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I. INTRODUCTION

Decades ago it was suggested that the effective quantum
field theory of gravitation and matter might be asymptoti-
cally safe [1], and hence ultraviolet complete. That is, the
renormalization group flows might have a fixed point, with
a finite-dimensional ultraviolet critical surface of trajecto-
ries attracted to the fixed point at short distances. Evidence
for a fixed point in the quantum theory of gravitation with
or without matter has gradually accumulated through the
use of dimensional continuation [2], the large N approxi-
mation [3] (where N is the number of matter fields), lattice
methods [4], the truncated exact renormalization group [5],
and a version of perturbation theory [6]. Recently there has
also been evidence that the ultraviolet critical surface is
finite dimensional; it has been found that even in trunca-
tions of the exact renormalization group equations with
more than three (and up to nine) independent coupling
parameters, the ultraviolet critical surface is just three
dimensional [7]. The condition that physical parameters
lie on the ultraviolet critical surface is analogous to the
condition of renormalizability in the standard model, and
like that condition yields a theory with a finite number of
free parameters.

The natural arena for applications of the idea of asymp-
totic safety is the physics of very short distances, and, in
particular, the early universe [8]. In Sec. II we show how to
formulate the differential equations for the scale factor in a
Robertson-Walker solution of the classical field equations
in a completely general generally covariant theory of
gravitation. In Sec. III we apply this result to calculate
the expansion rate �H for a de Sitter solution of the classical
field equations. We are interested here in solutions for
which �H is of the same order as the scale at which the
couplings are beginning to approach their fixed point, or
larger. In this case, �H turns out in the tree approximation to
depend strongly on the ultraviolet cutoff, indicating a
breakdown of the classical approximation. We deal with
this by choosing an optimal cutoff, which minimizes the
quantum corrections to the classical field equations.
Section IV considers more general time-dependent
Robertson-Walker solutions of the classical field equations

with an optimal cutoff, and explores the circumstances
under which it is possible to have an exponential expansion
that persists for a long time but eventually comes to an end.
An illustrative example is worked out in Sec. V.
We will work with a completely general generally co-

variant theory of gravitation. (For simplicity matter will be
ignored here.) The effective action with an ultraviolet cut-
off � takes the form [9]

I�½g� ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg

p ½�4g0ð�Þ þ�2g1ð�ÞR
þ g2að�ÞR2 þ g2bð�ÞR��R�� þ��2g3að�ÞR3

þ��2g3bð�ÞRR��R�� þ . . .�: (1)

Here we have extracted powers of� from the conventional
coupling constants, to make the coupling parameters gnð�Þ
dimensionless. Because they are dimensionless, these run-
ning couplings satisfy renormalization group equations of
the form

�
d

d�
gnð�Þ ¼ �nðgð�ÞÞ: (2)

The condition for a fixed point at gn ¼ gn� is that
�nðg�Þ ¼ 0 for all n. As is well known, the condition for
the couplings to be attracted to a fixed point gn� as � ! 1
can be seen by considering the behavior of gnð�Þwhen it is
near gn�. In the case where �nðgÞ is analytic in a neighbor-
hood of gn�, near this fixed point we have

�nðgÞ !
X
m

Bnmðgm � g�mÞ; Bnm �
�
@�nðgÞ
@gm

�
�
: (3)

The solution of Eq. (2) in this neighborhood is

gnð�Þ ! g�n þ
X
N

uNn

�
�

M

�
�N

; (4)

where uN and �N are eigenvectors and corresponding
eigenvalues of the matrix Bnm:X

m

Bnmu
N
m ¼ �Nu

N
n : (5)

It is a physical requirement that the only eigenvectors that
are allowed to appear in the sum in Eq. (4) are those for
which the real part of the corresponding eigenvalues are*weinberg@physics.utexas.edu
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negative, so that the couplings actually do approach the
fixed point. The normalizations of the eigenvectors that do
appear in Eq. (4) are free physical parameters, the only free
parameters of the theory, except that we can adjust the
overall normalization of all the eigenvectors as we like by a
suitable choice of the arbitrary mass scaleM. If we choose
M to make the largest of the uNn of order unity, thenM is the
cutoff scale at which couplings are just beginning to ap-
proach their fixed point.

Aside from the illustrative example considered in Sec. V,
we will not carry our discussion in this paper to the point of
performing numerical calculations, which of course would
require some truncation of the series of terms in the action
(1). Our purpose here is to lay out the general outlines of
such a calculation, for which purpose we do not need to
adopt any specific truncation. Our results are worked out in
detail for the terms explicitly shown in Eq. (1), but this is
only for the purposes of illustration; nothing in this paper
assumes the neglect of higher terms. For our purposes here,
it makes no difference whether � is regarded as a sharp
ultraviolet cutoff on loop diagrams to be calculated using
the action (1), or as a momentum parameter (usually called
k) in a regulator term added to the action, or a sliding
renormalization scale.

II. ROBERTSON-WALKER SOLUTIONS

In this section we consider how to find a solution of
the classical gravitational field equations for the general
action (1), of the flat-space Robertson-Walker form

d�2 ¼ dt2 � a2ðtÞd~x2: (6)

It would be very complicated to derive the ten classical
field equations for a general metric that follow from an
action like (1), and then specialize to the case of a
Robertson-Walker metric. Instead, we can much more
easily exploit the symmetries of this metric to derive a
single differential equation for the Hubble rate HðtÞ �
_aðtÞ=aðtÞ. In showing how to derive this differential equa-
tion, we will be quite general, not making any use in this
section of the assumption of asymptotic safety.

We can use the rotational and translational symmetries
of the line element (6) to write the components of the
variational derivatives �I�=�g�� in the form

�
�I�½g�
�gijðxÞ

�
RW

¼ �4

6
�ija

�2ðtÞM�ðtÞ; (7)

�
�I�½g�
�gi0ðxÞ

�
RW

¼ 0; (8)

�
�I�½g�
�g00ðxÞ

�
RW

¼ ��4

2
N �ðtÞ; (9)

with the subscript RW indicating that, after taking the
variational derivative, the metric is to be set equal to the

Robertson-Walker metric defined by (6). (The factors
�4=6a2 and �4=2 are inserted in the definitions of M�

andN � for future convenience.) Also, the general covari-
ance of the action yields the generalized Bianchi identity

0 ¼
�
�I�½g�
�g��ðxÞ

�
;�
: (10)

By using Eqs. (7)–(9) for the Robertson-Walker metric,
Eq. (10) is reduced to the condition

a2 _aM� ¼ d

dt
ða3N �Þ: (11)

Therefore the gravitational field equations reduce here to a
single differential equation,

N �ðtÞ ¼ 0; (12)

which we see ensures the vanishing of all variational
derivatives �I�½g�=�g��. This result (which holds also in

the presence of spatial curvature and matter) is the general-
ization of the familiar Friedmann equation, which would
apply if only the Einstein-Hilbert term� ffiffiffi

g
p

R=16�G and a

vacuum energy term were included in the gravitational
action.
We can express M� and then N � in terms of varia-

tional derivatives of the action for the Robertson-Walker
metric with respect to the scale factor aðtÞ. Because aðtÞ
appears in the Robertson-Walker metric only as a factor
a2ðtÞ in gijðx; tÞ, we have

�I�½gRW�
�aðtÞ ¼

Z
d3x2aðtÞ�ij � a3ðtÞ

�
�I½g�

�gijðx; tÞ
�
RW

¼ V�4M�ðtÞa2ðtÞ; (13)

where V is the coordinate space volume (which can be
made finite by imposing periodic boundary conditions.)
For the flat-space Robertson-Walker metric ðgRWÞ��, the

action takes the general form

I�½gRW� ¼ V�4
Z

dta3ðtÞI�ðHðtÞ; _HðtÞ; . . .Þ; (14)

where as usual HðtÞ � _aðtÞ=aðtÞ. Here and in Eqs. (15)–
(17) below, the ellipsis indicates a possible dependence of
I� on second and higher derivatives of HðtÞ. (Second and
higher time derivatives do not occur in I� if the integrand
of the action is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg
p

times an arbitrary scalar function
of the Riemann-Christoffel curvature tensor R���	, includ-

ing of course an arbitrary dependence on the curvature
scalar and the Ricci tensor, but we do not assume that
this is the case.) Comparing Eq. (13) with the result of a
straightforward calculation of the variational derivative of
the action (14) with respect to aðtÞ gives
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M� ¼ 3I� � 3H
@I�

@H
þ ð3 _H þ 9H2Þ @I�

@ _H
� d

dt

�
@I�

@H

�

þ 6H
d

dt

�
@I�

@ _H

�
þ d2

dt2

�
@I�

@ _H

�
þ . . . (15)

We note that a2 _aM� is a time-derivative

a2 _aM� ¼ d

dt

�
a3
�
I� �H

@I�

@H
þ ð� _H þ 3H2Þ @I�

@ _H

þH
d

dt

�
@I�

@ _H

�
þ . . .

��
: (16)

Comparing with Eq. (11), we see thatN � equals the term
in square brackets in (16), up to a possible term equal to a
constant divided by a3ðtÞ. But the term in square brackets is
independent of the scale of aðtÞ, as is N �ðtÞ, so there can

be no term in their difference proportional to 1=a3ðtÞ, and
thus

N � ¼ I� �H
@I�

@H
þ ð� _H þ 3H2Þ@I�

@ _H
þH

d

dt

�
@I�

@ _H

�

þ . . . (17)

The ten classical field equations reduce for the flat-space
Robertson-Walker metric to the single requirement that
this vanishes.
To evaluate the terms in the action for the Robertson-

Walker metric with no spatial curvature that are explicitly
shown in Eq. (1), we note that for this metric R ¼
�12H2 � 6 _H and R��R

�� ¼ 36H4 þ 36H2 _Hþ 12 _H2.

Using these in Eq. (1) and comparing with Eq. (14) gives

I � ¼ �g0ð�Þ þ��2g1ð�Þð12H2 þ 6 _HÞ ���4g2að�Þð12H2 þ 6 _HÞ2 ���4g2bð�Þð36H4 þ 36H2 _H þ 12 _H2Þ
þ��6g3að�Þð12H2 þ 6 _HÞ3 þ��6g3bð�Þð12H2 þ 6 _HÞð36H4 þ 36H2 _H þ 12 _H2Þ þ . . . ; (18)

where now the dots denote contributions from terms not shown in (1), some of which involve second and higher derivatives
of H. From Eq. (17), we then have

N �ðH; _H; €H; . . .Þ ¼ �g0ð�Þ þ 6��2g1ð�ÞH2 ���4g2að�Þð216H2 _H � 36 _H2 þ 72H €HÞ
���4g2bð�Þð72H2 _H � 12 _H2 þ 24H €HÞ þ��6g3að�Þð�864H6 þ 7776H4 _H þ 3240H2 _H2

� 432 _H3 þ 216H €Hð12H2 þ 6 _HÞÞ þ��6g3bð�Þð�216H6 þ 2160H4 _Hþ 1008H2 _H2 � 144 _H3

þH €Hð720H2 þ 432 _HÞÞ þ . . . (19)

This is the quantity that must be set equal to zero in finding
a flat-space Robertson-Walker solution of the classical
gravitational field equations.

III. DE SITTER SOLUTIONS AND OPTIMAL
CUTOFF

We can now easily find the condition for a de Sitter
solution of the classical field equations, with

aðtÞ / e
�Ht; (20)

where �H is constant. Setting the quantity (19) equal to zero
for HðtÞ ¼ �H gives our condition on �H1:

0 ¼ N�ð �HÞ � N �ð �H; 0; 0; . . .Þ
¼ �g0ð�Þ þ 6g1ð�Þð �H=�Þ2 � 864g3að�Þð �H=�Þ6

� 216g3bð�Þð �H=�Þ6 þ . . . (21)

It is easy to find solutions of Eq. (21) that have small
values of �H, very much smaller than the scale M at which
the couplings begin to approach their fixed points. For
sufficiently small �H, we can take � to be much larger
than �H, and yet small enough so that the couplings appear-
ing as coefficients in (1) become independent of �, and in
particular

�4g0ð�Þ ! �V; �2g1ð�Þ ! 1=16�GN;

where �V and GN are the conventional, �-independent,
vacuum energy and Newton constant. Then (21) has the
familiar �-independent solution

�H 2 ¼ 8�GN�V

3
:

Because of the still mysterious fact that �V is observed to
be much less than G�2, this value of �H is much less than

1Note that this is not the result that would be obtained by
setting the derivative of I�ð �H; 0; 0; . . .Þ with respect to �H equal
to zero. For a de Sitter metric with aðtÞ ¼ expð �HtÞ, the integral
over t in the action I�½g� diverges at t ¼ 1. If we integrate only
from t ¼ �1 to t ¼ 0, the integral

R
dta3ðtÞ gives a factor

1=3 �H, but the derivative of I�ð �H; 0; 0; . . .Þ=3 �H with respect to
�H is not zero; it equals a surface term ð@I�=@ _HÞ �H , which again
gives Eq. (21).
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G�1=2, and so radiative corrections and higher terms in (21)
can be neglected.

We will instead be interested here in looking for solu-
tions for which �H is roughly of the order of the scale M at
which the couplings begin to approach their fixed points, or
larger. In this case, we face a difficult choice: How should
we choose�? On one hand, if we choose� � �H, then we
can expect radiative corrections to the classical result (21)
to be unimportant, because �H provides a natural infrared
cutoff in loop diagrams constructed using the action (1).
But for � � �H, the sum (21) receives increasing contri-
butions as we include higher and higher terms, and whether
or not the series actually converges, it is not useful. On the
other hand, if we choose � � �H, then it is reasonable to
suppose that the series (21) is dominated by its lowest
terms, but for � � �H there is no reason to suppose that
we can neglect radiative corrections to the field equations.
Indeed, we can see that radiative corrections to the field
equations are important here, because where Eq. (21) is
dominated by its lowest terms, it gives �H a strong depen-
dence on�. [This is clearest in the case where� is so large
that the couplings are near their fixed points, in which case
(21) gives �H proportional to �.] The whole point of the
renormalization group equations (2) is that physical quan-
tities like �H should be independent of the cutoff, but in
general this is true only when radiative corrections are
included, and since Eq. (21) gives �H a strong dependence
on� when� � �H, radiative corrections evidently can not
be neglected.

Ideally, we should leave � undetermined, and calculate
enough of the radiative corrections to the field equations so
that �H comes out at least approximately independent of �.
This would not be easy. Instead, we can try to make a
judicious choice of � to minimize the radiative correc-
tions. We can guess that the optimal � is roughly of the
order of �H, where radiative corrections are just beginning
to be important, and the higher terms in (21) are just
beginning to be less important. This sort of guess works
quite well in quantum chromodynamics. The radiative
corrections to a process like eþ-e� annihilation into jets
of hadrons at an energy E are accompanied with powers of
lnðE=�Þ, and to avoid large radiative corrections it is only
necessary to take � � E. In this way, we can use the tree
approximation to calculate the annihilation into, say, three
jets, with the renormalization scale of the QCD coupling
taken of order E. But in our case, radiative corrections are
more sensitive to �, and we have to make a more careful
choice of �.

To find an optimal cutoff, we note that in principle we
should find �H by solving the full quantum corrected field
equations, which give a result that can be schematically
written as

�H true ¼ �Hð�Þ þ � �Hð�Þ; (22)

where �Hð�Þ is defined as the solution of Eq. (21), and

� �Hð�Þ represents the effect of radiative corrections.
Instead of calculating loop graphs, we can get some idea
of the results of such a calculation by using the tree-
approximation field equations (21), but with � chosen at
a local minimum of the radiative corrections to �H. For such
an optimal �, we have2

@

@�
� �Hð�Þ ¼ 0: (23)

As already mentioned, physical quantities, including the
true expansion rate �Htrue, must be independent of �, so
Eq. (23) tells us also that the expansion rate calculated
from the classical field equations is stationary at the opti-
mal cutoff

0 ¼ �
@

@�
�Hð�Þ: (24)

By definition, for any � we have N�ð �Hð�ÞÞ ¼ 0, and by
differentiating this with respect to� and using Eq. (24) we
find that the condition for an optimal cutoff may be put in
the form

0 ¼ �
@

@�
N�ð �HÞj �H¼ �Hð�Þ ¼ A�ð �Hð�ÞÞ þ B�ðð �Hð�ÞÞ;

(25)

where A� arises from the explicit dependence of N�ð �HÞ on
�H=�:

A�ð �HÞ � � �H
@

@ �H
N�ð �HÞ

¼ �12

� �H

�

�
2
g1ð�Þ þ 5184

� �H

�

�
6
g3að�Þ

þ 1296

� �H

�

�
6
g3bð�Þ þ . . . ; (26)

and B� comes from the running of the couplings in N�:

B�ð �HÞ � ��0ðgð�ÞÞ þ 6�1ðgð�ÞÞð �H=�Þ2
� 864�3aðgð�ÞÞð �H=�Þ6 � 216�3bðgð�ÞÞ
� ð �H=�Þ6 þ . . . (27)

We now have two equations, (21) and (25), for the two
quantities �H and�, so it is not unreasonable to expect there
to be one or more solutions, with both � and �H roughly of
order M, the only mass parameter in the theory.

IV. TIME DEPENDENCE

The de Sitter solution found in Sec. II describes a uni-
verse that inflates eternally. For a more realistic picture of

2This is the weakest point in our discussion. For one thing, we
do not know whether the condition (23) gives a local minimum
or maximum of the radiative corrections. Worse, even if the
radiative corrections are minimized, we do not know that they
are small.
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inflation, we need a solution that remains close to the
de Sitter solution with expansion rate near �H for a time
much longer than 1= �H, but that gradually evolves away
from the de Sitter solution, so that inflation can come to an
end. (We have nothing to say here about the metric before
the universe enters into its de Sitter phase.) To find such a
solution, we will consider first-order perturbations of the
de Sitter solution, of the Robertson-Walker form (6). The
expansion rate will take the form

HðtÞ ¼ �H þ �HðtÞ; (28)

with j�HðtÞj � �H. Keeping only terms in (19) of first
order in �HðtÞ, the field equation N � ¼ 0 becomes

c0ð �H;�Þ�H�H þ c1ð �H;�Þ� _H
�H2

þ c2ð �H;�Þ� €H
�H3

þ . . . ¼ 0;

(29)

where

c0ð �H;�Þ � �H

�
@N �

@H

�
�H
¼ �A�ð �HÞ; (30)

with A� given by Eq. (26), and

c1ð �H;�Þ � �H2

�
@N �

@ _H

�
�H

¼ �216g2að�Þ
� �H

�

�
4 � 72g2bð�Þ

� �H

�

�
4

þ 7776g3að�Þ
� �H

�

�
6 þ 2160g3bð�Þ

� �H

�

�
6

þ . . . ; (31)

c2ð �H;�Þ � �H3

�
@N �

@ €H

�
�H

¼ �72g2að�Þ
� �H

�

�
4 � 24g2bð�Þ

� �H

�

�
4

þ 2592g3að�Þ
� �H

�

�
6 þ 720g3bð�Þ

� �H

�

�
6

þ . . . ; (32)

and so on, with the subscript �H on partial derivatives
meaning that after taking the derivatives we set HðtÞ ¼
�H. Equation (29) has an obvious solution of the form

�H / expð
 �HtÞ; (33)

where 
 is any root of the equation

c0ð �H;�Þ þ c1ð �H;�Þ
þ c2ð �H;�Þ
2 þ . . . ¼ 0: (34)

(This is a quadratic equation in the special case in which
the integrand of the action is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg
p

times an arbitrary
function of the curvature tensor.) For positiveRe
, Eq. (33)
represents an instability, and the number of e foldings
before this instability ends the exponential expansion is
� 1=Re
.

We would generally expect the coefficients in Eq. (34) to
be of the same order, in which case typical solutions for 

would be of order unity, and inflation would either end
almost immediately (if Re
 > 0) or go on forever (if
Re
 	 0). But there are various circumstances under
which we expect 
 to be much smaller, giving a large
number of e foldings before the end of inflation.3

(1) If jc0j is much less than all the other jcnj, then
Eq. (34) will have a solution 
 ’ �c0=c1, and so
much less than unity. In particular, if we now choose
� to be the optimal cutoff described in the previous
section, then we can use the condition (25) and
Eq. (30) to write

c0ð �H;�Þ ¼ B�ð �HÞ: (35)

According to Eq. (27), B�ðHÞ vanishes if the cou-
plings are at their fixed point, so we can conclude
that it is possible to have a long but not eternal
period of inflation if the optimal � is large enough
so that the couplings gnð�Þ are not far from their
fixed point. But there is a limit to how close the
couplings at the optimum cutoff can be to their fixed
point. At the fixed point, the quantities (21) and (25)
are both functions of the single parameter �H=�, and
it is not likely that these two functions would vanish
at the same value of this parameter.

(2) If the couplings are not very near their fixed point,
they are sensitive to the free parameters of the
theory that characterize the particular trajectory in
coupling-constant space on which the couplings lie,
and it is easy to choose these couplings to make jc0j
as small as we like. For instance, where (4) applies,
all the couplings are linear in the normalization of
the eigenvectors uNn , the only free parameters of the
theory. In a theory of chaotic inflation, the value of
these parameters in any big bang containing observ-
ers may be conditioned by the requirement that c0
should be small enough (and have the right sign) to
allow the bang to become big. To be specific, in
order for spatial curvature not to interfere with the
formation of galaxies it is necessary that the uni-
verse should expand enough during inflation so that
whatever curvature was present at the beginning of
inflation would be decreased enough so that the
curvature term in the Friedmann equation should
not dominate over the matter term when galaxies
form [10]. As is well known, the fact that spatial
curvature does not dominate at present requires
about 60 to 70 e foldings of inflation [11], and the
anthropic requirement that curvature does not inter-
fere with galaxy formation is almost as restrictive.

3We are concentrating here on only one mode. In all cases
Eq. (34) will have more than one solution, and we are assuming
that all modes other than the one (or several) with Re
 small and
positive either have Re
 	 0 or for some reason are not excited.
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But the combination of data from the microwave
background, baryon acoustic oscillations, and type
Ia supernovae distance-redshift relations has shown
[12] that (within 2 standard deviations) the frac-
tional curvature contribution �K to H2

0 is in the

range of �0:0178 to þ0:0066. It is hard to see any
anthropic reason for a number of e foldings large
enough to reduce the curvature this much.

(3) Instead of c0 being anomalously small, it is possible
for some or all of the other cn to be anomalously
large, in which case again 
 will be small and the
number of e foldings will be large. For instance, we
note that c0 unlike the other cn does not involve the
couplings g2a and g2b, so if these couplings are
anomalously large, as in Ref. [6], then c1, c2, etc.,
will be much larger than c0, and again we will have
j
j ’ jc0=c1j � 1.

V. AN EXAMPLE

Wewill now apply the above results to a classic example
of higher derivative theories of gravitation, with action
limited to terms with no more than four spacetime deriva-
tives:

I�½g� ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg

p ½�4g0ð�Þ þ�2g1ð�ÞR
þ g2að�ÞR2 þ g2bð�ÞR��R���: (36)

This theory was studied by Stelle [9] as a possible renor-
malizable quantum theory of gravitation, and has been
considered recently by Niedermaier [6] and by Benedetti
et al. [13] in connection with asymptotic safety. As is well
known, it is possible by using the Gauss-Bonnet identity to
put this action in the form used in Refs. [6,13]:

I�½g� ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg

p ½�4g0ð�Þ þ�2g1ð�ÞR
þ fað�ÞR2 þ fbð�ÞC���	R���	�; (37)

where C���	 is the Weyl tensor, and

fa ¼ g2a þ g2b
3

; fb ¼ g2b
2

: (38)

For this action, Eq. (21) gives the expansion rate for a
de Sitter solution of the field equations as

�H ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ð�Þ=6g1ð�Þ

q
: (39)

Instead of trying to find an optimal value of �, which
minimizes radiative corrections to Eq. (39), here we will
simply assume that � is large enough so that the couplings
gnð�Þ are near their fixed point gn�, and use Eq. (39) to
express � in terms of �H:

� ¼ �H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6g1�=g0�

q
; (40)

with �H left undetermined.

The critical question for this sort of theory is whether the
de Sitter solution has an instability that ends the exponen-
tial expansion after a finite but large number of e foldings.
As we have seen, for any small perturbation of the de Sitter
solution, _a=a is a sum of terms with the time dependence
expð
 �HtÞ, with 
 running over the roots of Eq. (34). We are
now considering an action whose integrand is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg
p

times a scalar function of the metric and the Riemann-
Christoffel curvature tensor, so as remarked in the previous
section, this equation is quadratic:

c0 þ c1
þ c2

2 ¼ 0: (41)

For the particular action (36), the coefficients are given by

c0 ¼ 12g1�ð �H=�Þ2 ¼ 2g0�; (42)

c1 ¼ 3c2 ¼ ð�216g2a� � 72g2b�Þð �H=�Þ4
¼ ð�6g2a� � 2g2b�Þg20�=g21�; (43)

so Eq. (41) reads


2 þ 3
 ¼ A; (44)

where

A ¼ � c0
c2

¼ 3g21�
g0�ð3g2a� þ g2b�Þ : (45)

We get a realistic picture of inflation if it turns out that A is
small and positive. In this case Eq. (44) has a root with 
 ’
�3, corresponding to a perturbation to _a=a that decays as
expð�3 �HtÞ, and a root with 
 ’ A=3, corresponding to a
slowly growing perturbation, that ends the exponential
phase after about 3=A e foldings.
Unfortunately, the numerical results obtained in

Refs. [6,13] are not encouraging. The calculations of
Ref. [6] are expressed in terms of coupling constants �,
gN , !, and s, related to the couplings in Eq. (36) by

g0 ¼ 2�=gN; g1 ¼ 1=gN;

g2a ¼ �ð1þ!Þ=3s; g2b ¼ 1=s:
(46)

Using a version of perturbation theory, Ref. [6] found that
for� ! 1 the parameters!, �, and gN approach the fixed
point values

!� ¼ �0:0228; �� ¼ 12:69;

gN�=ð4�Þ2 ¼ 0:4227;
(47)

while sð�Þ vanishes as
sð�Þ ! 11:88= lnð�=MÞ; (48)

whereM is some unknown large mass. Then Eq. (45) gives

A ¼ � 3s

2!�gN
! 0:92

lnð�=MÞ ; (49)

so A is positive, but �=M would have to be about 108 to
give 60 e foldings before inflation ends.
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In Ref. [13], by using the truncated exact renormaliza-
tion group equations, a fixed point is found with (in our
notation)

g0� ¼ �0:0042; g1� ¼ �0:0101;

g2a� ¼ �0:0109; g2b� ¼ 0:01:
(50)

Using these results in Eq. (45) gives A ¼ 3:05. This is
positive, but unfortunately not at all small. The two roots
of Eq. (44) are 
 ¼ �3:80, corresponding to a rapidly

decaying mode, and 
 ¼ 0:80, corresponding to an insta-
bility that ends inflation after only a few e foldings.
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