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I consider constraints on a phenomenological decaying dark matter model, in which two weakly

interacting massive particle species have a small mass splitting, and in which the heavier particle decays to
the lighter particle and a massless particle on cosmological time scales. The decay parameter space is
parametrized by vy, the speed of the lighter particle in the center-of-mass frame of the heavier particle
prior to decay, and the decay time 7. Since I consider the case in which dark matter halos have formed
before there has been significant decay, I focus on the effects of decay on already formed halos. I show that
the v, — 7 parameter space may be constrained by observed properties of dark matter halos. I highlight
which set of observations is likely to yield the cleanest constraints on v, — 7 parameter space, and
calculate the constraints in those cases in which the effect of decay on the observables can be calculated
without N-body simulations of decaying dark matter. I show that for v, =5 X 103 kms™!, the z =0
galaxy cluster mass function and halo mass-concentration relation constrain 7 = 40 Gyr, and that precise
constraints on 7 for smaller v, will require N-body simulations.
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I. INTRODUCTION

Most of the mass energy of the Universe consists of at
least two unknown but observationally substantiated ma-
terials (e.g., Ref. [1]). While there is significant uncertainty
as to what the “dark energy” that makes up ~3/4 of the
Universe might be (for a review, see Refs. [2,3]), there are a
number of attractive candidates for the ~1/5 of the
Universe made of dark matter. A popular class of dark
matter candidate is the weakly interacting massive particle
(WIMP), which includes the supersymmetric neutralino
and the universal extra-dimensions Kaluza-Klein photon
[4,5]. WIMPs are appealing because they appear naturally
in extensions to the standard model (SM) of physics, are
thermally produced in the early Universe in the quantity
required by observations, and allow the large-scale struc-
ture of the Universe to evolve in a manner that appears
consistent with observations (e.g., Refs. [1,6-9]).

There are specific predictions on small scales, too. The
relatively large mass of WIMPs ( = 100 GeV) imply that
thermal decoupling occurs when the WIMPs are nonrela-
tivistic (“‘cold’) and with a high phase-space density. The
low speeds in combination with the typically weak scat-
tering cross sections mean that only the smallest-scale
perturbations are washed out by the time WIMPs kineti-
cally decouple from light SM particles [10-13]. Hence,
dark matter halos should be extremely dense at their cen-
ters and should exist down to ~Earth mass scales.
Moreover, dark matter density perturbations should evolve
as a collisionless, pressureless fluid.

However, it is quite possible that dark matter consists of
something other than standard WIMPs. First, while obser-
vations are consistent with cold dark matter (CDM) on
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large scales (length scales of = 10’s of Mpc), these ob-
servations do not require a purely cold dark matter model.
Second, the interpretation of data on smaller scales is less
clear or is nonexistent (e.g., Refs. [14,15]). Third, WIMPs
are by no means the only attractive class of particle can-
didates for dark matter. There are a number of theories in
which the large-scale successes of cold dark matter are
produced but deviate at the small scales where observa-
tions either do not exist or are more difficult to interpret
[16-19].

In this work, I consider observational constraints on a
phenomenological decaying dark matter model in which a
parent particle X experiences two-body decay of the form
X — Y + {, where Y is the stable daughter dark matter
particle and ¢ is a massless (or nearly massless) particle
with extremely weak to nonexistent couplings with SM
particles. The Y particle is only slightly less massive than
the parent particle X, such that

My — My

=— <L 1
<=0 M

For small €, the recoiling particle Y receives a nonrelativ-
istic speed

v /c=¢€ (2)

in the center-of-mass frame of the parent X particle. I
consider large decay times 7 = 10'% s, such that decays
occur after the first dark matter halos form in the early
Universe, making this model similar to that considered in
Sanchez-Salcedo [20]. Such a model may arise in ““hidden
sector’” theories, in which the SM does not interact with
hidden parallel particle sectors (see Refs. [21-24] for
examples of hidden sector theories). Moreover, I assume
that the parent X particles are massive and thermally

© 2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.81.083511

ANNIKA H.G. PETER

produced, such that the linear matter power spectrum in the
early Universe should resemble that of CDM.

Since this model does not produce SM particles and the
decay times are long, previously published constraints on
decaying dark matter do not apply [25-34]. Since the
decay times I consider are long enough that dark matter
halos should have formed, and formed with CDM-like
properties, the main effect of decays is either to inject
kinetic energy into or eject particles from existing dark-
matter halos. The result of these effects is a change in the
dark matter density profile in halos and halo mass loss.
Thus, I consider observational constraints on the model
from the structure and abundance of dark matter halos. In
Sec. II, I relate the two free parameters of the dark matter
model, v, and 7, to the typical speeds and time scales of
particles in halos, and show how I expect halos to respond
to decays as a function of the decay parameters. In Sec. 111,
I describe the types of observations that may constrain this
decaying dark matter model, and how to translate obser-
vations into constraints on the decay parameters via the
mapping in Sec. II. I calculate constraints in those instan-
ces in which they can be calculated semianalytically. I
summarize and discuss the results in Sec. I'V.

II. RELATING DECAY PARAMETERS TO HALO
PARAMETERS

The phenomenological decaying dark matter model is
parametrized by just two numbers: the decay time 7 and the
kick speed (alternatively, the fractional mass difference
between dark matter particles) v,. The effects of decay
on dark matter halos as a function of these parameters
depend on halo properties, namely, the typical dynamical
time (74,,) and the typical speed of dark matter particles in
the halo.

The typical speed of dark matter particles in the halo is
of the order of the virial speed,

GM vir
Vyir = 4|/ 3
" Rvir ( )
where the halo virial mass M,; is defined as the mass
enclosed within the virial radius R,;. in which the average
mass density is equal to the spherical collapse density

Aypy,

4
Mvir = TAvpujor- (4)
Here, p, is the mean mass density in the Universe. In a
ACDM universe, A,(z) = (187> — 39x — 82x?)/Q,,(2),
where x = Q,,(z) — 1 and (Q,, is a fraction of the critical
density p. in the form of matter (p, = Q,,p.) [35].

I take the typical dynamical time of a dark matter
particle in a halo to be the crossing time at the half-mass
radius of the halo. I do not use the crossing time at the virial
radius because
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Lyir ~ Uvir/Rvir’ (5)
-~ vair/Rvir/Rvir’ (6)
~ Rvir/Rvir = const, (7)

which is the same for all halos. I must select a halo model
in order to calculate the dynamical time as defined as the
crossing time at the half-mass radius. Dissipationless cos-
mological simulations of cold dark matter alone (without
baryons) show that dark matter halo profiles are well
described by the Navarro-Frenk-White (NFW) profile

_ Ps
p(r) = m

s

®)

on observable scales (radii from galactic centers r >
0.01R;,) [13,36,37]. The scale radius r, can be related to
the Rvir by

rs = Rvir/C: (9)

where ¢ is the halo concentration. The concentration is
expected to be a function of the formation time of the halo,
and is thus in general a function of the mass of the halo
[38-40]. The scale density p can be related to virial
quantities,

A,py c?

3 In(l+c¢)—c/(1+¢)

ps = (10)

If ¢ > 1, which is expected for virialized halos, then the
half-mass radius

,
r—h ~ 1.65./C. (11)
S

The typical dark matter particle speed at such a radius is
typically

GMvir
Up ~ T (12)
h
-~ (GAVpu)1/2c1/4Rvir: (13)

which is similar to the virial speed. Thus, the typical
crossing speed at the half-mass radius, and hence, the
typical dynamical time, is

Layn ~ rh/vh’ (14)

~ (GA,p,) 2734, (15)

In CDM, a typical galaxy (M.;, ~ 10'2My) has ¢ = 15,
yielding vy, = 130 kms~! and fayn = 500 Myr; a large
galaxy cluster has M, ~ 10M and ¢ ~ 5, correspond-
ing to vy, = 1300 kms™! and fayn ~ Gyr; and the ultra-
faint dwarf galaxies in the local group likely have virial
masses ~10°M, (v,;, = 13 kms™!) [38,40-43]. The con-
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centration of those galaxies is unknown, but taking ¢ = 30
leads to 74y, = 200 Myr.

Another interesting time scale is the crossing time at the
scale radius, f,, since this corresponds to the region of the
halo at which the profile transitions from p « r~! to p «
r~3. The “‘scale time” t, is ~50 Myr for an ultrafaint
dwarf galaxy halo, ~100 Myr for a typical galaxy halo,
and ~400 Myr for the cluster-sized halo. This highlights
the point that although I choose one time scale to parame-
trize the dynamical time in a halo, there is actually a
diversity of dynamical times within a halo.

Now that I have parametrized the time scales and speeds
of dark matterparticles in halos, I will classify the effects of
dark matter decays on halos as a function of the decay
parameters with respect to the halo parameters. At the
present, I will ignore cosmological accretion onto halos,
and consider the halos to be isolated and in equilibrium.

Case 1 (17> tgyn, Vx > v,j)—This is a regime in which
the decay time is long relative to the dynamical time of the
halo, and the kick speed is high. The limit of relativistic
kicks was studied in Refs. [44,45] in other contexts, but
even for nonrelativistic kicks greater than v, the Y par-
ticles are ejected from the system. The decays do not
directly inject kinetic energy into the bound halo, as they
will in the following cases, because the decay products Y
will be unbound to the halo.

In cases in which the time scale for change in the
gravitational potential is significantly longer than the dy-
namical time, particles on regular orbits should conserve
adiabatic invariants. This is useful because, if the halo is
quasistatic, the distribution function of dark matter parti-
cles is a function of adiabatic invariants. The mass density
in the halo can thus be calculated using this distribution
function if the gravitational potential of the halo is known
(cf. Ref. [46]). In the simplified case of a spherically
symmetric potential with all particles initially on circular
orbits, the gravitational potential, and hence, the dark
matter density of the halo may easily be found as a function
of the fraction of particles that have been ejected from the
halo. The approximation of dark matter particles on circu-
lar orbits is not as unrealistic as one might expect; cosmo-
logical simulations of dark matter halos show that there is
not a significant phase-space density of highly radial orbits,
except in the outskirts of the halo [47]. This approximation
was used in Refs. [44,45], and I show analytically how the
density profile of dark matter halos changes as a function
of the fraction of the X particles that have decayed, f.

If the angular momentum of particles is conserved, then
the initial and final mass distributions are related as

M;(rj)ry = M(re)ry, (16)

since the specific angular momentum of particles on cir-
cular orbits is J = (GM(r)r)'/2, where M(r) is the mass
enclosed within radius r. Here, 1 denotes the initial halo
properties, and f denotes halo properties after a fraction f
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of X particles have decayed. If the X particles are initially
on circular orbits, then their orbits do not cross, allowing
for the following relation:

Mi(re) = (1 = f)M(r;). (17)

Inserting this equation into Eq. (16), I find that the initial
and final particle radii are related as

ri=1—f)r, (18)
such that
Mi(rg) = (1 — /IM;((1 — f)rg). (19)

This changes the mass density of the X particles in the
following way. The density is

1 dM;
: = — 20
pe(re) 47Tr% dr; (20)
1 dM;
=——(1- 5 21
4771”%( f) dry 2D
(1= f)* am;
=" . 22
47Tr% dr; (22)
In the case of an NFW halo [Eq. (8)], this implies
(1 - )4 S
pelr) = e (23)

((l—f)rf)[l + (l—f)rf]z'

Thus, the halo retains its NFW form, but with scale radius

Fst = ( _f)_lrs,i’ (24)
and with a decreased scale density
Pst = (1 - f)4ps,i~ (25)

Thus, if 7> 14, and vy > vy, the shape of the dark
matter halo will be unchanged, but the scale radius will
increase, and the mass density and total virial mass will
decrease. Note that these results are independent of vy
beyond the fact vy must be large enough to unbind any Y
particle from the halo.

Case 2 (T > 14y, vk < vyi)—In this regime, the halo is
slowly evolving as a function of time, but the kick speeds
are small. Unlike case 1 (above), it is difficult to calculate
analytically the general behavior of the halo. Although the
decay time scale is long enough that the gravitational
potential of the halo should evolve fairly slowly, the Y
daughter particles largely stay within the halo, making it
difficult to estimate changes to the adiabatic invariants or
to the gravitational potential.

However, there are a few general predictions one may
make. First, since self-gravitating systems have negative
heat capacity, any slow injection of kinetic energy into the
halo causes the halo to expand and for the typical particle
energy to become less negative (see, e.g., Ref. [46]).
Second, there will be some mass loss as some initially
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loosely bound particles will decay to particles that are no
longer bound to the halo, and more may be lost as the
gravitational potential responds to the kinetic energy in-
jection resulting from decays. The consequences of these
effects are to drive down the central halo density, the total
virial mass, and the typical particle speed. The effects will
be larger for high vy, and shorter 7, and will be most
pronounced at the halo centers (where the typical particle
speed is smaller). For small vy or large 7, there should
hardly be a change to halo properties.

In general, the behavior of decays in this regime must be
examined either by solutions to the Boltzmann and Poisson
equations or by N-body simulations.

Case 3 (1 < l4yn, Vi > vy;)—This regime, in which the
decay time is less than the dynamical time, can be thought
of as being similar to the case of instantaneous decay. In
this particular case, the kick speed is also quite high. In
general, most, if not all, of the mass in the halo will be
ejected. If any mass remains in the halo, the system will
settle to a new equilibrium within several dynamical times,
but it is not clear what the structure of that halo will be. In
the absence of accretion, the structure of the halo is fixed
for the rest of time.

Again, quantitative predictions for this regime require
N-body simulations.

Case 4 (1 < tgyn, Vx < vyj)—In this case, the velocity
perturbations are small and occur in one short epoch. This
is analogous to the case of high-speed galaxy encounters.
And like noncatastrophic high-speed galaxy encounters,
we can calculate one post-encounter (or post-decay) prop-
erty of the halo: the total kinetic energy in the virial radius.
If a halo is initially in virial equilibrium, the total energy E
is related to the kinetic energy K by (cf. Ref. [46]):

E=—K. (26)

If no particles are ejected as a result of the decays, the total
kinetic energy injected in the halo is AK = Mvirvl% /2.
Thus, the final energy will be

E; = —K + AK, 27)

and after the halo has settled into virial equilibrium again
after a few dynamical times, the kinetic energy will be

Kf = - Ef, (28)

=K — AK. (29)

Once again, the negative heat capacity of self-gravitating
systems means that the net effect of injection of kinetic
energy into a halo is a decrease in the total kinetic energy
of the system.

If vy is a significant fraction of v;, this approximation
for the final kinetic energy becomes worse, as decays result
in mass loss from the system, both directly as individual ¥
particles are created on unbound orbits, and indirectly due
to the rapidly changing gravitational potential.
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Even if the final energy of the halo is known, the form of
the gravitational potential (and hence, the density distribu-
tion) is not without the help of N-body simulations.
However, just as in case 2, we predict that the halo will
become less dense, and that the mass loss and density
changes will be more extreme for larger values of vy.

There are several points to make about these regimes.
First, given that galaxies and clusters span a large range of
halo mass, a fixed 7 and v will place a low-mass halo in a
different regime than a high-mass halo. For example, if
7~ 1 Gyr and v ~ 100 km s~1, ultrafaint dwarf galaxies
will be in case 1. They will have disintegrated by the
present since particles will be ejected from the halo on
time scales far less than the age of the Universe, g =
14 Gyr. However, the halo of a typical ( ~ 10'>M,) galaxy
will be in the regime of case 2, and the halo of massive
cluster will be case 4. Second, there will be a differentiation
in cases throughout a single halo since dynamical time
scales are much shorter deep within the halo. A halo may
be in case 2 in the interior, but in case 4 near the edge of the
halo. Last, while one can make general predictions for the
behavior of halos for decays in each regime, quantitative
predictions largely require N-body simulations, which we
perform and analyze in another paper [48].

The results are summarized in Fig. 1. The region marked
“CDM-like” denotes the 7 >> 14y, and vy <K vy, parts of
parameter space in which we expect either almost no
decays or almost no kinetic energy injection in the halo.
For this region of parameter space, the halo properties will
be nearly indistinguishable from the case of no decays. The

100
potentially interesting
3
~ 10
o
1
0.1
0.01 0.1 1 10 100
Vk/Vvir

FIG. 1 (color online). Summary of the changes to dark matter
halos due to late-time decays, as a function of vy /vy; and 7/14y,.
In the region marked “CDM-like.” decays have little effect on
halos, and so halos should resemble those produced by CDM.
The area marked “‘catastrophic’ is the region of parameter space
in which halos are almost completely destroyed as a result of
decays. The middle region labeled “potentially interesting”
indicates the part of parameter space that is not ruled out as
catastrophic, nor is it likely to produce halos that exactly
resemble those predicted by CDM.
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region marked ‘‘catastrophic” has extended beyond the
parts of parameter space of case 3 to lower v, and higher
7, since vy ~ v,; can still induce significant mass loss, and
decays on time scales of a few dynamical times can affect
the halo as it settles into its new equilibrium. The region
marked ‘‘potentially interesting” includes bits of cases 1,
2, and 4, and represents the part of the parameter space
whose effects on halo structure need to be explored with
N-body simulations and constrained with observations. In
the next section, I show how to relate observational con-
straints to Fig. 1, and define regions of v, — 7 parameter
space allowed by observations and which need to be better
understood with simulations.

III. OBSERVATIONAL CONSTRAINTS

There are a number of probes of the distribution of
matter in the Universe. In this section, I describe a set of
probes from which constraints on decaying dark matter are
easiest to infer, and calculate constraints for case 1-type
decays. We consider observational constraints on case 2, 3,
and 4 decays in other work [48]. The probes I consider are
the cluster mass function (Sec. III A), galaxy clustering
(Sec. IIIB), the existence of small dark matter halos
(Sec. IIIC) and the mass-concentration relation
(Sec. III D).

A. The cluster mass function

The cluster mass functions are relatively clean for de-
caying dark matter studies for both observational and
theoretical reasons. Individual cluster halo masses are
substantially easier to determine than the halos of individ-
ual galaxies, and the assignment of a cluster of galaxies to a
single dark matter halo is unambiguous. Moreover, since
most of the energy in decays goes to nonrelativistic mas-
sive particles, the background evolution of the Universe is
unchanged. Hence, the growth function, which depends
only on redshift and the background cosmology in a
ACDM universe, is unchanged relative to ACDM predic-
tions (see Refs. [49,50] for the relativistic case, in which
the background evolution does change) [51]. Thus, main
change to the cluster mass function relative to that pre-
dicted from ACDM models occur as a result of mass loss
from the halos due to decay. This makes the mass functions
simple to interpret with respect to ACDM predictions.

There are two different ways to use the cluster mass
function to constrain the decaying dark matter parameter
space. I will show how the z =0 mass function (see
Refs. [9,52-56] for recent observations and mass-function
calculations) constrains the decay time 7 in the case 1 virial
regime. This method is easy to generalize to other parts of
decay parameter space. Second, I show how upcoming
cluster surveys (e.g., Sunyaev-Zel’dovich observations in
the microwave bands [57]) that are sensitive to the redshift
evolution of the cluster mass function can be used to
constrain decays.
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1. The local cluster mass function

Cluster mass functions derived from X-ray and optical
surveys of the local Universe have been used to constrain
Q),, and o7, the rms amplitude of fluctuations in the linear
density field at z = 0 if smoothed on 84! Mpc scales,
where £ is the Hubble parameter [9,54,55]. The constraints
on (), and oy from the local cluster mass function are
consistent with those found with other cosmological
probes, including the cosmic microwave background
(CMB) [58], the Lyman-alpha forest [7], weak-lensing
power spectrgfa, and galaxy clustering [8,59-65].

The consistency of the constraints on (),, and o3 from
different epochs constrains decaying dark matter for the
following reason. The standard lore of halo formation is
that halos form when the amplitude of the density pertur-
bation (alternatively, the amplitude of the linear matter
power spectrum) smoothed on a distance scale R (or alter-
natively, a mass scale M = 47TpuR3 /3), exceeds the over-
density required for halo collapse [66,67]. The halo
number density dn/dM is then related to the volume of
space in which the overdensity exceeds the collapse den-
sity. If the smoothed amplitude of fluctuations is small,
then there are few virialized halos of that given mass; if the
amplitude is large, then there are many halos of a given
mass. The amplitude of the linear matter power spectrum is
controlled by the initial amplitude of fluctuations from
inflation as well as (),,, but is usually parametrized in
terms of og and (},,.

The number density of clusters, the rarest of virialized
objects, is quite sensitive to og and (),,, with more clusters
expected in a high-og, high-{),, cosmology. A ~20%
change in og can yield order-unity changes in the cluster
halo number density (e.g., Ref. [68]). Decays cause mass
loss in halos, thus reducing the number density of halos
above fixed mass. If one were to infer ACDM parameters
from the local cluster mass function if dark matter were
decaying, one would infer artificially small values of oy
and (), relative to what one would infer from probes of
earlier epochs (e.g., the CMB and Lyman-alpha forest).
The fact that og and (2, inferred from the local cluster
mass function are similar to those inferred from other
probes limits decay parameter space, although the error
bars for the cluster mass functions (and hence, those for the
inferred values of g and (),,) are quite large [9,54,55].

One can estimate conservative limits on decay parame-
ter space using the following method. Since decays lower
the inferred og and (), of clusters relative to those inferred
from the CMB, I find which combination of v, and 7 would
cause the 2-o upper limits on (), and og from the CMB to
yield a z = O cluster mass function that is barely consistent
to the 2-o lower limits on those parameters. In the instance
of case 1 of Sec. II, this can be done analytically. Here, 1
show the limits one can set on 7 assuming that v, is several
times the typical cluster virial speed (v, ~ 103 kms™!).
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I take the (),, and og and the associated error bars from
the Wilkinson Microwave Anisotropy Probe (WMAP) five-
year data set as the baseline, since this is the earliest epoch
from which (), and the amplitude of the matter power
spectrum can be inferred [58]. The central values and 1-o
error bars from the WMAP-5 6-parameter ACDM fits are
Q,, = 0.258 £ 0.030 and oy = 0.796 = 0.036. I use the
Tinker et al. [68] mass function to estimate the comoving
number density n(>M) of halos above a mass threshold M
at z = 0 for (1, = 0.318 and o3 = 0.868 (2-0 above the
WMAP-5 mean values) and (1, = 0.198 and o3 = 0.724
(2-0 below), keeping the Hubble parameter 4, the primor-
dial slope of the matter power spectrum 7, and the baryon
fraction ,h? fixed to the WMAP-5 central values, assum-
ing a flat ACDM cosmology. The cluster mass function is
far less sensitive to those parameters than to (), and oyg.
The mass functions are shown in Fig. 2.

Then, assuming there is a one-to-one mapping between a
ACDM halo virial mass M; (calculated using the spherical
top-hat overdensity described in Sec. II) for the high-(},,,
high-og cosmology and the virial mass M; after a fraction
f of the X particles in the halo have decayed, I map the

r T T L { T T T T L Y{ T 1
0.0001 B2 -
107 & N =
f 10-8 I '\' ' ]
E N 3
=) g N . 3
2. L . ]
= ok Ol
= £ NN E
L N \, ]

o 3 3
1078 = NN\ L
. \\.\ \

10-° ,
10—1{] | 1 1 | l 1 1 1 1 1111 l \l\ \r

1014 1015
Mvir [(h71 MG)]

FIG. 2 (color online). Halo number density n(>M) as a func-
tion of minimum halo mass M at z = 0. The dotted (blue) line
represents the number density of halos in a cosmology with
Q,, = 0.318 and og = 0.868 (with both quantities being 2-o
above the WMAP-5 mean values), the solid (green) line repre-
sents the halo number density for a WMAP-5 cosmology ({2, =
0.258, og = 0.796), and the dashed (red) line shows the number
density of halos in a cosmology with ,, (= 0.198) and o ( =
0.724) 2-0 below the WMAP-5 mean values. These number
densities were generated using the Tinker et al. [68] mass-
function fitting formulas. The dot-dashed lines show halo num-
ber densities (top-to-bottom) once a fraction f = 0.1, 0.2, and
0.3 of the X particles have decayed to fast Y particles, assuming a
high-(),,, high-og cosmology.
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high-Q},,, high-og ACDM comoving number density n; to
the comoving number density of halos after a fraction f of
X particles have decayed

M;(My)) dM;
M, dM}

ne(>M;) = [ any L (30)
M;

The resulting comoving number densities are shown as the

dashed lines in Fig. 2 for f = 0.1, 0.2, and 0.3.

The comoving number density of cluster halos with
M., > 10"*h~'M (roughly the mass threshold for cluster
studies) if f = 0.3, corresponding to 7 = 40 Gyr, is nearly
identical to that of the low-(},,, low-og cosmology,
although the mass function has a steeper slope at larger
masses ~5 X 10“h~ M. For slightly smaller values of f
(= 0.25), the decay mass function lies above the low-(},,,
low-og mass function for M,;, < 1034~ 'M. Thus, the
upper limit on f is near 0.3, such that 7 = 40 Gyr for v, >
a few times the cluster virial speed of the most massive
observed clusters. Since clusters are observed to have
M, <2 X 10M,, this calculation applies to v, =
5000 kms~!.

If the decay parameters relative to the cluster dynamical
parameters are in any case other than case 1 of Sec. II, one
will need to perform N-body simulations of decay in halos
in order to map decay parameters to the halo mass loss.

The f = 0.3, 7 = 40 Gyr lower limit for case 1 is likely
to be too conservative, since I have assumed a one-to-one
mapping between a ACDM halo of mass M, and a halo in
the decay case with mass M;. However, to do this sort of
analysis self-consistently, one should perform cosmologi-
cal N-body simulations to take into account the streaming
of dark matter particles.

2. Redshift evolution of the mass function

The evolution of the cluster mass function is a promising
way in which to explore evolution in the dark-energy
equation of state w, since the evolution in the comoving
number density of cluster mass halos is quite sensitive to
the growth function and to the Hubble constant as a func-
tion of redshift, H(z). While current constraints on w from
cluster mass functions are weak [9], ongoing and future
Sunyaev-Zel’dovich surveys and follow-up observations
should provide much better constraints (e.g., Ref. [57,69]).

The same reasons why the evolution of the cluster mass
function is a useful probe of dark energy also make it a
useful probe of decays, which was originally pointed out in
Refs. [45,49]. In the right-hand panel of Fig. 3, I show the
z =0 comoving number densities of halos for the
high-(,,, high-og; mean WMAP-5; and low-(},,, low-og
cosmologies, as well as the comoving number density of
halos if 7 = 50 Gyr in case 1 of Sec. II, (), = 0.318, and
og = 0.868. The middle and left panels show the comov-
ing number densities at z = 0.5 and z = 1, respectively.
One can see that the z = 0 mass function for 7 = 50 Gyr
lies between the low-(},,, low-og and mean WMAP-5
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FIG. 3 (color online). Evolution of the number density of
massive halos as a function of time. The lines have the same
meaning as in Fig. 2, and the dot-dashed line represents a
high-Q,,, high-og cosmological model with v, > v,;, of clusters
and 7 = 50 Gyr.

mass functions, but it lies between the mean WMAP-5 and
high-Q},,, high-og cosmologies by z = 1. The comoving
number density of halos above 104 'M, in the 7=
50 Gyr cosmology only increases by a factor of 5 since z =
1, even though it grows by a factor of ~8 in the high-Q,,,
high-og cosmology, a factor of ~11 in the mean WMAP-5
cosmology, and a factor of 16 in the low-(},,, low-og
cosmology in the absence of decays. Thus, a signature of
decaying dark matter would be a slower growth of structure
with redshift than expected based on the z = (0 mass
function.

A caveat is that a noncosmological constant (A) model
for dark energy could also change the evolution of n(>M)
above a fixed mass threshold. However, it may be possible
to break the degeneracy between the two by looking at the
evolution of the shape of the cluster mass function.

B. Galaxy clustering

The clustering of galaxies is often used to constrain
cosmological parameters. On large, linear scales (which,
at z =0, corresponds to comoving wave numbers k <
0.12 Mpc™ 1), clustering is usually expressed in terms of
the galaxy power spectrum P, (k), the Fourier transform of
the galaxy autocorrelation function. On smaller, nonlinear
scales, the clustering is usually expressed in terms of the
real-space galaxy two-point correlation function &(r).
Galaxies are biased tracers of the matter distribution, but
the matter power spectrum P(k) (or correlation function)
can be extracted from galaxy clustering using analytic and
empirical models of how galaxies populate dark matter
halos.

In this section, I describe how P(k) and £(r) could be
used to constrain decaying dark matter models, but a de-
tailed calculation is far beyond the scope of this paper. I
will give only a crude, order-of-magnitude limit on decay-
ing dark matter parameter space based on the measured
&(r) from the Sloan Digital Sky Survey (SDSS) [70]. A
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proper analysis of the limits on decaying dark matter would
require solving the Boltzmann and Einstein equations for
the linear matter power spectrum and the collapse criteria
for halo formation, as well as N-body simulations to better
explore the nonlinear regime.

The linear matter power spectrum can be determined
from first principles by solving the Einstein equations for
first-order perturbations from the background metric and
the Boltzmann equations governing the evolution of the
distribution functions of all the contents of the Universe.
Calculations typically include CDM, baryons, massive
neutrinos, and a cosmological constant A for the dark
energy. Relative to a ACDM + baryon power spectrum,
the ACDM + baryon + neutrino power spectrum is sup-
pressed on scales corresponding to the neutrino free-
streaming scale [71]. This is because neutrinos can escape
the matter density perturbations if their typical speed is
larger than the escape speed from a perturbation, which
reduces the density perturbation. In decaying dark matter
models, the X particles continuously source a free-
streaming Y-particle population. Thus, the density pertur-
bations on small scales (below the typical free-streaming
scales of the Y particles) should be damped relative to the
ACDM expectation. However, the power spectrum on
large scales should be unaffected by this damping.

The scale dependence of the damping of the power
spectrum due to decays is what may make the effects of
decays distinguishable from non-A dark-energy models.
Unless dark energy clusters, the primary effect of a non-A
dark energy is to alter the growth function, which is scale
independent. Thus, to distinguish between varying-w and
decaying dark matter models, one will need to determine
the evolution of the shape of the linear matter power
spectrum (or the cluster mass function).

On nonlinear scales, the two-point galaxy correlation
function £(r) is often used to quantify galaxy clustering,
instead of the Fourier-space analog preferred on larger
scales. Since galaxies are biased tracers of the underlying
matter field, considerable effort has gone into understand-
ing the connection between different galaxy populations
and the matter field. This is also relevant on larger scales, to
map between the galaxy power spectrum and the linear
matter power spectrum. The correlation function is often
analyzed in the context of halo-occupation distribution
(HOD) models, analytic but simulation-calibrated relations
describing the distribution P(N|M) of the number N(M) of
a galaxies of a certain type contained within a halo of mass
M [72-76]. P(N|M) is determined empirically, along with
cosmological parameters, for the set of galaxies being
analyzed. There are some degeneracies between the HOD
and cosmological parameters, but these can be broken by
combining the £(r) analysis with different galaxy statistics
of the same set of galaxies, or different observations alto-
gether [76-78].

HODs make the interpretation of &(r) simpler, so I can
show why it is difficult to pull easy constraints on decaying
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dark matter models from the correlation function, and to
show what would be necessary in order to use £(r) to
quantitatively constrain the dark matter model. The follow-
ing description closely follows that of Ref. [77].

The galaxy correlation function can be broken into parts,

E(r) = 1+ &(r) + Ean(r), (3D

where &;,(r) is a one-halo term, the correlation function of
galaxies within the same halo, and &,,(r) a two-halo term,
the correlation function of galaxies in different halos. The
one-halo term is

dn (NN = D)y

1 00
1+ =— [ am
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where 7, is the number density of galaxies, dn/dM is the
halo mass function, (N(N — 1)},,/2 is the average number
of pairs of galaxies of a specific type within a halo of mass
M, and F'(r/2R.;) is the radial distribution of the galaxy
pairs. 7i, is a measured quantity and (N(N — 1))),/2 is
inferred in the parameter estimation of the correlation
function. However, dn/dM and F'(r/2R,;) are taken
from dissipationless N-body simulations.
The two-halo term, to lowest order, is given by
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Here, P3h is the two-halo galaxy power spectrum, and P™
is the nonlinear matter power spectrum, which is taken
from N-body simulations. (N(M)), the average number of
galaxies in a halo, is determined empirically, but by, the
bias of the dark matter halo power spectrum with respect to
the matter power spectrum, and y,(M, k), the Fourier trans-
form of the galaxy density profile in halos, are taken from
N-body simulations.

The problem with trying to find precision constraints on
the decay parameters from &(r) is that the interpretation of
thereof requires detailed N-body simulations to determine
P"(k), dn/dM, F'(r/2R.;,), by(M), and y,(M, k), although
a few of those quantities may be found empirically with
weak lensing (e.g., Refs. [79,80]). These simulations are
generally only performed for “‘standard” cosmologies, and
it is not clear how dark matter decays will affect the power
spectrum or correlation functions, or interpretation thereof.
Simulations using ACDM cosmologies show that cosmo-
logical parameters are somewhat degenerate with the halo-
occupation models for the galaxies, but the degeneracies
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have only been explored in a limited set of cosmological
models [74,76].

However, there is general consistency of the fits to the
correlation function of local SDSS galaxies with ACDM
models down to halo masses ~10'>M, [70]. This suggests
that decaying dark matter parameters could be well con-
strained using the galaxy correlation function. In the ab-
sence of N-body simulations to calibrate HOD models as a
function of decaying dark matter parameter space, I con-
strain the parameter space by requiring that ~10'2M,
ACDM halos lose less than half their mass due to decays.
This roughly restricts 7= 30 Gyr for v, = v =
130 kms™!, which are case-1-type constraints. It should
be noted that this is a highly approximate constraint; more
precise constraints require cosmological N-body models to
calibrate HODs in the case of decaying dark matter.

In addition to simulations to constrain HOD models for
decaying dark matter cosmologies, one may constrain the
decay parameter space observationally with gravitational
lensing. From gravitational lensing, one may determine the
typical halo mass for a specific type of galaxy. This is an
additional constraint to the HOD. Main halo masses have
been found for galaxies binned by stellar mass in the SDSS
[79], and should be even better-determined in upcoming
large all-sky surveys (e.g., the LSST [81]).

C. Existence of small ( ~ 10° M) halos

The smallest virialized halos for which there is obser-
vational evidence of existence are of order 10°M. Halos
of such small size are observed in two different ways, and
in both cases, the halos are actually subhalos. Strigari et al.
[41] find that all faint dwarf galaxies in the Milky Way halo
have mass interior to 300 pc of ~10’M, regardless of
luminosity. This corresponds to a virial mass of ~10°M,
if the mass profile is extrapolated beyond the stellar
component.

Vegetti et al. [82] find evidence for a subhalo of mass
Mg, = (3.51 +0.15) X 10°M, in the double Einstein
ring system SDSSJ0946+1106. This is the mass within
the tidal radius, so the subhalo was likely somewhat larger
before it fell into the larger halo of the elliptical galaxy, the
lens system.

The existence of these small halos can set limits on a
broad swath of decay parameter space. The most stringent
limit is set if one requires that the number density of
10°My-mass halos be the same as predicted by CDM,
and that the density profiles within those halos not be
significantly disturbed due to decays. Recalling from Sec.
IT that the virial speed of such halos is ~13 km s™! one
can roughly exclude the decay parameter space above v, ~
10 kms™! and 7 < a few times t;. However, there are no
z = 0 observational constraints on the low-mass halo mass
function.

As there is no measurement of the number density or
correlation function of halos below ~10'?M,, there is
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considerably more freedom in the decay parameter space.
For example, one could imagine that the 10° M, halos that
have been observed at z = 0 are the remnants of larger
halos that have been heavily disturbed by decays. If today’s
~10°M,, halos are parented by halos that were initially
10'°M, then parent halos would have initially had v;, ~
30 kms™! and fayn ~ @ few hundred Myr. For such halos
to lose ~90% of their mass, vy = v,; and 7 < ty. This
opens up much more allowed decay parameter space than
the previous, more conservative limit. One could imagine
halos of up to ~10'' M, decaying to ~10°M, halos; in this
case, short decay times (7 < fy) and large kick speeds
(v = vy, = 60 kms™!) are required. Pushing against
this limit is the fact that ~10'>M, halos appear to have
correlation functions consistent with ACDM cosmology.
The virial speed of 10'! M, halos is a significant fraction of
the virial speed of 10'2M halos, so such halos would
likely be quite disturbed, the degree of which can only be
ascertained with simulations of the cases 2 and 4 of Sec. II.

In summary, the existence of ~10°M, halos excludes
the parameter space v, = 60 kms™ ' and 7 < t;5. Stricter
constraints come from requiring the mass function of
~10°-10""M, halos to resemble that which is predicted
from ACDM models, although I emphasize that there are
no observations that require these stricter constraints.
These constraints are similar to those from galaxy corre-
lation functions (Sec. IIIB). For v, < 1kms ! or 7=
101y, halos with masses = 10°M, should look and cluster
like CDM halos.

D. Mass-Concentration Relation

ACDM predicts a relationship between the concentra-
tion ¢ (Eq. (9)) and halo mass, in addition to the shape of
the dark matter density profile in halos. Low-mass halos
are expected to be more concentrated than high-mass
halos, since smaller halos form earlier when the Universe
is more dense. Concentrations are expected to be higher at
the present than at higher redshift for fixed halo mass.
These trends have been found in a number of N-body
simulations (e.g., Refs. [38,40,42,43,83-85]) and observa-
tions (e.g., Refs. [86-89]), although there is some disagree-
ment in the details.

As with the cluster mass function in Sec. IIT A, I can
place constraints on decaying-dark matter models by con-
sidering the range of mass-concentration relations allowed
in WMAP-5 cosmology. High-(),,, high-og cosmologies
produce higher concentrations for fixed mass than low-(2,,,,
low-og cosmologies, since halos collapse earlier for fixed
mass if the amplitude of the matter power spectrum is
higher. In Fig. 4, I show the mean mass-concentration
relation for WMAP-1 (upper solid line; 2, = 0.299, oy =
0.9) and WMAP-3 (lower solid line; Q,, = 0.238, o3 =
0.75) cosmologies from the dark matter only simulations of
Maccio et al. [43]. The values of (),, and og bracket the
2-0 values of (), and oy of the mean WMAP-5 cosmol-
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FIG. 4 (color online). Halo mass-concentration relations at
z = 0. The solid lines are predictions from the N-body simula-
tions of Maccio et al. [43] for WMAP-1 (upper) and WMAP-3
(lower) cosmologies. The short-dashed and dotted lines are
mass-concentration relations observed in galaxy clusters [88]
and in galaxy groups and clusters [87]. The symbol in the upper-
left corner represents the intrinsic scatter in the simulations and
1-o0 errors in the mean observed mass-concentration relations.
The shaded region shows the mass-concentration relation in
Ref. [89]. The long-dashed lines show the mass-concentration
relation for high-v, dark matter models after (top-to-bottom) a
fraction f = 0.1, 0.2, and 0.3 of the X particles have decayed.

ogy, and the WMAP-5 mass-concentration relation should
lie between the WMAP-1 and WMAP-3 relations
[58,90,91]. The error bar in the upper-left corner of
Fig. 4 shows the intrinsic scatter in the relation, which is
large.

As in Sec. IIT A, I set conservative constraints on case 1
virial parameters (vy > v, T > fqyn, Where the halo pa-
rameters correspond to the most massive halos observed),
by considering the effects of decay on the observables by
assuming a high-Q,,, high-og (WMAP-1) cosmology. 1
use Eqgs. (24) and (25) to determine the mass and concen-
tration of a halos after a fraction f of X particles have
decayed. The new mass-concentration relations are shown
in Fig. 4 with long-dashed lines, with (top-to-bottom) f =
0.1,0.2,and 0.3. For f > 0.2 (7 > 60 Gyr), the mean mass-
concentration relation lies below the WMAP-3 relation
from Ref. [43].

Unlike Sec. IIT A, I use the observed mass-concentration
relation to constrain the decay parameter space. I show
mass-concentration relations inferred from observations in
Fig. 4. The short-dashed line shows the mass-concentration
relation found by Ref. [88] using published masses and
concentrations of galaxy clusters. The masses and concen-
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trations of these clusters were determined using a variety of
different observations (e.g., strong lensing, weak-lensing,
cluster galaxy dynamics, X-ray temperature profiles). The
dotted line shows the mass-concentration relation inferred
from X-ray temperature profiles of elliptical galaxies, gal-
axy groups, and galaxy clusters [87]. The hatched region
shows the 1-o range of mass-concentration relations from
weak lensing [89].

Of the three observational data sets, the weak-lensing
data set should be least affected by selection effects. It has
been shown in simulations that strong-lens systems are
biased towards high concentrations for a fixed mass rela-
tive to the population of halos as a whole [92-94].
Comerford and Natarajan [88] show that the mass-
concentration relation of strong-lens systems in the simu-
lations of Hennawi et al. [92] is a close match to their
mass-concentration relation from clusters. Halo mass pro-
files can only be reasonably determined from X-ray data if
the halo is relaxed; relaxed halos have higher concentration
than halos as a whole [40]. However, selection biases for
the X-ray probes of halo properties have not been
quantified.

Thus, I compare the mass-concentration relation from
the decaying dark matter models to the weak-lensing rela-
tion. I find that for f = 0.3 (7 = 40 Gyr), the decaying
dark matter mass-concentration relation lies well below the
mean relation from weak lensing [89]. This sets the lower
limit on the allowed value of 7 for high vy, where vy > v;,
for the largest clusters probed in the observations (v, =
a few X 1000 kms™!). This limit is nearly identical to that
obtained from the cluster mass function in Sec. III A.

IV. DISCUSSION

A. Summary

The constraints are summarized in Fig. 5. At near-
relativistic to relativistic vy, the only allowed region of
parameter space is 7 > 120 Gyr, which is nearly indistin-
guishable from CDM, as only ~10% of X particles will
have decayed by the present. The region with 7 < 20 Gyr
yields catastrophic destruction of halos on all scales, while
20 Gyr < 7 <120 Gyr is ruled out by the shape of the
CMB temperature power spectrum [95], although addi-
tional constraints may be possible using luminosity dis-
tances of supernovae [96].

For kick speeds of order = 5000 km s71, both the clus-
ter mass functions and the mass-concentration relation
restricts 7 = 40 Gyr. A calculation of the cosmological
Boltzmann and Einstein equations including decay to
find the linear matter power spectrum, and N-body simu-
lations to explore the nonlinear regime, should yield even
better constraints on 7 in this vy regime.

For 60 kms™! < v, = 5000 kms™!, 7 = 30 Gyr based
on &(r) and the existence of ~10°M,, halos. The excluded
region is marked (1) in Fig. 5. Better constraints on 7 for
this range of vy using £(r) will come from cosmological
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FIG. 5 (color online). Diagram of allowed and excluded v —
7 parameter space. See text for descriptions.

simulations of structure formation that include decay. It
may be easier to constrain this part of decay parameter
space using mass-concentration relations or the cluster
mass function. In this case, one can do simulations of
isolated halos in the regimes 7 <14, and vy, < wv,; and
T > t4yn to map the ACDM mass-concentration relation
and cluster mass function to those with cosmologies with
decaying dark matter. We perform such simulations and
will present our findings in another paper [48].

Any 7 is allowed for 1 kms™! < v, < 60 kms™! un-
less one uses the more conservative constraints on the
parameter space based on the existence of a few
~10°M, halos. The additional exclusion zones are marked
(2) and (3) in Fig. 5, corresponding to allowing 10°M,
halos to result from decays of halos that initially had mass
10'°M, and from requiring that the halo number density
n(>10°M,) be nearly indistinguishable from ACDM, re-
spectively. I emphasize that there are no observations that
definitively exclude these additional regions of parameter
space. In general, these regions of parameter space can be
better constrained theoretically by the aforementioned cos-
mological simulations, in order to relate the observed &(r)
to decaying dark matter parameter space. It may be pos-
sible to constrain some of this parameter space using the
mass-concentration relation, as weak lensing has already
probed this relation down to halo masses M.;, < 10'>M,.
Future deep surveys covering a large fraction of the sky
(e.g., LSST [81]) should improve and extend measure-
ments of the mass-concentration relation to lower halo
masses.

For vy <1 kms™!, there will be negligible deviations
from ACDM cosmology on ~10°M,, halo scales and up,
and negligible differences on all scales if 7 = 100 Gyr, for
the simple reason that structure does not look significantly
different from ACDM if almost no particles decay or if the
daughter particles receive a kick small relative to the virial
speed. This part of parameter space is labeled ‘“CDM-like”
in Fig. 5 for those regions. If halos smaller than 10°M, are
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observed, this would push the “CDM-like” line at v, <
1 kms™! down to smaller v. The discovery of smaller
(sub)halos is likely in future observations of strongly
lensed galaxies, since flux anomalies and time delays are
sensitive to the subhalo mass function down to near-stellar
mass scales [97-101]. The absence of smaller subhalos
would have profound implications for the nature of dark
matter.

B. Why I am not using the dark matter density profile
as a constraint

Dissipationless N-body simulations of structure forma-
tion suggest that the density profiles of dark-matter halos
should be well described by the NFW profile of Eq. (8) on
any observable scale. Although decays in the case-1 regime
do not alter the structure of dark-matter halos, decays in
other regimes generically change the halo structure due to
kinetic-energy injection. Thus, in principle, the density
profile in dark-matter halos would appear to be a good
test of the decaying dark matter model.

However, observations of galaxies and clusters, from the
smallest ultrafaint dwarfs in the local group to the largest
virialized halos in the local Universe, show significant
scatter in the density profile on scales r < ry. Some obser-
vations indicate cores in the density profile, others show
cusps shallower than NFW, some show that the NFW
profile is a reasonable fit, and others show profiles that
are more sharply cusped than NFW (for a summary, see
Refs. [102—-105] on Milky Way dwarfs, [15,106,107] on the
rotation curves of low-surface-brightness galaxies, [108—
110] on the rotation curves of massive spiral galaxies,
[79,111-115] on lensing and kinematics of elliptical gal-
axies, and [80,86,116—121] on various probes of the dark
matter distribution in galaxy groups and clusters).

While there are likely to be some observational system-
atics that affect the dark matter profile fits, perhaps the
most significant issue in interpreting these data is that there
are serious theoretical systematics. The NFW profile
emerges in simulations of structure formation without
baryons. However, galaxies dominate the gravitational
potential in the inner parts of the dark matter halos (with
the possible exceptions of the ultrafaint dwarfs in the local
group and some low-surface-brightness galaxies). There is
evidence from simulations that the dark matter responds to
various processes associated with galaxy evolution (feed-
back, star formation rate, gas cooling, smooth or clumpy
baryonic infall), but it is not clear which processes domi-
nate [122—128]. Dark matter halos in N-body simulations
with CDM and baryons range from having cored density
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profiles [129] to quite cusped profiles [130,131]. At this
point, the interpretation of simulations is descriptive rather
than predictive. What is needed in order to interpret ob-
servations are concrete theoretical predictions, not only for
CDM, but for other types of dark matter.

Thus, even though dark matter decay are likely to
change the density profile of dark matter in halos from
the form of Eq. (8), the observed density profiles will not
constrain decaying dark matter parameter space until there
are firmer theoretical predictions for the dark matter dis-
tribution in halos in the presence of a baryonic galaxy. This
is especially important because decays affect the central
regions of halos, the home of galaxies, more strongly than
the outside regions for fixed 7 and vy, since the dynamical
timescales and typical particle velocities are lower.

C. Future directions

The easiest way to constrain more of the decay parame-
ter space is with the mass-concentration relation and clus-
ter mass functions. Future observational data will improve
constraints on the decay parameter space. Upcoming deep
optical all-sky surveys such as DES [132], PanSTARRS
[133], and LSST [81] will allow for a better determination
of the mass-concentration relation via weak lensing. The
redshift-dependent cluster mass function may be deter-
mined with next-generation optical all-sky surveys, as
well as Sunyaev-Zel’dovich surveys (SPT [134]; ACT
[135]) and X-ray surveys (eROSITA [136]). These data
sets, along with CMB measurements with Planck, will
provide better constraints on cosmological parameters,
which will further constrain the decay parameter space.
The effects of decay on the mass-concentration relation
and cluster mass functions is relatively easy to quantify
since these constraints do not require cosmological simu-
lations. In this work, I showed how to constrain 7 in the
case that vy is significantly larger than the virial speed of
the largest galaxy cluster. To constrain other parts of the
decay parameter space, one may do noncosmological
simulations of isolated dark matter halos. This will allow
one to determine the change to the halo structure and mass
loss as a function of decay parameters, and is investigated
in [48].
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