as initial
data for a Jacobi field ua inMð�Þ. We will take the limiting
value of this field at Iþð�Þ as the definition of the rate of
change of the end point of the null geodesic orthogonally
outwards from pð�Þ as � varies. The important thing to
note here is that this vector, while it lies in the tangent
space to Iþð�Þ, represents the end point of a geodesic with
base point pð�þ d�Þ for an infinitesimally differing value
of �. This is the root of all of the identifications.

We may apply this in several ways. If, for example, we
require the curve pð�Þ to be such that the corresponding
vector at Iþð�Þ points along a generator, we may say the
generator of null infinity does not change with pð�Þ; this
gives the identification of the generators of null infinity for
different values of �. Or if we imagine a congruence of
curves, say pð�; ��; �Þ with stereographic coordinate � , we
get a vector at each point of the cut of Iþð�Þ labeled by � ,
and this vector field over the cut gives a measure of the
supertranslation induced by changing � infinitesimally,
that is, in passing from Sð�Þ to Sð�þ d�Þ.

Outline of this section.— Section VIIA gives the com-
putation of the Jacobi fields, and Sec. VII B the main
formulas for comparing the null infinities. Then
Secs. VII C and VIID give the formulas for treating the
evolution of the energy-momentum and angular momen-
tum. The final section discusses some technical aspects of
the structure of the null infinities; these are not needed for
the computations in this paper but are given for complete-
ness of the conceptual framework.

Coordinates.—In what follows, we will be comparing
structure on the timelike hypersurface T with that on
Iþð�Þ, and also structure on Iþð�1Þ and Iþð�2Þ. As a
ready reference, here is a summary of the coordinate
systems to be used.

Recall that, for each �, we have already defined coor-

dinates ð�; ��Þ ¼ ð��; ��Þ on Sð�Þ. We may regard ð�; ��Þ
then as defined over the whole of T.

We shall eventually use coordinates ð�; �; ��Þ on T.
However, in the next section it will be convenient to briefly
use coordinates ð�; �; ��Þ, where � need not be simply
related to � .

As already indicated, we will have Bondi coordinates

ð��; ��; u�Þ on Iþð�Þ.

A. The Jacobi fields

We have a family of spacelike surfaces Sð�Þ forming a
timelike hypersurface T, with vara� > 0 for any future-
pointing vector va tangent to T. In practice, it is convenient
to represent the evolution from one surface to the next by a
connecting vector field wa, that is, a field tangent to T with
wara� ¼ 1. The freedom in choosingwa is the freedom to
add a vector field which, at each �, is tangent to Sð�Þ, that
is, is a linear combination of ma and �ma. We shall see
below that there is a natural way to fix this freedom, but for
now we leave it unspecified.
It will be helpful to briefly use coordinates adapted to the

foliation of T by � and the integral curves of wa. Near any
point of interest on T, fix �0 and let ð�; ��Þ be a complex
coordinatization of Sð�0Þ. (The use of a complex coordi-
nate is only for brevity of treatment; the coordinate � need
not be a holomorphic function of � , or have any other
special relation to it.) We may let the integral curve of
wa with coordinates ð�; ��Þ at �0 be pð�; �; ��Þ. If we Lie
drag � along wa (so wara� ¼ 0), then ð�; �; ��Þ provides a
coordinatization of a portion of T. In these coordinates, we
have wa ¼ @=@�, and @=@� is a linear combination of ma

and �ma.

1. Definition of the fields, their initial data

In this section, we work in the physical space-time. To
avoid cumbersome notation, however, the Jacobi field is
denoted simply ua, rather than uaphys.

Along each integral curve pð�; �; ��Þ of wa (holding �
fixed), let 	ð�; s; �; ��Þ be the affinely parametrized null
geodesic outward from Sð�Þ in Mphys, so that la ¼
@s	ð�; s; �; ��Þ and 	ð�; 0; �; ��Þ ¼ pð�; �; ��Þ. (The scale
of the affine parametrization will not matter.) Then differ-
entiating along � we get a Jacobi field ua ¼
@�	ð�; s; �; ��Þ connecting these geodesics.

It is this Jacobi field ua we wish to work out; more
precisely, we wish to work out ua modulo terms propor-
tional to la. The field is determined by its initial data. One
of those data is simply uajs¼0 ¼ wa; the other is
lbrbu

ajs¼0. One constraint on this second datum is that
lal

brbu
a ¼ 0. [This follows by differentiating lal

a ¼ 0:
we have 0 ¼ ubrbðlalaÞ ¼ 2lau

brbl
a ¼ 2lal

brbl
a.] The

other constraint (affecting one complex degree of freedom)
comes from requiring that the geodesics meet Sð�Þ
orthogonally.
The condition that the geodesics 	ð�; s; �; ��Þ meet Sð�Þ

orthogonally is that ð@�pÞala ¼ 0. If we differentiate this

along wa, and we apply the conditions wbrbð@�pÞa ¼
ð@�pÞbrbw

a [which holds since wa ¼ @=@� in the

ð�; �; ��Þ coordinates on T] and wbrbl
a ¼ ubrbl

a ¼
lbrbu

a (which holds because ua is a connecting vector
for the geodesics with tangents la), we find

ðð@�pÞbrbw
aÞla þ ð@�pÞalbrbu

a ¼ 0: (71)
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However, since ð@�pÞb is a complex basis vector spanning

the tangent space to Sð�Þ, so the equation is equivalent to
one with this vector replaced by any other complex basis
vector for this tangent space; in particular, it is equivalent
to

ðmbrbw
aÞla þmal

brbu
a ¼ 0; (72)

which determines the complex datum mal
brbu

ajs¼0.
We shall not need the coordinate � in what follows.

2. Solving the Jacobi equation

We have derived the initial data for the Jacobi fields on
the physical space-time Mphys. We now make use of the

isomorphism of tangent spaces at Sð�Þ to regard these
same data as determining Jacobi fields in the auxiliary
space-time Mð�Þ, and solve the Jacobi equation there.
[Since this isomorphism is uaphys � ua and we have already

dropped the ‘‘phys’’ subscript, this amounts to simply
using the formulas derived above for their data at Sð�Þ.]
Ultimately we are interested in the vectors on Iþð�Þ
determined by the asymptotic forms of the Jacobi fields.

In this section, we work in a frame parallel propagated
along the null geodesics, and express the Jacobi fields in
terms of their initial data. In the next one, wewill transform
the asymptotic form of the Jacobi field to the Bondi frame.

It will be convenient to put

ua ¼ u00
0
la þ u01

0
ma þ u10

0
�ma þ u11

0
na: (73)

Then the constraints we have worked out above will be the
initial conditions for the geodesic deviation equation:

uajs¼0 ¼ wa and larau
100 js¼0 ¼ lbmarawb: (74)

Recall thatwa is the vector field connecting Sð�Þ to Sð�þ
d�Þ, so the quantities on the right-hand side in Eq. (74) are
known. As noted above, that the Jacobi field represents a
null geodesic entails additionally

larau
110 ¼ 0: (75)

The geodesic deviation equation itself (laral
brbu

c ¼
lplqRprq

cur) becomes in terms of the components

€u 000 ¼ �1u
010 þ�2u

110 þ conjugate; (76)

€u 100 ¼ ��1u
110 ; (77)

€u 110 ¼ 0; (78)

where the dots are differentiation with respect to s. [Here
of course the components of ua and also the curvatures�1,
�2 are evaluated at points along the geodesic, not at S ¼
Sð�Þ; we temporarily violate the convention that quantities
unsubscripted by NU or B are evaluated at S.] Integrating
these with the initial conditions [using the explicit form of
�1 provided by integrating (6) using (4)], we find

u11
0 ðsÞ ¼ w110 ; (79)

and

u10
0 ðsÞ ¼ w100 þ slbmarawb þ w110�1ð4j�j2Þ�1f� logð1

� sð�þ j�jÞÞð1� sð�� j�jÞÞ � 2�s

� j�j�1ð�� j�jÞð1� sð�þ j�jÞ logð1� sð�
þ j�jÞÞ þ j�j�1ð�þ j�jÞð1� sð�� j�jÞ logð1
� sð�� j�jÞÞg;

(80)

where, on the right-hand side, the spin coefficients and the
curvature�1 (as well as the field w

a) are evaluated at Sð�Þ
(we restore the convention about subscripting). We note the
asymptotic behavior

u10
0 � sðlbmarawb þ w110XÞ; (81)

where

X ¼ �1

�
�2�1j�j�2�þ 4�1j�j�3ð�2 � j�j2Þ

	 log
�þ j�j
�� j�j

�
: (82)

[In the limit j�j � j�j, we have X � �ð3�Þ�1�1.]

We will not need u00
0
.

3. Transformation to the Bondi frame

In the previous section, we found the Jacobi field (mod-
ulo terms tangent to the geodesic) in a parallel-propagated
frame. We here transform the asymptotic form of this field
to the Bondi frame previously constructed for Mð�Þ.
We have

ua modulo la ¼ u01
0
ma þ u10

0
�ma þ u11

0
na: (83)

Nowma differs fromma
NU by a term proportional to la, and

so we may replace ma by ma
NU in this expression. As s !

1, we may also, to leading order, replace na by naNU. To see

this, first note that we have seen that u01
0
, u10

0 ¼ OðsÞ, and
u11

0 ¼ Oð1Þ as s ! 1. On the other hand, we have na ¼
naNU �Qma � �Q �ma þQ �Qla. SinceQ isOð1Þ, making this
substitution in Eq. (83) would only change the coefficients
of ma, �ma (or ma

NU, �ma
NU) by subdominant terms. Thus
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ua modulo la � u01
0
ma

NU þ u10
0
�ma
NU þ u11

0
naNU

� u01
0
P

@

@��
þ u10

0 �P
@

@��
þ u11

0
naNU

��ðlb �marawb þ w110 �XÞ��1ð
 ��Þ @

@��

� ðlbmarawb þ w110XÞ��1ð
0�Þ @

@��

þ w110 j�j2 @

@u�
: (84)

Here @=@u� ¼ naB, where u� is a Bondi retarded time

coordinate for Iþð�Þ adapted to the frame defined by

ð��; ��Þ (and PB).

Equation (84) represents the displacement, in Iþð�Þ, of
the cut formed from the null vectors orthogonally outward,
as the two-surface moves from Sð�Þ to Sð�þ d�Þ along
the vector field wa. It thus codes the relation between the
null infinities Iþð�Þ and Iþð�þ d�Þ; our next task is to
develop this into formulas for transition functions.

B. Comparison of null infinities

We now have the tools to compare the null infinities
Iþð�Þ associated with different values of �. We recall that
(for each �) the invariant structures of Iþð�Þ are its space
of generators, the conformal structure on that space, and
the strong conformal geometry; we shall see that the first
and last of these can be identified under changes of �, but
not the conformal structure on the space of generators.

1. Identification of the space of generators

We have a family of two-surfaces Sð�Þ, and for each of
these the null geodesics outward determine a cut of the
corresponding null infinity Iþð�Þ. We saw in the last
section, however, that we could represent the cut of an
Sð�þ d�Þ infinitesimally perturbed from Sð�Þ by a vec-
tor field in Iþð�Þ. Precisely, if wa was a vector field at
Sð�Þ with wara� ¼ 1, then Eq. (84) gave the correspond-
ing apparent displacement of the cut.

We may use this to identify the generators of Iþð�Þ for
different values of �. The connecting fieldwa will preserve
the generator if the corresponding field at Iþð�Þ points
purely up the generator, which, from Eq. (84), is evidently
if

lbmarawb þ w110X ¼ 0: (85)

Expanding lbmarawb in spin coefficients we find

ðw110 � �w010 � �w100 ¼ w110X: (86)

Here w110 ¼ wala depends only on the displacement of
Sð�þ d�Þ relative to Sð�Þ; it is insensitive to the hori-

zontal components of wa, which are w010 and its conjugate.
We may thus use (86) as an equation to determine the

horizontal components of wa from the condition that (81)
vanishes. After a little algebra, we find

w100 ¼ ð�2 � j�j2Þ�1 � ��
� � ðw110 þXw110

ð0w110 þ �Xw110

" #
: (87)

We may therefore determine a vector field wa on T by
requiring wara� ¼ 1 and its components tangential to
Sð�Þ to be given by Eq. (87). Each integral curve of this
vector field corresponds to a generator of null infinity, in
the sense that under the identification of the Iþð�Þ for
different �’s described here, the null geodesics orthogo-
nally outward from Sð�Þ along this curve are all consid-
ered to strike the same generator.
An equivalent way of expressing this is in terms of

transition functions for the angular coordinates. Let us
write ��0

for the stereographic coordinate on Iþð�0Þ de-
termined by restricting the stereographic coordinate � to
Sð�0Þ [and identifying the cut of Iþð�0Þ with Sð�0Þ by
using the ideal end points of the null geodesics orthogo-
nally outward]. We may then extend ��0

to Iþð�Þ for all �
by requiring wara��0

¼ 0.

Now let zð�0; �0; �0; �Þ be the value of � ¼ �� at Sð�Þ
corresponding to the same generator as does the value �0 at

Sð�0Þ. Then zð�0; �0; �0; �Þ ¼ �� � ��1
�0

can be regarded as

the transition function from ��0
to ��, with �, �0 parame-

trizing the particular choices of the coordinate function of
interest.
The derivative of z with respect to � will be the compo-

nent w� of wa, in the coordinates ð�; �; ��Þ, if wa is chosen
to preserve the generators of null infinity. It will be con-

ceptually useful to put wa ¼ wa
v þ wa

h , where wa
v ¼

w000 la þ w110na are the ‘‘vertical’’ components and wa
h ¼

w010ma þ w100 �ma are the ‘‘horizontal’’ components (with
respect to the foliation of T by � and the induced metric).

Then w� ¼ wara� ¼ w�
v þ w�

h , where w�
v;h ¼ wa

v;hra� .

We have

wa
h ¼ w100 �ma þ conjugate

¼ �w100sð�Ma þ �� �MaÞ þ conjugate

¼ �w100s

�
�P

@

@�
þ �� �P

@

@ ��

�
þ conjugate

¼ �sðw100�þ w010�ÞP @

@�
þ conjugate

¼ �ðw100�þ w010�Þ��1
 ��
@

@�
þ conjugate; (88)

and so w�
h ¼ �ðw100�þ w010�Þ��1
 �� . Using Eq. (87),

this becomes w�
h ¼ �ð�w110 þ Xw110 Þ��1
 �� , and so the

transition function z is determined by

dz

d�
¼ �ððw110 þ Xw110 Þ��1
 �� þ w�

v ; (89a)

zð�0; ��0; �0; �0Þ ¼ �0: (89b)
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(This has been written as a family of ordinary differential

equations parametrized by �0, �0, and � to emphasize that
it is a simple evolution equation; one could write @=@� in
place of d=d� just as correctly.)

In Eq. (89a), the two terms on the right represent con-
tributions which are, respectively, intrinsic and extrinsic to
Sð�Þ in their dependence on the coordinate � . The first
term can be thought of as representing the rate of defor-
mation of the coordinate � due to changes in the geometry
of the surface as � is increased. The second may contribute
to this but also takes into account the freedom in specifying
� on successive surfaces. [Recall that � is determined only
up to a fractional linear transformation by the geometry; it
was suggested the remaining freedom in � be fixed by
comparison with the numerical coordinate system in order
to have as direct an interpretation as possible. See the
paragraph following the one containing Eq. (24).]

2. The conformal structure of the generators

As emphasized above, because of finite-size effects, the
conformal structure of the space of generators is not pre-
served under evolution. The question of how severe this
issue is governs the degree to which there is a sense of
asymptotically constant spinors, vectors, and tensors which
is stable under evolution. This section discusses the
obstruction.

The space of generators has naturally the structure of a
smooth oriented two-sphere, and a conformal structure on
this is equivalent to a choice of complex structure, and this
in turn is equivalent to giving a complex basis vector (or
covector) up to proportionality. In our case, we could take
the basis vector to be Ma; then LwM

a, modulo terms
proportional to Ma, would give a measure of the rate of
change in the complex structure. Equivalently, the shear
MaLwM

a of Ma along wa would measure the rate of
change. This quantity can be readily computed but it is
not directly useful here.

The more direct way of accounting for the change in
complex structure is the part of dz=d� [Eq. (89a)] anti-
holomorphic in �; if dz=d� were holomorphic, the com-
plex structure would be unchanged at first order in � and
dz=d� would induce an infinitesimal Lorentz motion.

In practice, it is likely that dz=d� ¼ w� will be close to
holomorphic. We saw above that there are two contribu-

tions to it, one w�
h ¼ �ððw110 þ Xw110 Þ��1
 �� depending

on � intrinsic to Sð�Þ and one w�
v depending on the

extension of � off Sð�Þ. For the intrinsic one, we have X �
�ð3�Þ�1�1, and so, if Sð�Þ is in fact within the peeling
regime we will have X�OðR�3Þ. If the sphere is nearly

round and w110 is nearly constant, then w�
h will be small.

The quantity w�
v represents the rate of change of the

stereographic coordinate as one moves normal to Sð�Þ
along wa. This means that w�

v depends on just how � is
extended off Sð�Þ, which in turn depends on how the
underlying numerical coordinates extend to the future of

Sð�Þ. As typically the extraction surfaces are very distant,
nearly round, and these features are reflected to good
approximation in the numerical coordinates (and preserved

under evolution), we expect that w�
v will give something

which is close to an infinitesimal fractional linear
transformation.

3. The strong conformal geometry

The strong conformal geometry of null infinity links the
scales of vectors along the generators with the scales of
those transverse to the generators [8]. It can be character-
ized by the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2iÞ�1jPBj�2d� ^ d ��
q @

@u
; (90)

where the forms are defined on the space of tangent vectors
to Iþð�Þmodulo the vectors tangent to the generators, and
the square root is taken in the sense of a line-bundle-valued
quantity. (The root taken is irrelevant; there are also other
equivalent ways of characterizing the structure.) This
quantity is independent of the Bondi frame.
We have so far constructed, for each Iþð�Þ, a stereo-

graphic coordinate �� on the space of its generators, and

we have transition functions �� � ��1
�0

relating these for

different values of�. On any Iþð�Þwemay define a Bondi
coordinate u� with respect to the Bondi frame defined by

�� (and PB), fixing the zero of u� to lie on the preferred

cut. Thus the quantity (90) is well defined, and requiring it
to be preserved under changes of � leads to a transforma-
tion law for the vectors @=@u�.

We have

ð2iÞ�1jPBj�2d�� ^ d�� ¼ ð2iÞ�1ð1þ j��j2Þ�1d�� ^ d��

¼ ð1þ j��0
j2Þ2

ð1þ j��j2Þ2
								@��

@��0

								2ð2iÞ�1

	 ð1þ j��0
j2Þ�1d��0

^ d��0
;

(91)

and so we have

@

@u�
¼ 1þ j��j2

1þ j��0
j2
								@��0

@�

								 @

@u�0

: (92)

4. Identification of the generators

We now turn to the supertranslations identifying the
generators of Iþð�Þ for different values of �.
We saw above [Eq. (84)] that j�j2wblbn

a
� represents the

apparent displacement of the cut corresponding to Sð�þ
d�Þwith respect to the preferred cut in Iþð�Þ. To integrate
these infinitesimal displacements, however, we must ex-
press them all as elements of the same vector space. We
may do this by using the transformation rule (92) relating
na� ¼ @=@u� to na�0

¼ @=@u�0
derived above; the infini-

tesimal displacement, expressed as a vector at Iþð�0Þ for
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some fixed �0, is ð1þ j��0
j2Þ�1ð1þ j��j2Þj@��0

=@��j	
j�j2wblbn

a
�0
. Thus the supertranslation taking the cut

labeled by �1 to that labeled by �2 will be, in Iþð�0Þ,

�u�0
ð�2; �1Þ ¼

Z �2

�1

1þ j��j2
1þ j��0

j2
								@��0

@��

								j�j2walad�:

(93)

In this integral, the coordinates ð��0
; ��0

Þ are held fixed and
�� ¼ zð��0

; ��0
Þ.

The full transformation law for the Bondi retarded times
will be, from Eq. (92) again and this,

u�2
¼ 1þ j��1

j2
1þ j��2

j2
								@��2

@��1

								u�1
þ �u�2

ð�2; �1Þ: (94)

One can verify directly that these transition functions are
compatible, that is, computing u�3

either directly from u�1
,

or from u�2
in terms of u�1

, gives the same answer.

What we shall actually need is to refer the angular
momenta at different values of � to a single value �0.
We therefore define u ¼ u� � u�1

�0
j�0¼0 ¼ �u�ð�;�0Þ.

Explicitly,

u ð�1Þ ¼
Z �1

�0

1þ j��j2
1þ j��1

j2
								@��1

@��

								j�j2walad�: (95)

In this integral, we have �� ¼ zð�0; �0; �0; �Þ in order to

keep the generator of null infinity fixed. This applies not
only to the explicit factors of ��, ��1

, but also to the

dependences j�j2wala and the derivative terms. [So

@��1
=@�� ¼ ð@��=@��0

Þ�1ð@��1
=@��0

Þ ¼
ð@zð�0; �0; �0; �Þ=@�0Þ�1ð@zð�0; �0; �1; �Þ=@�0Þ.]

C. Evolution of energy-momentum

To compare the energy-momentum at Sð�Þ with that at

Sð�0Þ, then, we express PAA0
Sð�Þ ��A�A0 by giving �A0 as a

function of �; we then insert for this function z. We have

PAA0
��A�A0 ¼ P000 ��0�00 þ P010 ��0�10 þ P100 ��1�00

þ P110 ��1�10

¼ ð1=2ÞðP000 þ P110 Þ þ ð1=2ÞðP000 � P110 Þ

	 1� jzj2
1þ jzj2 � P010 �z

1þ jzj2 � P100 z

1þ jzj2 :
(96)

In this formula, the components of Pa are evaluated at Sð�Þ
as in Sec. V. The formula here gives the component of the
energy-momentum at Sð�Þ in the direction specified by �
at Sð�0Þ.

As noted above, if the extraction surfaces Sð�Þ are far
enough away that they provide good models of cuts of null
infinity, then z will be a fractional linear transformation

representing a Lorentz transformation and PAA0
��A�A0 will

be interpretable as the component of a covector along the
null direction specified by � . Another way of saying this is
that energy-momentum (96) will have only j ¼ 0 and j ¼
1 components. Because of finite-size effects, however, we
cannot expect this to hold exactly, and there is a question of
principle of how to extract the (co)vectorial part of the
energy-momentum when these effects cannot be neglected.
The natural thing to do is find the boost relative to which

the energy-momentum (96) has zero dipole moment (j ¼ 1
component), project the energy-momentum in this frame
(that is, keep only the j ¼ 0 component in this frame), and
then boost back to the asymptotic laboratory frame at
Sð�0Þ. (There will be a unique frame in which the dipole
moment is zero [15].) While there is no simple closed-form
expression for this, there is an iterative procedure which
one would expect to converge rapidly.
The projection of the energy-momentum relative to the

frame defined by a unit future-pointing vector tAA
0
will be

PAA0 ðtÞ ¼ 25=2��1
Z j�j2 �

�� 1

" #
ð1� j�j2=�2Þj
�j2

	 PBB0
��B�B0

ðt000 � ��t01
0 � �t10

0 þ j�j2t110 Þ3 dS; (97)

where PBB0
��B�B0 is given by (96). Thus if, starting from

any tAA
0

0 , we define

tAA
0

nþ1 ¼ ðP000 ðtnÞP110 ðtnÞ � jP010 ðtnÞj2Þ�1PAA0 ðtnÞ; (98)

then the sequence tAA
0

n will converge to the time direction
determined by the Bondi-Sachs energy-momentum, with

PAA0 ðtnÞ converging to that energy-momentum. If zð�; ��Þ is
close to � (as would often be expected), then it would be

natural to choose ta0 ¼ Pa=
ffiffiffiffiffiffiffiffiffiffiffiffi
PbP

b
p

. It may not even be

necessary to move to further tan in the sequence to attain
the accuracy required in many situations.

D. Evolution of angular momentum

The strategy for comparing the angular momenta at
different cuts is similar to that for comparing the energy-
momenta. The essential difference is that we must refer all
angular momenta to the same origin (that is, the same cross
section of Iþ). We have already found that u is the super-
translation relating the measurement of the angular mo-
mentum at Sð�Þ to that at Sð�0Þ. Since a supertranslation
acts on the twistors by simply being added to �B in the
parametrization (67) and (68), in order to refer the angular
momentum back to the original cut Cð�0Þ, we need to
replace �B by �B � u in Eq. (69), as well as replacing �
by z.
Since, even at a single cut, the angular momentum in

general relativity is given by an object with components for
arbitrary j 
 1, the angular momentum cannot be reduced
to a vectorial object and so the sort of projection procedure
which was used for the energy-momentum is not needed.
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On the other hand, if it is desired to compute the compo-
nents of � for different values of j, this can certainly be
done. However, there is no simple algebraic (that is, in-
volving only finitely many operations for each term) trans-
formation taking a resolution of � in spherical harmonics
at Sð�Þ [such as might be found via Eq. (70) and Tables V
and VI] and transporting it to Sð�0Þ, even if zð�; ��Þ is given
by a fractional linear transformation, because the asymp-
totic laboratory frames at Sð�Þ and Sð�0Þ might be rela-
tively boosted, and boosts mix infinitely many j values. (Of
course, if z can be approximated as differing from the
identity only to a finite order, then an algebraic transfor-
mation can be derived.)

E. Two technical points

The formulas derived above for the evolution of the
energy-momentum and angular momentum were the
present paper’s goals. As emphasized above, these results
include possible finite-size corrections, which, if signifi-
cant, should be interpreted as signs that the extraction
surfaces are not distant enough to give a stable model of
null infinity.

I mention here two further issues related to these finite-
size effects, points which do not figure in the results above
but would be relevant if one were to try to draw broader
lessons for the development of quasilocal kinematics from
these results.

The first is that in general the comparisons of energy-
momentum and angular momentum at Sð�0Þ and Sð�1Þ
depend not just on these surfaces themselves but on the
intermediate ones Sð�Þ, �0 � � � �1. In other words,
because of finite-size effects, one would not expect an
integrable comparison. This issue, of course, would dis-
appear if the surfaces were actually at null infinity.

The second issue is that the structures discussed here do
not actually determine how to evolve the phase of a twistor
or spinor. This does not lead to any difficulties in the
formalism given here, but it would be a point to keep in
mind in developing a more general theory.

VIII. USERS’ GUIDE

The preceding sections covered the derivations of for-
mulas for the energy-momentum, angular momentum, and
comparisons of them at different times. The aim of the
present section is to give a users’ guide to the results.

The starting point is a spacelike two-surface S of spheri-
cal topology [or, for evolution, a one-parameter family
Sð�Þ of such surfaces, with ra� timelike]. We assume
that a null tetrad adapted to S has been chosen, and the
Newman-Penrose quantities at S are available in terms of
this tetrad.

The first step is to find a complex stereographic coor-
dinate � on S; see the paragraph containing Eq. (24) and
the two paragraphs thereafter. With this known, the factor

� giving the rescaling to a Bondi-Sachs frame is deter-
mined by Eq. (26). This defines an asymptotic laboratory
frame.
The second step is to compute the angular potential �B

for the Bondi shear. This may be done either via a Green’s
function [using Eqs. (28), (31), and (32)], or by resolution
in spin-weighted spherical harmonics [Eqs. (34)–(36); see
also the last paragraph of Sec. III for phase conventions].
The third step is to compute the components A�� of the

kinematic twistor. These are given by integrals over S.
Table IV lists the integrands, which require, besides the
quantities already discussed, the asymptotic forms�0

1,�
0
2,

and �0
3 of the Weyl curvature components in the poor

man’s no-incoming-radiation approximation; these asymp-
totic forms are given in Table I in terms of quantities on S.
(As noted in the text, Table I lists these under the assump-
tion j�j � j�j on S, which should be very good for most
purposes. Section II shows how to compute them more
accurately, if required.)
With the components of A�� known, the Bondi-Sachs

energy-momentum may be read off directly in the asymp-
totic laboratory frame: see Eq. (59).
The angular momentum is reported as a function�ð�; ��Þ

of the asymptotic direction with respect to the asymptotic
reference frame, with �þ �� giving the energy-moment in
the direction and i�� i �� the spatial angular momentum
about that axis. One could choose to either present this
function directly or to give its resolution in spherical
harmonics. For a direct presentation, the function is given
by Eq. (69), and this can be resolved into spherical har-
monics by standard means. If the components of �B in
spherical harmonics have already been computed, then the
resolution of � is given by Eq. (70), which makes use of
Tables V and VI.
If the spin and center of mass are required, one must

transform to a boosted asymptotic frame in which the time
axis lies along the Bondi-Sachs energy-momentum [9].
To study the evolution of the energy-momentum and the

angular momentum, one must, besides computing them on
the different surfaces Sð�Þ, also give an invariant method
for relating the quantities on one surface to those on
another. If wa is a vector from Sð�Þ to Sð�þ d�Þ, one
solves Eqs. (89) and (95), to find the functions zð�; ��; �Þ
and uð�; ��; �Þ expressing the appearance of the cut

CðSð�ÞÞ relative to CðSð�0ÞÞ. Then Eq. (96) [with PAA0

defined by (59) evaluated at Sð�Þ] gives the energy-
momentum at Sð�Þ in the directions as specified by the
angular variables at Sð�0Þ. This function may, because of
finite-size effects, in general not be simply a vector but will
have components in all j 
 0 representations. To project
the vectorial part invariantly, one solves (97) and (98)
iteratively. The angular momentum � at Sð�Þ but referred
to the Bondi coordinates constructed at Sð�0Þ is given by
replacing �B by �B � u and � by z in Eq. (69). There is no
simple formula for the evolution of the components of the
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angular momentum in spherical harmonics in the most
general case; one must compute the components from the
evolved � (cf. Sec. VII D).

APPENDIX: SOME PROPERTIES OF SPIN-
WEIGHTED SPHERICAL HARMONICS

This paper relies on some technical properties of spin-
weighted spherical harmonics, which are derived here. The
conventions are those of Ref. [14].

1. Definitions

The spin-weighted spherical harmonics are determined
as follows. Fix a spin frame ôA, �̂A (normalized with

ôA�̂
A ¼ 1 and with 21=2tAA

0 ¼ ôAôA
0 þ �̂A�̂A

0
). Put

Zðj; mÞB���CD���E ¼ ôðB � � � ôC|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j�m

�̂D � � � �̂EÞ|fflfflfflfflffl{zfflfflfflfflffl}
jþm

: (A1)

Now let oA, �A be a second normalized frame, which is
considered to vary and to determine a point on the sphere

(corresponding to the null vector oAoA
0
, say). Then one

puts

sZj;m ¼ Zðj; mÞB���EoB � � �oC|fflfflfflfflffl{zfflfflfflfflffl}
jþs

�D � � � �E|fflfflfflffl{zfflfflfflffl}
j�s

; (A2)

sYj;m¼ð�1Þjþm
sZj;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ!ð2jÞ!

4�ðjþsÞ!ðj�sÞ!ðjþmÞ!ðj�mÞ!

s
:

(A3)

One has sYj;m ¼ ð�1Þmþs�sYj;�m.

The spin-weighted spherical harmonics as defined above
are functions on certain line bundles over the sphere.
However, it is common to represent them by ordinary
functions, by giving their values on preferred sections.
There are two main conventions for this. In the first, the
spin frame is adapted to the complex stereographic coor-
dinate � and given by

oAð�; ��Þ ¼ ið1þ j�j2Þ�1=2ð��ôA � �̂AÞ; (A4)

�Að�; ��Þ ¼ ið1þ j�j2Þ�1=2ð�ôA þ ���̂AÞ; (A5)

in the second, the adaptation is to the polar coordinates �,
�, and

oAð�;�Þ ¼ ei�=2 cosð�=2ÞôA þ e�i�=2 sinð�=2Þ�̂A; (A6)

�Að�;�Þ ¼ �ei�=2 sinð�=2ÞôA þ e�i�=2 cosð�=2Þ�̂A:
(A7)

These frames differ by a phase only; one has ôAð�;�Þ ¼
�e�i�=2ôAð�; ��Þ ¼ �ð ��=�Þ1=2oAð�; ��Þ. Note that this
means that, viewed as ordinary functions, we have

sYj;mð�;�Þ ¼ ð�ð ��=�Þ1=2Þ2ssYj;mð�; ��Þ: (A8)

In this paper, the spin-weighted harmonics are applied at
two stages. First, they are used in the solution of the twistor
equation; in this case, the variable frame is determined by
oBA (and the fixed frame by the asymptotic reference
frame). The second occurrence of the harmonics is in
parametrizing the �A0 spinors appearing in the definitions
of energy-momentum and angular momentum. In those
cases, it is ��A which takes on the role of the variable spinor
oA in the spherical harmonics. We note that in this case

�00 ¼ ��Aô
A ¼ �1=2Z1=2;�1=2; (A9)

�10 ¼ ��A�̂
A ¼ ��1=2Y1=2;1=2; (A10)

and similarly

�00�00 ¼ �1Z1;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4�=3

p
�1Y1;1; (A11)

�00�10 ¼ ��1Z1;0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
4�=6

p
�1Y1;0; (A12)

�10�10 ¼ �1Z1;�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4�=3

p
�1Y1;�1; (A13)

�00 ��1 ¼ 0Z1;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4�=6

p
0Y1;1; (A14)

�00 ��0 � �10 ��1 ¼ 20Z1;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4�=3

p
0Y1;0; (A15)

�10 ��0 ¼ �0Z1;�1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
4�=6

p
0Y1;�1: (A16)

2. Behavior under inversion

Each of the spin-weighted spherical harmonics is de-
fined as a function of the spinor oA. We consider here how
the harmonics change when the spinor is acted on by a
spatial inversion.
There is a choice of sign in lifting the inversion from

vectors to spinors; we use �A � 21=2tAA0 ��A0
. (Then the

spinor ��A0 appearing in the treatment of angular momen-
tum is the image of �A0 under inversion.)
Each of the harmonics is given as a (normalization factor

times a) function ZA���CD���FoA � � � oC�D � � � �F, where there
are jþ s omicrons and j� s iotas. The antipodal map
gives oA � ��A, �A � oA. This will evidently effect a
change sYj;m � ð�1Þjþs�sYj;m. [Reversing the sign in

the definition of the antipodal map on spinors would
change the action on spin-weighted spherical harmonics
to sYj;m � ð�1Þj�s�sYj;m, that is, would contribute an

extra minus sign for half-integral spin weights. In this
paper, since all final quantities have integral spin weights,
the sign convention, as long as it is kept fixed, is
unimportant.]
However, when one represents the harmonics by ordi-

nary functions, their behavior under inversions appears
more complicated, because the sections used to effect the

ADAM D. HELFER PHYSICAL REVIEW D 81, 084001 (2010)

084001-24



trivialization of the bundles are not invariant under inver-
sions. Indeed, evaluating the sections at the antipodal point
(whose stereographic coordinate is � ���1), we find

oAð� ���1;���1Þ ¼ �ð�= ��Þ1=2�Að�; ��Þ; (A17)

�Að� ���1;���1Þ ¼ ð ��=�Þ1=2oAð�; ��Þ: (A18)

Thus

sYj;mð� ���1;���1Þ ¼ ð�1Þjþsð�= ��Þs�sYj;mð�; ��Þ;
(A19)

where the extra factor is the conversion from the gauge at
one point to its antipodal point.

For the frame adapted to the polar system, one has

oAð�� �;�þ �Þ ¼ �i�Að�;�Þ; (A20)

�Að�� �;�þ �Þ ¼ �ioAð�;�Þ; (A21)

and so

sYj;mð�� �;�þ �Þ ¼ ð�iÞ2j�sYj;mð�;�Þ: (A22)

3. Tensor products

We derive here the resolutions of certain products of
spin-weighted spherical harmonics (Clebsch-Gordan de-
compositions) which are used in the text. Because in all
cases one of the factors has small values of j and s (indeed,
j ¼ 0, 1, s ¼ �1, 0, 1) it is easiest to proceed iteratively.

Our starting point is the identity

�A�B���DE ¼ �ðA�B���DEÞ � 2j

2jþ 1
�AðB�C���EÞF�F;

(A23)

where �A is any spinor and �B���DE is any totally symmet-
ric spinor of valence 2j. Taking �A ¼ ôA or � ¼ �̂A and
�B���E ¼ Zðj; mÞC���E, we find
Zð1=2;� 1=2ÞAZðj;mÞB���E

¼ Zðjþ 1=2; m� 1=2ÞAB���E
þ jþm

2jþ 1
�AðBZðj� 1=2; m� 1=2ÞC���EÞ (A24)

and

Zð1=2;1=2ÞAZðj; mÞB���E
¼ Zðjþ 1=2; mþ 1=2ÞAB���E

� j�m

2jþ 1
�AðBZðj� 1=2; mþ 1=2ÞC���EÞ: (A25)

Contracting now with either oA or �A, and with oB � � � oC
(jþ s times) and �D � � � �E (j� s times), we find

1=2Z1=2;
1=2 sZj;m ¼ sþ1=2Zjþ1=2;m
1=2

� ðj�mÞðj� sÞ
ð2jÞð2jþ 1Þ sþ1=2Zj�1=2;m
1=2;

(A26)

and

�1=2Z1=2;
1=2 sZj;m ¼ s�1=2Zjþ1=2;m
1=2


 ðj�mÞðjþ sÞ
ð2jÞð2jþ 1Þ s�1=2Zj�1=2;m
1=2:

(A27)

We may by repeated application of these build up all the
tensor decompositions. The cases we need are as follows.
We have �1Z1;0 ¼ �1=2Z1=2;1=2 �1=2Z1=2;�1=2. Using this,

we find, after some algebra

�1Z1;0 1Zj;m ¼ 0Zjþ1;m � m

2j 0Zj;m

� ðj2 �m2Þðjþ 1Þ
4jð4j2 � 1Þ 0Zj�1;m: (A28)

Similarly

�1Z1;
1 ¼ ð�1=2Z1=2;
1=2Þ2;

from which

�1Z1;
1 1Zj;m ¼ 0Zjþ1;m
1 

j�m

2j 0Zj;m
1

þ ðjþ 1Þðj�mÞðj�m� 1Þ
4jð4j2 � 1Þ 0Zj�1;m
1:

(A29)

Using

0Z1;
1 ¼ 1=2Z1=2;
1=2�1=2Z1=2;
1=2;

we find

0Z1;
1 0Zj;m ¼ 0Zjþ1;m
1

� ðj�mÞðj�m� 1Þ
4ð4j2 � 1Þ 0Zj�1;m
1; (A30)

and, using

0Z1;0 ¼ ð1=2Þ1=2Z1=2;1=2 �1=2Z1=2;�1=2

þ ð1=2Þ�1=2Z1=2;1=2 �1=2Z1=2;�1=2;

0Z1;0 0Zj;m ¼ 0Zjþ1;m þ j2 �m2

4jð4j2 � 1Þ 0Zj�1;m: (A31)
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