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Certain anomalies at large angular scales in the cosmic microwave background (CMB) measured by

WMAP have been suggested as possible evidence of breakdown of statistical isotropy (SI). SI violation of

cosmological perturbations is a generic feature of ultralarge scale structure of the cosmos and breakdown

of global symmetries. Most CMB photons free-stream to the present from the surface of last scattering. It

is thus reasonable to expect statistical isotropy violation in the CMB photon distribution observed now to

have originated from SI violation in the baryon-photon fluid at last scattering, in addition to anisotropy of

the primordial power spectrum studied earlier in the literature. We consider the generalized anisotropic

brightness distribution fluctuations, �ð ~k; n̂; �Þ (at conformal time �) in contrast to the SI case where it is

simply a function of j ~kj and k̂ � n̂. The brightness fluctuations expanded in bipolar spherical harmonic

(BipoSH) series can then be written as �LM
‘1‘2

ðk; �Þ, where L > 0 terms encode deviations from statistical

isotropy. Violation of SI encoded in the present off-diagonal elements of the harmonic space correlation

ha‘ma�‘0m0 i, equivalently, the BipoSH coefficients ALM
‘‘0 , are then related to the generalized BipoSH

brightness fluctuation terms at present. We study the evolution of �LM
‘1‘2

ðk; �Þ from nonzero terms

�LM
‘3‘4

ðk; �sÞ at last scattering, in the free-streaming regime. We show that the terms with given BipoSH

multipole LM evolve independently. Moreover, similar to the SI case, power at small spherical harmonic

(SH) multipoles of �LM
‘3‘4

ðk; �sÞ at the last scattering is transferred to �LM
‘1‘2

ðk; �Þ at larger SH multipoles.

The structural similarity is more apparent in the asymptotic expression for large values of the final SH

multipoles. This formalism allows an elegant identification of any SI violation observed today to a

possible origin in SI violating physics present in the baryon-photon fluid. This is illustrated for the known

result of SI violating angular correlations due to the presence of a homogeneous magnetic field in the

baryon-photon fluid.
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I. INTRODUCTION

The cosmic microwave background (CMB) anisotropy
is a very powerful observational probe of cosmology. In
standard cosmology, the CMB anisotropy signal is
expected to be statistically isotropic, i.e., statistical expec-
tation values of the temperature fluctuations �Tðn̂Þ ¼P

‘ma‘mY‘mðn̂Þ are preserved under rotations of the sky.
The condition for statistical isotropy (SI), in spherical
harmonic space translates to a diagonal ha‘ma�‘0m0 i ¼
C‘�‘‘0�mm0 , where C‘ is the widely used angular power
spectrum of the CMB anisotropy.

After the release of first year data of the Wilkinson
Microwave Anisotropy Probe (WMAP), statistical isotropy
of the CMB anisotropy attracted considerable attention.
The study of full sky maps from the WMAP 5 yr data
[1–3] and the very recent WMAP 7 yr data [4] has led to
some intriguing anomalies which seem to suggest that
the assumption of statistical isotropy is broken on the
largest angular scales [5–9]. Broken isotropy would have
profound implications for the standard cosmological
model as statistical isotropy underlies all cosmological
inferences.

It was pointed out that the suppression of power in the
quadrupole and octopole are aligned in the form of the ‘‘
axis of evil’’ [10–14]. Further ‘‘multipole-vector’’ direc-
tions associated with these multipoles (and some other low
multipoles as well) appear to be anomalously correlated
[6,15,16]. There are indications of asymmetry in the power
spectrum at low multipoles in opposite hemispheres, the
‘‘north-south asymmetry’’ [7,8,17–19]. Possibly related,
are the results of tests of Gaussianity that show asymmetry
in the amplitude of the measured genus amplitude (at about
2 to 3� significance) between the north and south galactic
hemispheres [20–22]. Analysis of the distribution of ex-
trema in WMAP sky maps has indicated non-Gaussianity,
and to some extent violation of SI [23].
An observed map of CMB anisotropy �Tðn̂Þobs contains

the true CMB temperature �Tðn̂Þ fluctuations, convolved
with the beam and instrumental noise and foreground
contaminations. Breakdown of statistical isotropy can oc-
cur in any of these parts and can be categorized as
(i) Theoretically motivated effects which are intrinsic to

the true CMB sky, �Tðn̂Þ include nontrivial cosmic
topology [24,25], Bianchi models [26–29], and pri-
mordial magnetic fields [30,31]. A recent article [32]
claims that the solution to the cosmological vacuum
energy can be explained as a result of the interaction
of the infrared sector of the effective theory of
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gravity with standard model fields. This theory pre-
dicts the violation of cosmological isotropy.

(ii) Although a possible source of SI breakdown, resid-
ual foreground contamination would need to be of
the order of the intrinsic CMB temperature anisot-
ropy to account for an appreciable effect [33–35].

(iii) It would be erroneous to assume that the true CMB
temperature fluctuations are completely extracted
from the observed map. Observational artifacts
such as noncircular beam, inhomogeneous noise
correlation, and residual striping patterns could be
potential sources of SI breakdown.

Violation of statistical isotropy of CMB anisotropy and
its measurement has been discussed in the literature earlier
[36–41] by defining an estimator where SI breakdown in an
observed CMB anisotropy sky map is indicated by the
nonzero value of this estimator. Studies have also been
done by implementing a directional dependent inflationary

power spectrum Pð ~kÞ which gives rise to off-diagonal
terms in the covariance matrix [42,43]; spontaneous break-
down of SI in the CMB by a nonlinear response to long-
wavelength field fluctuations that appear as a gradient
locally to the observer [44] or locally through a modulation
field [45]; incorporating an initial period of kinetic energy
domination in single field inflation [46]. Deviation from SI
in the CMB has also been studied as a direct consequence
of breakdown of homogeneity and isotropy of the infla-
tionary background from quasiclassical perturbations per-
manently generated at early stages of inflation [47,48].

In this paper we present a new formulation that relates
the breakdown of SI in the CMB photon fluctuations at last
scattering, and evolving them to find the effect of the
modes at present epoch, hence, the CMB ha‘ma‘0m0 i today.
We also find the bipolar spherical harmonic coefficients
(BipoSH) [39,40] which are linear combinations of off-
diagonal elements of the covariance matrix. BipoSH ex-
pansion completely represents the information of the co-
variance matrix thus being the most general way of
studying two point correlation functions of CMB anisot-
ropy. These BipoSH coefficients are mathematically com-
plete measures of SI violation on a sphere.

II. REVIEWOF STATISTICALLY ISOTROPIC CMB
BRIGHTNESS FLUCTUATIONS

A. Boltzmann equations, inhomogeneities, and
anisotropies

In the smooth background universe, thermalized photons
being distributed homogeneously and isotropically, the
temperature T is independent of ~x and direction of propa-
gation p̂, respectively. To describe perturbations about this
smooth universe, we allow inhomogeneities in the photon
distribution and anisotropies.

Before recombination, zrec � 1100, the photons were
tightly coupled to the electrons and protons; all together
they can be described as a single fluid, the baryon-photon

fluid. After recombination, photons free-stream from the
surface of last scattering to the present epoch.
Given the cosmological perturbations to the photons at

recombination, one can predict the anisotropy spectrum
today. The main motivation next is to relate the moments
today to the moments at recombination using the photon
distribution function.

B. Fluctuations of CMB photon distribution

In the Boltzmann equation for photons df=dt ¼ C½f�,
we expand the photon distribution function fð ~x; p; n̂; �Þ
about its zero-order Bose-Einstein value Tð�Þ [49], where
~p ¼ pn̂. The distribution function of the photons changes
with the perturbed temperature as

fð ~x; p; n̂; �Þ ¼
�
exp

�
p

Tð�Þ½1þ �ð ~x; n̂; �Þ�
�
� 1

��1
: (1)

The perturbation to the distribution function is character-
ized by � � �T=T termed as CMB brightness fluctuations
henceforth. Since the perturbation � is small, we can
expand fð ~x; p; n̂; �Þ keeping only terms up to first order
to get

�ð ~x; n̂; �Þ �
�
@f0

@ lnp

��1
�f; (2)

where f0 is the zero-order photon distribution function.
�ð ~x; n̂; �Þ depends on ~x, n̂, and � and not on the magnitude
of momentum p; this is a valid assumption since the
temperature of the plasma is very small compared to the
rest energy of the electrons which undergo scattering,
elastic Thomson scattering has a negligible effect on the
magnitude of the photon momentum.
Perturbations to the CMB remain small at all cosmo-

logical epochs; evolution of the largest scales being in the
linear regime. In solving the linear evolution equations, it
is simplest to work with Fourier transforms since every
Fourier mode evolves independently:

�ð ~x; n̂; �Þ ¼
Z d3k

ð2�Þ3 e
i ~k� ~x ~�ð ~k; n̂; �Þ�ð ~kÞ; (3)

where �ð ~kÞ is the primordial density fluctuations.
With statistical isotropy assumption,

~�ð ~k; n̂; �Þ ¼ ~�ðk; k̂ � n̂; �Þ
¼ X

‘

ð�iÞ‘ð2‘þ 1Þ~�‘ðk; �ÞP‘ðk̂ � n̂Þ

¼ 4�
X
‘m

ð�iÞ‘ ~�‘ðk; �ÞY‘mðk̂ÞY‘mðn̂Þ: (4)

~�‘ðk; �Þ are the moments of the CMB brightness fluctua-

tion. The monopole ~�0 is related to the density perturba-

tions while the dipole ~�1 / n̂ � ~v gives the velocity term
for baryons.
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C. Correlations

The observed anisotropy in multipole space can be
written in terms of the CMB brightness fluctuation as

�ð ~x ¼ 0; n̂; �Þ ¼ X
‘m

a‘mY‘mðn̂Þ: (5)

Using the orthonormality property of the spherical har-
monics Y‘m, the spherical harmonic (SH) coefficients a‘m
become

a‘m ¼ 4�ð�iÞ‘
Z d3k

ð2�Þ3 �ð ~kÞ~�‘ðk; �ÞY�
‘mðk̂Þ: (6)

The angular correlation can be expressed as

ha‘ma�‘0m0 i ¼ 4�
Z dk

k

k3P0ðkÞ
2�2

j�‘ðk; �Þj2�‘‘0�mm0

C‘ ¼ 4�
Z dk

k
P 0ðkÞj�‘ðk; �Þj2; (7)

where correlation of the primordial density fluc-

tuations h�ð ~kÞ��ð ~k0Þi ¼ P0ðkÞ�ð ~k� ~k0Þ and P 0ðkÞ ¼
k3P0ðkÞ=2�2 is the primordial power spectrum per loga-
rithmic interval generated by the inflationary model and
the second term is the radiative transport kernel in the post-
recombination universe given by cosmological parameters.

D. Evolution of CMB brightness fluctuation in the
free-streaming regime

The evolution of ~�ð ~k; n̂; �Þ in the free-streaming regime
can be written as

~�ð ~k; n̂; �Þ ¼ ei
~k�n̂ð���sÞ ~�ð ~k; n̂; �sÞ; (8)

where � is well inside the free-streaming regime, i.e. �s <
� < �0, �s and �0 being the conformal time at last scatter-
ing and today, respectively [50].

Using the expansion

ei
~k�n̂�� ¼ X

l

ð�iÞlð2lþ 1Þjlðk��ÞPlðk̂ � n̂Þ; (9)

and defining �� ¼ �� �s, the evolution equation for
~�‘ðk; �Þ can be written as

~� ‘ðk; �Þ ¼
X
l‘0
ð�iÞ‘þ‘0�lð2‘0 þ 1Þjlðk��Þ

� ½Cl0
‘0‘00�2 ~�‘0 ðk; �sÞ: (10)

jlðk��Þ and Plðk̂ � n̂Þ are the ‘th order spherical Bessel
function and Legendre polynomial, respectively. Equa-
tion (10) is the well-known ‘‘free-streaming ’’ equation
in CMB literature [50]. CLM‘1m1‘2m2

are the Clebsch-Gordan

coefficient which satisfies the triangle inequalities [51]
putting a constraint j‘1 � ‘2j � L � ‘1 þ ‘2 and m1 þ
m2 ¼ M.

III. STATISTICAL ISOTROPY BREAKDOWN IN
THE CMB BRIGHTNESS FLUCTUATION

In this paper we take into account the SI violation of the
CMB anisotropy which is seeded due to the inherent SI
breakdown in the CMB photon distribution. We consider
the general form of the CMB brightness fluctuation, allow-

ing for anisotropy in k̂, i.e., ~�ð ~k; n̂; �Þ 6�~�ðk; k̂ � n̂; �Þ.

A. Generalized CMB brightness fluctuations

The most general CMB brightness fluctuation is not

simply a function of j ~kj and k̂ � n̂. In this case the physical
situation of anisotropic fluctuations demands the bright-
ness fluctuations to be expanded in bipolar spherical har-
monic series (not just a Legendre series as in the statistical
isotropic case). The brightness fluctuation in multipole

space is �LM
‘1‘2

ð ~k; �Þ, where the L > 0 term incorporates

deviation from statistical isotropy:

~�ð ~k; n̂; �Þ ¼ 4�
X

‘1‘2LM

ðiÞð‘1þ‘2Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1 þ ‘2 þ 1

p
~�LM
‘1‘2

ðk; �Þ

� fY‘1ðk̂Þ 	 Y‘2ðn̂ÞgLM
¼ 4�

X
‘1‘2LM

�‘1‘2
~�LM
‘1‘2

ðk; �ÞfY‘1ðk̂Þ 	 Y‘2ðn̂ÞgLM;

(11)

where �‘1‘2 ¼ ðiÞð‘1þ‘2Þ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1 þ ‘2 þ 1

p
has been defined

for convenient notational simplicity.
The tensor product in the BipoSH function is defined as

fY‘1ðk̂Þ 	 Y‘2ðn̂ÞgLM ¼ X
m1m2

CLM‘1m1‘2m2
Y‘1m1

ðk̂ÞY‘2m2
ðn̂Þ:

The prefactors in Eq. (11) are the normalization terms
associated with the CMB brightness fluctuation. The devi-
ations from statistical isotropy are associated with nonzero
values of L, L > 0. To check for the statistical isotropy
limit, i.e. L ¼ 0 and M ¼ 0, we use Eq. (8.5.1) from [51],

C 00
‘1m1‘2m2

¼ ð�1Þ‘1�m1
�‘1‘2�m1�m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘1 þ 1
p ; (12)

to recover Eq. (4) in Sec. II B.

B. Angular correlations

Starting with Eq. (5) and the Fourier transform relation
from Eq. (3), the SH coefficients a‘m for the general case
are

a‘m ¼ 4�
Z d3k

ð2�Þ3 �ð ~kÞ X
‘1m1LM

�‘1‘
~�LM
‘1‘

ðk; �Þ

� CLM‘1m1‘m
Y‘1m1

ðk̂Þ: (13)

The angular correlations turn out to be
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ha‘ma�‘0m0 i ¼ ð4�Þ2
ZZ d3k

ð2�Þ3
d3k0

ð2�Þ3 h�ð ~kÞ��ð ~k0Þi X
‘1m1LM

X
‘2m2L

0M0
�‘1‘�

�
‘2‘

0CLM‘1m1‘m
CL

0M0
‘2m2‘

0m0Y‘1m1
ðk̂ÞY�

‘2m2
ðk̂0Þ~�LM

‘1‘
ðk; �Þ

� ½~�L0M0
‘2‘

0 ðk0; �Þ��: (14)

The most general power spectrum (under statistical homo-
geneity) depends on the direction k̂,

h�ð ~kÞ��ð ~k0Þi ¼ Pð ~kÞ�ð ~k� ~k0Þ: (15)

Further, it is useful to parametrize the directional depen-
dence of k̂ in Pð ~kÞ as [43]

Pð ~kÞ ¼ P0ðkÞ
�
1þX

l>0

Xl
m¼�l

glmðkÞYlmðk̂Þ
�
; (16)

where the first term with l ¼ 0 represents the statistical
homogeneous and isotropic primordial power spectrum.

For a directional dependent power spectrum, the angular
correlations of temperature anisotropy can be written as

ha‘ma�‘0m0 i ¼ 4�
Z k2dk

2�2
P0ðkÞ

X
‘1m1LML0M0

½D1
~�LM
‘1‘

ðk; �Þ

� ½~�L0M0
‘1‘

0 ðk; �Þ�� þ X
‘2m2lm

D2glmðkÞ~�LM
‘1‘

ðk; �Þ

� ½~�L0M0
‘2‘

0 ðk; �Þ��Y‘2m2

‘1m1;lm
�; (17)

where

D1 ¼ �‘1‘�
�
‘1‘

0CLM‘1m1‘m
CL

0M0
‘1m1‘

0m0 ;

D2 ¼ �‘1‘�
�
‘2‘

0CLM‘1m1‘m
CL

0M0
‘2m2‘

0m0 ;

Y‘2m2

‘1m1;lm
¼

Z
d�k̂Y‘1m1

ðkÞY�
‘2m2

ðkÞYlmðkÞ

¼ �‘1lffiffiffiffiffiffiffi
4�

p
�‘2

C‘20‘10l0
C‘2m2

‘1m1lm
;

where we have used the expression for an integral of three
spherical harmonics as in Eq. (5.9.4) from [51].

Here �‘1‘2...‘n ¼ ½ð2‘1 þ 1Þð2‘2 þ 1Þ . . . ð2‘n þ 1Þ�1=2
has been defined for convenient notational simplicity.

The case L ¼ 0 reduces Eq. (17) to that in the analysis
[43]

ha‘ma�‘0m0 i ¼ ð�1Þ‘
�‘

A00
‘‘0�‘‘0�mm0

þ ð�1Þ‘0þm0X
l;m

Alm
‘‘0C

l�m
‘m‘0m0 ; (18)

where statistical anisotropy is quantified by the BipoSH
coefficients [37,39–41], defined as a tensor product of the
spherical harmonic coefficients a‘m and a‘0m0 ,

AJN
‘‘0 ¼

X
mm0

ha‘ma�‘0m0 ið�1Þm0
CJN
‘m‘0�m0 ¼ fa‘ 	 a‘0 gJN

A00
‘‘ ¼ ð�1Þ‘�‘C‘: (19)

Here, C‘ is the usual CMB power spectrum for the SI case.

Directional dependent Pðk̂Þ [43] introduces the second
term in Eq. (18):

Alm
‘‘0 ¼

ffiffiffiffiffiffiffi
4�

p ð�iÞ‘þ‘0 �‘�‘0

�l

Z k2dk

2�2
P0ðkÞ

� glmCl0‘0‘00f~�0
‘‘ 	 ~�0

‘0‘0 g00; (20)

where a corresponding tensor product in bipolar harmonic
space for the indices L and L0 of CMB brightness fluctua-
tions is defined as

f~�L
‘1‘

	 ~�L0
‘2‘

0 gJN ¼ X
MM0

ð�1ÞM0
CJN
LML0�M0 ~�

LM
‘1‘

ðk; �Þ

� ½~�L0M0
‘2‘

0 ðk; �Þ��: (21)

In general for SI violations (L > 0), the BipoSH coef-
ficients can be expressed using the angular correlations in
Eq. (17) as shown in Appendix A as

AJN
‘‘0 ¼ ðAJN

‘‘0 Þl¼0 þ
ffiffiffiffiffiffiffi
4�

p Z k2dk

2�2
P0ðkÞ

� X
l‘1‘2LL

0
�l‘1LL

0 ð�1ÞlþL0þ‘0þ‘1�‘2�‘1‘�
�
‘2‘

0C
‘20
‘10l0

�X
m

glm
X
‘3m3

8>><
>>:

J ‘3 l

‘ L ‘1

‘0 L0 ‘2

9>>=
>>;

� CJN‘3m3lm
f~�L

‘1‘
	 ~�L0

‘2‘
0 g‘3m3

: (22)

The first term on the right-hand side of Eq. (22) is the
contribution due to statistically isotropic primordial power
spectrum, i.e. l ¼ 0 terms in Eq. (16). The second term
gives the contribution to the bipolar coefficients due to
l> 0 in Eq. (16). The term in the first braces is the Wigner-
9j symbol [51] which is related to the coefficients of trans-
formations between different coupling schemes of four
angular momenta and satisfies the triangular conditions
for the triads ðJ‘3lÞ, ð‘L‘1Þ, ð‘0L0‘2Þ, ðJ‘‘0Þ, ð‘3LL0Þ,
and ðl‘1‘2Þ.
The case for statistically isotropic brightness fluctua-

tions, i.e. L ¼ 0, reduces the BipoSH coefficients in
Eq. (22) to Eq. (20).
To evaluate the first term ðAJN

‘‘0 Þl¼0 in Eq. (22), we

consider statistically isotropic primordial perturbations
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h�ð ~kÞ��ð ~k0Þi ¼ P0ðkÞ�ð ~k� ~k0Þ and express the angular
correlations as

ha‘ma�‘0m0 i ¼ 4�
Z k2dk

2�2
P0ðkÞ

X
‘1m1LML0M0

�‘1‘�
�
‘1‘

0 ~�
LM
‘1‘

ðk;�Þ

� ½~�L0M0
‘1‘

0 ðk;�Þ��CLM‘1m1‘m
CL

0M0
‘1m1‘

0m0 : (23)

To check for the statistical isotropic case, we put L ¼ 0
and M ¼ 0 and recover Eq. (7) in Sec. II C.

As shown in detail in Appendix A, the BipoSH coeffi-
cients in Eq. (19) can be expressed using the angular
correlations in Eq. (23) for statistically isotropic primordial
perturbations as

ðAJN
‘‘0 Þl¼0 ¼ 4�

Z k2dk

2�2
P0ðkÞ

X
‘1LL

0
ð�1Þ‘1þLþL0þJ

��LL0�‘1‘�
�
‘1‘

0

(
L J L0

‘0 ‘1 ‘

)

� f~�L
‘1‘

	 ~�L0
‘1‘

0 gJN: (24)

The first term in braces is the Wigner-6j symbol which is
related to the coefficients of transformations between dif-
ferent coupling schemes of three angular momenta. These
vanish unless the triangular conditions [51] are fulfilled for
the triads ðLJL0Þ, ðL0‘0‘1Þ, ðJ‘0‘Þ, and ð‘L‘1Þ.

We consider low bipolar deviations from SI, i.e. L, L0
and J 
 ‘; ‘0; ‘1 in Eq. (24) and use the asymptotic rela-
tion for Wigner-6j functions given by Eq. (9.9.1) from [51].
We find that the asymptotic limit to these BipoSH coef-
ficients are

ðAJN
‘‘0 Þl¼0 � 4�

Z k2dk

2�2
P0ðkÞ

X
‘1LL

0
ð�1Þ‘þ‘0þ‘1þLþL0

� �LL0ffiffiffiffiffiffiffiffi
2‘1

p
�J

�‘1‘�
�
‘1‘

0CJð‘�‘0Þ
Lð‘�‘1ÞL0ð‘1�‘0Þ

� f~�L
‘1‘

	 ~�L0
‘1‘

0 gJN: (25)

For diagonal brightness fluctuations, i.e. ‘1 ¼ ‘ and ‘1 ¼
‘0, the BipoSH coefficients themselves turn out to be
diagonal in multipole space:

ðAJN
‘‘ Þl¼0 � 4�

Z k2dk

2�2
P0ðkÞ

X
LL0

ð�1ÞLþL0þ1

� �‘‘LL0

�J

CJ0
L0L00f~�L

‘‘ 	 ~�L0
‘‘gJN: (26)

IV. EVOLUTION IN THE FREE-STREAMING
REGIME

A. Generalized evolution equation

We find the moments of the CMB brightness fluctuation
to be

~�LM
‘1‘2

ðk; �Þ ¼ 1

4�

1

�‘1‘2

ZZ
d�n̂d�k̂

~�ð ~k; n̂; �Þ

� fY‘1ðk̂Þ 	 Y‘2ðn̂ÞgLM; (27)

starting with Eq. (11) and the orthonormality condition of
BipoSH,ZZ

d�n̂d�k̂fY‘1ðk̂Þ 	 Y‘2ðn̂ÞgLMfY‘3ðk̂Þ 	 Y‘4ðn̂Þg�L0M0

¼ �‘1‘3�‘2‘4�LL0�MM0 : (28)

In the free-streaming regime, using the plane wave ap-
proximation as in Eqs. (8) and (9), the most general evo-
lution equation turns out to be

~�LM
‘1‘2

ðk; �Þ ¼ 1

�‘1‘2

X
‘‘3‘4L

0M0
ð�iÞ‘�‘‘j‘ðk��Þ�‘3‘4

� X
m1m2m3m4

~�LM
‘3‘4

ðk; �sÞCLM‘1m1‘2m2
CL

0M0
‘3m3‘4m4

�
ZZ

d�n̂dk̂P‘ðk̂ � n̂ÞY�
‘1m1

ðk̂ÞY�
‘2m2

ðn̂Þ
� Y‘3m3

ðk̂ÞY‘4m4
ðn̂Þ: (29)

As shown in detail in Appendix B, this can be further
simplified to

~�LM
‘1‘2

ðk; �Þ ¼ X
‘‘3‘4

ð�iÞ‘�‘‘‘1‘4

�‘3‘4

�‘1‘2

ð�1Þ‘3þ‘4þL

� j‘ðk��Þ~�LM
‘3‘4

ðk; �sÞC‘30‘0‘10
C‘20‘0‘40

�
(
‘1 L ‘2

‘4 ‘ ‘3

)
: (30)

The generalized evolution equation thus can be expressed
so as to structurally resemble the evolution equation for the
SI case in Eq. (10):

~� LM
‘1‘2

ðk; �Þ ¼ X
‘‘3‘4

CðL; ‘; ‘1; ‘2Þj‘ðk��Þ~�LM
‘3‘4

ðk; �sÞ;

(31)

where

CðL; ‘; ‘1; ‘2Þ ¼ ð�iÞ‘�‘‘‘1‘4

�‘3‘4

�‘1‘2

ð�1Þ‘3þ‘4þL

� C‘30‘0‘10
C‘20‘0‘40

(
‘1 L ‘2

‘4 ‘ ‘3

)
: (32)

Setting L ¼ 0, M ¼ 0, we recover the statistical iso-
tropic case as in Eq. (10), Sec. II D.
The transfer of power of the statistical anisotropic terms

to higher SH multipoles ‘1 and ‘2 due to free-streaming is
illustrated in Figs. 1 and 2. Starting from a unit normalized
~�LM
‘3;‘4

ðk; �sÞ, we plot the evolution of the coefficients in

Eq. (32), CðL; ‘; ‘1; ‘2Þ with ‘1 for specific values of the
SHmultipole moments ‘3 and ‘4. We find that the values of
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‘ and ‘2 are constrained by the values of ‘1 due to the
triangular inequalities of the Clebsch-Gordan coefficients.

Figure 1 shows the evolution of these coefficients for
diagonal, unit normalized CMB brightness fluctuations,

namely ~�LM
11 ðk; �sÞ and ~�LM

22 ðk; �sÞ with L ¼ 0; 1; 2, for
possible values of ‘ and ‘2.

Figure 2 shows the evolution of the coefficients for off-

diagonal, unit normalized ~�LM
10 ðk; �sÞ and ~�LM

20 ðk; �sÞ, for
possible values of L, ‘, and ‘2. The coefficients for off-

diagonal ~�LM
‘3;‘4

ðk; �sÞ vanish for L ¼ 0, i.e. the statistical

isotropic case.

B. SI violation at large multipoles

The ability to measure violation of statistical isotropy at
low SH multipoles is largely compromised by cosmic

variance. At larger SH multipoles, the effect due to viola-
tion of SI would become prominent. The previous section
shows that power is transferred from small to large SH
multipoles during free streaming. This opens the door to
more readily measurable SI violations arising from SI
violation induced due to physical processes (e.g., presence
of magnetic fields, or other breakdown of rotational sym-
metries) in the baryon-photon plasma.
Because of the tight coupling in the baryon-photon

plasma prior to �s, primordial SI violation can be expected
to be limited to small SH multipoles. It is illuminating then
to obtain an expression for the free streaming of BipoSH
brightness fluctuations at small SH multipole moments at
the last scattering to large SH multipoles at the present

FIG. 2 (color online). Evolution of the coefficient of the
spherical Bessel functions, CðL; ‘; ‘1; ‘2Þ with multipole mo-
ment ‘1 as in Eq. (31), for nonzero off-diagonal terms of a unit
normalized ~�LM

‘3‘4
ðk; �sÞ. (a) Case 1: Plot of CðL; ‘; ‘1; ‘2Þ for

~�LM
10 ðk; �sÞ; with initial multipoles ‘3 ¼ 1, ‘4 ¼ 0, the final

multipoles being ‘ ¼ ‘2 ¼ ‘1 þ 1 (blue, solid) and ‘ ¼ ‘2 ¼
‘1 � 1 (red, dashed) respectively. The terms are nonzero only
when the index of deviation from statistical isotropy L ¼ j‘3 �
‘4j ¼ 1. (b) Case 2: Plot of CðL; ‘; ‘1; ‘2Þ for ~�LM

20 ðk; �sÞ; with
initial multipoles ‘3 ¼ 2, ‘4 ¼ 0, the final multipoles being ‘ ¼
‘2 ¼ ‘1 (blue, solid) and ‘ ¼ ‘2 ¼ ‘1 � 2 (red, dashed) respec-
tively. The terms are nonzero only when the index of deviation
from statistical isotropy L ¼ j‘3 � ‘4j ¼ 2.

FIG. 1 (color online). Evolution of the coefficient of the
spherical Bessel functions, CðL; ‘; ‘1; ‘2Þ with multipole mo-
ment ‘1 as in Eq. (31), for nonzero diagonal terms of a unit
normalized ~�LM

‘3‘4
ðk; �sÞ. (a) Case 1: Plot of CðL; ‘; ‘1; ‘2Þ for

~�LM
11 ðk; �sÞ; with initial SH multipoles ‘3 ¼ ‘4 ¼ 1, the final SH

multipoles being ‘ ¼ ‘1 � 1ð¼ ‘2 � 1Þ and the index of devia-
tion from statistical isotropy L ¼ 0 (blue, solid), L ¼ 1 (red,
dashed), and L ¼ 2 (black, dot dashed) respectively. (b) Case 2:
Plot of CðL; ‘; ‘1; ‘2Þ for ~�LM

22 ðk; �sÞ; with initial multipoles ‘3 ¼
‘4 ¼ 2, the final multipoles being ‘ ¼ ‘1ð¼ ‘2Þ and the index of
deviation from statistical isotropy L ¼ 0 (blue, solid), L ¼ 1
(red, dashed), and L ¼ 2 (black, dot dashed), respectively.
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epoch for which we essentially evaluate the asymptotic
limit of the CMB brightness fluctuations today.

In Eq. (31) we take ‘1 and ‘2 to be large compared to ‘3
and ‘4. From symmetry of Wigner-6j symbols,

�
‘1 ‘ ‘3
‘4 L ‘2

�
¼

�
‘4 L ‘3
‘1 ‘ ‘2

�
: (33)

We evaluate the asymptotic limit with arbitrary values of ‘,
‘1, ‘2, ‘3, and ‘4 using Eq. (9.9.1) from [51] as,

�
‘4 L ‘3

Rþ d Rþ e Rþ f

�
� ð�1Þ‘4þLþdþeffiffiffiffiffiffi

2‘
p

�‘3

C‘3ðd�eÞ
‘4ðf�eÞLðd�fÞ;

(34)

where R is large and

d ¼ ‘1 � R e ¼ ‘� R f ¼ ‘2 � R:

Thus for ‘1; ‘2 � ‘3; ‘4, Eq. (34) becomes

�
‘4 L ‘3
‘1 ‘ ‘2

�
� ð�1Þ‘4þLþ‘1þ‘�2Rffiffiffiffiffiffi

2‘
p

�‘3

C‘3ð‘1�‘Þ
‘4ð‘2�‘ÞLð‘1�‘2Þ:

(35)

Putting the expression for the Wigner-6j symbols from
Eq. (35), the asymptotic limit of the generalized evolution
equation (31) takes the form

~�LM
‘1‘2

ðk; �Þ ¼ X
‘‘3‘4

ð�iÞ‘ �‘‘‘1‘4ffiffiffiffiffiffi
2‘

p
�‘3

�‘3‘4

�‘1‘2

ð�1Þ‘þ‘1þ‘3j‘ðk��Þ

� ~�LM
‘3‘4

ðk; �sÞC‘30‘0‘10
C‘20‘0‘40

C‘3ð‘1�‘Þ
‘4ð‘2�‘ÞLð‘1�‘2Þ:

(36)

Equation (36) depicts how power in SI violating terms at
small SH multipoles ‘3; ‘4 at the last scattering, free-
stream to higher SH multipoles ‘1; ‘2 at the present epoch.
Note the structural similarity to Eq. (10) for the statistical
isotropic case.

It is useful to provide explicit expressions for Eq. (36) in
two particular cases, when the asymptotic moments of the
CMB brightness fluctuation contain only diagonal terms
and off-diagonal terms, respectively.

The evolution equation which involves only the diagonal
terms of the moments of the brightness fluctuation at last
scattering are

~� LM
‘1;‘1

ðk; �Þ ¼ X
‘

C1ðL; ‘; ‘1Þj‘ðk��Þ~�LM
‘1�‘;‘1�‘ðk; �sÞ;

(37)

with

C1ðL; ‘; ‘1Þ ¼
�‘‘‘1‘3ffiffiffiffiffiffi

2‘
p

�
‘1!

‘!‘3!

�
2 ð2‘Þ!ð2‘3 þ 1Þ!

ð2‘1 þ 1Þ!

� �‘3;‘1�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘3Þ!

ð2‘3 � LÞ!
ð2‘3Þ!

ð2‘3 þ Lþ 1Þ!

s
;

(38)

where ‘; ‘1 � j‘1 � ‘j. The details are given in
Appendix C. The term under the square root captures the
L dependence of the free streaming of L > 0 terms.
The evolution equation which involves only the off-

diagonal terms of the moments of the brightness fluctua-
tion at last scattering are

~�LM
‘1;‘2

ðk; �Þ ¼ X
‘

C2ð‘; ‘1; ‘2Þj‘ðk��Þ~�LM
‘1�‘;‘2�‘ðk; �sÞ

� �L;‘1�‘2 ; (39)

with

C2ð‘; ‘1; ‘2Þ ¼ ð�1Þð‘1þ‘2Þ=2ffiffiffiffiffiffi
2‘

p �‘‘‘1‘2

�‘1�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1 þ ‘2 � 2‘þ 1

‘1 þ ‘2 þ 1

s

� ð2‘Þ!‘1!‘2!
ð‘!Þ2ð‘1 � ‘Þ!ð‘2 � ‘Þ!

�
�ð2‘1 � 2‘þ 1Þ!ð2‘2 � 2‘þ 1Þ!

ð2‘1 þ 1Þ!ð2‘2 þ 1Þ!
�
1=2

;

(40)

where ‘; ‘n � j‘n � ‘j; L with n ¼ 1, 2. The details are
given in Appendix C. As in Eq. (38), the term under the
square root captures the L dependence of the free-
streaming of L > 0 terms.

C. SI violating physical effects at last scattering

The patterns of the CMB temperature field, i.e. the
angular correlations observed today, are traced back to
inhomogeneities at the last scattering surface. In the tight
coupling regime of the baryon-photon fluid, one expects

power only at small SH multipoles of the ~�LM
‘1‘2

ðk; �sÞ. The
generalized evolution equation of the CMB brightness
fluctuations (29) free-streams this power at small SHmulti-
poles in both SI and non-SI moments with the same bipolar
moment L, retaining j‘1 � ‘2j. Any observed violation of
SI today is easier to interpret as generalized moments
arising due to simple physics just beyond the fluid approxi-
mation regime. In this section, we illustrate this point
explicitly for SI violation in the CMB anisotropy in the
presence of a homogeneous magnetic field at last
scattering.
The SH coefficients a‘m can be expressed in terms of

the CMB brightness fluctuations at last scattering using
Eq. (13) and the generalized evolution equation (31) as
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a‘m ¼ 4�
Z d3k

ð2�Þ3 �ð ~kÞ X
‘1m1LM

�‘1‘C
LM
‘1m1‘m

Y‘1m1
ðk̂Þ

� X
‘2‘3‘4

CðL; ‘2; ‘1; ‘Þj‘2ðk��Þ~�LM
‘3‘4

ðk; �sÞ; (41)

where CðL; ‘2; ‘1; ‘Þ is defined in Eq. (32).
Hence, in general ha‘ma‘0m0 i correlations measured at

present are related to h~�LM
‘1‘2

ðk; �sÞ~�L0M0
‘3‘4

ðk; �sÞi correlation
between the generalized Boltzmann fluctuations at the last
scattering surface.

In particular, SI violation encoded in the off-diagonal
correlation ha‘ma‘0m0 i (and nonzero BipoSH ALM

‘‘0 , L > 0) is

related as

AJN
‘‘0 � f~�L

‘1‘
ðk; �sÞ 	 ~�L0

‘2‘
0 ðk; �sÞgJN (42)

as in Eqs. (24)–(26) or more generally for different bipolar
coefficients J0 and N0 as in Eq. (22) when the power
spectrum is also anisotropic.

Using Eq. (11), correlations of the CMB brightness
fluctuations are

h�ð ~k; n̂; �sÞ�ð ~k; n̂0; �sÞi
¼ ð4�Þ2 X

‘1‘2LM

X
‘3‘4L

0M0
�‘1‘2�‘3‘4

~�LM
‘1‘2

ðk; �sÞ

� ~�L0M0
‘3‘4

ðk; �sÞfY‘1ðk̂Þ 	 Y‘2ðn̂ÞgLMfY‘3ðk̂Þ 	 Y‘4ðn̂0ÞgL0M0 :

(43)

We illustrate the generality and power of our formalism
using the case for a uniform magnetic field. We show the
correlations of the CMB brightness fluctuations in this
particular case are sourced by the bipolar dipole (L ¼ 1)
terms of Eq. (11) with ‘1 ¼ ‘2 ¼ 1, where

�ð ~k; n̂; �sÞ ¼ 4�i
ffiffiffi
3

p X
M

~�1M
11 ðk; �sÞfY1ðk̂Þ 	 Y1ðn̂Þg1M

¼ 3i

ffiffiffi
3

2

s X
M

~�1M
11 ðk; �sÞðk̂� n̂ÞM; (44)

with M ¼ f�1; 0;þ1g. Here ðk̂� n̂ÞM is the usual cross
product written as irreducible products of the rotation
group [51].

Using standard vector identity [51] and Eq. (8),

ðn̂ � n̂0Þðk̂ � k̂Þ � ðn̂ � k̂Þðn̂0 � k̂Þ ¼ ðn̂� k̂Þ � ðn̂0 � k̂Þ; (45)

the temperature correlations in the presence of a uniform
magnetic field as discussed in [30] [see Eq. (A3)] are given
by

h�ð ~k; n̂; �sÞ�ð ~k; n̂0; �sÞi / ~�1M
11 ðk; �sÞ~�1M0

11 ðk; �sÞ
� ðn̂� k̂Þ � ðn̂0 � k̂Þ: (46)

Here the bipolar dipole terms of the CMB brightness

fluctuation ~�1M
11 ðk; �sÞ~�1M0

11 ðk; �sÞ in Eq. (44) encapsulates
the source term due to the presence of a uniform magnetic
field [30].

In Eq. (41), the bipolar dipole terms ~�1M
11 ðk; �sÞ give rise

to SH coefficients:

a‘m ¼ 4�
Z d3k

ð2�Þ3 �ð ~kÞX
m1M

~�1M
11 ðk; �sÞ

� �M;mþm1
½fð� � �ÞY‘�2m1

ðk̂Þ
þ ð� � �ÞY‘m1

ðk̂Þgj‘�1ðk��Þ þ fð� � �ÞY‘m1
ðk̂Þ

þ ð� � �ÞY‘þ2m1
ðk̂Þgj‘þ1ðk��Þ�: (47)

The angular correlations in this case turn out to be

ha‘ma�‘0m0 i ¼ ð� � �Þ�‘0‘�mm0 þ ð� � �Þ�‘0‘
2�mm0 : (48)

It is interesting to note that the known diagonal (‘0 ¼ ‘)
and off-diagonal (‘0 ¼ ‘
 2) correlations in the presence
of a homogeneous magnetic field [25,30,31], can be easily
recovered in our approach. Work is in progress to relate
other cases of SI violation originating in the physics at the
last scattering surface using this formalism.

V. CONCLUSIONS

The search for subtle statistical isotropy breakdown in
the universe is highly motivated by numerous theoretical
scenarios. The fluctuations in the cosmic microwave back-
ground are arguably the most promising observational
probe of the SI of the universe. The violation of SI could
have its origin not only in the anisotropic primordial power
spectrum, but also in the SI violation in the fluctuations of
the baryon-photon fluid at last scattering. SI deviations
generated by a general form of anisotropic primordial
power spectrum for isotropic Boltzmann functions have
been studied in the recent literature [43]. This paper in-
cludes this equally important possibility of a general SI
breakdown in the CMB photon distribution function. We
study the generalized case of SI violation in terms of
bipolar spherical harmonic (BipoSH) brightness fluctua-
tions, substantially extending the scope of origin of SI
violation solely from the anisotropic primordial power
spectrum.
The breakdown of SI in the CMB brightness fluctuation

results in off-diagonal terms in the SH space angular
correlations ha‘ma‘0m0 i, or, equivalently, in the coefficients
of the bipolar spherical harmonic (BipoSH) representation
[39,40]. We relate the measurable BipoSH coefficients to
SI deviations in the baryon-photon fluid as well as the
primordial power spectrum. The observable BipoSH coef-
ficients can be compactly expressed in terms of BipoSH
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brightness fluctuations terms through products of standard
Clebsch-Gordan coefficients and a Wigner-9j function. We
also present the expression for the simpler case of an
isotropic primordial power spectrum, where the BipoSH
coefficients turn out to be given through a compact combi-
nation of a Wigner-6j symbol and a Clebsch-Gordan coef-
ficient. We also provide the large SH multipole limit for
these coefficients for the terms encoding deviations from
SI at low BipoSH multipoles.

We obtain the generalized free-stream evolution equa-
tion for the SI violation encoded in terms of the BipoSH
brightness fluctuations introduced in our work. We dem-
onstrate that different modes of BipoSH brightness fluctu-
ations at the present epoch have to evolve from same
bipolar modes at the last scattering. The moments of the

CMB brightness fluctuations ~�LM
‘3‘4

ðk̂; �sÞ at last scattering
are expected to be nonzero at small values of SH multi-
poles ‘3 and ‘4 due to tight coupling. However, our results
show that the power in these SI violating terms at low SH
multipoles would be transferred during free-stream evolu-

tion to higher multipoles ‘1 and ‘2 in ~�LM
‘1‘2

ðk̂; �Þ at the
present epoch, retaining LM and j‘3 � ‘4j. This is akin to
the well-known free-streaming evolution of power in the SI
brightness fluctuation at low SH multipole power at last
scattering to large SH multipole at present. For clearly
highlighting the structural similarity, we present the evo-
lution of BipoSH brightness fluctuations in the asymptotic
case of large values of the final SH multipoles today
relative to the initial SH multipoles at last scattering.

While much of the claimed observational evidence of SI
breakdown, such as the ‘‘axis of evil,’’ ‘‘north-south asym-
metry,’’ etc., pertains to relatively small values of the SH
multipoles, the significance is largely obscured by domi-
nance of cosmic variance. However, SI violation at small
SH multipoles in the baryon-photon plasma at last scatter-
ing would free-stream to large SH multipoles at present
and, consequently, would be easier to establish from CMB
observations. A program of study to relate the BipoSH
brightness fluctuations in the baryon-photon fluid for dif-
ferent physical scenarios is currently underway. We have
used our formalism to represent and match the well-known
case for SI violation in the presence of a homogeneous
magnetic field. We illustrate how the angular correlations
in such a case could be seeded by the dipole term of the
generalized CMB brightness fluctuation and would have
diagonal (‘0 ¼ ‘) and off-diagonal (‘0 ¼ ‘
 2) terms.

In summary, our work strongly motivates closer study of
all possible SI violating phenomena and scenarios in the
simple baryon-photon plasma, since these could poten-
tially provide more readily observable signature of SI
violation in the universe. It is also encouraging that it
may have observational implications in light of the recent
WMAP-7 discovery [4]. Since, the quadrupolar anisotropy
anomaly with nonzero BipoSH coefficients related as
A2M
‘‘ ��2A2M

‘�2‘ rules out an origin in anisotropic power

spectrum, this may well be related to SI violations in the
CMB brightness fluctuations. This possibility is also bol-
stered by the fact that the non-SI effect peaks at acoustic
l� 200 scales pointing to some nontrivial physics at the
last scattering surface. Extension of this formalism to CMB
polarization should be readily possible. The formalism and
the initial conclusions are important and timely in light of
higher precision and resolution CMB anisotropy and po-
larization data expected in the near future, in particular,
from the ongoing Planck Surveyor CMB mission.

APPENDIX A: BIPOLAR COEFFICIENTS FOR SI
DEVIATIONS

The BipoSH coefficients are defined in Eq. (19). For a
directional dependent primordial power spectrum as in
Eq. (16), these bipolar coefficients can be evaluated using
the angular correlations in Eq. (17) in the following way:

AJN
‘‘0 ¼ ðAJN

‘‘0 Þl¼0 þ
ffiffiffiffiffiffiffi
4�

p Z k2dk

2�2
P0ðkÞ

X
l‘1‘2LL

0

�‘1‘3

�‘2

� �‘1‘�
�
‘2‘

0C
‘20
‘10l0

X
m

glm
X
MM0

~�LM
‘1‘

ðk; �Þ½~�L0M0
‘2‘

0 ðk; �Þ��

� X
m1m2mm0

ð�1Þm0
CLM‘1m1‘m

CL
0M0

‘2m2‘
0m0CJN‘m‘0�m0C

‘2m2

‘1m1lm
:

(A1)

We use the following symmetry properties of the Clebsch-
Gordan coefficients in Eq. (8.4.10) from [51],

C ‘2m2

‘1m1ln
¼ ð�1Þlþ‘1�‘2C‘2�m2

‘1�m1l�m

¼ ð�1Þ‘1�‘2
�‘2

�‘1

ð�1ÞmC‘1m1

‘2m2l�m
(A2)

and

C JN
‘m‘0�m0 ¼ ð�1Þ‘0�m0 �J

�‘

C‘m‘0m0JN; (A3)

where �‘1‘2...‘n ¼ ½ð2‘1 þ 1Þð2‘2 þ 1Þ . . . ð2‘n þ 1Þ�1=2
has been defined for convenient notational simplicity. We
use the formula for summation of the product of four
Clebsch-Gordan coefficients given in Eq. (8.7.26) from
[51]:

X
m1m2mm0

CLM‘1m1‘m
CL

0M0
‘2m2‘

0m0C‘m‘0m0JNC
‘1m1

‘2m2l�m

¼ X
‘3m3

�‘‘1L
0‘3C

‘3m3

L0M0JNC
LM
L0M0‘3m3

8><
>:

L ‘1 ‘
L0 ‘2 ‘0
‘3 l J

9>=
>;: (A4)

The bipolar coefficients in Eq. (A1) simplify to
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AJN
‘‘0 ¼ ðAJN

‘‘0 Þl¼0 þ
ffiffiffiffiffiffiffi
4�

p Z k2dk

2�2
P0ðkÞ

X
l‘1‘2LL

0
�l‘1LL

0 ð�1ÞlþL0þ‘0þ‘1�‘2�‘1‘�
�
‘2‘

0C
‘20
‘10l0

X
l

glm
X
‘3m3

8>><
>>:

J ‘3 l

‘ L ‘1

‘0 L0 ‘2

9>>=
>>;

� CJN‘3m3lm
f~�L

‘1‘
	 ~�L0

‘2‘
0 g‘3m3

: (A5)

f~�L
‘1‘

	 ~�L0
‘1‘

0 gJN are the bipolar products in L and L0 as defined in Eq. (21).
For statistically isotropic primordial perturbations, the angular correlation in Eq. (23) can be written in terms of bipolar

coefficients as

ðAJN
‘‘0 Þl¼0 ¼ 4�

Z k2dk

2�2
P0ðkÞ

X
‘1LL

0
�‘1‘�

�
‘1‘

0
X
MM0

~�LM
‘1‘

ðk; �Þ½~�L0M0
‘1‘

0 ðk; �Þ�� X
m1mm0

ð�1Þm0
CJN
‘m‘0�m0CLM‘1m1‘m

CL
0M0

‘1m1‘
0m0 : (A6)

The summation in the above equation can be simplified using Eq. (8.7.17) from [51] as follows:

X
m1mm0

ð�1Þm0
CJN
‘m‘0�m0CLM‘1m1‘m

CL
0M0

‘1m1‘
0m0 ¼ ð�1Þ‘1þLþJ�L0JCLML0M0JN

�
‘0 ‘1 L0
L J ‘

�

¼ ð�1Þ‘1þLþJ�L0Jð�1ÞL0�M0 �L

�J

CJN
LML0�M0

�
L J L0
‘0 ‘1 ‘

�

¼ ð�1Þ‘1þLþL0þJ�LL0 ð�1ÞM0
CJN
LML0�M0

�
L J L0
‘0 ‘1 ‘

�
: (A7)

Thus the BipoSH coefficient can be simplified to

ðAJN
‘‘0 Þl¼0 ¼ 4�

Z k2dk

2�2
P0ðkÞ

X
‘1LL

0
ð�1Þ‘1þLþL0þJ�LL0�‘1‘�

�
‘1‘

0

(
L J L0

‘0 ‘1 ‘

)X
MM0

~�LM
‘1‘

ðk; �Þ½~�L0M0
‘1‘

0 ðk; �Þ��ð�1ÞM0
CJN
LML0�M0

¼ 4�
Z k2dk

2�2
P0ðkÞ

X
‘1LL

0
ð�1Þ‘1þLþL0þJ�LL0�‘1‘�

�
‘1‘

0

(
L J L0

‘0 ‘1 ‘

)
f~�L

‘1‘
	 ~�L0

‘1‘
0 gJN; (A8)

where symmetry properties of the Clebsch-Gordan coefficients, Eqs. (8.4.10) in [51] has been used. To consider low
bipolar deviations from statistical isotropy, i.e. ðL; L0; J 
 ‘; ‘0; ‘1Þ, we use the asymptotic relation for the Wigner-6j
function as given in Eq. (9.9.1) from [51]:�

L J L0
‘0 ‘1 ‘

�
� ð�1ÞLþJþ‘0�‘1ffiffiffiffiffiffiffiffi

2‘1
p

�L0
CL

0ð‘0�‘1Þ
Lð‘�‘1ÞJð‘0�‘Þ �

ð�1ÞJþ‘þ‘0ffiffiffiffiffiffiffiffi
2‘1

p
�J

CJð‘�‘0Þ
Lð‘�‘1ÞL0ð‘1�‘0Þ: (A9)

Using the above relation, the asymptotic limit to the BipoSH coefficients turn out to be

ðAJN
‘‘0 Þl¼0 � 4�

Z k2dk

2�2
P0ðkÞ

X
‘1LL

0
ð�1Þ‘þ‘0þ‘1þLþL0 �LL0ffiffiffiffiffiffiffiffi

2‘1
p

�J

�‘1‘�
�
‘1‘

0CJð‘�‘0Þ
Lð‘�‘1ÞL0ð‘1�‘0Þf~�L

‘1‘
	 ~�L0

‘1‘
0 gJN: (A10)

APPENDIX B: GENERALIZED EVOLUTION EQUATION FOR STATISTICAL ISOTROPY BREAKDOWN

Starting with Eq. (29), expanding P‘ðk̂ � n̂Þ ¼ 4�
2‘þ1

P
mY

�
‘mðk̂ÞY‘mðn̂Þ and evaluating the double integral using the

equation

Z
d�n̂Y‘mðn̂ÞY‘1m1

ðn̂ÞY‘2m2
ðn̂Þ� ¼ 1ffiffiffiffiffiffiffi

4�
p �‘‘1

�‘2

C‘20‘0‘10
C‘2m2

‘m‘1m1
; (B1)

the most general evolution equation becomes

~� LM
‘1‘2

ðk; �Þ ¼ 1

�‘1‘2

X
‘

ð�iÞ‘�2
‘j‘ðk��Þ

X
‘3‘4L

0M0
�‘3‘4

~�L0M0
‘3‘4

ðk; �sÞ
�‘1‘4

�‘2‘3

Cg; (B2)
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where

C g ¼ C‘30‘0‘10
C‘20‘0‘40

X
m1m2

CLM‘1m1‘2m2

X
m3m4

CL
0M0

‘3m3‘4m4

X
m

C‘3m3

‘m‘1m1
C‘2m2

‘m‘4m4
: (B3)

Using the summation formula for four Clebsch-Gordan coefficients given by Eq. (9.1.8) from [51],

X
mm1m2m3m4

CL
0M0

‘3m3‘4m4
C‘3m3

‘1m1‘m
CLM‘1m1‘2m2

C‘2m2

‘m‘4m4
¼ �L0L�M0Mð�1Þ‘1þ‘þ‘4þL0

�‘2‘3

�
‘1 ‘ ‘3
‘4 L0 ‘2

�
; (B4)

Equation (B2) simplifies to

~� LM
‘1‘2

ðk; �Þ ¼ X
‘‘3‘4

ð�iÞ‘�‘‘‘1‘4

�‘3‘4

�‘1‘2

ð�1Þ‘3þ‘4þLj‘ðk��Þ~�LM
‘3‘4

ðk; �sÞC‘30‘0‘10
C‘20‘0‘40

�
‘1 ‘ ‘3
‘4 L ‘2

�

¼ X
‘‘3‘4

ð�iÞ‘�‘‘‘1‘4

�‘3‘4

�‘1‘2

ð�1Þ‘3þ‘4þLj‘ðk��Þ~�LM
‘3‘4

ðk; �sÞC‘30‘0‘10
C‘20‘0‘40

�
‘1 L ‘2
‘4 ‘ ‘3

�
: (B5)

Substituting the multipole dependent coefficients as

CðL; ‘; ‘1; ‘2Þ ¼ ð�iÞ‘�‘‘‘1‘4

�‘3‘4

�‘1‘2

ð�1Þ‘3þ‘4þL

� C‘30‘0‘10
C‘20‘0‘40

(
‘1 L ‘2

‘4 ‘ ‘3

)
; (B6)

the generalized evolution equation for deviations of statis-
tical isotropy in the CMB brightness fluctuation reduces to

~� LM
‘1‘2

ðk; �Þ ¼ X
‘‘3‘4

CðL; ‘; ‘1; ‘2Þj‘ðk��Þ~�LM
‘3‘4

ðk; �sÞ:

(B7)

APPENDIX C: DIAGONAL TERMS OF THE
ASYMPTOTIC MOMENTS OF CMB BRIGHTNESS

FLUCTUATION

In Eq. (34), taking e ¼ 0, i.e. ‘ ¼ R and putting ‘1 ¼
Rþ ‘4 and ‘2 ¼ Rþ ‘3, we can write Eq. (35) as�

‘4 L ‘3
‘þ ‘4 ‘ ‘þ ‘3

�
� ð�1ÞLffiffiffiffiffiffi

2‘
p

�‘3

C‘3‘4‘4‘3Lð‘4�‘3Þ: (C1)

From the properties of the Clebsch-Gordan coefficient, we
get ‘3 ¼ ‘4 and hence ‘1 ¼ ‘2. Thus in Eq. (31) substitut-
ing ‘3 ¼ ‘1 � ‘, we get the factor

C1ðL; ‘; ‘1Þ ¼ ð�iÞ‘�2
‘�‘1�‘1�‘

�‘1�‘;‘1�‘

�‘1;‘1

ð�1ÞL

� Cð‘1�‘Þ0
‘0‘10

C‘10‘0ð‘1�‘Þ0
ð�1ÞLffiffiffiffiffiffi
2‘

p
�‘1�‘

� Cð‘1�‘Þð‘1�‘Þ
ð‘1�‘Þð‘1�‘ÞL0: (C2)

Now using Eq. (8.4.10) from [51],

Cð‘1�‘Þ0
‘0‘10

¼ ð�1Þ‘þ‘1�ð‘1�‘ÞCð‘1�‘Þ0
‘10‘0

¼ Cð‘1�‘Þ0
‘10‘0

;

C‘10‘0ð‘1�‘Þ0 ¼ ð�1Þ‘ �‘1

�‘1�‘

Cð‘1�‘Þ0
‘10‘0

: (C3)

Using Eqs. (8.5.34) and (8.5.42) from [51], we get

½Cð‘1�‘Þ0
‘10‘0

�2 ¼
�

‘1!

‘!ð‘1 � ‘Þ!
�
2 ð2‘Þ!ð2‘1 � 2‘þ 1Þ!

ð2‘1 þ 1Þ! ; (C4)

and

Cð‘1�‘Þð‘1�‘Þ
ð‘1�‘Þð‘1�‘ÞL0

¼ ð2‘1 � 2‘Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘1 � 2‘þ 1

ð2‘1 � 2‘� LÞ!ð2‘1 � 2‘þ Lþ 1Þ!

s
:

(C5)

Thus

C1ðL; ‘; ‘1Þ ¼
�2

‘�‘1�‘3ffiffiffiffiffiffi
2‘

p
�
‘1!

‘!‘3!

�
2 ð2‘Þ!ð2‘3 þ 1Þ!

ð2‘1 þ 1Þ!

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘3Þ!

ð2‘3 � LÞ!
ð2‘3Þ!

ð2‘3 þ Lþ 1Þ!

s
�‘3;‘1�‘:

(C6)

Substituting this in Eq. (31), the evolution equation be-
comes

~� LM
‘1;‘1

ðk; �Þ ¼ X
‘

C1ðL; ‘; ‘1Þj‘ðk��Þ~�LM
‘1�‘;‘1�‘ðk; �sÞ;

(C7)

where ‘, ‘1 � j‘1 � ‘j.
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APPENDIX D: OFF-DIAGONAL TERMS OF THE
ASYMPTOTIC MOMENTS OF CMB BRIGHTNESS

FLUCTUATION

In Eq. (34), with e ¼ 0, i.e. ‘ ¼ R,�
‘4 L ‘3
‘1 ‘ ‘2

�
� ð�1Þ‘4þLþ‘1�‘ffiffiffiffiffiffi

2‘
p

�‘3

C‘3ð‘1�‘Þ
‘4ð‘2�‘ÞLð‘1�‘2Þ: (D1)

From conditions of Clebsch-Gordan coefficients

j‘1 � ‘j � ‘3 j‘2 � ‘j � ‘4 j‘1 � ‘2j � L:

For off-diagonal terms of ~�LM
‘1;‘2

, we consider the minimum

nonzero values of ‘3; ‘4 and L:

‘1 � ‘ ¼ ‘3 ‘2 � ‘ ¼ ‘4 ‘1 � ‘2 ¼ L:

Thus in Eq. (31) we would get the factor

C2ð‘; ‘1; ‘2Þ ¼ ð�iÞ‘�2
‘�‘1�‘2�‘

�‘1�‘;‘2�‘

�‘1‘2

ð�1ÞLþ‘1þ‘2ffiffiffiffiffiffi
2‘

p
�‘1�‘

� Cð‘1�‘Þ0
‘0‘10

C‘20‘0ð‘2�‘Þ0C
ð‘1�‘Þð‘1�‘Þ
ð‘2�‘Þð‘2�‘ÞLL: (D2)

Now using the symmetries of Clebsch-Gordan coefficients
given by Eq. (8.5.34) from [51], we get

C ð‘1�‘Þ0
‘0‘10

¼ Cð‘1�‘Þ0
‘10‘0

¼ ð�1Þ‘‘1!
‘!ð‘1 � ‘Þ!

�ð2‘Þ!ð2‘1 � 2‘þ 1Þ!
ð2‘1 þ 1Þ!

�
1=2

: (D3)

Similarly,

C ‘20
‘0ð‘2�‘Þ0 ¼ ð�1Þ‘ �‘2

�‘2�‘

Cð‘2�‘Þ0
‘20‘0

¼ �‘2

�‘2�‘

‘2!

‘!ð‘2 � ‘Þ!

�
�ð2‘Þ!ð2‘2 � 2‘þ 1Þ!

ð2‘2 þ 1Þ!
�
1=2

: (D4)

Using Eq. (8.5.37) from [51] we get

C ð‘1�‘Þð‘1�‘Þ
ð‘2�‘Þð‘2�‘ÞLL ¼ �‘2�‘þL;‘1�‘ ¼ �‘2þL;‘1 : (D5)

Thus,

C2ð‘; ‘1; ‘2Þ ¼ ð�1Þð‘1þ‘2Þ=2ffiffiffiffiffiffi
2‘

p ð2‘Þ!‘1!‘2!
ð‘!Þ2ð‘1 � ‘Þ!ð‘2 � ‘Þ!

�
�ð2‘1 � 2‘þ 1Þ!ð2‘2 � 2‘þ 1Þ!

ð2‘1 þ 1Þ!ð2‘2 þ 1Þ!
�
1=2

��‘‘‘1‘2

�‘1�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1 þ ‘2 � 2‘þ 1

‘1 þ ‘2 þ 1

s
: (D6)

Substituting this in Eq. (31), the evolution equation be-
comes

~�LM
‘1;‘2

ðk; �Þ ¼ X
‘

C2ð‘; ‘1; ‘2Þj‘ðk��Þ~�LM
‘1�‘;‘2�‘ðk; �sÞ

� �L;‘1�‘2 ; (D7)

where ‘, ‘n � j‘n � ‘j, L with n ¼ 1; 2.
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