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A large class of the dynamical laws for causal sets described by a classical process of sequential growth

yields a cyclic universe, whose cycles of expansion and contraction are punctuated by single ‘‘origin

elements’’ of the causal set. We present evidence that the effective dynamics of the immediate future of

one of these origin elements, within the context of the sequential growth dynamics, yields an initial period

of de Sitter-like exponential expansion, and argue that the resulting picture has many attractive features as

a model of the early universe, with the potential to solve some of the standard model puzzles without any

fine-tuning.
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I. INTRODUCTION

Cosmology is the natural playground for theories of
quantum gravity for many reasons. The most obvious is
the fact that all quantum gravity theories are formulated at
such high energies (or small distances) that it is practically
impossible for an earth based laboratory or accelerator to
test them. However, the early universe can provide such a
laboratory. In addition, cosmology is one of the most
natural applications of general relativity, which is exactly
what a theory of quantum gravity hopes to ‘‘unify’’ with
quantum theory. On the other hand, the standard model of
cosmology [1,2] also suffers from some problems/puzzles
[3] that warrant extensions to it. Most of these have their
origins in our lack of understanding of the physics of very
high energies and thus a successful theory of quantum
gravity should be able to address these problems.
Quantum gravity has recently begun to shed some light
on the puzzles of cosmology, such as resolution of the
cosmic singularity [4–6], providing some hints as to alter-
natives to inflation [7], and providing potential explana-
tions of density perturbations [8]. Additionally the
prediction of a nonzero cosmological constant arises natu-
rally from the discreteness expected from quantum gravity
[9]. Thus quantum gravity is beginning to show some
promise in resolving some of the paradoxes of the standard
model. However, there is far from any consensus in this
regard, so cosmologists generally look for alternative
explanations.

The most common path taken is an extension via particle
physics that introduces a scalar field with very special
properties in the early universe. If the potential of the field
satisfies certain conditions it can be arranged that the
universe undergoes rapid expansion in a ‘‘de Sitter-like’’
phase. This rapid expansion, called the inflationary era or
inflation, gets rid of many of the standard model puzzles/
problems such as the so-called ‘‘horizon problem,’’ ‘‘the

flatness puzzle,’’ ‘‘the monopole problem,’’ etc. For a more
complete discussion see Refs. [10,11]. Despite the fact that
this scenario has ‘‘problems’’ of its own, as has been
pointed out by many authors [7,12], the resulting features
are very attractive and hard to ignore. On the other hand,
the lack of any competing model leaves a scientific void
that needs to be filled if the case for or against inflation has
to be decided.
Fortunately, causal set theory has reached a stage in its

evolution where some predictions about cosmology have
come out [9,13]. Based on a mixture of ‘‘classical dynam-
ics’’ (referred to as the classical sequential growth [14] or
CSG models) and some expectations about ‘‘quantum dy-
namics,’’ causal set theory predicts fluctuations in the
cosmological term around a mean value. If this mean value
is taken to be zero, the fluctuations are of the right magni-
tude to explain the present observations. Computer simu-
lations of the behavior of the universe with such a
fluctuating cosmological term have shown that the energy
density in� follows the total energy density of the universe
and is roughly of the same order. This is the first time that
such testable predictions have come out of a fundamental
theory of quantum gravity.
Causal set theory is also different from most other

quantum gravity theories in the sense that it assumes
fundamental discreteness. There have been many argu-
ments for discreteness at the most basic level, but all of
them have either been merely philosophical, or regarded
only as methods of regulating the infinities and singular-
ities in particle physics and general relativity. In the ab-
sence of real predictions it has always been difficult to see
if these considerations have more than a philosophical
value. Prediction about fluctuations in �, however, draws
life directly from fundamental discreteness, and it is but
natural to wonder if causal set theory has more to say about
cosmology. In this paper we will present evidence that
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many of the CSG models produce a de Sitter-like early
universe, and thus may prove helpful towards solving
another puzzle—why is the universe so large when it is
not so old?

A general question which naturally arises in causal set
theory is whether causal sets which are well approximated
by continua arise dynamically. It has been shown that the
sequential growth models possess continuum limits, as
N ! 1 and p ! 0, however the resulting continua look
nothing like spacetime manifolds of dimension >1 [15].
However, it may still be the case that something resembling
a spacetime arises at finite p. We consider this latter
question here.

This paper is organized as follows. In Sec. II we briefly
describe that portion of causal set theory which is relevant
to the current work. In Sec. III we describe the behavior of
the ‘‘originary percolation’’ dynamics, which arises as an
effective dynamics of the ‘‘early universe’’ of CSGmodels.
Then in Sec. IV we compute the spacetime volume of
‘‘Alexandrov neighborhoods’’ (‘‘causal diamonds’’) in de
Sitter space of arbitrary (integer) dimension. In Sec. V we
describe the particular simulation we perform, with results
in Sec. VI, and wrap up with some concluding remarks in
Sec. VII.

II. CAUSAL SETS

A causal set, or ‘‘causet’’ for short, is a locally finite
partially ordered set, whose elements can be thought of as
irreducible1 ‘‘atoms of spacetime.’’ A partially ordered set
C consists of a ‘‘ground set,’’ which one generally labels
with integers from 0 to N � 1 (N can be infinite), along
with a binary relation � which is irreflexive (x⊀x) and
transitive (x � y � z ) x � z). Local finiteness is the con-
dition that every order interval (or simply interval)
½x; y� ¼ fyjx � y � zg 8 x, z 2 C has finite cardinality.

A. Kinematics

The connection to macroscopic spacetime arises via the
notion of a ‘‘sprinkling,’’ in which one selects events of a
spacetime at random by a Poisson process, identifies them
with causal set elements, and then deduces a partial order-
ing among the elements from the causal structure of the
spacetime. One regards a continuum spacetime as being a
good approximation to an underlying causal set if that
causal set is likely to have arisen from a sprinkling into
that spacetime. For an extensive review of the causal set
program, see [16–19].

The connection between familiar concepts from contin-
uum geometry and their discrete counterparts on the causal

set is the domain of causal set kinematics. We will make
extensive use of two results in this regard.
The first is stated as a definition at this stage of the

theory’s development, and is implicit in the description
in the previous paragraph of the correspondence of the
causal set with the continuum. In order for a causal set to
be likely to arise from a sprinkling, it must be the case that
the number of elements sprinkled into any region of space-
time with volume V is Poisson distributed, with a mean of
V. This Poisson fluctuation in the correspondence between
spacetime volume and number of elements plays a crucial
role in the prediction of a fluctuating cosmological con-
stant [9].
The second result relates to the correspondence between

the length of chains and proper time. A chain is a subset of
a causal set for which each pair of elements is related. The
length L of a chain is the number of elements in the chain
minus 1. In Minkowski space of any dimension, it has been
proven that the length of the longest chain between any pair
of elements is proportional to the proper time between the
events at which they are sprinkled, in the limit of infinite
sprinkling density [20,21]. In [22] the proportionality is
claimed to hold for any spacetime. Following [21], we
define m to be the constant of proportionality, so that

� ¼ mL: (2.1)

B. Dynamics

There are a number of approaches to constructing a
dynamical law for causal sets. Perhaps the most developed
to date is the classical sequential growth model [14,23,24]
mentioned in the Introduction. It describes the causal set as
growing via a sort of ‘‘cosmological accretion’’ process, in
which elements of the causet arise one at a time, each
selecting some subset of the causal set to be its past. The
process of growth in the model is stochastic; each newborn
element selects a ‘‘precursor set’’ at random, with proba-
bilities which satisfy a discrete analog of general covari-
ance and a causality condition akin to that used to derive
the Bell inequalities. This randomness is regarded as fun-
damental, and yet purely classical in nature, because it
does not allow for any quantum interference among alter-
native outcomes. Given the classical nature of the proba-
bility distribution, the dynamics is incomplete, but can be
seen as a stepping stone toward formulating a fully quan-
tum process, which could then be regarded as a general-
ization of classical probability theory. Although the
dynamically generated causal sets do not lead to orders
which are readily approximated by smooth spacetime
manifolds, they do have a number of striking cosmological
features, which we explore further in this paper.
The sequential growth dynamics is described to take

place in ‘‘stages,’’ though it is important to emphasize
that the discrete general covariance condition enforces
that this ordering in which the causet elements arise is

1It may be necessary to add matter degrees of freedom to the
causet elements, and at some stage it may be important to
‘‘coarse grain’’ the causet so that a single element may stand
in for many, but for the moment we can think of the elements as
not containing any internal information.
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‘‘pure gauge’’—it has no effect on the probability of form-
ing a particular (order equivalence class of) causal set. At
stage n the causal set has n elements ‘‘so far,’’ and the task
is to select a precursor set for the new element which arises
in this stage. The probabilities of the CSG model derive
from a sequence of non-negative ‘‘coupling constants’’
(tn), n � 0. With these weights, the probability for select-
ing a precursor set S is proportional to tjSj.

2 Thus the

probability to choose a particular set S is

PrðSÞ ¼ tjSjP
n
i¼0ðniÞti

:

Once a precursor is chosen, to be to the past of the new
element, all the relations implied by transitivity are in-
cluded as well. Thus it is the ‘‘past closure’’ of S which
forms the past of the newly generated element.

The particular sequence tn ¼ tn, for a single non-
negative real number t, gives rise to a dynamics called
transitive percolation [14]. This sequence plays an impor-
tant role, as we will see in a moment. The rule for deciding
which elements to select for the past of a new element is
particularly simple for transitive percolation. The newborn
element simply considers each already existing element in
turn, and selects it to be to its past with a fixed probability
p ¼ t=ð1þ tÞ. It then adds to its past every element which
precedes any of the originally selected elements, to main-
tain transitivity.

C. Cosmic renormalization

Consider an element of a causal set, called in the com-
binatorics literature a ‘‘post,’’ which is related to every
other element of the causal set. This would resemble an
initial or final singularity of a universe, in that the entirety
of the universe is causally related to it. Now for any finite
p, it has been proven that a (an infinite) causet generated by
transitive percolation almost surely contains an infinite
number of posts [25]. It is the large scale behavior of the
universe subsequent to one of these posts which is the
subject of this paper. We will present evidence that the
period immediately following a post is one of rapid expan-
sion of spacetime volume with respect to proper time. Thus
at the largest scales the causal sets generated by transitive
percolation resemble a bouncing universe, which periodi-
cally undergoes collapse down to a final singularity and an
ensuing reexpansion.

It has further been shown that a large class of CSG
models, which includes the sequence tn ¼ ð�= lnðnÞÞn for
n > 0, �>�2=3 also lead to causets which almost surely
contain an infinite number of posts [26]. Now the presence

of posts in the dynamical model suggests an interesting
possibility, as described in [5], that the dynamics following
a post can be regarded as growing an entirely new universe,
except with coupling constants which are ‘‘renormalized’’
with respect to those of the previous era. Much is now
known about the flow of the coupling constants (tn) under
this ‘‘cosmic renormalization’’ [27,28], in particular, that
the transitive percolation dynamics family tn ¼ tn forms a
unique attractive fixed point. The sequence tn ¼ tn=n! has
also been studied in some detail [5,29]. There it is shown
that the region immediately subsequent to a post behaves
like transitive percolation, with a parameter t which gets

driven toward zero under the cosmic renormalization [t !ffiffiffiffiffiffiffiffi
t=N

p
forN elements to the past of the current era’s post (or

‘‘origin element’’)].

III. ORIGINARY PERCOLATION AND RANDOM
TREES

Note that the effective dynamics following a post comes
with a caveat: each element is required to be related to the
post, by definition. Therefore we find an originary dynam-
ics, for which the possibility of being born unrelated to any
other element is excluded, and all remaining probabilities
are normalized correspondingly. Thus the probabilities of
an originary dynamics are equal to those of an ordinary
CSG model, conditioned on the event that the newborn
element connects to at least one other element. (The orig-
inary dynamics is in fact one of the general class of
solutions to the covariance and causality conditions on
sequential growth, described in [30].)
Originary percolation is the originary version of tran-

sitive percolation. As mentioned in Sec. II B, at each stage
of the growth process, the newborn element considers each
existing element x in turn, and selects x to be in its past
with probability p. In order to maintain transitivity of the
order, if it chooses x for part of its past, it includes all
ancestors of x as well. In the event that no element x is
selected in this process, it simply ‘‘tries again,’’ so as to
maintain the condition of originarity. At stage n (meaning
that there are n elements currently in the causet), the
probability to select a particular subset S of existing ele-
ments is

PrðSÞ ¼ pjSjqn�jSj

1� qn
;

where q ¼ 1� p, and the factor 1=ð1� qnÞ accounts for
the originary condition, which excludes the possibility of
not connecting to anything (which occurs with probability
qn). Once a set S is chosen, the past closure of S becomes
the past of the newborn element x.

A. Random tree era

For small values of p, the early universe of originary
percolation, by which we mean the structure of that portion

2The definition of precursor set used here differs from that in
[14,23]. There only precursor sets which contained their own
past were included. This definition allows for a much simpler
expression of the transition probabilities (e.g. as given in [15]),
which better reveals the physical meaning of the tn.
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of the causal set which is born shortly after the origin
element, forms a random tree, with high probability. To
see why this occurs, consider the probability that the
selected precursor set contains m elements is given by

PrðjSj ¼ mÞ ¼ n
m

� �
pjSjqn�jSj

1� qn
:

For small p this becomes vanishingly small for anym> 0.
However, the case m ¼ 0 is excluded by the originarity
condition, while it remains true that, as long as p � 1=n,
the transitions with m ¼ 1 will be much more likely than
any of the others. In these transitions one element is chosen
at random from those already present, with a uniform
distribution. This behavior yields a simple model of a
random tree. It persists until n� 1=p, at which point we
get a percolation phase transition, which heralds the end of
the random tree era, and the beginning of a phase of de
Sitter-like expansion, which we describe below. Note that
the structure of this earliest random tree era of the universe
is independent of p, save in determining how long it lasts.

We can begin our study of the early universe of originary
percolation by studying this simple random tree process.
To get some feel for the initial rate of expansion of the
universe, we ask what is the expected number of elements
which arise in ‘‘level t.’’ which we define to be those
elements whose longest chain to the root element is of
length t. With certainty, the first element appears in level 0,
and the second in level 1. At stage n, the probability of
joining level t is proportional to the number of elements in
level t� 1. The same exact process has been studied in the
combinatorics literature, under the name ‘‘random recur-
sive trees.’’ There similar questions have been studied,
such as the probability distribution of the level of an
element chosen uniformly at random from the tree [31].

Despite the simple recursion obeyed by the ‘‘joining
probability’’ above, this problem is not easy to solve, e.g.
because it involves an infinite sequence of distributions.
Rather than analyze this problem in detail here, we simply
observe that, after forming a random tree with N elements,
the mean cardinality of level t looks very much like a
multiple of a Poisson distribution in t. Thus the mean
number Nt of elements in level t is very well fit by the
function

Nt ¼ A�te��

t!
; (3.1)

where the normalization factor A * N and �� lnN. An
example is shown in Fig. 1. Despite the excellent fit of
Fig. 1, the relation cannot be exact because, for example,
Nt must be exactly zero for t > N, which does not occur in
(3.1).

The random tree era will continue until n� 1=p. After
this stage a newborn element becomes as likely to choose
more than one parent as not. Thus we expect that the N of
the random tree era is�1=p. As far as the level population

discussion goes, this is not the end of the story, as it is
possible for such a ‘‘nontree element’’ to select all its
parents from elements of the tree at an early level t, and
thus itself to join an early level, say one much earlier than
the maximum of (3.1), which is ��� lnð1=pÞ. Thus (3.1)
provides only a lower bound on the cardinality of early
levels.
It is interesting to note that Gerhard ’t Hooft predicted

almost this exact scenario in 1978, cf. Fig. 10 of [19].

B. Originary percolation

To get a better handle on the initial rate of expansion, we
perform simulations of the full originary percolation dy-
namics. This task is greatly simplified through the use of
the CAUSAL SETS toolkit within CACTUS framework [32].
All we need to do is write a ‘‘thorn’’ (module) which
counts the number of elements in each level, and counts
the number of elements and longest chains in each order
interval, as explained in Sec. V. The ability to generate
causal sets via the originary percolation dynamics is al-
ready provided within the toolkit.
As an illustration, we show in Fig. 2 a small example

causal set generated by originary percolation with N ¼ 16,
p ¼ 0:2. The past of any element is the set of elements
which can be reached from it by traversing the lines
(‘‘links’’) downward. The origin element/post is at the
bottom. The red squares are elements which are part of
the tree era.
Results for originary percolation at p ¼ 0:001, N ¼

11 585, are depicted in Fig. 3. In addition to the cardinality
of each level mentioned above, we compute the cardinality
of a ‘‘foliation’’ of the causal set by inextendible anti-
chains. This is a more appropriate analogue to the (edge-
less) spatial hypersurfaces of general relativity. An

 0
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t

t

FIG. 1 (color online). Mean population of levels for an N ¼
16 384 element random tree. The mean and its error are mea-
sured from 100 samples of the random tree process. The fitting
function proportional to a Poisson distribution is shown. Here
A ¼ 16 687� 85 and � ¼ 9:306� 0:022.
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antichain is a subset of the causal set which contains no
relations. An inextendible antichain is one which is maxi-
mal in the sense that no elements can be added to it while
remaining an antichain, i.e. every other element of the
causal set is to the future or past of one of its elements.
The inextendible antichains we employ here are defined as
follows. The level t as defined above forms an antichain,
but in general it will not be inextendible. We can extend it
by adjoining the maximal elements (ones which have no
elements to their future) of that portion of the causal set

which is unrelated to any element of level t. It is easy to
show that this will always yield an inextendible antichain.
Note that all of the subcausal set which is unrelated to the
level t antichain lives in levels <t, for otherwise there
would be a past directed chain to some element of level
t. This fact motivates the choice of using the maximal
elements to form the inextendible antichain.3

A final question that we consider before turning our
attention to de Sitter spacetime regards how the initial
random tree sits within the larger percolated causal set.
To this end we define an element to be within the ‘‘tree
era’’ if the order interval between it and the origin element
is a chain. In Fig. 3 we plot, in addition to the cardinality of
the antichains discussed above, the number of elements in
each layer that are part of the tree era. We see that if N �
1=p then the initial tree sits in the very early part of the
percolated causal set. The exponential expansion extends
well beyond the tree era, and thus the initial exponential
growth of (3.1) is indeed only a precursor to an ensuing
exponential growth involving a much larger portion of the
causal set.
Before closing this section, it is important to note that

the future of every element of a percolated causal set is
itself an instance of originary percolation. This is simply
because percolation is completely homogeneous—the fu-
ture of an element is the same (in probability) as that of any
other element. However, by discussing the future of an
element x, one is conditioning on each element being to
the future of x, which is exactly the condition of originary
percolation. Thus originary percolation describes a homo-
geneous universe, for which the future of every element is
exponentially expanding. This sounds a lot like de Sitter
space.

IV. VOLUME OFAN ALEXANDROV
NEIGHBORHOOD IN DE SITTER SPACETIME

For a spacetime respecting ‘‘the cosmological princi-
ple,’’ an exponential expansion means the de Sitter space-
time. If the universe is described by something like a causal
set, the early universe region that we consider is very
young. It does not look like a spacetime yet in the sense
that it does not render itself easily to many of the familiar
concepts of the continuum. This is particularly clear if one
considers, for example, the random tree era. It is not
possible to define the notion of ‘‘spacelike distance’’ in a
random tree as no two elements have a common future
[33]. Similarly, it is difficult to see what curvature would
mean in this case. On the other hand, the notions of the
length of the longest chain between two causal set elements
(L), which is proportional to the proper time between the
two events (�), and the number of causal set elements N	

FIG. 3 (color online). Mean ‘‘spatial volume’’ of ten originary
percolated causal sets with N ¼ 11 585, p ¼ 0:001. Shown is
the cardinality of level t in red, the cardinality of an inextendible
antichain containing level t in green, the number of elements of
the initial tree at level t in blue, and the number of maximal
elements of the initial tree, at level t, in magenta.

FIG. 2 (color online). A sample causal set generated by orig-
inary percolation with N ¼ 16, p ¼ 0:2. Elements of the initial
tree are shown by red squares.

3It turns out that this inextendible antichain is equivalent to the
one which arises by taking the maximal elements of those whose
level is 
 t.
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which are causally between two given elements,4 which is
proportional to the volume of the Alexandrov neighbor-
hood5 V	 formed by the two elements, is still defined. We
try to see if L and N	 follow the same relationship as � and
V	 in Dþ 1-dimensional de Sitter spacetime.

We use

ds2 ¼ �dt2 þ e2t=‘ðdr2 þ r2d�2
DÞ

as the Dþ 1-dimensional de Sitter metric [34], where ‘ is
the radius of curvature and all other symbols have their
usual meaning. As we have spherical symmetry in this case
we can represent the Alexandrov neighborhood of two
events in t and r space as sketched in Fig. 4. The spacetime
volume of this region can be written as

V	 ¼
Z 0

�t1

dteDt=‘
Z ro

0
drrD�1

Z
d�D

þ
Z t2

0
dteDt=‘

Z ri

0
drrD�1

Z
d�D: (4.1)

As the light cones in de Sitter space follow _r ¼ �e�t=‘ and
we choose outgoing ro and ingoing ri radial coordinates

such that roð0Þ ¼ rið0Þ ¼ R, we can write ro ¼ Rþ ‘ð1�
e�t=‘Þ and ri ¼ Rþ ‘ðe�t=‘ � 1Þ. Using these we can
write (4.1) as

V	 ¼ CD‘D
�Z 0

�t1

dt

�
Rþ ‘

‘
et=‘ � 1

�
D

þ
Z t2

0
dt

�
R� ‘

‘
et=‘ þ 1

�
D
�
; (4.2)

where CD is the volume of aD-dimensional unit ball. Using

t1 ¼ ‘ ln‘þR
‘ , t2 ¼ �‘ ln‘�R

‘ , and t1 þ t2 ¼ �, we can sim-

plify (4.2) to

V	 ¼ CD‘Dþ1

�
ln cosh2

�
�

2‘

�
þXD

i¼1

ð�1Þiþ1

i

D

i

 !

�
��
1þ tanh

�
�

2‘

��
i þ

�
1� tanh

�
�

2‘

��
i � 2

��
(4.3)

for D odd and

V	 ¼ CD‘Dþ1

�
�

‘
þXD

i¼1

ð�1Þi
i

D

i

 !��
1þ tanh

�
�

2‘

��
i

�
�
1� tanh

�
�

2‘

��
i
��

(4.4)

for D even. One obvious case of interest is D ¼ 3. Using
the above-mentioned expressions and the fact that C3 ¼

4�=3, it turns out that

V	 ¼ 4�

3
‘4
�
lncosh2

�
�

2‘

�
� tanh2

�
�

2‘

��

for a four-dimensional de Sitter spacetime. It should be
noted that V	 � �Dþ1 for �

‘ � 1 as every spacetime looks

locally like Minkowski space of the same dimension and
�� for �

‘ � 1. For the four-dimensional de Sitter space

V	 ¼ �
24 �

4 þOð�5Þ for � � ‘ and� 4�=3ð�� ln 4eÞ for
� � ‘).

R r

t
t

t

1

2

FIG. 4 (color online). An Alexandrov neighborhood (order
interval) in de Sitter space.

FIG. 5 (color online). The set of all pairs ðL;N	Þ for each
related pair of elements, in three causal sets. Each causet was
generated with the same value of p ¼ 0:025 but three different
values of N ¼ 500, 1500, and 2500. (To make the figure size
manageable, we plot only every 4th point for N ¼ 500, every
10th for N ¼ 1500, and every 200th point for N ¼ 2500.) Note
that the smaller data sets are a subset of the larger ones, and that
at some point the maximum N	ðLÞ no longer increases with N.

4For an order interval ½x; y�, we defineN	 ¼ jfzjx � z � ygj þ
1, where j 
 j indicates set cardinality. The þ1 allows N	 ¼ L
for an interval which is a chain.

5The Alexandrov neighborhood of two events is the overlap of
the past of the futuremost event with the future of the other.
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V. SIMULATION DETAILS

We want to compare the relationship between V	 and �
given by Eqs. (4.3) and (4.4) with that produced by orig-
inary percolation between N	 and L. In a given simulation
we generate a causal set via originary percolation, with a
given number of elements N and the percolation parameter
p 2 ½0; 1�. We then calculate the lengths of the longest
chains L between all pairs of elements and the correspond-
ing number of elements N	 that are connected to both of
these elements and lie causally between them. For this
exercise the typical values of N lie between 1000 and
50 000 and of p between 0.0001 and 0.03. The primary
computational constraint is run time, as finding the length
of the longest chain in an interval involves an OðN2Þ
algorithm, and there are OðN2Þ intervals to check.

For a given causal set, we collect a large number of pairs
of numbers ðL;N	Þ, one for every related pair of elements
in the causet. The set of such pairs for three causal sets is
plotted in Fig. 5. Wewish to compare these data points with
the functional forms (4.3) and (4.4), for some value of the
dimensionD. If these causal sets are exactly represented by
de Sitter space, i.e. if they arose from a Poisson sprinkling
of a region of de Sitter of spatial dimension D, then one
would expect the data points to be scattered about the curve
(4.3) or (4.4), with Poisson fluctuations. There are indica-
tions that, in spacetime dimensions larger than 3, the
fluctuations in the length of the longest chain in a sprinkled
interval of Minkowski space grows only logarithmically
with L [35], so one might guess that we would see data
points distributed roughly uniformly above the curve (4.3)
or (4.4). However, for reasons we do not fully understand,
it turns out that the data points all seem to fall below the
curve (4.3) or (4.4), such that the maximum value of N	 for
a given L, for an appropriate range of values of L, gives an
excellent match to one of the functions (4.3) or (4.4).

It is important to notice that almost all of the physics in
this scenario is dictated by the choice of p, as long as N �
1=p. This can be easily seen from Fig. 5, by observing that
the data points for smaller N are effectively a subset of
those for a larger value of N. Notice, in particular, that the
maximum values of N	 for the N ¼ 1500 causet are the
same as those for the N ¼ 2500 causet. Thus, as long as N
is large enough to capture the relevant region of exponen-
tial expansion, increasing N further will have no effect on
the results of interest.6 In particular, this means that the
dimension D which gives the best fit, for example, will
only depend on p. If N is too small, on the other hand, then
the causal set is not large enough to ‘‘sample the region of

interest,’’ and wewill get poor results. This is manifested in
Fig. 5 by the fact that the maximum N	 for N ¼ 500 are
substantially smaller than those for the larger causets.
The reader may be concerned that we use the maximum

N	 for a given value of L, rather than the mean. This is an
indication that the percolated causal set is not exactly
manifoldlike. However this is not too surprising, as we
already know that the CSG models do not have nontrivial
spacetimes as their continuum limits [15]. Another indica-
tion that these are not quite manifoldlike is that at the
smallest scales they are trees, as explained in Sec. III A,
and thus one dimensional (because the shortest intervals
will always be chains). This failure of the mean to give
good results may be expected, in that it gets contributions
from all sorts of intervals, including ones that might be
‘‘close to a boundary,’’ such that they have small N	 for
large L. In a sense we are considering only intervals as
measured by observers which are stationary in the cosmic
rest frame, so that they can get the most elements for a
given proper time separation.
Since each causal set only provides a single maximum

N	 for each L, we repeat the computation for a number of
causal sets, and from these compute a mean maximum N	
with its error. We then fit each such data set with the
expressions given in Eqs. (4.3) and (4.4), with � replaced
by L=m. ‘ and m are used as fitting parameters. For D ¼ 3
the fitting expression looks like

V	 ¼ 4�

3
‘4
�
ln cosh2

�
�

2‘

�
� tanh2

�
�

2‘

��
: (5.1)

As mentioned above, at the smallest scales L the causal set
behaves like a tree and is therefore, in the sense of order
intervals, 0þ 1 dimensional. At the largest scales the
intervals ‘‘see the infrared cutoff’’ N, and therefore are
not expected to give good results. We thus only fit our data
within a range of L values, as shown in Table I.
Furthermore, since the error bars are much smaller for
the small intervals than for the large ones, fitting directly
to the forms above would strongly favor the small scales,
and tend to ignore the data for larger scales. We handle this
by fitting (the log of the maximum N	) to the log of the
functions above such as (5.1), which has the effect of fitting
to the relative error in the maximum N	.
At no point have we ever mentioned any number for the

dimension, in expressing the dynamics. Thus we have no
idea what dimension of de Sitter space to expect from our
results. We therefore fit our data to every (spatial) dimen-
sion, usually from 1 to 9, and take the one which fits best.

VI. RESULTS

Figure 6 shows a typical behavior of the plot of the
maximum number of elements in an order interval and
the corresponding longest chains, for N ¼ 15 000 and p ¼
0:001. Interestingly enough, the best fit was achieved by
the function for 3þ 1 dimensional de Sitter space, which is

6It is true that originary percolation for fixed p and infinite N
contains every finite partial order as a suborder. Thus somewhere
in that infinite causet is an interval with height L and cardinality
arbitrarily large. However, we do not send N ! 1 for fixed p,
we are only interested in the ‘‘early universe’’ of originary
percolation, with N no larger than say 1=p3. In such a regime
the maximum N	 is effectively independent of N.
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shown in black. The best fits for the two neighboring
dimensions are also shown, to give some indication of
the robustness of the dimension ‘‘measurement.’’

The results for all our runs, for a variety of values of
p, are summarized in Table I. All fits are performed
with the GNUPLOT fit function. For each value of p
we have considered, Table I provides the value of N
we have used, the best fit spacetime dimension, the
best fit values for ‘ and m with their errors, � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Lf½N	;L � V	ðLÞ�2=ðNL � 2Þ�2
N	;Lg

q
(where NL is the

number of data points fit), the range of L values we fit, and
also the number of causal sets generated. All reported
errors are as given by GNUPLOT.

As discussed in Sec. II A, proper times are expected to
be related to length of the longest chain by (2.1). If we
assume that the largest intervals of our causal sets do
indeed behave like intervals of de Sitter space, then the
fits of Table I serve as an alternate measurement ofm, in de

Sitter spacetime of three and four dimensions. It is inter-
esting to see that the values come out comparable to those
for Minkowski space, which fall between 1.77 and 2.62
[21]. The ‘ measurements indicate that we can grow a
universe which is roughly 2m‘ ¼ 36 elements ‘‘across.’’
Figure 6 contains the results from our largest data set

(largest number of causal sets generated with those pa-
rameters). The plot for our smallest value of p is shown in
Fig. 7. There the range of L values available for the fit is
smaller, because one needs a very large causal set to get
large chains with such a small p. The curve for 3þ 1 de
Sitter continues to make an excellent fit, and better than
curves for different dimensions of de Sitter space. Figure 8
portrays another example of the fits, this time in log scale.
Our final example, Fig. 9, comes from a larger value for p.
Here the universe is quite small, with a radius of curvature
of just �4 in fundamental units. The best fit dimension is
only 2þ 1 for this tiny universe.
Before concluding, we return attention to the issue of

fitting the mean vs the maximumN	. In Fig. 10 we directly
compare the two on the same data set, generated from four
N ¼ 15 000 p ¼ 0:0008 causal sets. It is clear that the

FIG. 6 (color online). A plot of the maximum values of N	 as
a function of L for p ¼ 0:001 and N ¼ 15 000, along with best
fit curves for de Sitter space of three different dimensions. The
vertical line on the left marks the end of the tree era, while the
one on the right separates the points that ‘‘see’’ the finiteness of
the causal set. The overall best fit is achieved from the curve for
3þ 1 dimensions, and is shown in black.

FIG. 7 (color online). A plot of the maximum values of N	 as
a function of L for p ¼ 0:0001 and N ¼ 50 000, along with best
fit curves for de Sitter space of three different dimensions. The
overall best fit is achieved from the curve for 3þ 1 dimensions.

TABLE I. Fitting parameters for some values of p.

p N Dþ 1 ‘ m � Fitting range in L Number of runs

0.0001 50 000 4 8:7� 1:8 2:105� 0:028 2.32 9–25 6

0.0002 30 000 4 6:81� 0:72 1:926� 0:023 3.07 8–27 3

0.0005 20 000 4 7:81� 0:57 1:787� 0:022 5.59 7–32 10

0.0008 15 000 4 6:86� 0:22 1:749� 0:019 4.69 6–35 4

0.001 15 000 4 6:20� 0:12 1:710� 0:013 4.97 7–35 23

0.003 15 000 4 3:73� 0:013 1:483� 0:009 5.12 6–100 20

0.005 15 000 4 3:097� 0:009 1:388� 0:009 4.69 5–150 20

0.01 2000 3 4:086� 0:028 1:136� 0:006 2.75 5–39 50

0.03 1000 3 2:331� 0:011 1:046� 0:006 0.663 5–53 5
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maximums fit the 3þ 1 de Sitter form quite well, while the
mean values do not. We omit the errors in the means,
because they are extremely small for the small intervals,
and strongly bias the fits away from the data at larger L. In
any event the fit is poor for the means, for any dimension
(though again 3þ 1 fits the best there as well).

VII. SUMMARYAND CONCLUSIONS

After motivating the study of originary percolation as an
appropriate dynamical model for the early universe of
causet set theory, at least within the context of classical
sequential growth models, we explored a number of indi-
cations that it yields an exponentially expanding universe.
In particular, for p � 1, we saw that, after a post, the

universe begins with a random tree era, followed by a
period of de Sitter-like exponential expansion. More spe-
cifically, for p � 1 and N � p�1, the largest intervals in
the post-tree era resemble de Sitter spacetime insofar as
spacetime volume as a function of proper time is con-
cerned. Furthermore, the expression that best fits the data
has D ¼ 3 for a significant range of p (at least one and a
half decades). IfD continues to vary monotonically with p,
then our results are compatible with D ¼ 3 all the way
down to physically realistic values, say 10�84 as needed to
explain the initial large size of the universe [5]. Does this
indicate how the observed number of spatial dimensions
will emerge dynamically from quantum gravity? One must
wait for the full quantum theory to be sure, but the dy-
namical appearance of 3þ 1 dimensions, without being
put into the theory in any way, is intriguing. It is important
to gain a deeper analytical understanding as to why the
sequential growth models are exhibiting such features in
common with continuum spacetime.
There are many arguments that motivate the assumption

of a discrete structure for our universe at the most funda-
mental level, and causal sets are a very simple and clearly
defined theory that does just that. Some of these arguments
which are mostly philosophical in nature are powerful and
have been around for a very long time but the lack of any
observational effects of discreteness has left the idea as a
beautiful orphan that few want to adopt. It has only been
recently that through arguments that derive life from causal
set theory have we been able to predict some observational
effects of discreteness as well. Fluctuations in the cosmo-
logical ‘‘constant’’ are one such prediction. Now we have
shown that the universe generated by (many of) the CSG
models not only exhibits some very desirable cosmological
properties but may help solve some of the toughest prob-
lems of the standard cosmology, such as:
(i) The standard model of cosmology does not tell us

from where the universe comes. In fact, if the theory

FIG. 9 (color online). A plot of the maximum values of N	 as
a function of L for p ¼ 0:01 and N ¼ 2000, along with best fit
curves for de Sitter space of three different dimensions. Here the
overall best fit is achieved from the curve for 2þ 1 dimensions.
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FIG. 10 (color online). Comparing behavior of the mean N	
versus the maximum. The results come from causal sets gen-
erated with p ¼ 0:0008, N ¼ 15 000.

FIG. 8 (color online). A plot of the maximum values of N	 as
a function of L for p ¼ 0:0002 and N ¼ 30 000, in log scale,
along with best fit curves for de Sitter space of three different
dimensions. Again the overall best fit is achieved from the curve
for 3þ 1 dimensions.
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of general relativity is supposed to be valid all the
way to time t ¼ 0, the universe ends up in a singu-
larity, where not only the physical laws do not apply
but it is impossible to get any information from t <
0. Thus it is impossible to know what happens ‘‘be-
fore’’ the singularity. On the other hand, if causal set
cosmology is taken seriously, one still has a ‘‘begin-
ning’’ or a big bang in the model but the singularity
is not a problem anymore. The post is like any other
element in the theory and thus discreteness can
‘‘resolve’’ the singularities. In fact, the same post is
the big crunch singularity of the previous cycle of the
universe. One can in principle calculate the proba-
bility of post occurrence in any of the CSG models,
and it is easy to see what happens to the universe
before and after the post is formed.

(ii) Every time the universe collapses (to a post) and then
bounces back, the effective behavior of the expan-
sion can be described as if the whole causal set
started with that post with renormalized coupling
constants. Since the percolation dynamics is an at-
tractive fixed point under this renormalization flow
in the space of CSG models that have posts, one may
start the universe generically in any of these models,
and it eventually will end up arbitrarily close to
percolation. This makes percolation the natural can-
didate for the study and also guarantees the results
are free of any kind of fine-tuning in the space of
models.

(iii) The universe in the percolation model has two
clearly separable eras early on. The first of these re-
sembles a random tree, where the spatial volume of
the universe increases exponentially with the ‘‘cos-
mological time.’’ As the universe accumulates 1=p
elements after the post, where p is the parameter of
the percolation, it enters a de Sitter-like phase.

(iv) One of the most unsettling problems of the standard
cosmology is the fact that the universe appears very
homogeneous on large scales—something that can
be seen directly in the cosmic microwave back-
ground temperature isotropy. The percolation uni-
verse as it emerges from its early phase is very
homogeneous in the sense that any neighborhood
looks like any other. Every element has the same
sort of past and future and the same number of
nearest neighbors. Thus the model has a very strong
potential for solving the homogeneity problem as it
naturally favors a homogeneity in the initial condi-
tions. This is particularly true if the matter is gen-
erated by the structure in the causal set itself. On the
other hand, if we put external degrees of freedom on
the causal set, it may happen that, even if we start
with different initial conditions for these degrees of

freedom, the de Sitter-like expansion gets rid of this
inhomogeneity. Of course there are random fluctua-
tions that cause deviations away from homogeneity.
These fluctuations might prove helpful in solving
another extremely important puzzle in the early uni-
verse, namely, the origin of density perturbations
that seed the late time structure formation.

(v) Another puzzle is the large size of the universe
compared to, say, the Planck length, when the uni-
verse is still very young, say, Oð100Þ Planck times
old. This is related to both the horizon problem and
the flatness puzzle. Models with percolation dynam-
ics naturally generate a large size of the universe. If
we start a percolation model with parameter p, the
spatial volume becomes of the order of p�1 within
lnp�1 time steps. Depending on how small p is, the
universe can be made arbitrarily large. Since cosmic
renormalization provides a mechanism which can
drive the effective value of p to arbitrarily small
values if one waits long enough, there is no fine-
tuning involved.

It may be the case that the quantum mechanism which
drives the cosmological constant to zero [9] is the same
mechanism which causes a smooth continuum to emerge
from the discrete partial order. In this case, one may not be
so surprised that the CSG models do not lead to smooth
continuum like manifolds. However, it is possible that they
capture some new physics at cosmological scales, given
their discrete nature. Here we have demonstrated that CSG
models are easily capable of describing a rapidly expand-
ing universe which is much like our own, at least at the
largest scales. Could the locally Minkowskian light cone
structure of continuum spacetime be an effect which arises
only at an intermediate scale, much larger than the dis-
creteness scale, and thus is not a good description of our
universe until after an initial period of de Sitter-like
expansion?

ACKNOWLEDGMENTS

We are extremely grateful to Niayesh Ashfordi for nu-
merous discussions on the content of this paper. We also
thank Rafael Sorkin, Raissa D’Souza, and Tim Koslowski
for illuminating discussions. This research was supported
by the Perimeter Institute for Theoretical Physics.
Research at Perimeter Institute is supported by the
Government of Canada through Industry Canada and by
the Province of Ontario through the Ministry of Research
& Innovation. The numerical results were made possible in
part by the facilities of the Shared Hierarchical Academic
Research Computing Network (SHARCNET) [36]. We
also thank Yaakoub El Khamra for providing computa-
tional resources and advice.

MAQBOOL AHMED AND DAVID RIDEOUT PHYSICAL REVIEW D 81, 083528 (2010)

083528-10



[1] S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).

[2] C.W. Misner, K. Thorne, and J.W. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[3] P. J. E. Peebles, Principles of Physical Cosmology
(Princeton University, Princeton, NJ, 1993)

[4] Martin Bojowald, Living Rev. Relativity 11, 4 (2008),
http://www.livingreviews.org/lrr-2008-4.

[5] Rafael Sorkin, Int. J. Theor. Phys. 39, 1731 (2000).
[6] B. Craps, T. Hertog, and N. Turok, arXiv:0712.4180.
[7] R. H. Brandenberger, arXiv:0902.4731v1.
[8] J. L. Lehners, P. McFadden, N. Turok, and P. J. Steinhardt,

Phys. Rev. D 76, 103501 (2007).
[9] R. D. Sorkin, in General Relativity and Gravitational

Physics, edited by R. Cianci, R. de Ritis, M.
Francaviglia, G. Marmo, C. Rubano, and P. Scudellaro
(World Scientific, Singapore, 1990).

[10] A. H. Guth, arXiv:astro-ph/0002188v1.
[11] E.W. Kolb and M. S. Turner, The Early Universe

(Addison-Wesley, Reading, MA, 1990).
[12] J. Earman and J. Mosteri, Philosophy of Science 66, 1

(1999).
[13] M. Ahmed, S. Dodelson, P. B. Greene, and R. Sorkin,

Phys. Rev. D 69, 103523 (2004).
[14] D. P. Rideout and R. Sorkin, Phys. Rev. D 61, 024002

(1999).
[15] Graham Brightwell and Nicholas Georgiou, Random

Struct. Algorithms 32, 218 (2010).
[16] J. Henson, in Approaches to Quantum Gravity-Towards a

New Understanding of Space and Time, edited by D. Oriti
(Cambridge University Press, Cambridge, England, 2006).

[17] R. D. Sorkin, in Lectures on Quantum Gravity,
Proceedings of the Valdivia Summer School, Valdivia,
Chile, 2002, edited by A. Gomberoff and D. Marolf
(Springer Science, New York, 2005).

[18] L. Bombelli, J. Lee, D. Meyer, and R.D. Sorkin, Phys.
Rev. Lett. 59, 521 (1987).

[19] G. ’t Hooft, in Recent Developments in Gravitation, edited

by M. Levy and S. Deser, Proceedings of the Cargèse
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