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In many moduli stabilization schemes in string theory, the scale of inflation appears to be of the same

order as the scale of supersymmetry breaking. For low-scale supersymmetry breaking, therefore, the scale

of inflation should also be low, unless this correlation is avoided in specific models. We explore such a

low-scale inflationary scenario in a racetrack model with a single modulus in type IIB string theory.

Inflation occurs near a point of inflection in the Kähler modulus potential. Obtaining acceptable

cosmological density perturbations leads to the introduction of magnetized D7-branes sourcing non-

perturbative superpotentials. The gravitino mass, m3=2, is chosen to be around 30 TeV, so that gravitinos

that are produced in the inflaton decay do not affect big-bang nucleosynthesis. Supersymmetry is

communicated to the visible sector by a mixture of anomaly and modulus mediation. We find that the

two sources contribute equally to the gaugino masses, while scalar masses are decided mainly by anomaly

contribution. This happens as a result of the low scale of inflation and can be probed at the LHC.
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I. INTRODUCTION

Inflation is the dominant paradigm of the early universe
cosmology to solve the problems of the hot big-bang model
and create the seeds for structure formation. Although
observations strongly indicate that a period of superlumi-
nal expansion happened [1], a successful realization of
inflation within high energy physics has remained as a
challenge. There have been intensive efforts in recent years
for realistic embedding of inflation in particle physics and
string theory, so that the scalar field responsible for infla-
tion, the inflaton, has a natural place in the observable or a
hidden sector. A low-scale model of inflation implemented
in a realistic extension of the standard model (SM) of
particle physics may in addition make direct connection
between cosmology and phenomenology, which can be
explored at the LHC. Such models have been studied in
the observable sector, most notably inflation in the minimal
supersymmetric standard model (MSSM) [2] and its mini-
mal extensions [3].

In string theory models of inflation, the inflaton is a
modulus field and belongs to a hidden sector. Many models
have been studied, with inflaton candidates from the open
string sector as well as the closed string sector (for a
comprehensive review, see [4,5]).

Interestingly, in most moduli stabilization schemes that
have been studied, the scale of inflation appears to be
correlated with the scale of supersymmetry breaking.
This was first pointed out in a class of models in which
the inflaton is identified with a Kähler modulus [6]. The
setting is a KKLT-type compactification in type IIB string
theory [7], with the volume modulus as an inflaton. The
scale of supersymmetry breaking is determined by the
depth of the anti–de Sitter (AdS) vacuum; the Hubble scale
during inflation Hinf is determined by the height of the
barrier which protects the dS vacuum after uplift. These

two are typically of the same order, and one thus has
Hinf & m3=2. This kind of correlation appears to be quite

robust when string inflation models are embedded in mod-
uli stabilization schemes. Some recent models where such
a relation appears include [8–11].
This leads to the possibility that the physics of moduli

stabilization and string cosmology may leave its imprint on
particle physics, in particular, the details of soft masses in
the visible sector. At first sight, such a correlation is dis-
couraging, since in most models inflation occurs at a high
scale, while phenomenological considerations usually pre-
fer low-scale supersymmetry breaking. Taking the gravi-
tino mass to be in the 1 TeV range, this means that inflation
happens many orders of magnitude below the usual grand
unified theory (GUT) scale inflationary scenario. On the
other hand, high-scale inflation implies a large gravitino
mass and correspondingly massive superpartners. In that
case, the usual solution to the hierarchy problem through
the use of supersymmetry becomes less attractive. There
have been several recent efforts to disentangle inflation and
supersymmetry breaking, and construct high-scale infla-
tionary models in string theory that incorporate low-scale
supersymmetry breaking [10–12].
In this paper we will pursue the line that it is natural to

explore low-scale inflation, given the correlation Hinf &
m3=2, if one accepts that supersymmetry is broken at a low

scale.
As an example, we will work out a low-scale inflation

model in type IIB string theory, on a Calabi-Yau manifold
with a single Kähler modulus whose real part will be the
inflaton. The scale of supersymmetry breaking and infla-
tion will be taken to be

Hinf �m3=2 � 30–50 TeV: (1)

This specific scale avoids the cosmological gravitino prob-
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lem. It is known that in models where the inflaton is a
modulus, its decay typically results in nonthermal over-
production of gravitinos [13]. For m3=2 �OðTeVÞ, grav-
itinos thus produced decay after big-bang nucleosynthesis
(BBN), destroying its successful predictions of the primor-
dial abundance of light elements [14]. A standard solution
to this problem is to take m3=24 * 30 TeV [15].

We will assume that the visible sector is sequestered
from the supersymmetry (SUSY) breaking sector. A com-
bination of anomaly mediation and modulus mediation
[16–18] then gives the low-energy spectrum of the super-
partners. Since the scale of supersymmetry breaking is
correlated to inflation, we will find that the pattern of soft
masses is constrained by cosmological observables, which
can be tested at the LHC. Specifically, we will find that
while anomaly and modulus mediations contribute equally
to gaugino masses, the scalar masses are decided mainly by
anomaly contributions.

The setting for our example will be type IIB racetrack
models with fluxes, which have superpotentials of the type
W ¼ Wflux þ Ae�a ReT þ Be�b ReT , where Wflux comes
fromG3 fluxes and T is the single Kähler modulus (models
with single gaugino condensation sectors like KKLT may
have problems with realizing slow-roll parameters due to
the shape of the Kähler modulus potential, as outlined in
[19], and hence we will not consider them here). These
racetrack models have two AdS minima along the direction
ReT prior to uplifting [6,20]. By fine-tuning background
fluxes appropriately, one of the minima can be flattened to
obtain an inflection point [21], as shown in Fig. 1. If the
field starts very close to the inflection point with negligible
kinetic energy, one may obtain an acceptable inflationary
model.

Usually, racetrack inflation has been studied with m3=2

and Hinf around 108 GeV or higher [22–26]. Inflation at
lower scales �1 TeV in such models typically gives an

unacceptably low value of density perturbations, related to
the difficulty in obtaining sufficiently small values of the
slow-roll parameter � for natural values of supergravity
input parameters.
Within the context of our example, this general difficulty

can be traced to the fact that input parameters are either
fixed by the gravitino mass, or are not fully calculable and
generally taken to beOð1Þ. It will turn out that to obtain the
correct amplitude of density perturbations at a low Hubble
scale, the third derivative of the potential near the inflection
point has to be large, which is difficult given the above
constraints.
The main tool we will employ is to turn on magnetic flux

on D7-branes sourcing the nonperturbative superpotential,
which will be useful in tuning �. Magnetized D-branes
have previously been studied in scenarios of high-scale
inflation [19,27,28].
We note that our purpose is not to construct a globally

consistent model in an explicit Calabi-Yau compactifica-
tion. We will also not calculate potentially destabilizing
string loop corrections. However, some essential tools in
our example, like the use of magnetized branes, may be
general features in low-scale inflation models. It would
also be interesting to explore the striking effect of cosmo-
logical observables on the pattern of soft masses in our
example for other models.
The rest of the paper is organized as follows. In Sec. II,

we review the setting of our main example, racetrack
inflation in type IIB with background and brane flux. We
relegate certain details to the Appendix. In Sec. III, we
present our results for low-scale inflation in such models.
In Sec. IV, we discuss the mediation of supersymmetry
breaking and the mass spectrum of superparticles. We
close the paper with conclusions in Sec. V.

II. THE MODEL: SINGLE KÄHLER MODULUS
RACETRACK WITH BRANE AND BACKGROUND

FLUX

In this section, we review the string theoretic setting for
the inflationary scenario described in the Introduction. The
essential elements in a KKLT-type model of string com-
pactification are (1) background fluxes on a type IIB
Calabi-Yau threefold giving a Gukov-Vafa-Witten super-
potential contribution, and (2) gaugino condensation on
D7-branes or Euclidean D3 instantons giving a nonpertur-
bative superpotential contribution. These two contributions
are sufficient to stabilize complex structure moduli and the
dilaton, as well as Kähler moduli, in an AdS vacuum. An
additional contribution to the scalar potential coming from
anti–D3-branes then lifts the solution to a de Sitter vac-
uum. The superpotential contribution due to 3-form fluxes
G3 is of the form

Wflux ¼
Z
CY3

G3 ^�: (2)

FIG. 1 (color online). The uplifted potential as a function of
ReT (denoted by �). The inflection point at �1 is obtained by
tuning background G3 fluxes and the uplifting potential. The
global minimum at �2 is a dS vacuum.
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On the other hand, gaugino condensation of pure super
Yang-Mills theory on a stack of D7-branes gives a non-
perturbative superpotential

Wnp ¼ Ae�afg : (3)

We will be working in units of the reduced Planck mass
MP ¼ 2:4� 1018 GeV for the remainder of the paper un-
less explicitly stated otherwise. Here, fg denotes the D7

gauge kinetic function, a ¼ 2�
Nc
, and Nc is the rank of the

gauge group. A is a function of complex structure moduli,
the dilaton, and open string fields. A will be taken to be
order 1, and its precise dependence on moduli comes
through one-loop threshold corrections to the D7 gauge
kinetic function and higher curvature corrections on the
world volume of the D7’s. In the case when magnetic flux
on theD7-branes is turned off, one has fg ¼ ReT, where T

is the complex Kähler modulus of the 4-cycle wrapped by
the D7-branes.

We will turn on magnetic flux on the world volume of
the D7-brane. This leads to a modification of the gauge
kinetic function with an extra magnetic flux-dependent
dilaton contribution, which will be useful for our purposes.
The details of the construction are given in the Appendix.

With magnetic flux the superpotential has the following
form:

Wnp ¼ Ae�afg ¼ Aeaf� ReSe�a ReT: (4)

Here, f� is a magnetic flux-dependent parameter whose
form we give in the Appendix, and � is the four-cycle
wrapped by the D7-brane. We will assume that the dilaton
S has been fixed by background G3 fluxes.

For gaugino condensation with a group SUðNc1Þ �
SUðNc2Þ we thus obtain an effective supergravity theory
with

K ¼ �3 lnðT þ �TÞ; T ¼ �þ i�;

W ¼ Wflux þ Aeaf� ReSe�a ReT þ Bebf� ReSe�b ReT;
(5)

with a ¼ 2�
Nc1

, b ¼ 2�
Nc2

. For the analysis of the inflation, we

can define A0 ¼ Aeaf� ReS and B0 ¼ Bebf� ReS, but later on,
when we evaluate SUSY breaking masses we need to use
fgð¼ ReT � f�ReSÞ. We, therefore keep A and the dilaton

part separated. We will also see that the A, B and the
dilaton vacuum expectation values are chosen to obtain
correct values of � and �2

R. However, their values are flux
dependent and the exact value depends on the full string
compactification calculation which is beyond the scope of
this paper.

As in KKLT, we will use anti–D3-branes for generating
the uplifting potential to obtain a dS vacuum. The uplifting
potential from anti–D3-branes is given by

VD3 ¼
C

ðReðTÞÞ2 ; (6)

where C is a coefficient determined by the tension of the

D3.

III. LOW-SCALE INFLATION ALONG THE
KÄHLER MODULUS

Our effective four-dimensional supergravity theory is
given by Eq. (5). The scalar potential is given by

V ¼ eKðGT �TDTWDTW � 3jWj2Þ þ C

ðReðTÞÞ2 : (7)

The minimum in the axion direction lies at ImT ¼ 0,
provided that A, a, B, b, andWflux are real, a > b and A >
jBj, and AB< 0. There are two supersymmetric AdS min-
ima along ReT ¼ � given approximately by

�1 � f� ReSþ 1

a� b
ln

��������
aA

bB

�������� (8)

and

�2 � f� ReS� 1

a
lnðWflux=AÞ: (9)

By appropriate choice of background G3 fluxes and uplift-
ing potential, �1 is tuned to an inflection point as shown in
Fig. 1. If � is sufficiently close to �1 and its kinetic energy
is negligible, inflation can take place.1 As mentioned in the
Introduction, the Hubble scale for such an inflationary
scenario should be of the order of the present value of

the gravitino mass. The gravitino mass is given by m2
3=2 ¼

VAdSð�2Þ
3 while the Hubble scale is roughly given by H2 ¼

V0ð�1Þ
3 .

A. Inflection point inflation

It is useful to expand the potential in the vicinity of the
inflection point. Since the second derivative vanishes at�1,
we have

Vð�Þ � V0

�
1� �1ð�� �1Þ � �3

3
ð�� �1Þ3

�
; (10)

where

�p ¼
�
2�2

1

3

�
p=2

@Vð�1Þ=Vð�1Þ:

The slow-roll parameters are given as usual by

1Desirable initial conditions can be naturally set during prior
phase(s) of false vacuum inflation either by the help of quantum
fluctuations [29], or as a result of attractor behavior of the
inflection point [30] (also see [31]). Many models of high energy
physics possess metastable vacua, and hence can lead to false
vacuum inflation at some stage during the evolution of the early
universe. In particular, this can be naturally realized within string
theory due to its landscape.
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� � 1

2

�
V;�

V

�
2 ¼ 1

2
½�1 þ �3ð�� �1Þ2�2;

� �
�

V

V;��

�
¼ �2�3ð�� �1Þ:

(11)

The number of e-foldings between the time that perturba-
tions at scales of the Cosmic Background Explorer
(COBE) normalization exit the horizon and the end of
inflation, denoted by NCOBE, obeys the following equation
[32]:

NCOBE ¼ 68:5þ 1

4
ln

�
Vhor

m4
pl

�
þ 1

4
ln

�
Vhor

�end

�
þ 1

12
ln

�
�reh

�end

�
:

(12)

Here mpl ¼ 1:2� 1019 GeV is the Planck mass, Vhor is the

inflaton potential when the perturbation exits the horizon,
�end is the energy density of the universe at the end of
inflation, and �reh is the energy density at the end of
reheating.2

Since inflation occurs near a point of inflection where
the potential is very flat, the energy density of the Universe
is practically constant throughout the whole slow-roll
epoch (this is unlike, for example, models of chaotic
inflation). Therefore Vhor � �end � V0 and the third term
on the right-hand side of Eq. (12) is negligible. The inflaton
decay is gravitationally suppressed and its rate is given by

�� ¼ c

2�

m3
�

M2
P

; (13)

where c� 1, and m� is the inflaton mass (i.e. modulus
mass at the minimum of its potential). This implies that
�reh ¼ 3�2

�M
2
P. On the other hand, V0 ¼ 3H2

infM
2
P, where

Hinf is the Hubble expansion rate during inflation.
As explained earlier, we need Hinf �m3=2 � 30 TeV in

order to have a low scale of supersymmetry breaking while
avoiding the (nonthermal) gravitino problem. This results
in V0 � 10�28M4

P andm� � 3000 TeV. Therefore Eq. (12)
yields

NCOBE ’ 43: (14)

On the other hand, we have

NCOBE ¼
Z �end

�COBE

½�1 þ �3ð�� �1Þ2��1d�; (15)

where �COBE is the field value at which the observationally
relevant perturbations exit the horizon, and �end is the field
value at which the slow-roll conditions are violated and
inflation ends. Also, the total number of e-foldings of
inflation Ntot is given by

Ntot ¼
Z �end

�1

½�1 þ �3ð�� �1Þ2��1d�: (16)

Equations (15) and (16) can be used to eliminate �COBE

and �1 in favor of NCOBE and Ntot. The slow-roll parame-
ters can then be expressed as follows:

�COBE ¼ � �

Ntot

cot

�
�NCOBE

2Ntot

�
;

�COBE ¼ 1

2

�
�

2

�
4
�
1þ cot2

�
�NCOBE

2Ntot

��
��2
3 N�4

tot :

(17)

The power spectrum of density perturbations is given by3

�2
R ¼ 1

4�2

�
H2

_�

�
2

�COBE

¼ V0

12�2
�2
3N

4
tot; (18)

where we have used Eq. (17). Note that the low scale of
inflation requires that � be extremely small. The spectral
index is given by

ns ¼ 1þ 2�� 6� ¼ 1� 2�

Ntot

cot

�
�NCOBE

2Ntot

�
: (19)

B. Model parameters and numerical results

At this stage, plugging in the values of observed quan-
tities constrains the parameters �1 and �3. Since NCOBE ¼
43, see Eq. (14), we find from Eq. (19) that Ntot ’ 46–72 in
order for ns to be within the 2� range ns ¼
0:960þ0:014þ0:029

�0:015�0:027 allowed by the 5-year WMAP data [1].

Then, recall that V0 � 10�28 (in units of M4
P), it turns out

from Eq. (18) that obtaining the correct value of �2
R ’

2:0� 10�9 results in

�3 � 107: (20)

Obtaining acceptable values of ns, see Eq. (16), results in

4:76� 10�11 � �1 � 1:66� 10�10; (21)

where we have used the fact that 46 � Ntot � 72 in order
for ns to be in the allowed range.
For �3 � 107, Eq. (11) leads to ð�end � �1Þ � 10�7�1

(note that j�j � 1 at the end of inflation). This implies that
the model belongs to the class of small-field models [4,5]
and does not suffer from the problems of Planckian
displacements.
One comment is in order at this point. Above, we have

assumed that inflation is always in the slow-roll regime all
the way between �1 and �end. Quantum diffusion becomes
important where V;� < 3H2

inf=2�. Therefore it takes over

classical slow roll if @Vð�1Þ is very small, i.e., when �1

becomes a saddle point. This would result in a self-
reproduction regime around �1, and hence slow-roll infla-

2By this we mean the time when the equation of state of the
Universe changes from that for matter domination, due to
inflaton oscillations, to that from radiation domination.

3Gravitational waves produced during inflation are negligible
and cannot be observed in future experiments because of the low
scale of inflation.
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tion would start not at �1 but slightly away from it.
However for values of �1 that yield acceptable spectral
index, see Eq. (21), it turns out that the quantum diffusion
is always subdominant and slow-roll regime indeed begins
at the inflection point �1.

The values of V0, �3, and �1 determined from the scale
of inflation, amplitude of perturbations and the scalar
spectral index, respectively, are translated into constraints
on the parameters of the potential (7). For a specific
example, we use the following input parameters:

Wflux ¼ 2� 10�10; A ¼ 1;

B ¼ �0:033 600 890 840 1; a ¼ 2�

6
; b ¼ 2�

7
;

C ¼ 1:53� 10�22 af� ReS ¼ 300: (22)

For the above choice of parameter values, we obtain

�1 ¼ 324:54; �2 ¼ 325:25: (23)

We solved the full equation of motion of the inflaton

�00 ¼ �
�
1� �02

4�2

��
3�0 þ 2�2 V;�

V

�
þ �02

�
; (24)

where derivatives are with respect to N ¼ Ntot � NCOBE,
i.e. the number of e-foldings of inflation from the inflection
point �1.

4 The initial conditions are given as �ð0Þ ¼ �1,
�0ð0Þ ¼ 0.

The exact fit to low-scale inflation which we show in our
paper not only depends upon the ratio A=B [19] but also on
the magnitudes of the factors Aeaf� ReS and Bebf� ReS in our
notation. This allows us to get correct values of � and
curvature perturbation.

The evolution of � as a function of N is plotted in Fig. 2.
The total number of e-foldings is Ntot ¼ 66, corresponding
to �� 1. The scalar spectral index ns is plotted as a
function of N in Fig. 3. At N ¼ 23, corresponding to
NCOBE ¼ 43, we have ns ¼ 0:97.

Note that in this class of models, one uplifting potential
is used to obtain both an inflection point and a dS vacuum.
For the parameters chosen above, the value of V at the
global minimum is Vð�2Þ � 10�28M4

p. This value can be

lowered in different ways, e.g., by rescaling the existing
parameters, by using an uplifting potential with more
parameters, or by simply assuming another sector that is
not responsible for inflation or SUSY breaking, in a generic
compactification with multiple moduli. None of these
methods would affect the discussion of the soft masses,
which are fixed by the gravitino mass and relations (20)
and (28). It would also be interesting to extend our methods
to the multimoduli case. In this paper, however, we will not

be addressing the tuning required to obtain a lower value of
V, which we leave for future work.

C. Tuning of parameters

It is seen from Eq. (21) that there is a tuning ofOð10�10Þ
in �1 to match the allowed range of ns in our model. This
tuning is achieved by adjusting the value of the coefficient
B with respect to the coefficient A ¼ 1 at the same level.
However, the real issue is stability of the fine-tuning
against higher border stringy corrections.5

The Kähler potential receives �0 and string loop correc-
tions. The �0 corrections [33] go as

0 20 40 60 80

N

324.6

324.8

325

325.2

325.4

FIG. 2. The evolution of ReT (denoted by � in the figure) as a
function of the number of e-foldings N. The field inflates for
about 66 e-foldings at the inflection point �1 ¼ 324:54. It then
starts rolling into the global minimum at �2 ¼ 325:25, first
oscillating before stabilizing at the bottom.

10 20 30 40 50

N

0.2

0.15

0.1

0.05

0

n s
1

FIG. 3. The spectral index as a function of the number of e-
foldings N. �� 1

2 ðns � 1Þ becomes order 1 at the end of

inflation Ntot ¼ 66. At N ¼ 23, the modes at the COBE normal-
ization scale exit the horizon, at which point ns ¼ 0:97.

4We note that � does not have a canonical kinetic term. The
metric for � is given by g�� ¼ 3=2�2 as can be seen from the
expression for the Kähler potential. Thus, all derivatives with
respect to � have to be redefined by @� ! ffiffiffiffiffiffiffiffiffi

g��
p

@�.

5Corrections from the observable sector are totally negligible
because the inflaton has Planck suppressed couplings to the
fields in the observable sector.
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	K�0 ¼ � 


ðT þ �TÞ3=2 þOð1=ðT þ �TÞ9=4Þ; (25)

where the leading order correction comes at Oð�03Þ. Here,

 is a parameter that depends on the Euler number of the
Calabi-Yau manifold.

The corrections to the scalar potential go as inverse
powers of the volume of the Calabi-Yau manifold with
the first term coming at

	Vð1Þ
�0 � 1

ðT þ �TÞ27=8 : (26)

For our value ReT � 324 this is of order 10�10. Thus, the
value of �1 needs to be tuned to first order in�

0 corrections.
We neglect higher orders.

String loop corrections to the Kähler potential have been
discussed, for example, in [34] and derived in detail in the
case of toroidal orientifolds without fluxes [35]. For arbi-
trary Calabi-Yau compactifications, the leading contribu-
tion of loop corrections to the scalar potential vanishes,
giving an extended no-scale structure, only if the correc-
tions satisfy certain conditions [36]. The first nonvanishing
corrections to the scalar potential in such cases are subdo-
minant to the �0 correction. In general Calabi-Yau com-
pactifications, string loop corrections may reintroduce the
� problem. We will not consider them any further in this
paper.

Let us compare the amount of fine-tuning in our model
with that of low-scale inflection point inflation in the
observable sector [2]. The tree-level fine-tuning shows an
improvement by several orders of magnitude in this case,
which comes as a direct consequence of the larger scale of
inflation, Hinf � 30 TeV in the former compared with
Hinf � 100 MeV in the latter. The stability of the fine-
tuning is also better in this case since higher order correc-
tions to the potential parameters are much smaller,
Oð10�10Þ in the former vs Oð10�2Þ in the latter where
the leading order corrections come from one-loop dia-
grams with gauge strength interactions.

D. Role of magnetic flux

The most important constraint on supergravity parame-
ters comes from Eq. (20). This can be seen by explicitly
working out the �p from the scalar potential Eq. (7).

It is convenient to simplify the scalar potential using a�
b and A ¼ 1, obtaining

V � 1

6�2
e�2a�ð6Ce2a� þ að1þ BÞ2e2af� ReSð3þ a�Þ

þ 3að1þ BÞeaf� ReSþa�WfluxÞ: (27)

We note that the uplifting coefficient C and Wflux may be
roughly fixed by the inflection point condition and the
gravitino mass. It is easy to check that �1 � 10�10 trans-

lates roughly to a quadratic equation in B, with coefficients
that are functions of a�. For a given a�, one can tune B
appropriately to obtain the required �1, and it turns out that
B is also Oð1Þ and negative.
On the other hand, for �3 one obtains the leading order

behavior

�3 � a3�3: (28)

From Eq. (9), we thus obtain �3 � ðaf� ReS� lnWÞ3.
This is a strong constraint. In the absence of magnetic

brane flux f�, the natural value is a�� 10–20, a result that
only depends logarithmically on the scale of supersymme-
try breaking. To match the magnitude of primordial curva-
ture perturbations from Eq. (18), then, one obtains high-
scale inflation with Hinf � 109 GeV. Thus, nonmagnetic
models naturally have a high scale of inflation and super-
symmetry breaking.
We thus see that to obtain the correct value of �3 � 107

and match the observed value of curvature perturbations,
we require a nontrivial magnetic flux-dependent term

af� ReS� 300: (29)

The expression for f� ReS in terms of magnetic flux quanta
and the underlying geometry is discussed in the Appendix.
It may be possible to obtain (29), however global consis-
tency conditions such as the cancellation of Ramond-
Ramond (RR) tadpoles must be checked in an explicit
construction. This is beyond the scope of this paper.

IV. SUPERSYMMETRY BREAKING AND THE
SUPERPARTICLE SPECTRUM

In this section, we discuss the supersymmetry breaking
pattern in this model of low-scale inflation.
The visible sector is assumed to be sequestered from the

supersymmetry breaking brane [37]. The soft masses are
determined by a combination of modulus mediation that is
OðFT=TÞ, and anomaly mediation that is Oðm3=2=16�

2Þ.
For details of mirage mediation, the reader may refer to
[18]. The model is given by

K ¼ �3 lnðT þ �TÞ þ ZiðT þ T�Þ��
i�i;

W ¼ Wflux þ Ae�afg þ Be�bfg þ 1

6
�ijk�i�j�k;

fg ¼ ReT � f� ReS;

(30)

where �i are the visible sector superfields and ZiðT þ
T�Þ ¼ 1=ðT þ T�Þni , ni being the modular weight.
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The soft parameters at the GUT scale are given by

Ma ¼ M0

�
1þ lnðMP=m3=2Þ

16�2
bag

2
a�

�
;

Aijk ¼ M0½ðAi þAj þAkÞ

� lnðMP=m3=2Þ
16�2

ð�i þ �j þ �kÞ�
�
;

m2
i ¼ M2

0

�
ci �

lnðMP=m3=2Þ
16�2

�i�

�
�
lnðMPl=m3=2Þ

16�2

�
2
_�i�

2

�
:

(31)

Here, ba are the one-loop beta functions, �i and _�i the
anomalous dimensions and their derivatives, and �i func-
tions of the quadratic Casimirs and normalized Yukawas of
the visible sector.

The parameters � (which measure the ratio of anomaly
to modulus contributions), Ai, and ci are defined as
follows:

� � m3=2

M0 lnðMP=m3=2Þ ; Ai �
~Ai

M0

; ci � ~m2
i

M2
0

;

(32)

whereM0,
~Aijk, and ~mi are pure modulus contributions to

gaugino masses, trilinear couplings, and sfermion masses,
given as functions of the modulus T. These modulus con-
tributions are given by the following expressions:

M0 ¼ FT@T ln ReðfgÞ;
~m2
i ¼ �FTFT�@T@ �T lnðe�K0=3ZiÞ;

~Aijk ¼ FT@T lnðe�K0ZiZjZkÞ;
(33)

where K0 is given by Eq. (5).
The input parameters for the renormalization group

running are thus �, A, c, tan, and M0 (or equivalently
m3=2).

It is instructive to compute the above parameters in
terms of our underlying string construction. We find

� ¼ � ReðfgÞ
lnðMP=m3=2Þ

WTT

WT

; (34)

where

WTT

WT

¼ 3a2Wflux þ Be�bfgðb� aÞabð2ReTÞ
3aWflux þ 3Be�bfgðb� aÞ : (35)

In different limits, either anomaly or modulus contribution
will dominate.

(1) Wflux ¼ 0 and magnetic flux f� ¼ 0. The scenario

reduces to pure racetrack, with WTT

WT
¼ abðT þ �TÞ and ��

ðaTÞ2=ðlnðMP=m3=2ÞÞ. Anomaly contributions dominate.

(2) Wflux � 0 and f� ¼ 0. In this case, WTT

WT
� a. Thus,

�� aT
lnðMP=m3=2Þ and is typically Oð1Þ in models of mirage

mediation based on KKLT. Anomaly and modulus contri-
butions are roughly similar in such cases.

(3)Wflux � 0 and f� � 0. Here too, WTT

WT
� a and one has

�� aReðfgÞ
lnðMP=m3=2Þ �

aReT

32

�
1� f� ReS

ReT

�
: (36)

This is our scenario and from Eq. (9), we see that in general
� isOð1Þ. For the parameters considered in the example in
this paper, we have � ¼ 0:8.
The values of Ai and ci are also dependent on the

magnetic flux. The exact dependence is

Ai ¼ ð1� niÞ
�
1� f� ReS

ReT

�
;

ci ¼ ð1� niÞ
�
1� f� ReS

ReT

�
2
:

(37)

Thus, for modular weights ni ¼ 0,

�� aReT

32
	A ¼ aReT

32
	 c1=2: (38)

This implies that obtaining acceptable density perturba-
tions leaves its imprint on the low-energy pattern of soft
masses. Since aReT � 300 in our model, we obtain the
result6

�� 10A� 10c1=2: (39)

For �� 1, the gaugino masses receive equal modulus and
anomaly contributions. For this example, the gluino mass
is about 1.5 TeV and the lightest neutralino mass is about
740 GeV. If we use �� 1:5, the gluino mass becomes
700 GeV and the lightest neutralino mass becomes
340 GeV. However, the values of A and c are small and
modulus contributions are suppressed for the scalars. In
particular, the spectrum has tachyonic sleptons. Various
model-building techniques exist in the literature to lift
tachyonic directions [38].
We leave a detailed study of superparticle mass spec-

trum for an upcoming publication.

V. CONCLUSION

In this paper, we have presented a simple model of
closed string inflation in string theory in which the
Hubble scale and the scale of supersymmetry breaking
are both low. This has been motivated by the fact that in
moduli stabilization schemes, Hinf �m3=2 holds generally.

Low-energy supersymmetry, which will be very soon in-
vestigated at the LHC, is desirable to solve the hierarchy
problem.
We worked out an example of single-field low-scale

inflation, Hinf � 30–50 TeV, in Calabi-Yau manifolds

6Note that for high-scale inflation models in the KKLT setup
we have ��A� c1=2.
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with a single Kähler modulus. Inflation occurs near a point
of inflection in the Kähler modulus potential. The moduli
stabilization schemes with gaugino condensation on mag-
netized branes allow a successful implementation of in-
flection point inflation. The magnetic flux quanta, suitably
tuned, can produce the correct amplitude of cosmological
density perturbations. The scalar spectral index can have
any value within the whole range allowed by the 5-year
WMAP data by tuning the value of input background flux
parameters.

The scale of inflation ensures that the gravitino problem
will be avoided in this model. Inflaton decay leads to
copious nonthermal production of gravitinos that would
destroy BBN predictions if we had m3=2 �OðTeVÞ.
However, for m3=2 � 30–50 TeV, gravitinos decay before

BBN. The soft masses in this model have both moduli and
anomaly mediation contributions. In particular, obtaining
acceptable density perturbations implies that the gaugino
masses receive comparable modulus and anomaly contri-
butions, whereas the scalar masses mainly receive anomaly
contributions. Therefore inflation, although happening in
the hidden sector, can have an impact on the observable
sector through the distinctive mass spectra that can be
investigated at the LHC.

The techniques developed in this paper may be appli-
cable in broader settings, such as models of brane inflation
embedded in moduli stabilization schemes [39], models
with many Kähler moduli, etc. In particular, it would be
interesting to work out cosmological imprints on SUSY
breaking in such models.
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APPENDIX: GAUGE KINETIC FUNCTION ON
MAGNETIZED D7-BRANES

Here, we discuss the gauge kinetic function on magne-
tized D7-branes, along the lines of [40]. Magnetized
D-branes have been widely studied for the construction
of semirealistic string vacua, in the context of type IIB
toroidal models and Calabi-Yau compactifications [41,42],
and, by T-duality, type IIA intersecting brane models [43].

We consider a Calabi-Yau 3-fold Y with a holomorphic
involution� under which the Kähler form J is even and the
(3, 0) form � is odd. There are thus O3 and O7 planes at
fixed loci of �, after modding out by the usual orintifold
action. There is a D7-brane on a 4-cycle �.

On the D7-brane, we turn on a Uð1Þ magnetic flux, on a
2-cycle which is in the 2-homology of �. We will assume
that the D7-brane does not intersect any stacks of

D3-branes, and that the Calabi-Yau manifold, the holomor-
phic involution, magnetic flux, and brane 4-cycle can be
chosen to cancel RR tadpoles. The Dirac-Born-Infeld
(DBI) action for theD-brane is given in the string frame by

SDBI ¼ ��7

Z
d8
e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð��gþ ��Bþ 2��0FÞ

q
;

(A1)

where the integral is over the eight-dimensional world
volume, ��g and ��B are the pullbacks of the ten-
dimensional metric and the Neveu-Schwarz–Neveu-
Schwarz (NSNS) 2-form to the D-brane world volume,
�7 is the D-brane tension, � is the ten-dimensional dila-
ton, and F is the field strength of the Uð1Þ gauge field on
theD7. DefiningF ¼ ð��Bþ 2��0FÞj� and using the fact
that the divisor � is holomorphically embedded in the
Calabi-Yau manifold, one obtains

F 2;0 ¼ F 0;2 ¼ 0: (A2)

For simplicity, we take the negative � eigenspaces of the
Calabi-Yau manifold to vanish, so that the NSNS 2-form B
vanishes. Then,F ¼ 2��0F, and using the quantization of
F, one obtains

Z
F ¼ 4�2�0n; n 2 Z: (A3)

The 2-form flux can be expanded on a basis of harmonic

forms on Hð1;1Þð�Þ
F ¼ f���!� þ ~fa ~!a; (A4)

where ��!� are pullbacks of a basis !� of Hð1;1ÞðY;ZÞ and
~!a are (1, 1) harmonic forms on � that lie on the cokernel
of ��.
The low-energy expansion of the DBI action (A1) gives

the gauge kinetic function fg and a D-term contribution to

the scalar potential. It turns out that

fg /
Z
�
ð��J ^ ��J �F ^F Þ; (A5)

D /
Z
�
��J ^F : (A6)

It is useful to define a quantity

f � ¼ 1
2ðf�fK�� þ ~fa ~fbKabÞ; (A7)

where K�� is the triple intersection number of � and the

dual 4-cycles of !� and !, while Kab ¼ �0�2
R
� ~!a ^

~!b.
In terms of f� the gauge kinetic function works out to be

fg ¼ ReT � f� ReS: (A8)

Here, T is the Kähler modulus of � and e�� is the real part
of the dilaton S, up to normalization.
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In the above analysis, there are also open string moduli
corresponding to D7 fluctuations and Wilson lines. We
assume that they have been fixed by fluxes.

Several comments are in order. First, f� receives curva-
ture corrections that depend on the first Pontryagin classes
of the tangent and normal bundles of �. These corrections
in turn feed into the part of the gauge kinetic function that
depends on the dilaton. We treat f� ReS as an input pa-
rameter that can be varied by changing the magnetic flux
number n and suitably choosing K�� andKab. Therefore

curvature corrections have been assumed to contribute to
its final value.

Second, we mainly deal with the Calabi-Yau manifold
with h1;1 ¼ 1, i.e. a single Kähler modulus, which is the
volume modulus T.

Finally, much of the literature on magnetized D7-branes
in KKLT-type models has focused on the D-term contri-
bution to the scalar potential, which lifts the AdS vacuum.
The D-term potential from magnetic fluxes on D7 goes as

1
½ReðTÞ�3 . This has been explored as an alternative to the

introduction of anti–D3-branes to break supersymmetry
[40]. The advantage of the magnetized D7-brane is that it
can be incorporated in a standard supergravity framework,
and thus there is control at all stages.
In this work, however, we are interested in the modifi-

cation of the gauge kinetic function due to magnetic fluxes
and its cosmological consequences. We simply use the
standard anti–D3-brane picture for uplift, taking magnetic
fluxes such that the D-term vanishes in (A6). While the
D-term contributions can also easily be used to obtain the
inflection point, we note that such a procedure will imply
more conditions on brane magnetic flux, apart from (29). It
would be interesting to investigate this issue further. Low-
scale inflation can be also constructed for other forms of
uplifting where the source of the uplifting is decoupled
from inflationary dynamics [44].
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