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We consider an inflationary curvaton scenario, where the curvaton decays into two noninteracting

relativistic fluids and later during the cosmological evolution one of them becomes nonrelativistic,

forming a dark matter component of the Universe. We study the thermic properties and the generation

of non-Gaussianity in this three-fluid curvaton model. By solving the evolution of the system and using

several cosmological conditions we find that the allowed parameter space is strongly constrained. The

naturalness of this curvaton scenario is also discussed.
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I. INTRODUCTION

The most recent data gathered by WMAP [1–3] is con-
sistent with the hypothesis that the perturbations in the
cosmic microwave background (CMB) radiation were gen-
erated in an era of cosmic inflation. This is generally
achieved with a slowly rolling scalar field which leads to
an exponential expansion of the Universe and the observed
anisotropy is generated by the fluctuations of this inflaton
field [4,5]. Such a minimal scenario leads to adiabatic and
Gaussian perturbations in accordance with the current data.

A well motivated alternative to the simplest inflationary
scenario is the curvaton mechanism [6–36] in which the
perturbations are generated by a second scalar field, called
the curvaton, which stays subdominant during inflation and
the actual expansion of space is still driven by the inflaton.
This allows the inflation potential to have more natural
properties compared to the single-field scenario [17].
However, the extra degrees of freedom in the system now
allow for the possibility that the final state is not neces-
sarily purely adiabatic. Instead, the generation of an ob-
servable amount of isocurvature perturbations is a
possibility that can distinguish the curvaton scenario
from the simple single-field inflationary model.

Early models of curvaton cosmology usually assumed
that the decay of the curvaton field produces only radiation
[34,35]. Later models included the possibility of radiation
and matter production [37,38]. In the present paper we
have expanded this line of thought to include the possibil-
ity that the curvaton decays into two noninteracting rela-
tivistic components. This makes it possible to model a cold
dark matter component that is initially relativistic but turns
nonrelativistic as the Universe expands and dilutes the
energy densities. As far as the nature of dark matter re-
mains unknown, this quite natural assumption that dark
matter and radiation do not affect each other after curvaton
decay can be built in quite easily in many particle physics
models. Moreover, this process leads to interesting con-

sequences: for example, the curvature perturbations of
matter are no longer conserved after curvaton decay if
the decay occurs when the matter component is still
relativistic.
The temperature dependent curvaton decay model can

also lead to the generation of non-Gaussianity which has
been the subject of many recent curvaton papers [39–43]
due to the data gathered by WMAP and the advent of the
Planck satellite. The non-Gaussianity in the three-fluid
curvaton model was studied in [44] where the curvaton
decayed into radiation and nonrelativistic matter. The level
of generated non-Gaussianity was shown to be of the same
order as in the single-field inflaton models and therefore
unobservable. This was due to the perfect efficiency of the
model: the initial curvaton perturbations were transferred
perfectly into the dark matter component because of a
conserved quantity. In the temperature dependent curvaton
decay the conserved quantity is valid only after the matter
is nonrelativistic and therefore the model is generally not
as efficient and can lead to a different level of non-
Gaussianity. In contrast to the conventional curvaton
model, the temperature dependent equation of state will
also lead to the evolution of the curvature perturbations
even after the curvaton decay. Naturally, this also affects
the amount of non-Gaussianity.
In addition to the background evolution we will solve

numerically the first- and second-order perturbation equa-
tions with different initial values and search for physically
plausible initial values in a parameter space based on the
initial values of these variables. Besides studying the cor-
rectness of the thermodynamical evolution of the system
we will also calculate the generated level of non-
Gaussianity and compare it to the limits given by WMAP
5 yr data [3]. This strategy makes it possible to study the
naturalness of different dark matter particle species within
the curvaton decay model.
This paper is organized as follows. In Sec. II we present

the relevant quantities and equations of motion of the
perturbation up to second order. In Sec. III we present
the equations of motion of the curvaton model and derive
the equations of motion for the temperatures for radiation
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and dark matter. In Sec. IV we present numerical results of
the simulations and we end this paper with discussion and
conclusions in Sec. V.

II. PERTURBATIONS AT FIRST AND SECOND
ORDER

The theory of second-order cosmological perturbations
has been studied rigorously in recent years and a good
introduction to the subject can be found e.g. in [45]. We
adopt their notations and conventions, and employ a spa-
tially flat Friedmann-Robertson-Walker background. The
metric tensor up to second order is [45]

g��dx
�dx� ¼ �ð1þ 2�ð1Þ þ�ð2ÞÞdt2

þ aðtÞ
�
!̂ð1Þ

i þ 1

2
!̂ð2Þ

i

�
dtdxi

þ aðtÞ2
�
ð1� 2c ð1Þ � c ð2ÞÞ�ij

þ
�
�ð1Þ
ij þ 1

2
�ð2Þ
ij

��
dxidxj; (1)

where aðtÞ is the scale factor and �ðrÞ, !̂ðrÞ
i , c ðrÞ, and �ðrÞ

ij

are (scalar, vector, and tensor) perturbation functions at
first (r ¼ 1) and second order (r ¼ 2). Written in this form,
different gauges can be straightforwardly given in terms of
the perturbation functions: for example, the Poisson gauge

is defined as !ðrÞ ¼ �ðrÞ
ij ¼ �ðrÞ

ij ¼ 0 and the spatially flat

one is c ðrÞ ¼ �ðrÞ ¼ 0.
A useful set of equations can be derived from the con-

tinuity equations T��
i;� ¼ Q�

i , where T��
i is the energy-

momentum tensor, Qi describes the energy transfer be-
tween different fluids and semicolon subscript (;) denotes
the covariant derivative. From the continuity equations it
follows that the equations determining the background
evolution of individual fluids are

_� i ¼ �3Hð1þ!iÞ�i þQi; (2)

where !i ¼ Pi=�i is the equation of state of the ith fluid
and _� d=dt, i.e. derivative with respect to physical time.

The evolution equations of the first-order perturbed
energy and pressure densities (on large scales) are [46]

_��ð1Þ
i þ 3Hð��ð1Þ

i þ �Pð1Þ
i Þ � 3ð�i þ PiÞ _c ð1Þ

¼ Qi�
ð1Þ þ �Qð1Þ

i ; (3)

and at second order

_��ð2Þ
i þ 3Hð��ð2Þ

i þ �Pð2Þ
i Þ � 3ð�i þ PiÞ _c ð2Þ

� 6 _c ð1Þ½��i þ �Pi þ 2ð�i þ PiÞc ð1Þ�
¼ Qi�

ð2Þ þ �Qð2Þ
i �Qið�ð1ÞÞ2 þ 2�ð1Þ�Qð1Þ

i : (4)

These equations can be simplified further by selecting a
gauge. We will be using the spatially flat gauge and then

the Einstein equations simplify [45] in this case into con-

ditions c ð1Þ ¼ �ð1Þ ¼ 0 and 2�ð1Þ ¼ ���=�0 at first order
and at second order the 00-component of the Einstein
equations gives

�ð2Þ ¼ � 1

2

��ð2Þ

�0

þ 4ð�ð1ÞÞ2: (5)

Curvature perturbations

One way to study the evolution of perturbations is to use
gauge-invariant curvature perturbations, which relate to
curvature perturbations on homogeneous-density surfaces.
At first order they are defined for component i as

� ð1Þi ¼ �c ð1Þ � ��ð1Þ
i

�0
i

; (6)

where 0 � d=dðlnðaÞÞ. At second order the corresponding
quantity is defined as

� ð2Þi ¼ �c ð2Þ � ��ð2Þ
i

�0
i

þ 2
��ð1Þ0

i

�0
i

��ð1Þ
i

�0
i

þ 2
��ð1Þ

i

�0
i

ðc ð1Þ0 þ 2c ð1ÞÞ �
�
��ð1Þ

i

�0
i

�
2
�
�00
i

�0
i

� 2

�
: (7)

Note that we are here neglecting gradient terms since we
are only interested in the large scale behavior of
perturbations.
The equations of motion of the first-order curvature

perturbations can be derived from Eq. (3) and the
Einstein equations and this results in

� ð1Þ0i ¼ 3�PintðiÞ
�0
i

� �QintðiÞ
H�0

i

�H0

H

Qi

�0
i

ð� � �iÞ; (8)

where �PintðiÞ � �Pi � p0
i��i=�

0
i and �QintðiÞ �

�Qi �Q0
i��i=�

0
i.

At second order the corresponding equations read as
[47]

� ð2Þ0i ¼ � 1

�0
iH

��
�Qð2Þ

i �Q0
i

�0
i

��ð2Þ
i

�

þQi

�0
0

2�0

�
��ð2Þ

i

�0
i

� ��ð2Þ

�0
0

��
� 3

Qi

�0
iH

ð�ð1ÞÞ2

� 2
�Qð1Þ

i �ð1Þ

H�0
i

þ 2½2� 3ð1þ!iÞ�� ð1Þi � ð1Þ0i

� 2

��
Qi�

ð1Þ

H�0
i

þ �Qð1Þ
i

H�0
i

�
� ð1Þi

�0

�
��

Q0
i

H�0
i

� 1

2

Qi

H�0
i

�0
0

�0

�
ð� ð1Þi Þ2

�0
: (9)

There are instances when the definition of different
curvature perturbations might fail e.g. when �0

i ¼ 0.
Therefore in our numerical evaluations we have used the
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spatially flat gauge and evaluated the density perturbations
of different components in this gauge at first and second
order. The corresponding equations of motion can be easily
read from Eqs. (3) and (4) by going to the spatially flat

gauge c ðrÞ ¼ �ðrÞ ¼ 0.

III. THE CURVATON MODEL

The curvaton model of the present paper consists of
three fluids: curvaton, radiation, and a matter component
that is initially relativistic but becomes nonrelativistic with
the expansion of the Universe. This happens roughly when
the average energy of matter particles drops below its
mass. This nonrelativistic matter component can thus be
thought to form the dark matter of the Universe.

We denote the curvaton by subscript �, radiation by 	,
and matter by m. The matter and radiation components are
assumed to be noninteracting with each other which means
there are no processes that would thermalize these two
components after the curvaton decay. This implies that
the curvaton mass is higher than the Hubble rate as it starts
to decay. Otherwise there would be curvaton mediated
thermalization processes that would make the matter and
radiation components interacting.

In the current scenario before the curvaton decay the
energy density of the Universe is dominated by radiation
with a small component of coherent curvaton field. After
the curvaton decay the system consists of two fluids,
radiation and matter, with separate thermal equilibrium
distributions and temperatures T	 and Tm, for the radiation

and matter component, respectively. This can be viewed as
a practical assumption which requires that an unknown
self-interaction maintains kinetic equilibrium of the matter
component. Without this assumption the matter particle
distribution should be calculated directly from the full
momentum dependent Boltzmann equations. This would
however be quite a demanding task requiring that the
coherent oscillations of curvaton field are carefully taken
into account. Thus we simplify the analysis with equilib-
rium distributions. However, to get an idea of the signifi-
cance of the equilibrium condition, a rough estimate for
self-interaction may be given. The estimates, however,
depend on the nature of the matter field X. For fermionic
matter the coupling h�� �XX (probably also responsible for
the curvaton decay) would maintain equilibrium via scat-
tering processes likeXX ! XX. For scalar matter, the most
effective way to reach the equilibrium is probably similar
scattering emerging due to a four-point interaction hXX

4.
During the curvaton decay, at a temperature T comparable
to the curvaton mass, the matter particle scattering rate
would be�h4�T for fermions, and h2XT for a scalar. Thus a
rough criterion for an equilibrium is that the scattering rate
should not be lower than Hubble rate H � T2=MPl, which

yields
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=MPl

p
& h2�, hX. Thus the coupling constants may

remain perturbatively sensible, say h2�, hX & 0:01, as far as
the curvaton decay temperature T & 1015 GeV, up to

grand unifying scales. Thus, while more detailed calcula-
tion would need a specification of a particular model, the
assumption of thermodynamical equilibrium is reasonable.
It should be noted that if there were processes maintain-

ing equilibrium between radiation and matter we would
enter the weakly interacting massive particle (WIMP) sce-
nario [38] or we would have m� Teq � 1 eV and the

matter component would begin to dominate cosmic evolu-
tion immediately after becoming nonrelativistic. This is
hardly a plausible cosmological scenario for the dark mat-
ter [48].

A. Evolution equations

For the radiation we have !	 ¼ 1=3 but the equation of

state of the dark matter component depends on the tem-
perature of the matter component, Tm. Initially the matter
is relativistic and !m ¼ 1=3 but as the Universe cools
down the matter turns into nonrelativistic and !m ! 0.
Because of this Tm has time dependence that will be
derived in the next subsection. This equation naturally
needs to be incorporated into the equations of motion
presented in this subsection. The interaction terms are [37]

Q� ¼��	�� ��m�� Q	 ¼ �	�� Qm ¼ �m��;

(10)

where �i denote the strengths of the interactions.
Background Eqs. (2) can bewritten in terms of fractional

densities�i � �i=� for which the equations of motion are

�0
� ¼ ��ð�	 þ 3!m�mÞ þ Q�

H�
;

�0
	 ¼ �	ð�	 þ 3!m�m � 1Þ þ Q	

H�
;

�0
m ¼ �mð�	 þ 3!mð�m � 1ÞÞ þ Qm

H�
;

�
1

H

�0 ¼
�
1þ 1

3
�	

��
1

H

�
:

(11)

From the definition of �i it can be easily seen that �� þ
�	 þ�m ¼ 1, which means that one of the �i equations

is redundant.
From Eq. (3) we can read the equations of motion for the

first-order density perturbations

��ð1Þ0
� ¼ �3��ð1Þ

� �Q�

H

��ð1Þ

2�
þ �Qð1Þ

�

H
;

��ð1Þ0
	 ¼ �4��ð1Þ

	 �Q	

H

��ð1Þ

2�
þ �Qð1Þ

	

H
;

��ð1Þ0
m ¼ �3ð1þ!mÞ��ð1Þ

m �Qm

H

��ð1Þ

2�
þ �Qð1Þ

m

H

(12)

in the spatially flat gauge. At second order the correspond-
ing equations in the flat gauge are
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��ð2Þ0
� ¼ �3��ð2Þ

� � Q�

2H�

�
��ð2Þ � 3

2

ð��ð1ÞÞ2
�

�

þ �Qð2Þ
�

H
� ��ð1Þ�Qð1Þ

�

H�
;

��ð2Þ0
	 ¼ �4��ð2Þ

	 � Q	

2H�

�
��ð2Þ � 3

2

ð��ð1ÞÞ2
�

�

þ �Qð2Þ
	

H
� ��ð1Þ�Qð1Þ

	

H�
;

��ð2Þ0
m ¼ �3ð1þ!mÞ��ð2Þ

m � Qm

2H�

�
��ð2Þ � 3

2

ð��ð1ÞÞ2
�

�

þ �Qð2Þ
m

H
� ��ð1Þ�Qð1Þ

m

H�
: (13)

We also need the gauge-invariant curvature perturba-

tions � ðiÞj when calculating the non-Gaussianity parameter

fNL. In the spatially flat gauge these are

� ð1Þi ¼���ð1Þ
i

�0
i

;

� ð2Þi ¼���ð2Þ
i

�0
i

þ ½2� 3ð1þ!iÞ�ð� ð1Þi Þ2

� 2

�
Qi�

ð1Þ

H�0
i

þ�Qð1Þ
i

H�0
i

�
� ð1Þi �

�
Q0

i

�0
iH

� 1

2

Qi�
0

�0
iH�

�
ð� ð1Þi Þ2:

(14)

The set of Eqs. (11)–(13) can now be evaluated numeri-
cally once the initial values have been set. We have chosen
the system to be initially radiation dominated and non-
adiabatic at first and second order. The initial values for the
three-fluid curvaton decay were derived in [44] and they
are given by

� ð1Þ�;in ¼ 1; � ð2Þ�;in ’ 1=2 (15)

and the latter approximation is valid when �� � H0. The

other perturbations are initially set to be zero � ð1Þ	;in ¼
� ð1Þm;in ¼ � ð2Þ	;in ¼ � ð2Þm;in ¼ 0 since we have assumed that

only the curvaton field has initial perturbations.

B. Thermodynamics of the system

Our curvaton model starts in a radiation dominated
universe with initial radiation and dark matter temperature
set to T	;in and Tm;in respectively. We will assume that the

dark matter particles have a mass mm and by setting the
initial matter temperature Tm;in we can change the initial

equation of state !m of the dark matter. Different tempera-
tures for radiation and dark matter mean that there are no
interactions between them and the temperature Tm is due to
kinetic equilibrium of the dark matter particles.

We will start by deriving the equations of motion for the
variables that govern the evolution of the system, i.e. the
temperatures 
	 and 
m where 
 ¼ T�1. The energy

density of dark matter particles can be naturally written as

�m ¼
Z dp3

ð2�Þ3 Efm ¼ C
Z 1

0
dpp2Efmð
mðE��ÞÞ;

(16)

where we have made the ansatz fm ¼ fmð
mðE��ÞÞ for
the distribution function and used the notation C ¼
1=ð2�2Þ. The pressure and number density are defined
similarly as

Pm ¼
Z dp3

ð2�Þ3
p2

3E
fmð
mðE��ÞÞ (17)

and

nm ¼
Z dp3

ð2�Þ3 fmð
mðE��ÞÞ: (18)

Starting from the Boltzmann equation we could now
derive the equations of motion for the energy density,
pressure, and number density. However since the
Boltzmann equation is equivalent to the continuity equa-
tions (2) we will only use the latter. Therefore by differ-
entiating Eq. (16) with respect to time we get

_�m ¼ C
Z 1

0
dpp2Ef0m _
mðE��Þ

¼ _
m

�
C
Z 1

0
dpp

E2ðE��Þ

m

dfm
dp

�

¼ �
_
m


m

�
C
Z 1

0
dp

d

dp
ðpðE3 ��E2ÞÞfm

�

¼ �
_
m


m

�
C
Z 1

0
dpðE3 ��E2 þ 3p2E� 2�p2Þfm

�

¼ �
_
m


m

�
C
Z 1

0
dpðEðp2 þm2Þ ��ðp2 þm2ÞÞfm

þ 3�m � 2�nm

�

¼ �
_
m


m

�
C
Z 1

0
dpðm2ðE��ÞÞfm þ 4�m � 3�nm

�

¼ �
_
m


m

�
m2

�
E��

p2

�
þ 4�m � 3�nm

�
; (19)

where prime now means derivative with respect to the
argument of the distribution function and we have also
made partial integration in the third equality where the
assumption � ¼ mm, valid for the dark matter particles,
was used. We can now combine this equation with the
continuity equation (2) and solve the equation for _
m.
After some algebra we get the result
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_
m


m

¼ 3Hð�m þ PmÞ � ����

4�m � 3�nm þm2hE��
p2 i

¼ 3Hð1þ!mÞ � ����=�m

4� 3�m þ hE��
p2 im2=�m

: (20)

Note that in the last equality we have also used a new
variable �m ¼ mnm=�m which is close to zero for relativ-
istic matter and one for nonrelativistic case.

The temperature in the early Universe is generally very
high which means that both Bose-Einstein and Fermi-
Dirac statistics can be well approximated with the
Maxwell-Boltzmann distribution. The distribution of the

dark matter particles can be therefore written as fm ¼
e�
mðE��Þ. Note that this has also pragmatic reasons that
will be evident in the numerical calculations. By substitut-
ing this distribution in the definition of energy density and
after some integral transformations the result can be writ-
ten in terms modified Bessel functions KnðxÞ:

�m ¼
Z dp3

ð2�Þ3 Efm ¼ C
Z 1

0
dpp2Ee�
mðE��Þ

¼ C
Z 1

0
dpp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
e�
mð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
��Þ

¼ Ce
m�
Z 1

m
dEE2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
e�
mE

¼ Ce
m�m4
Z 1

1
dxx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
e�
mmx

¼ Ce
m�
m2


2
m

ðm
mK1ðm
mÞ þ 3K2ðm
mÞÞ; (21)

where in the last equality we have used modified Bessel
functions of the second kind K2ðxÞ. The pressure and
number density can be written similarly in terms of
Bessel functions as

Pm ¼
Z dp3

ð2�Þ3
p2

3E
fm ¼ Ce
m�

m2


2
m

K2ðm
mÞ (22)

and

nm ¼
Z dp3

ð2�Þ3 fm ¼ Ce
m�
m


m

K2ðm
mÞ: (23)

The equation of state of the dark matter particles is
defined as the ratio of pressure to density and by using

Eqs. (21) and (17) this simplifies to

!m ¼ K2ðm
mÞ
m
mK1ðm
mÞ þ 3K2ðm
mÞ : (24)

We can also write the �m function in terms of Bessel
functions as

�m ¼ m
mK2ðm
mÞ
m
mK1ðm
mÞ þ 3K2ðm
mÞ : (25)

The final term to be integrated is hðE��Þ=p2i which
equals now

�
E��

p2

�
¼ me�
m


m

ðm
mK0ðm
mÞ þ K1ðm
mÞ

��

m
m2K1ðm
mÞÞ: (26)

These expressions can now be substituted in the tem-
perature equation (20) and use some of the identities of
Bessel functions to get the final result

_
m


m

¼ 3Hðm
mK1ðm
mÞ þ 4K2ðm
mÞÞ � ����=�mðm
mK1ðm
mÞ þ 3K2ðm
mÞÞ
m
mðm
mK0ðm
mÞ þ ð5��
mÞK1ðm
mÞÞ þ 3ð4��
mÞK2ðm
mÞ ; (27)

which determines the evolution of the temperature of dark
matter particles. We have plotted this function in terms of
Hubble parameter, H, in Fig. 1 when �m ¼ 0, i.e. when
there is no curvaton decay into matter. The figure clearly
shows that the equation leads to the proper relativistic,

Tm / a�1, and nonrelativistic, Tm / a�2, limits for the
temperature evolution.
We now have a complete set of equations that determine

the evolution of the system: namely, Eqs. (11)–(13), (24),
(25), and (27), that we can solve for the evolution of the

10 4 0.01 1 100 104
0.5

1.0

1.5

2.0

2.5

log10 m m

m
m

H

FIG. 1 (color online). Plot of _
m=ð
mHÞ [Eq. (27)] when there
is no curvaton decay into matter as a function of the logarithm of
m
m. When m
m � 1 or equivalently Tm � m, _
m=
m / H
which corresponds to the usual relativistic limit Tm / a�1. In the
nonrelativistic case m
m � 1 (or equivalently Tm � m)
_
m=
m / 2H which leads to the usual nonrelativistic evolution
Tm / a�2. Equation (27) thus clearly leads to physically sound
evolution for the temperature.
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background and the perturbations at first and second order.
Note that when solving these equations we have used N ¼
lnðaÞ as the time variable.

IV. NUMERICAL RESULTS

We have solved the evolution of the system (11)–(13),
(24), (25), and (27), with a range of different initial values
and classified them to physical and nonphysical regions,
i.e. initial values that could have produced the Universe we
observe. We used a similar strategy previously in [49] for a
three-fluid curvaton decay where the curvaton decays into
radiation and nonrelativistic matter. In order to label differ-
ent points into physical and nonphysical regions we have
made a range of tests that the system needs to pass in order
to be classified as physically viable. These are:

(1) We check that the curvaton starts to decay before
nucleosynthesis. If this condition is not met the
Universe might be radiation dominated at nucleo-
synthesis but as the curvaton component behaves
like a nonrelativistic fluid it will eventually start to
dominate the Universe and therefore make the nu-
cleosynthesis nonphysical.

(2) The Universe should be radiation dominated at nu-
cleosynthesis temperature which has been set to be
�105 eV [5]. In terms of fractional densities this
corresponds to [49]

�	

�� þ�m

��������nuc
’ Tnuc

Teq

� 105: (28)

A different choice would naturally lead to different
allowed regions but as was noted in [49] the changes
are not drastic.

(3) The radiation-matter equality should happen at
�0:706 eV [50]. This turns out to be quite strict
limit in terms of the resolution of the simulations we
have computed. We have therefore eased this to a
range of possible equality temperatures: 0:6 eV<

Teq < 0:8 eV. This limitation could be circum-

vented by increasing the number of different initial
values (and thereby increasing the resolution of the
simulation) but this quickly leads to very long simu-
lation times. This way we instead get a region which
includes the initial values corresponding to the more
strict equality temperature.

(4) The fNL should be within the limits �9< fNL <
111 given by WMAP 5 yr data [3]. The equation for
the non-Gaussianity in the three-fluid curvaton de-
cay was derived in [44] and we will only cite the
result

fNL ¼ 25ðq2 � q21Þ � 60q1r1 þ 96r21 � 30r2
6r1ð6r1 � 5q1Þ ;

(29)

where

r1 ¼ � ð1Þm jm
� ð1Þ�;in

; q1 ¼ � ð1Þ	 jm
� ð1Þ�;in

r2 ¼ � ð2Þm jm
ð� ð1Þ�;inÞ2

; q2 ¼ � ð2Þ	 jm
ð� ð1Þ�;inÞ2

(30)

and where the different numerators are evaluated at
the time of decoupling when the Universe is matter

dominated and hence � ðiÞ ’ � ðiÞm . The curvaton initial
perturbation values were given in Eqs. (15). Note
that the system is adiabatic if q1 ¼ r1 and q2 ¼ r2.
The physical meaning of ri and qi is that they tell
how efficiently the initial curvature perturbations
are converted into the matter and radiation
components.

Before the simulations can be run different initial values
have to be set: namely, the initial temperatures of radiation
T	;in and the initial temperature Tm;in and particle massmm

for the dark matter, which also define the corresponding
energy densities, and the initial fractional density of the
curvaton. The initial Hubble parameter value can be calcu-
lated from these variables and the interaction strengths �i

vary from 10�30 to 105 thereby defining the resolution of
the simulations.
In the usual curvaton hypothesis the curvaton field is

usually assumed to be subdominant after inflation and the
relativistic decay products of inflaton dominate the energy
density. The initial temperature of the system is therefore
closely related to the reheating temperature. The simula-
tions have been run with a different initial temperature
corresponding to values T	;in ¼ 1014, 1016, 1018, and

1020 eV.
Since the dark matter particles are produced by the

curvaton decay their energy density is assumed to be
initially small relative to radiation. Note that when starting
the simulations Eqs. (20) and (27) are clearly ill defined
when �m ! 0. We have therefore set initially �m � 0
which can be interpreted that, when the simulation starts,
the decay of the curvaton field has already started. The
initial dark matter temperature, Tm, has been set to be 2
orders of magnitude smaller in value than the radiation
temperature. Other values might lead to numerical prob-
lems during the evaluations and this selection leads to very
small initial dark matter fractional densities, i.e. �m;in �
1.
The amount of curvaton in the system is also a free

parameter. However since we are following the usual cur-
vaton hypothesis initially the curvaton is subdominant.
This translates to values ��;in ¼ 10i, i ¼ �4, �3, �2,
and �1 in the different simulations.
Sincewe havemadeweak assumptions on the type of the

dark matter, the mass mm can have a wide range of differ-
ent values (A review of different dark matter particle
models can be found, for example, in [48]). The only
limitations are that initially dark matter is relativistic, i.e.
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Tm � m, and that it does not interact with radiation. This
makes it possible to consider a wide range of different dark
matter particle species and to study their naturalness in the
curvaton scenario.

Typical results of the simulations are shown in Figs. 2(a)
and 2(b). The log10ð�	=H0Þ and log10ð�m=H0Þ plane is

divided into several separate areas: in the lower left corner
the decay widths are too small and the curvaton field dom-
inates the evolution of the system even at Teq¼0:7 eV. The

triangular area at the lower right corner is caused by the
non-Gaussianity limit. Inside this region �	 is much larger

than �m and most of the curvaton decays into radiation. In
terms of non-Gaussianity parameter, Eq. (29), this means
that r1 is very small and the generated non-Gaussianity is
very large and therefore labeled as unphysical. The nu-
cleosynthesis limit, Eq. (28), is satisfied inside the trape-
zoid shaped region between values log10ð�	=H0Þ ¼ �25

and log10ð�	=H0Þ ¼ �18 in Fig. 2(a). Points that also

satisfy the radiation-matter equality limit, 0:6 eV< Teq <

0:8 eV, are around the outer edge of this nucleosynthesis
region. Despite the eased limitations for the equality tem-
perature, this clearly gives only a very narrow region of
plausible initial values.

In terms of the naturalness of the curvaton scenario, the
decay widths of the curvaton are limited to be very small if
the system is compelled to satisfy the previously presented
physicality tests. Smaller initial temperatures and dark

matter particle mass allow larger values but even in this
case the decay widths require fine-tuning.

V. DISCUSSION AND CONCLUSIONS

We have studied the behavior of a three-fluid curvaton
decay model when the possibility of more complex ther-
modynamics of the cold dark matter decay product has
been also taken into account. The assumptions we have
made are relatively loose: the decay products of the curva-
ton were assumed to be noninteracting. This is quite natu-
ral, if one fluid is interpreted as conventional radiation and
the other as dark matter. The system was simulated for a
wide range of different initial values including initial tem-
perature, dark matter particle mass, and curvaton decay
widths. This made it possible to study the naturalness of the
curvaton model in this model.
We found that the generated non-Gaussianity in the

system can be considerable but these large values are
reached with initial values that do not lead to physically
sound evolution for the system. The non-Gaussianity is
therefore expected to be of the same order as in the simple
inflaton models [45].
In terms of the dark matter particle mass, mm, the

curvaton model leads to physically sound evolution with
a range of different values but not without fine-tuning in
the decay widths. Lower initial temperatures and mass mm

ease this issue but not considerably. We therefore conclude
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FIG. 2 (color online). Contour plot of the system when (a) T	;in ¼ 1018 eV, Tm;in ¼ 1016 eV, mm ¼ 1013 eV, and ��;in ¼ 0:1 and
(b) T	;in ¼ 1012 eV, Tm;in ¼ 1010 eV, mm ¼ 109 eV and��;in ¼ 10�1. The plot shows the physicality tests of the system for different

values of log10ð�	=H0Þ and log10ð�m=H0Þ. The numbers in different regions indicate the number of passed tests. Black points at the

edge of white regions are those points that passed all the tests, while crosses and circles mark points which passed the radiation-matter
equality test. Different initial values lead to qualitatively similar results.
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that the current curvaton decay model is not satisfactory
from the point of view of naturalness.

According to our analysis, a related but more viable and
physically sound model could be the curvaton decay into
WIMPs [38]. Interactions between cold dark matter and
photons would keep them at the same temperature in the
early Universe until they freeze out as the temperature
drops below their mass. The same strategy we used here

could be applied also to this scenario to study the natural-
ness of the curvaton WIMP scenario. This is however
beyond the scope of this paper and is left as a future work.
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