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Translational invariance and the anisotropy of the cosmic microwave background
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Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically
homogeneous, a consequence of translational invariance. In this paper we quantify the potentially
observable effects of a small violation of translational invariance during inflation, as characterized by
the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the
cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes

(ayay,,) of the spherical-harmonic coefficients.
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L. INTRODUCTION

Inflationary cosmology, originally proposed as a solu-
tion to the horizon, flatness, and monopole problems [1,2],
provides a very successful mechanism for generating pri-
mordial density perturbations. During inflation, quantum
vacuum fluctuations in a light scalar field are redshifted far
outside the Hubble radius, imprinting an approximately
scale-invariant spectrum of classical density perturbations
[3,4]. Models that realize this scenario have been widely
discussed [5—-7]. The resulting perturbations give rise to
large-scale structure and temperature anisotropies in the
cosmic microwave background, in excellent agreement
with observation [8—16].

If density perturbations do arise from inflation, they
provide a unique window on physics at otherwise inacces-
sible energy scales. In a typical inflationary model
(although certainly not in all of them), the amplitude of
density fluctuations is of order 8 ~ (E/Mp)?, where E* is
the energy density during inflation and Mp is the (reduced)
Planck mass. Since we observe & ~ 1077, it is very plau-
sible that inflation occurs near the scale of grand unifica-
tion, and not too far from scales where quantum gravity is
relevant. Since direct experimental probes provide very
few constraints on physics at such energies, it makes sense
to be open-minded about what might happen during the
inflationary era.

In a previous paper [17], henceforth “ACW,” the possi-
bility that rotational invariance was violated by a small
amount during the inflationary era was explored (see also
[18-24]). ACW suggested a simple, model-independent
form for the power spectrum of fluctuations in the presence
of a small violation of statistical isotropy, characterized by
a preferred direction in space, and computed the imprint
such a violation would leave on the anisotropy of the
cosmic microwave background radiation. A toy model of
a dynamical fixed-norm vector field [25-30] with a space-
like expectation value was presented, which illustrated the
validity of the model-independent arguments. The space-
like vector model is not fully realistic due to the presence
of instabilities [31], and furthermore it does not provide a
mechanism for turning off the violation of rotational in-
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variance at the end of the inflationary era. Nevertheless, it
still provides a useful check of the general argument that
the terms which violate rotational invariance should be
scale invariant. An inflationary era that violates rotational
invariance results in a definite prediction, in terms of a
few free parameters, for the deviation of the microwave
background anisotropy that can be compared with the data
[32-34].

The results of ACW can be thought of as one step in a
systematic exploration of the ways in which inflationary
perturbations could deviate by small amounts from the
standard picture, analogously to how the STU parameters
of particle physics [35] parameterize deviations from the
standard model, or how the parameterized post-Newtonian
(PPN) formalism of gravity theory parameterizes devia-
tions from general relativity [36]. In cosmology, the fidu-
cial model is characterized by primordial Gaussian
perturbations that are statistically homogeneous and iso-
tropic, with an approximately scale-free spectrum. Even in
the absence of an underlying dynamical model, it is useful
to quantify how well existing and future experiments con-
strain departures from this paradigm. Deviations from a
scale-free spectrum are quantified by the spectral index n;
and its derivatives; deviations from Gaussianity are quan-
tified by the parameter fy;, of the three-point function (and
its higher-order generalizations) [37-42]. The remaining
features of the fiducial model, statistical homogeneity and
isotropy, are derived from the spatial symmetries of the
underlying dynamics.

There is another important motivation for studying de-
viations from pure statistical isotropy of cosmological
perturbations: a number of analyses have suggested evi-
dence that such deviations might exist in the real world
[43]. These include the “‘axis of evil” alignment of low
multipoles [44-52], the existence of an anomalous cold
spot in the CMB [53-55], an anomalous dipole power
asymmetry [56-60], a claimed ‘“‘dark flow” of galaxy
clusters measured by the Sunyaev-Zeldovich effect [61],
as well as a possible detection of a quadrupole power
asymmetry of the type predicted by ACW in the WMAP
five-year data [33]. In none of these cases is it beyond a

© 2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.81.083501

SEAN M. CARROLL, CHIEN-YAO TSENG, AND MARK B. WISE

reasonable doubt that the effect is more than a statistical
fluctuation, or an unknown systematic effect; nevertheless,
the combination of all of them is suggestive [62]. It is
possible that statistical isotropy/homogeneity is violated
at very high significance in some specific fashion that does
not correspond precisely to any of the particular observa-
tional effects that have been searched for, but that would
stand out dramatically in a better-targeted analysis.

The isometries of a flat Robertson-Walker cosmology
are defined by E(3), the Euclidean group in three dimen-
sions, which is generated by the three translations R* and
the spatial rotations O(3). Our goal is to break as little of
this symmetry as is possible in a consistent framework. A
preferred vector, considered by ACW [17], leaves all three
translations unbroken, as well as an O(2) representing
rotations around the axis defined by the vector. If we break
some subgroup of the translations, there are three minimal
possibilities, characterized by preferred Euclidean subma-
nifolds in space. A preferred point breaks all of the trans-
lations, and preserves the entire rotational O(3). A
preferred line leaves one translational generator unbroken,
as well as one rotational generator around the axis defined
by the line. Finally, a preferred plane leaves the two trans-
lations within the plane unbroken, as well as a single
rotation around an axis perpendicular to that plane. We
will consider each of these possibilities in this paper.

A random variable ¢(x) is statistically homogeneous (or
translationally invariant) if all of its correlation functions
(¢(x1)(x,) - - -) depend only on the differences x; — x;,
and is statistically isotropic (or rotationally invariant)
about some point z, if the correlations depend only on
dot products of any of the vectors (x; — z.) and (X; — X;).
The Fourier transform of the two-point function
(p(x,)¢(x5)) depends on two wave vectors kK and q, and
will be translationally invariant if it only has support when
k = —q. We will show how to perform a systematic
expansion in powers of p = k + q. ACW showed how a
small violation of rotational invariance during inflation
would be manifested in a violation of statistical isotropy
of the CMB; here we perform a corresponding analysis for
a small violation of translational invariance.

At energies accessible to laboratory experiments, trans-
lational invariance plays a pivotal role, since it is respon-
sible for the conservation of momentum. Here we are
specifically concerned with the possibility that transla-
tional invariance may have been broken during inflation
by an effect that disappeared after the inflationary era
ended. Such a phenomenon could conceivably arise from
the presence of some sort of source that remained in our
Hubble patch through inflation, although we do not con-
sider any specific models along those lines.

II. SETUP FOR A SPECIAL POINT

In the standard inflationary cosmology the primordial
density perturbations §(x) have a Fourier transform 6(k),
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defined by
8(x) = f dPke™*5(k), (1)
and the power spectrum P(k) is defined by
(6(k)5(q)) = P(k)5°(k + q). 2)
so that
(0003 = [ d*ke™ Pk 3)

The Dirac delta function in Eq. (2) implies that modes with
different wave numbers are uncoupled. This is a conse-
quence of translational invariance during the inflationary
era, while the fact that the power spectrum P(k) only
depends on the magnitude of the vector k is a consequence
of rotational invariance.

Suppose that during the inflationary era translational
invariance is broken by the presence of a special point
with comoving coordinates z.. This is reflected in the
statistical properties of the density perturbation &(x). It is
possible that the violation of translational invariance im-
pacts the classical background for the inflation field during
inflation and this induces a one point function,

(0(x)) = GlIx — z.[] “

Throughout this paper we will assume that this classical
piece is small (consistent with current data) and concen-
trate on the two-point function, which now takes the form

(6(x)6(y)) = FlIx —yl, Ix — z.|, ly — z.l,
(x—1z.) (y—z)] (5)

where F'is symmetric under interchange of x and y. This is
the most general form of the two point correlation that is
invariant under the transformations x - x +a, y—y +
a, Z, — Z, + a, and rotational invariance about z.,.

It is convenient to work with a form for (§(x)S(y)) that is
analogous to Eq. (3). We write,

(6(x)d(y)) = [d3k[d3qeik'("‘z*)eiq'(y_z*)P,(k, 7.k -q),

(6)

where P, is symmetric under interchange of k and q. This
is equivalent to Eq. (5) and is the most general form for the
density perturbation’s two-point correlation that breaks
statistical translational invariance by the presence of a
special point z., preserving rotational invariance about
that point. In the limit where the violations of translational
invariance are small and can be neglected, the replacement
P,(k|, Iql, k - q) = P(k)83(k + q) is valid.

We assume (as is consistent with the data) that violations
of translational invariance are small and hence that P, is
strongly peaked about k = —q. Hence we introduce the
variables p =k + q, I = (kK — q)/2 and to expand in p
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using, for example,

. . AYA 2
p/2l—l+p—l—(p "o 7)

k=1l +
| 21 813 8l

It is convenient to introduce U, = InP, and expand U, to
quadratic order in p, neglecting the higher order terms
since P, and hence U, is dominated by wave vectors p
near p = 0,

P[(lkl, |Q|, k- q) = eUf(l)lv712)7A(1)P2/278(1)(p.l)2/(212)+“.
= P,(I, I, —[2)e AP /2=BU)p:17/QF)
(€))

Note that there are no terms linear in p because the
symmetry under interchange of k and q implies symmetry
under I — —I and p — p.

Plugging the expansion of P, in Eq. (8) into Eq. (6)
yields

(5(x)5(y)) = f Ll 5P, 1)
X [d3pe*A(l)pz/Z*B(l)(p'l)z/(le)eip~z’ 9)

where z = (x + y — 2z.)/2. The integral over d°p can be
performed by completing the square in the argument of the
exponential. Introducing the 3 X 3 matrix,

= A(l)8,; + B(l) (10)
we find that

[ & pe=AOP/2=BOG1P/CP) i

(2m)?
detC

=

e~ C'2/2 ~
detC

(1-z'Cc'z/2). (11)

Using this expression the two-point function can be
written as

(5(x)8(y)) = [ Pl CVp (1,1 1) (277);

T
X<1_zC2 Z+...), (12)

where the ellipses represent terms higher than quadratic
order in the components of z. It is straightforward to solve

for C~! and detC in terms of the functions A and B. We find
that detC = A3 + A2B and
1 B Il
Cl=—6,—— 1 13
i T A% T XA+ B B (13)

The part of the two-point correlation that is rotationally
invariant is the usual power spectrum P([), so
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m)3

P(l) = GetC

P, 1, —0). (14)

Next we construct some mathematical examples that
illustrate how the term proportional to z> is suppressed
when P, is very strongly peaked at p = 0. Without any
violation of translational invariance, P,(|k|, |ql. k - q) =
P(k)8*(k +q) = c¢/k*8%(k + q) for a scale-invariant
Harrison-Zeldovich power spectrum, where c is some con-
stant. We want to construct a form for P, that reduces to the
standard Harrisson-Zeldovich spectrum with translational
and rotational invariance as a parameter d — co. The three
dimensional delta function can be written as

d \3
Therefore, we might try writing P, as ¢/ k3( L) e —d(k+q)?

with d a large number. However, this P, is not symmetric
under the interchange of k and q because k> is not.
There are many possible ways to resolve this problem.
We might imagine replacing k> by k3232, (k + ¢)3/8,
Ik —al*/8, kq(k+q)/2, (kq)'*(k+ q)*/4, (k- q) X

(k+ ¢g)/2, - -+, or any linear combinations of these. With
p=k+q,l=(k —q)/2, we have
132302 = l3<1 _3(p- 1)? _)
4/ 812 ) (16)
1 3(p -1
“(k+ 3=z3<1— +—)
gkt d s 8P

to second order in p. Therefore, at quadratic order in p, the
most general form of a function which is symmetric under

the interchange of k and q and reduces to k* whenk = —q
is
(-0 P
13(1 AT g —-b lz> 17)

with two parameters a and b that are independent of .
Hence we arrive at the following form for P,(|k|, |ql, k -

qQ),

Pkl |ql k - q)—f <1+ (pll)2+blz)
X (j;)}eaaﬂz, (18)

which gives the familiar translationally (and rotationally)
invariant density perturbations with a Harrison-Zeldovich
spectrum as d — oo. Plugging into Eq. (6), the two-point
function becomes

(@53 = ¢(1 - Z—Z) / PLO

4d?
1 a+3b
X (1 + B ) (19)
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We can construct another example which also gives
dependence on (I - z)?. First notice that the three dimen-
sional delta function can be written as another form,

d \3 o

o(®) = Jim (7) VdetUe (@ /2p'Uip’, 20
(p) = lim L (20)
where U;; = 2(8;; + f1;/;/I?) and f is an arbitrary pa-
rameter independent of /. So another possible choice for
P, that has the correct limiting behavior as d — oo is

1 .l2 2 d 3
Pkl Jal k@) = gee(1 + B b))

X /detUe (@ /2p'Uyp’ (1)

This gives,
| a+ (3 +2/)b
— il-(x—y) _ -
(002 fd%l 7 c<1 "0 +f)d212)

_z f o (-z?
X[l @+4(1+f)d2 12

]. (22)

Since observable |z|’s can be as large as our horizon, we
need the parameter d to be of that order (or larger) for the
leading two terms of the expansion in z to be a good
approximation in Egs. (19) and (22).

The form we have derived in this section is plausible but
is not the most general. For example, it could be that the
Fourier transform of the two-point function has the usual
form plus a small piece that is proportional to a small
parameter €. That is,

C
Pkl Iql k- q) = FéS(k +q) + €Pi(kl, lql. k - q)
(23)

If € is small then the effects of the violation of translational
invariance in Eq. (23) is small even when P} is not strongly
peaked about k = —q.

In the next section we discuss how the violation of
translational invariance during the inflationary era by the
presence of a special point at fixed comoving coordinate
impacts the anisotropy of the microwave background.
Then in Sec. IV we generalize the results of this section
to the possibility that the violation of translation invariance
during the inflationary era occurs because of a special line
or plane during the inflationary era.

III. MICROWAVE BACKGROUND ANISOTROPY
WITH A SPECIAL POINT

We are interested in a quantitative understanding of how
the second term in Eq. (12) changes the prediction for the
microwave background asymmetry from the conventional
translationally invariant one. The multipole moments of
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the microwave background radiation are defined by
AT
am = [ a0y - (@) (4)

(Note that our definition differs from the conventional one’
in which the complex conjugate of Y;" appears in the
integral.) Since the violation of translational invariance
vanishes after the inflationary era ends, the anisotropy of
the microwave background temperature 7 along the direc-
tion of the unit vector e is related to the primordial fluctu-
ations by

AT 21+ 1 . r 3
T =[S (T )itk esmew,

(25)

where P, is the Legendre polynomial of order / and ©;(k) is
a known real function of the magnitude of the wave vector
k that includes, for example, the effects of the transfer
function.

We are interested in computing {a,,,a;, ) to first order in
the small correction that violates translational invariance.
This is related to the two-point function in momentum
space via

(ama,) = (=)I7" /d3kd3qY{”(13)Y,’f"*(ti)@)z(k)@zr(q)
X (5(k)5"(q)). (26)
From Eq. (12) to Eq. (14), we have

(x +y—2z,)
4

X [ Ble" Y p () + f Pl =Y p,(])

X [l : (X +y-— 21*)]2

(5(x)5(y)) = [ PV Py(1) +

AP @7)
where
_ P
P(l) = 240) (28)
B(!l
Po(l) = O pay @)

2AD[A() + B()]

The models in Sec. IT had Py ,(/) proportional to Py(/). The
special point z. is characterized by three parameters; the
magnitude of its distance from our location and two pa-
rameters for its direction (with respect to our location).
Hence the corrections to the correlations (a,,a), ) are
characterized by just five parameters. The Fourier trans-
form of Eq. (27) yields

"To shift our results to what the the usual definition gives,

*
Ay — Ay,

083501-4



TRANSLATIONAL INVARIANCE AND THE ANISOTROPY ...

d*x Ay

<5(k)<§*(Q)>= W Q)

(lvk —1

q 22*)2
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e~ KXl Y(5(x)5(y))

= Po(k)8*(k — q) +

P,(k)8*(k — q)

4
d . d d i
- ( —i—— 24)(;‘— —i—— 2zi)[ ’ &(k — q)] (30)
lz_:l aq; ok; 9q;
We therefore define

(amas Y =ammas, Yo+ (=)""Ay(Lmy U, m') + (=) Ayl my I, m'), 31)

where the subscript 0 denotes the usual translationally invariant piece,
(s o = 31 B [~ AP0, (32)

0

and the correction coming from P, (k) is given by

AL myl', m')

+ 2V, (Y7(K)O,(k)) - Vi (Y1 (k) O (k)) + 422V (k)

[ kP ([ =Y (K)O,()V,2(Y1* (k)0 (k) — Y1 (k) O, (k)V, 2 (Y7 (k) O, (k)

Y7 (k)®, (k)@ (k)

+ 41y (K)O (k)z. - V(Y] (k)0 (k) — 4iY]" (k)0 (k)z., - Vi (V)™ (k) O, (k)] (33)

It is convenient to break up A (Z, m; I', m') into the parts
quadratic in z,, linear in z,, and independent of z., by
writing

A(Lm I, m") = A(lz)(l, m;l', m') + A(ll)(l, m; ', m')
+ A0 my 1, m). (34)

The quadratic piece is relatively simple,
AU s 1, ml) = 8,822 [ " dkk20 (k)2 P, (k).
0
(35

The term linear in z, is the most complicated. It can be
evaluated using the identity

00,(k)

iV (0,07 (k)) = ( )Y;“(fo

+%R(LkY;"(f<))®z(k), (36)
where Ly acts as the angular momentum operator in
Fourier space,

Li=—-ik XV, 37)

It is convenient to divide A(ll)(l, m;l',m') into a piece
coming from the first term in Eq. (36) and a term coming
from the second term in Eq. (36),

Agl)(l, m;l,m') = A(ll)(l, m;l,m'), + A(ll)(l, m; 1, m'),.
(38)

To evaluate A(ll)(l, m;l', m'), ,, we express the components

of z, in terms of its ““spherical components,”

Txl — iZ*z _ s + iZ*2

Z+=_T, Z_—T,

Z() = Z*31
(39)

and express the components Kk in terms of the spherical
harmonics Y{'(k). This gives

AV mr,m, =i [0 " AP, (k)

00,(k 00, (k
< (0,0 750 0,0 “O0)
X (Z+X§Z:;;n1’ + Z_XEZ‘L);;WL/ + ZOXEZB;OI’WL’)’
(40)
where
@0 [(l -—m+ 1) +m+ 1)]1/2
Lm;l',m' (2l+ 1)(21 ¥ 3) [+1,I' Om,m
(I —m)(l + m) /2
AT AT 22 41
[(21—1)(21+1)] =Lt Omm @D
@+ [(l +m+ 1)+ m+ 2)]1/26 5
Lm;l',m' \/i (21+ 1)(2l+ 3) I+1,I'9m+1,m’
_ LI:(Z —m)(l—m — 1)]1/2
V2L @r—-n@ei+1) LG Lm
42)
and
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Xt = Xt (43)
For A(ll)(l, m; l', m'), we write
m/)b = A(ll)l(l, m; ', m/)b

+ AW L m),, (44)

A(ll)(l, m; l,

and find that
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and

(b)— (b)+
Ximtm! = Xi=mtt,—m!* (43)

Then we evaluate the term independent of z, in
A (I, m; ', m'"). Using integration by parts, we know

[ BrP OV (VI (R)O,(0)) - V(Y (R)®, (k)

(1y oo — 7 , N
AV st m'), = —i ﬁ) dkkP (k) ©,(k) O, (k) _ f d3k[ o0 (k)k RO
XQ+X?Zw+zﬁf2}ﬂ R .
o " ~ Pyl *(k)®1/(k>vk2(y;"<k)®,(k)>]. (49)
+ ZOle;I’m’)’ (45)
where Another familiar result of spherical harmonics is
®o  _ (l—m+1)(l+m+1)]1/2 o2 omie 1 a(,00,k
e R e T Ve, = -5 (e )
X 814118 mm I(1+ 1 .
FeLETm, 4 X > )®,(k)]Y;"(k). (50)
I+ 1)[ (I—m)(+ m) ]1/25 5 k
- N7 AN(AT L 1) I—1,I'Om,m’»
@ =Dnei+1 Combining Eq. (36), (49), and (50) implies that,
(46)
% d
AV mil,m') = 5,8 f dk[—P k)0, (k) —
)+ B |:(l+m+ 1)(l+m+2):|1/2 1 ( m m) LI'Ym,m 0 1( ) l( )ak
Lmlm' T/ +1,I'Om+1,m
\/51 . @i+ D@t +3) X (kz —‘3@’(")) U+ P, ()0, ()
_l’_
, 9Py (k a@ k
7 et 0Wem]  n
(I—m(I—m—1)71/2 2 dk
X[ =Dl 1 ] O1—1,0' O+ 1>
( ) ) The next step is to calculate the correction coming from
(47)I P, (k).
Ao(L m: I, m') f d3kP2(k)[4(k 2 PYP(R)Y(R)O,(K)0, (k) + 4ik - z.) (Y1 ()8, (K - V, (Y} (k)8 (k)
. . s 3. kik; ] .
= Y"(k)O,(bk - Vi (Y (k) (k) — Z 2 (Y’”( )®l(k)ak o, — (Y1 (k) O, (k)
+Y}"*(k)®1/(k) o T(Y’"(k)(@ (k)))+2(k V(Y7 ()0, (k) (k - Vi (vy (12)®1/(k))):|. (52)

We also break A, (I, m;l’, m') into terms quadratic in z.,
linear and containing no factors of z,.

As(Lmy I, m') = A(Zz)(l, m;l', m') + A(zl)(l, m; ', m')
+ AV my !, m). (53)
The term quadratic in z, can be written as
AR = Epa [ AR (00,00 (),
(54)

|
where

e = [A&- 2Py GOV R (59)

For the computation of &;,,./,,, we use the “‘spherical”
components of z, in Eq. (39). &,,,,.y,,» was calculated in [17]
where violation of rotational invariance was considered. It
is convenient to decompose &j,,,.;,,y into coefficients of the
quadratic quantities z,z;, via
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f[m;[’ ! Z+ flm J'm! + szffmjl/m/ + 2Z+Z—§;:njl/m/ + 2Z+ZO§;;nO;I/m/ + ZZ—Zogl:no;l/m/ + Z(%f(l)r(pi;l/m/' (56)

ACW [17] found that

VE—=m+ DU +m+2)(1—m)
(21 +3)21 - 1)

flm Oml T _6m’,m+2[51’,l

s \/(l-l—m-l—1)(l+m+2)(l+m+3)(l+m+4)
2 o2 Q21+ 1)1 + 3221 + 5)

1 \/(l—m)(l—m—1)(l—m—2)(l—m—3)
2702 21+ 121 — 1)>(2 - 3) ]

it = €1
o1 . (LI P+ m?) ((+1)? = m’)(( + 2 —m?)
Emtm = §5mﬂm[ 0o D@+ O\ @it D@+ 3R+ )
(P = m)((L = 1)* = n?) o7
+ 6,2 (21 —3)(21 — 1)2(21 + 1)]’ 7

_ B[ 5 @m+ DWW+ m+ DU —m) 5 \/((1 + 12— m®) (I +m+2) 1 +m+3)
Eonirm 2 [ ! (21— 1)(21 + 3) fit2 (21 + 1)(21 + 3)2(2L + 5)

s \/(lz—mz)(l—m— (Il —m —2)
rhi=2 21 —=3)21 - 1)2Q2I+ 1) ]

§limo;l’m’ = gl’m’ m’
00 QP +20—2m*—-1) (1+ 1?2 = m?)(( +2)* — m?)
Imil'm! = ‘Smm/[‘sll’ + 81142 5
e L @2E=1D@2E+3) ' Q21+ 1)(21 + 3)*(2L + 5)

(P =)L = 1) = m?)
+ 51/,1—2\/(21 —3)(21 — 1221 + 1))]'

The term linear in z. has already been evaluated before.

90,(k)

AV mlm') = i / dkaPZ(k)((@,«(k)

(a)0
+le A'm! Tz le A'm! + ZO/\/lm;l’m/)’ (58)

where all ,\/(“)’s are given from Eq. (41)—(43).
The term independent of z, can be evaluated using the identity

Sokik; = A ki d o
3 (061(0) - % O @) = 5 Lrrde o e l 06,0
= 17"(k)0,()k - Vi[k - V(¥ (k)@ (k)] (59)

F Eq. (36), k that 1 0
rom Eq. (36), we know tha A ms I, m) =§5U,5m,m,[ AkK2 P (k)
0

a0, (k)

k- Vk(Yl',”’*(k)®l/(k)) = alk Y;?I*(k) (60) y 90,(k) 32®l(k)
[(5L7) - e |
and
R R 92 @ / (k) To recap: the modification of the correlations (a,,aj, )
k- Vi[k -V (yo *(k)O, (k)] = Z Yy (k). (61)  caused by the violation of translational invariance is de-
fined by Eq. (31). It can be decomposed into two pieces,
These give A(I,m,I',m") and A,(I, m, I, m’), and each can be ex-
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pressed as three components depending on their depen-
dence on z. in Eq. (34) and (53). The quadratic piece in
A(l, m,I', m") is given by (35), the z.-independent piece
by (51), and the linear piece by (38), whose terms are given
by (40)—(48). Meanwhile, the quadratic piece in
As(L, m, I', m") is given by (54), the linear piece by (58),
and the z..-independent piece by (62).

While these expressions appear formidable, the good
news is that coefficients at multipole / are only correlated
with those at [ — 2 =< I’ = [ + 2. The correlation matrix is
sparse, making the analysis of CMB data computationally
tractable [33].

IV. SET UP FOR A SPECIAL LINE OR PLANE

In this section we extend the results obtained for the case
of a preferred point in space to the cases where transla-
tional invariance is broken by a special line or point. Since
many of the steps are similar to the special point case we
will be brief.

To specify the location of a preferred line in space
requires a point z, and a unit tangent vector n. (Note that
we place Earth at the center of our coordinate system, so
that the specification of any point defines a vector pointing
from us to the point.) Since any point on the line will do,
without loss of generality we can take z. to be the point
closest to us, implying the constraint n - z, = 0. This is
illustrated by the diagram on the left in Fig. 1.

In order to simplify the calculation, we first align the
preferred direction with the z axis. In that case, the rota-
tional invariance about the z axis and the translational
invariance along this preferred direction are left unbroken.
These symmetries imply that the most general form of the
two-point correlation of energy density correlations is

<5(k)5(q)> = 5(1{Z + qz)e*i(kﬁr(h)'z*
X Pk, g, k. ki qp), (63

so that

Preferred
Line ) Earth

FIG. 1.

PHYSICAL REVIEW D 81, 083501 (2010)

(5(x)5(y)) = [ Pk [ P e v (5(k)5(q))

fdszdzkl fdqueikz(xz_y:)eikl'(xl_Z*L)

X er0im20Pp (k) gy k, ky - qp) (64)

with P, symmetric under the interchange of k| and q .
Here we have decomposed the position and wave vectors
along the z axis and the two dimensional subspace perpen-
dicular to that which is denoted by a subscript L . In the
limit that there is no violations of translational (and rota-
tional) invariance, P,(k;,q,,k,k, -q) reduces to

P(k)5%(k | + qy), where k = [k} + k2. We now assume

the violations of translational (and rotational) invariance
are small and hence that P, is strongly peaked aboutk; =
—q . We introduce the variables p;, =k, +q;, [ =
(k; —qy)/2 L and follow the same steps in the point
case. Then,

(6(x)d(y)) = [dkz[dzlleikz(X:7YZ)eil'(XL7YL)J—
X P,(ZJ_, lJ_, kz’ —li)
. f Pp e MLKIPL 2B k)DL D/ CF )L
X ePLZL (65)

wherez, = (x| +y,; — 2z, )/2. Performing the integral
over d*p |, we find that,

(6(x)8(y)) = [dkz[d21leikz(xfy:)eil-(n*yl)l

(2m)?
X P(l,,1,, k, —I
o by ke 1) detC
Tc—l
x(1—%+...) (66)

where C;; = A(l1, k)8, + B(I1, k)™ is a 2 X 2 ma-
X 1
trix, detC = A% + AB, and

Preferred
Plane  Earth

A preferred line in space can be specified by its closest point, z., and a unit tangent vector i; a preferred plane can be

specified by its closest point and a unit normal vector. The distance /(x) to any point X in space is measured perpendicularly to the line

or plane.

083501-8



TRANSLATIONAL INVARIANCE AND THE ANISOTROPY ...

1 B 1l
Cil=-8;——— L4 67
i A% AA+B) B (©7)

We can define

2 2
Lﬂ#ﬂbu@—ﬁ) (68)

Py k) = detC

and plug in the expression of Cl-;l in terms of A(/, k) and
B(l,, k,). This gives after relabeling, I — k; L

(5(x)5(y)) = j Pre® Pk, k)

2 2
at B (ky-zy) ]
X|[1——=+ . (69
[ 2A  2A(A + B) K% ©9)
Note that we want the leading term in the expansion in z to
correspond to the standard cosmology and hence

P(ky, k,) = P(k), where k = ,/ki + k2. Finally, to make
the preferred direction arbitrary, we replace all position
vectors a, with n - a and also replacing a; witha — n(n -
a) in Eq. (69).

As in the special point case we note that another way to
get a small violation of translational is if there is a small
parameter € and P, takes the form,

Pk, gy, k, ki qu)
C
= ﬁ5(k +q)+ ePiky, g1, k, ki -q1), (70)

where P/ cannot be expanded in any simple way. This is
what happened in Ref. [63].

A preferred plane can be specified by a point z, and a
unit normal vector n. We can again choose z, to be the
point on the plane closest to us, implying a constraint n X
z,. = 0, as shown on the right-hand side of Fig. 1. Notice
that the rotational invariance about the n axis and the
translational invariance along the n direction are unbroken.
These symmetries imply

(8(k)S(q)) = 8%(ky + q))e "kt @)z P (K, k,, q,) (T1)

so that

(5(x)5(y)) = f Pk [ P o™ (3 (k)5(q)

X eikn(x,,—z*n)eiqn(y,,—z*n)pt(k“’ k. q,). (72

Here we have decomposed the position and wave vectors
along the normal vector n and the two dimensional sub-
space parallel to the plane which is denoted by a subscript
|| . Then we change variables p, =k, + q,, [, = (k, —
¢,)/2 and perform the integral over dp,, to get

PHYSICAL REVIEW D 81, 083501 (2010)

(8(x)8(y)) = fdzkn fdlneik"'(x“_y”)e”"(""_y")P,(k||, Ly 1)

X \/21?(1 - % ) (73)

After relabeling [/, — k, and defining

2
P(k”’ ln) = \/%Pt(kur ln’ ln): (74)

we have

2
@3 = [dke s pi k) 132 (5)
Finally, for the reason that we want the leading order term

to correspond to the standard cosmology, we replace

P(ky. k,) with P(K), where k = [k? + k2.

V. CONCLUSIONS

We have investigated the observational consequences of
a small violation of translational invariance on the tem-
perature anisotropies in the cosmic microwave back-
ground. Three cases were investigated, based on the
assumption of a preferred point, line, or plane in space,
and a quadratic dependence on the distance to the preferred
locus of points. Explicit formulas were presented for the
correlations (a lma}‘,m,) between spherical harmonic coeffi-
cients of the CMB temperature field in the case of a special
point. The expressions we have derived may be used to
directly compare CMB observations against the hypothesis
of perfect translational invariance during the inflationary
era, as part of a systematic framework for constraining
deviations from the standard paradigm of primordial per-
turbations. Explicit expressions for the correlations
(a,,aj,,) can also be derived for the special line and plane
cases.

One can also test the hypothesis of perfect translational
invariance during the inflationary era using data on the
large scale distribution of galaxies and clusters of galaxies,
using, in the special point case,

&’
(2m)’
d’l

aape PO

&l
+ | e xYPy(
_[(277)38 ()

(x +y—2z,)°
4

(5(x)5(y)) = [ e Py (1) +

[l-(x+y—2z)F
42

(76)

The work in Sec. 1T suggests that P;(k) and P,(k) are
proportional to Py(k) and so the corrections to the micro-
wave background anisotropy and the large scale distribu-
tion of galaxies are characterized by five parameters, two
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are these constants of proportionality and three are the
parameters to specify the special point including the direc-
tion and the magnitude of z..
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