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Quintessence and phantom cosmology with nonminimal derivative coupling
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We investigate cosmological scenarios with a nonminimal derivative coupling between the scalar field
and the curvature, examining both the quintessence and the phantom cases in zero and constant potentials.
In general, we find that the universe transits from one de Sitter solution to another, determined by the
coupling parameter. Furthermore, according to the parameter choices and without the need for matter, we
can obtain a big bang, an expanding universe with no beginning, a cosmological turnaround, an eternally
contracting universe, a big crunch, a big rip avoidance, and a cosmological bounce. This variety of
behaviors reveals the capabilities of the present scenario.
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L. INTRODUCTION

The cosmological research of the last three decades has
elevated the role of scalar fields in the description of
various sides of nature. Introduced as the driving mecha-
nism for almost all inflation realizations [1], the dynamics
of scalar fields gained new interest after observations pro-
vided indications for an accelerated universe expansion
[2]. In particular, the new concept of ‘“‘dark energy” was
easier to describe with an extra scalar field dubbed quin-
tessence [3] than with the traditional cosmological constant
[4,5], and the corresponding cosmological behavior proves
to be much richer.

However, although the general belief is that the data are
far from being conclusive, some data analyses suggested
that the cosmological constant boundary, that is, the phan-
tom divide, has been crossed in the near cosmological past
[6]. The simplest way to explain this unexpected behavior
is the use of a phantom scalar field instead of a canonical
one, that is, a scalar with a negative sign of the kinetic term
in the Lagrangian [7]. Although the discussion about the
construction of quantum field theory of phantoms is still
open in the literature (see, for instance, [8] for the causality
and stability problems of phantom fields, but also [9] for
attempts in constructing a phantom theory consistent with
the basic requirements of quantum field theory, with the
phantom fields arising as an effective description), the
richness and capabilities of phantom cosmology have
gained significant interest in the literature, extending
from dark energy to the area of inflation [10].

Apart from the aforementioned basic use of scalars
(canonical or phantom ones), cosmological models where
the fields are nonminimally coupled to gravity [11,12] have
been shown to present significant cosmological features,
both for inflation and dark energy areas, and have been
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widely studied [13]. Additionally, one can further extend
these “‘scalar-tensor” theories, allowing for nonminimal
couplings between the derivatives of the scalar fields and
the curvature [14], and these scenarios reveal interesting
cosmological behaviors [15].1

In our recent work [18] we examined the cosmological
scenario of a quintessence field with nonminimal deriva-
tive coupling, and we extracted exact solutions in the case
of zero potential. In the present work we are interested in
extending this analysis to the case of nonzero potentials,
and furthermore, for completeness, to perform it for both a
quintessence field and a phantom field. The plan of the
manuscript is as follows: In Sec. II we construct the
scenario and we extract the cosmological equations. In
Sec. III we examine specific potential choices and we
investigate the corresponding cosmological solutions for
various parameter choices. Finally, in Sec. IV we discuss
the physical implications of the different universe evolu-
tions, and we summarize the obtained results.

II. COSMOLOGY WITH NONMINIMAL
DERIVATIVE COUPLING

In this section we present the cosmological paradigm
with nonminimal derivative coupling between a scalar field
and the curvature. In order to describe the quintessence and
the phantom field in a unified way, we adopt the & notation;
that is, the parameter € takes the value + 1 for the canonical
field and —1 for the phantom one.

A. Action and field equations

Let us construct a gravitational theory of a scalar field ¢
with nonminimal derivative couplings to the curvature. In
general, one could have various forms of such couplings.

"t is also worth mentioning a series of papers devoted to a
nonminimal modification of the Einstein-Yang-Mills-Higgs the-
ory [16] (see also the review [17] and references therein).
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For instance, in the case of four derivatives one could have
the terms kR, ", KR, ¢*P", k3R,
k4R, p P, KsR., P+, and kg[IRP?, where the coef-
ficients ki, ..., kg are coupling parameters with dimen-
sions of length-squared. However, as it was discussed in
[14,15,18], using total divergencies and without loss of
generality, one can keep only the first two terms. Thus,
the action for the cosmological scenarios at hand can be
written

R
5= [¢x/Talg- ~ [ogu + <Guld o7~ 2v@)}
(D

where V(¢) is a scalar field potential, g, is a metric, g =
det(g,,), R is the scalar curvature, G,, is the Einstein
tensor, and « is the single derivative coupling parameter
with dimensions of length-squared.

Varying the action (1) with respect to the metric g,
leads to the gravitational field equations

G/.LV = 877[8T,u,v + K®,u,v:| - 87Tg,uvv(¢)’ (2)
with

Ty =V, 6V, ¢ — Lg,, (VP

0., = —IV, 0V, R + 2V, ¢V, R,
+ VeOVPIR s + V, VGV, V
—-V,V,¢0¢ — {V$)G,,
+ 8, [~IVaVEGV V¢ + L)
— V.pVzhR¥].

Similarly, variation of the action (1) with respect to ¢
provides the scalar field equation of motion:

[eg"” + kG*'IV, V,d =V, 3)

where Vy = dV(¢)/d¢.
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B. Cosmological equations
Throughout this work we consider a spatially flat back-
ground geometry with a metric

d52 — —dt2 + eZoz(t)dXZ’ (4)

where a(f) = ¢*? is the scale factor and dx? is the
Euclidian metric. Thus, the Hubble parameter is simply
H(t) = a(t)/a(t) = a(r).

As usual, we assume a homogeneous scalar field,
namely, ¢ = (7). In this case the field equations (2) and
(3) are reduced to the following system:

3a? = 47wd*(e — Ika?) + 87wV (o), 5)

—2a — 3a’ = 47 d’[e + k(2 + 3a* +4a b d V)]
— 87V (¢), (6)

8(d +3a §) = 3x(aPp + 2 i b +3d3P) = V4, (7)

where a dot denotes a derivative with respect to time. Note
that Egs. (6) and (7) are of second order, while (5) is a first-
order differential constraint for a(z) and ¢(r).

The constraint (5) can be rewritten as

. 3a? — 87V(¢p)
2 —
¢ 4m(e — 9ka?)’ ®
or equivalently as
dred? +
42 — med” + 8wV (P) ©)

3(1 + 127wkd?)

Therefore, as long as the parameters € and « and the
potential V(¢) are given, the above relations provide re-
strictions for the possible values of ¢ and ¢, since they
have to give rise to non-negative ¢> and &2, respectively.
Let us now separate the equation for ¢ and «. For this
aim we resolve Eqgs. (6) and (7) with respect to & and q’)
and, using the relations (8) and (9), we eliminate d) and &
from respective equations. We easily obtain the results

¢

- —2\37d[e + e8mrd? — 87TKV(¢)]\/[8<;52 +2V(p)(127kd* + 1) + 127k > + 1)(dmrd* + nv,

o —(e — 3ka?)(e — 9xa?)[3a* — 87V(d)] — 4T (e — Ika?)[3d* — 87V ()] V,,

e(l + 127k d? + 9672 k2 d*) + 87k V(p) (127K > — 1)

, (10)

1 — 9ekad® + 54Kk*a* — 8wV () (e + Ika?)

(1)

We mention, however, that although the ¢ equation does not contain « terms, the a equation, in general, contains ¢ terms

arising from the potential V().
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III. COSMOLOGICAL SCENARIOS AND
SOLUTIONS

In this section we examine specific cosmological sce-
narios; that is, we consider specific potential choices.

A. Zero potential: V(¢p) = 0

The case of a canonical field under zero potential has
been investigated in [18]. Thus, in this subsection we
restrict ourselves to the case of a phantom field, thatis, e =
—1. The field equations (5)—(7) now read

3% = —47d*(1 + ka?), (12)

—2d —3a* = —4mwd*[1 — kQa + 3¢ + 4a d )],

(13)
¢ +3ad +3k[d?P +2a i d +3dach]=0. (14)
The constraint (12) can be rewritten as
: 3a?
e 15
¢ 47(1 + 9ka?) (15
or equivalently as
4 h?
L. (. A (16)

3(1 + 127kd?)’

From these relations we deduce that & and ¢ should obey
the following conditions:

1 +9ka* =0, A7)
1+ 127kd? = 0. (18)
Note that these conditions are only fulfilled for « <O0.
Assuming k = —k?, we find
@l = L (19)
9k?’
6= (20)
127k?

The separate ¢ and « equations [(10) and (11), respec-
tively] read

B 237> (8mrd? — 1)y 127k d* — 1
1 — Rakd? + 9672 k2 dh*

. @2D

33k e — D9k — 1)
1 — 9K%a> + S54k*a*
From these equations we deduce that the case at hand
exhibits three qualitatively different cases:
Al.—(9k*)~ ! < & < (3k*)~!. In this case & is positive,
and ¢ increases with time. The solution « is varying

(22)

a =
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between two de Sitter asymptotics: «,_, o, = t/3k and
Qoo = 1/ J3k.

A2—a? = (3k*)7!,
de Sitter solution

a(t) =t/\Bk,  $(1) = t/37k.

A3.—a? > (3k*)"!. In this case & is negative, and &
decreases with time. Nevertheless, we remind the reader
that & always remains larger than 1/+/3k. The solution «(7)
is varying between two asymptotics. The t — oo asymp-
totic is the de Sitter one: a,_ = t/ \/§k. The second
asymptotic can be obtained as follows: Assuming & — oo
at t — t; gives the following asymptotical form of Eq. (22):

@ =0. One has exactly the

& =~ —3d?, (23)
2= (24)
127k*’
with the asymptotic solution
Ay, = a; + %ln(t — 1), (25)
G = bt (1= 1) (26)
t—t; i 2\/§7Tk i/

Thus, by construction, the moment ¢ = ¢; corresponds to a
cosmological singularity.

In order to present this cosmological behavior more
transparently, we perform a numerical elaboration of the
model at hand, namely, of Eq. (22), and the results are
presented in Fig. 1. We mention that the possible singular
behavior of «(z) means that the scale factor itself [a(f) =
e*"] starts from zero at some initial time.

B. Cosmological constant: V(¢p) = A = const

In this particular scenario the separate ¢ and « equa-
tions (10) and (11) read

FIG. 1. The evolution of a(7) in the phantom case with zero
potential. The dash-dotted and dotted lines denote the de Sitter
asymptotics 7/3k and 1/~/3k, respectively. The solid lines cor-
responds to a(f) with (a) (9k%)™' < &? < (3k*)™! (case Al) and
(b) & > (3k*)"! (case A3). We have considered k* = 5.
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- 127 \/8({)2 +2A \/1277Kd>2 + 1[e + 8mexd? — 8mkA]

¢

i 3(epH} — d*)(e — 3kd?)(e — 9kd?)
a = ,
1 — 9skd? + 54k?a* — 3ke\H (e + 9kar?)
(28)

where, for simplicity, we have defined H, = /87|A|/3
and g, = signA. It proves convenient to consider sepa-
rately the various cases arising from specific choices of the
parameters €, A, and «, and in the following, we present
the eight qualitatively different cases of the scenario at
hand.

Bl.—e =1, A >0, k> 0. It is easy to see that the «
equation (28) has three trivial particular solutions:
() ()= Hat, (i) at) =1/3k, and (i) a(r) =
t/\Pk. Sequentially, substituting them into the whole sys-
tem of field equations (5)—(7), one may straightforwardly
find the following exact solutions:

alt) = ——

Ners

a(t) = H,t, ¢(t) = ¢y = const,

3kH2 — 1 1
b(1) = ,/La Hy=——,
8K 3k

which describe de Sitter universes. However, the third
solution a(r) = 1/~+/9« cannot, in general, satisfy Eqgs. (5)—
(7) (apart from the fine-tuned case 1/ POk =H A)-

More generally, the constraint (8) gives the following
restrictions for &?:

x; < @? < x,, (29)

where x; = min(1/9«, H}) and x, = max(1/9«, H3). The
second derivative @, given by relation (28), is negative if
H} < 1/9k, and positive if H} >1/9«, and thus & is
decreasing or increasing with time. As it is deduced, the
corresponding solutions for «(r) are varying between the
two de Sitter asymptotics depending on values of parame-
ters Hy and «. This behavior can be observed in Fig. 2,
arising from numerical elaboration.

B2—e =1, A>0, k<O0. In this case Egs. (5)-(7)
have the de Sitter solution «a(t) = Hpt, ¢(t) = ¢y =
const. Additionally, the constraint (8) yields

.2 2
a“ > Hx.

Under this condition &, given by relation (28), is negative
and « is decreasing with time. The corresponding solution
a(t) is singular at some initial moment of time, i.e.,
lim,_,, a(f) = —oo, while for large times a(z) tends to
de Sitter asymptotic H,t. This behavior can be seen in
Fig. 3.

B3—e=—1, A>0, k>0. For these parameter
choices, Egs. (5)—(7) have the de Sitter solution «(t) =

e(1 + 127k d? + 9672 k2 d*) + 8w A(127K > — 1)

, (27)

[

Hyt, ¢(t) = ¢y = const. Generally, the constraint (8)
gives

FIG. 2. The evolution of «(t) for ¢ = 1 (quintessence), A > 0,
k>0 (case B1). The dashed, dash-dotted, and dotted lines
denote de Sitter asymptotics a(t) = Ht, t/ Ok, and 1//3k,
respectively. A solid line corresponds to «(f) with
(a) HX < &* <1/9«, (b) 1/9« < &* < H < 1/3k, (¢) 1/9«<
&* <1/3k < H}. In graph (a) we have considered H; = 1, in
graph (b) Hy =5, and in graph (c) H; = 10; k = 3 every-
where.
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FIG. 3. The evolution of a(f) for ¢ = 1 (quintessence), A > 0,
Kk <0 (case B2). The dashed line corresponds to the de Sitter
solution a(f) = Ht with Hy < 1/4/3|«]|. The solid curve cor-
responds to a solution with &> > H3 . We have considered H; =

= — 1
1 and 77 -

.2 2
a” < Hx.

Under this restriction &, from (28), is positive and & is
increasing with time. The corresponding solution for a(r)
varies between two de Sitter asymptotics: a(f — —00) =
—H tand a(r — o) = H 4. This behavior is more trans-
parently shown in Fig. 4.

B4—e = —1, A >0, k <O0. In this case Egs. (5)—(7)
possess two different de Sitter solutions:

t

V3l

a(t) = HAt, a(t) =

¢(t) = ¢y = const,

1 — 3|x|H? 1
) = 4| ———A¢ Hy < )
R e

The constraint (8) now yields

c'vz > X7,

d2<x1 or

-4 -2 0 2 4

FIG. 4. The evolution of a(r) for e = —1 (phantom), A >0,
k>0 (case B3). The dashed line corresponds to the de Sitter
solution a(r) = H,t with H, < 1/+/3«. The solid line corre-
sponds to a solution with &> < H%\. We have considered Hi =1

= L
and k 57 -
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where x; = min(1/9«, H}) and x, = max(1/9«, H}).
Thus, the behavior of a(7) satisfying the above conditions
depends on the specific values of the parameters H, and «.
The corresponding possible types of solutions are demon-
strated in Fig. 5.

B5—e =1, A <0, k > 0. In this case the constraint (8)
leads to

1
-2 <
a ok’

Under this condition &, from relation (28), is negative and

15
154
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104 -
g ~
59 S
-
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A
07 ~# !
PR -
59 R -
e oy 51 PR
- s - =
~101 // .-
10 4
-154° /7
7/
T T 15
-4 2 0 2 4 4 2 0 2 4
(© (d)
20+ /

-204 7

FIG. 5. The evolution of a(r) for ¢ = —1 (phantom), A > 0,
k <0 (case B4). The dashed, dash-dotted, and dotted lines
denote the de Sitter asymptotics a(f) = Ht, t/ VOl«|, and
t/\/m , respectively. The solid lines corresponds to a(r) with
(a) H} <1/9lkl<a*<1/3|kl, (b) HX <1/9I«|<1/3|k|<a?,
(c) 1/3] k| <H/2\<c‘v2, @ a2 < H/Z\ < 1/9|kl, (e) & < 1/9|k|<
H/2\. In graphs (a), (b), and (d) we have considered Hf\ =1, and

in graphs (c) and (e) Hi =15 k= — % everywhere.

083510-5



EMMANUEL N. SARIDAKIS AND SERGEY V. SUSHKOV

FIG. 6. The evolution of a(f) for ¢ = 1 (quintessence), A <0,
k>0 (case B5). The dash-dotted line denotes the de Sitter
asymptotic a(z) = t/+/9«. The solid curve corresponds to a(r)

with &2 < 1/9«. We have considered H% =1and k = 21—7

& is decreasing with time. The corresponding solution for
a(t) varies between the two de Sitter asymptotics:
Qs = t/\O«k and Aoy = —1/\/9k. These features
are presented in Fig. 6, arising from numerical elaboration.

B6.—e =1, A <0, k <0. For this parameter subclass,
the constraint (8) does not lead to any restriction on the
values of 2. Additionally, the second derivative &, from
(28), is negative and « is decreasing with time. The corre-
sponding solution for a/(r) varies between the two singular
solutions: «,_,+ = —oo. This behavior can be seen more
transparently in Fig. 7.

B7—e = —1, A <0, k > 0. In this particular case, the
constraint (8) cannot be fulfilled. Therefore, there are no
solutions corresponding to this subclass.

B8—e = —1, A <0, k <O0. In this case Egs. (5)—(7)
possess the following de Sitter solution:

ot B ’1+3|K|H/2\
a(t) —\/g_l;_ly o(1) = 8777|K|[. (30)

The constraint (8) now gives

-0,5 0,0 0,5 1,0

FIG. 7. The evolution of a(f) for e =1, A <0, k <0 (case

B6). We have considered H?\ =1land k = — %
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FIG. 8. The evolution of a(r) for ¢ = —1 (phantom), A <0,
k <0 (case B8). The dash-dotted and dotted lines denote
de Sitter asymptotics a(r) = t/4/9|k| and t/+/3| x|, respectively.
The solid curve  corresponds to a(t) with
(a) 1/9|k| < &® < 1/3|«|, (b) &* > 1/3|k|. We have considered

H} =1and k = — 5.

1
9|k|

Under this condition ¢ from (28) is positive if 1/9|«| <
@® < 1/3|k|, and negative if &> > 1/3|«|; respectively, &
is increasing or decreasing with time. The two possible
types of solutions for «(r) are presented in Fig. 8, arising
from numerical elaboration.

We close this subsection by mentioning that for A — 0,
the scenario at hand coincides with the previously studied
quintessence case with V = 0 [18], or with the phantom
with V = 0 examined in the previous subsection.

Finally, note that, in principle, one could extend the
aforementioned analysis to more complicated potentials,
such as the exponential and the power-law one.
Unfortunately, the complexity of the nonminimal deriva-
tive coupling does not allow for the extraction of any
analytic solutions in these cases. The examination of the
cosmological behavior of such scenarios must be based on
numerical investigation, and this is left for a future inves-
tigation [19].

a'2

IV. DISCUSSION AND CONCLUSIONS

In this work we investigated cosmological scenarios
where there is a nonminimal derivative coupling between
the scalar field and the curvature. In order to be complete,
we considered both quintessence and phantom fields,
although the latter case could be ambiguous at the quantum
level. Finally, in order to examine the pure effects of these
scenarios, we have not included the matter content of the
universe, although this can be straightforwardly taken into
account.

A first observation is that the nonminimal derivative
coupling leads to qualitatively different behavior, com-
pared to the uncoupled case, even for the simple cases of
zero or constant potentials. In particular, as we observe, the
universe evolves between two asymptotic de Sitter solu-
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tions, characterized by the strength of the coupling. In the
limit where the coupling tends to zero and in the cases
where the solutions exist, these two asymptotics coincide
and the system acquires only one de Sitter solution,
namely, the one that is exhibited from the corresponding
conventional (that is, uncoupled) model of a universe
without matter. We mention that the transition between
the two de Sitter solutions is a pure effect of the non-
minimal derivative coupling, and it does not require the
presence of matter. Finally, note that as time rolls back-
wards, the scale factor of the universe [a(f) = ¢%?] can be
either eternally decreasing or become zero at some initial
time. Thus, our scenario either exhibits the big bang, or it
corresponds to an eternally expanding universe with no
beginning, with the latter case arising easily, without the
need for a specially designed potential as in conventional
cosmology [20].

An additional feature of the scenario at hand is the
radically different evolution of a quintessence universe in
some solution subclasses. In particular, for a negative
cosmological constant and positive coupling (case BS)
the scale factor of the universe is growing; it reaches a
maximum, and then it decreases. This is the realization of
the cosmological turnaround, in which the universe transits
from expansion to contraction [5,21]. The fact that this is
obtained solely from the dynamics of the nonminimal
derivative coupling, without the need for matter or for
exotic gravitational terms, makes the scenario at hand
very interesting. Lastly, note that the contracting phase is
eternal; that is, the universe does not result in a big crunch
[5].

Along similar lines, in the quintessence case with a
negative cosmological constant and negative coupling
(case B6), the scale factor starts from zero at some initial
time and returns to zero at some final time. This is the
realization of a universe starting from a big bang and
ending with a big crunch [5], and the fact that this is
obtained without the need for matter is a novel effect of
the nonminimal derivative coupling.

The phantom evolution also exhibits the aforementioned
behavior. Apart from an eternally expanding universe,
including the transition between two de Sitter solutions,
as we observe in Fig. 5(e) (case B4), that is, for a positive
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cosmological constant and negative coupling, the universe
can experience the cosmological turnaround. This is radi-
cally different compared to the uncoupled phantom scenar-
ios, which cannot experience the turnaround; on the
contrary, in the absence of matter they result in a big rip
[22]. It seems that the nonminimal derivative coupling
smooths or (for large coupling) completely alters the evo-
lution, leaving phantom cosmology free of a big rip. This
new and significant behavior reveals the richness of the
scenario at hand.

However, the phantom case exhibits an additional sur-
prising feature that is not present in the quintessence
scenario. As we observe in Fig. 4 (case B3, that is, a
positive cosmological constant with positive coupling), as
well as in Fig. 5(d) (case B4, that is, a positive cosmologi-
cal constant with negative coupling), the universe can
transit from the contracting to the expanding phase, with-
out meeting any singularity. This is just the cosmological
bounce [23], and its realization from a sole phantom field
makes the scenario at hand very interesting.

In summary, the paradigm of nonminimal derivative
coupling either in the quintessence or in the phantom
case may have important cosmological implications, even
in its simplified realization where matter is absent. Apart
from the transition between different de Sitter solutions,
according to the parameter choices we can obtain a big
bang, an expanding universe with no beginning, a cosmo-
logical turnaround, an eternally contracting universe, a big
crunch, a big rip avoidance, and a cosmological bounce,
and this variety of behaviors reveals the capabilities of the
scenario. Furthermore, one could generalize this paradigm
to the case where both the quintessence and the phantom
fields are present, that is, generalize the so-called ‘““‘quin-
tom” paradigm [24] in the case of nonminimal derivative
coupling. In these scenarios one could obtain a combina-
tion of the above behaviors, such as a cyclic cosmology
[25]. This subject definitely deserves further investigation.
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