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Calculations of cosmological hydrogen recombination are vital for the extraction of cosmological

parameters from cosmic microwave background (CMB) observations, and for imposing constraints to

inflation and reionization. The Planck mission and future experiments will make high precision

measurements of CMB anisotropies at angular scales as small as ‘� 2500, necessitating a calculation

of recombination with fractional accuracy of� 10�3. Recent work on recombination includes two-photon

transitions from high excitation states and many radiative transfer effects. Modern recombination

calculations separately follow angular momentum sublevels of the hydrogen atom to accurately treat

nonequilibrium effects at late times (z < 900). The inclusion of extremely high-n (n * 100) states of

hydrogen is then computationally challenging, preventing until now a determination of the maximum n

needed to predict CMB anisotropy spectra with sufficient accuracy for Planck. Here, results from a new

multilevel-atom code (RECSPARSE) are presented. For the first time, ‘‘forbidden’’ quadrupole transitions

of hydrogen are included, but shown to be negligible. RECSPARSE is designed to quickly calculate

recombination histories including extremely high-n states in hydrogen. Histories for a sequence of values

as high as nmax ¼ 250 are computed, keeping track of all angular momentum sublevels and energy shells

of the hydrogen atom separately. Use of an insufficiently high nmax value (e.g., nmax ¼ 64) leads to errors

(e.g., 1:8� for Planck) in the predicted CMB power spectrum. Extrapolating errors, the resulting CMB

anisotropy spectra are converged to �0:5� at Fisher-matrix level for nmax ¼ 128, in the purely radiative

case.

DOI: 10.1103/PhysRevD.81.083005 PACS numbers: 98.70.Vc, 32.70.Cs, 32.80.Rm, 98.80.�k

I. INTRODUCTION

Measurements of cosmic microwave background
(CMB) temperature anisotropies by the Wilkinson
Microwave Anisotropy Probe (WMAP) have ushered in
the era of precision cosmology, confirming that the
Universe is spatially flat, with a matter budget dominated
by dark matter and a baryonic mass fraction �bh

2 [1] in
agreement with the measured ratio of deuterium-hydrogen
abundances (D/H) [2]. WMAP measurements of large-
scale CMB polarization also yield the optical depth � to
the surface of last scattering (SLS), meaningfully con-
straining cosmological reionization. Together with surveys
of supernovae [3,4], galaxies [5–7], and galaxy clusters [8],
WMAP measurements build the case that the Universe’s
expansion is accelerating, due to ‘‘dark energy’’ or mod-
ifications of general relativity [9,10], and constrain other
physical parameters (such as the sum of neutrino massesP

im�i
[11–13] and the effective number of massless neu-

trino species N�).
CMB temperature observations (WMAP,

BOOMERANG [14], CBI [15], and ACBAR [16]) probe
properties of the primordial density field, such as the
amplitude As, slope ns, and running �s of its power spec-
trum. These observations constrain deviations from the
adiabatic, nearly scale free and Gaussian spectrum of
perturbations predicted by the simplest models of inflation,
but also offer controversial hints of deviations from these
models (see Refs. [1,17] and references therein).

Experimental upper limits to B-mode polarization anisot-
ropies (e.g., DASI [18] and BICEP [19]) impose con-
straints to the energy density of relic primordial
gravitational waves [20,21].
The Planck satellite, launched in May 2009, will obtain

extremely precise measurements of the CMB temperature
anisotropy power spectrum (CTT

‘ ) up to ‘� 2500 and the

E-mode polarization anisotropy power spectrum (CEE
‘ ) up

to ‘� 1500 [22]. Robust measurements of the acoustic
horizon and distance to the SLS will break degeneracies in
dark energy surveys [7,22–24]. Polarization measurements
will yield the optical depth � to the SLS [22], further
constraining models of reionization and breaking the de-
generacy between ns and � [22]. Cosmological parameters
will be determined with much greater precision. More
precise values of ns and �s will be obtained from CMB
data alone, helping to robustly constrain inflationary mod-
els and alternatives to inflation [22]. The advent of Planck,
ongoing (SPT [25] and ACT [26]) experiments at small
scales, and a future space based polarization experiment
like CMBPol [27,28] require predictions of primary an-
isotropy multipole moments C‘ with Oð10�3Þ accuracy.
During atomic hydrogen (H) recombination, the

Thomson scattering opacity drops, decoupling the
baryon-photon plasma and freezing in acoustic oscilla-
tions. The phases of acoustic modes are set by the peak
location of the visibility function [29,30], while damping
scales [31,32] and the amplitude of polarization [33,34] are
set by its width. Small-scale CMB anisotropies are also
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smeared out by free electrons along the line of sight,
suppressing power on small scales so that C‘ ! C‘e

�2�,
where � is the total optical depth of this process [35]. An
accurate prediction of the time-dependent free-electron
fraction xeðzÞ from cosmological recombination is thus
essential to accurately predict CMB anisotropies.

Recent work has highlighted corrections of
�xeðzÞ=xeðzÞ * 0:1% to the standard recombination his-
tory computed by RECFAST [36]. These corrections will
propagate through to predictions of anisotropies, and ne-
glecting them would lead to biases and errors in Planck
measurements of cosmological parameters [37,38]. The
use of the CMB as a probe of the first ionizing sources
and of physics at energy scales greater than 1016 GeV thus
requires an accurate treatment of the �eV atomic physics
of recombination [39].

Direct recombination to the hydrogen ground state is
ineffective because of the high optical depth to photoioni-
zation [40,41]. Recombination proceeds indirectly, first
through recombination to a n � 2 state of H, and then by
cascades to the ground state. Because of the optical thick-
ness of the Lyman-n (Lyn) lines, the resulting radiation
may be immediately absorbed, exciting atoms into easily
ionized states.

There are two ways around this bottleneck [40,41]. In
the first, the sequence of decays from excited H levels ends
with a two-photon decay (usually 2s ! 1s). The emitted
photons may have a continuous range of energies, allowing
escape off resonance and a net recombination. In the
second, photons emitted in the np ! 1s transition redshift
off resonance due to cosmological expansion, preventing
reexcitation and yielding some net recombination. The
dominant escape channel is from the 2p ! 1s Lyman-�
line. These resonant transitions give off line radiation and
distort the CMB [42,43].

Peebles, Sunyaev, Kurt, and Zel’dovich modeled recom-
bination assuming that all net recombination resulted from
escaping the n ¼ 2 bottleneck [40,41]. This three-level-
atom (TLA) treatment included recombinations to excited
states, under the assumption of equilibrium between en-
ergy levels n and angular momentum sublevels l for all
n � 2 (note the use of l for atomic angular momentum and
‘ for CMB multipole number). This sufficed until the
multilevel-atom (MLA) model of Seager, Sasselov, and
Scott [44], which included hydrogen (H) and helium
(He), separately evolved excited states assuming equilib-
rium between different l, accurately tracked the matter/
radiation temperatures TM=TR [45,46], accounted for line
emission using the Sobolev approximation [47], and in-
cluded H2 chemistry. This treatment underlies the
RECFAST module used by most CMB anisotropy codes,
including those used for WMAP data analysis [36].

The higher precision of Planck requires new physical
effects to be considered, among them two-photon transi-
tions from higher excited states in H and He [48–52], other

forbidden and semiforbidden transitions in He [53–55],
feedback from Lyn lines [56], and corrections to the
Sobolev approximation due to a host of radiative transfer
effects in H and He resonance lines [52,57–59]. Most
recent work on recombination has focused in one way or
another on the radiative transfer problem. Here we direct
our attention to the populations of very high-n states.
One important effect is the breakdown of statistical

equilibrium between states with the same value of the
principal number n but different angular momenta l. This
effect is dramatic at late times. When l sublevels of a level
n are resolved, increases in xeðzÞ of �1% at late times
result [60,61]. This changes predicted C‘’s at a statistically
significant level for Planck. Highly excited states in hydro-
gen also change the recombination history at a level sig-
nificant for Planck. While levels as high as n ¼ 300 were
included in the treatment of Ref. [44], underlying
RECFAST, l sublevels were not resolved. It is thus important
to update cosmological recombination histories to include
high-n states of H while resolving l sublevels, in order to
predict the C‘’s as well as CMB spectral distortions from
recombination.
Simultaneously including very high n and resolving the l

sublevels is computationally expensive, taking nearly a
week on a standard workstation for nmax ¼ 100 [61], using
a conventional multilevel-atom recombination code. This
becomes prohibitively expensive for higher values of nmax,
unless considerable resources are devoted to the problem.
To date, this has prevented a determination of how xeðzÞ
converges with nmax and how high nmax must be to predict
C‘’s for Planck. The existence of electric dipole selection
rules �l ¼ �1means the relevant rate matrices are sparse,
and we have used this fact to develop a fast code,
RECSPARSE, to explore convergence with nmax. While the
computation time tcomp for standard l-resolving recombi-

nation codes scales as tcomp / n6max, with RECSPARSE the

scaling is tcomp / n�max, where 2<�< 3. With

RECSPARSE, we can calculate recombination histories for
nmax ¼ 200 in 4 days on a standard workstation; this would
likely take weeks using a conventional code. For the first
time, we have calculated recombination histories for nmax
as high as 250 with l sublevels resolved.
While previous computations have included some for-

bidden transitions, none have included optically thick elec-
tric quadrupole (E2) transitions in atomic hydrogen. We
include E2 transitions, and find that the resulting correction
to CMB anisotropies is negligible.
We find that the correction to CMB C‘’s due to ex-

tremely excited levels is 0:5� or less if nmax � 128, in
the purely radiative case. This paper is not the final word on
recombination; atomic collisions must be properly in-
cluded and the effect of levels with n > nmax must be
included to conclusively demonstrate absolute conver-
gence. The end goal of the present recombination research
program is to include all important effects in a replacement
for RECFAST, as the interplay of different effects is subtle.
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In Sec. II, we review the formalism of the MLA, and
follow by explaining how we extend the MLA to include
very high-n states (Sec. III) and electric quadrupole tran-
sitions (Sec. IV). State populations, recombination histor-
ies, and effects on the C‘’s are presented in Sec. V. We
conclude in Sec. VI.

We use the same fiducial cosmology as in Ref. [62]: total
matter density parameter �mh

2 ¼ 0:13, �bh
2 ¼ 0:022,

TCMB ¼ 2:728 K, N� ¼ 3:04, and helium mass fraction
YHe ¼ 0:24.

II. THE STANDARD MULTILEVEL ATOM

We now review the elements of the standard multilevel-
atom (MLA) treatment of cosmological recombination.
For fundamental constants, we use NIST (National
Institute of Standards and Technology) CODATA
(Committee on Data for Science and Technology) values
everywhere [63]. Unless explicitly noted otherwise, we
make the substitution me ! � ¼ memp=ðme þmpÞ in all

expressions for the Bohr radius a0 and the ground-state
hydrogen ionization potential IH to correctly account for
reduced-mass effects.

A. Basic framework

CGS units are used except where explicitly noted other-
wise. We follow the abundance xn;l ¼ �n;l=�H, where �H

is the total number density of hydrogen nuclei and �n;l is

the density of hydrogen in states with principal quantum
number n and angular momentum l (we denote the state
½n; l�). We evolve these abundances including bound-
bound and bound-free radiative, single photon, dipole tran-
sitions, as well as the 2s ! 1s two-photon transition,
which has rate �2s;1s ¼ 8:224 580 9 s�1 [64]. Focusing

on the effect of single-photon dipole processes at high
nmax, we neglect higher-n two-photon processes but note
that their effects are large enough that they must be in-
cluded in a final recombination code [48–51,53]. Note that
we also neglect collisional transitions. We comment on
how this may change our conclusions in Sec. VA1.

Bound-bound electric dipole processes are described by
the equation [40,44,51]

_x n;ljbb ¼
X

n0�n;l0¼l�1

ð�l;l0
n;n0xn0;l0 � �l0;l

n0;nxn;lÞ; (1)

with

�l;l0
n;n0 ¼

�
Al;l0
n;n0P

l;l0
n;n0 ð1þN þ

nn0 Þ if n0 > n;

Al0;l
n0;nP

l0;l
n0;nðgl=gl0 ÞN þ

n0n if n0 < n;
(2)

where Al;l0
n;n0 is the downward Einstein rate coefficient for

decays from ½n0; l0� to ½n; l� and Pl;l0
n;n0 is the probability that

a photon emitted in the ½n0; l0� ! ½n; l� line escapes the
resonance without being reabsorbed. This probability is
calculated in the Sobolev approximation, described in

Sec. II B. For lower l states easily described using the
s; p; d; f . . . orbital notation, we will sometimes use the

notation A0;1
1;n ¼ Anp;1s, P

0;1
1;n ¼ Pnp;1s, and so on to simplify

the discussion. The degeneracy of ½n; l� is gl ¼ 2ð2lþ 1Þ.
We explicitly keep track of the angular momentum quan-
tum number l, as this will simplify discussion of our
sparse-matrix technique in Sec. III B.
The photon occupation number blueward/redward of a

line transition (½n0; l0� ! ½n; l�) is denoted
N �

nn0 ¼ N ðEn;n0 � �; TRÞ; (3)

where N ðE; TRÞ is the photon occupation number at pho-
ton energy E and radiation temperature TR. Here � is an
infinitesimal line width and En;n0 is the energy of a photon

produced in the transition ½n0; l0� ! ½n; l�. The simplest
possible assumption for N ðE; TRÞ is a blackbody; we
discuss further subtleties in Sec. II B:

N ðEn;n0 ; TRÞ ¼ 1

eEn;n0=ðkTRÞ � 1
: (4)

Here k is the usual Boltzmann constant. The (1þN þ
nn0)

term accounts for stimulated and spontaneous emission.
The two-photon term is [40,44,51]

_x 2s!1sj2� ¼ � _x1s!2sj2�
¼ �2s!1s½�x2s þ x1se

�E2s;1s=ðkTRÞ�; (5)

where E2s;1s ¼ E2;1 and the second term describes two-

photon absorption with a rate coefficient obtained by re-
quiring that forward/backward rates satisfy the principle of
detailed balance.
The bound-free term is [40,44,51]

_x n;ljbf ¼
Z
½�Hx

2
e�nlðEeÞS� xn;lIðEe; TRÞ�dEe (6)

with

SðEe; TM; TRÞ ¼ ½1þN ðE�; TRÞ�PMðEe; TMÞ (7)

and

IðEe; TRÞ ¼ 	nlðEeÞN ðE�; TRÞ (8)

This integral is over the total energy Ee of a recombining
electron. The energy of a recombination photon is E� ¼
Ee � En, where En is the bound-state energy of the re-
combined electron. The recombination rate in cm3 s�1 of
such an electron to the bound state ½n; l� is �nlðEeÞ and is
discussed in Sec. III A 2. The ionization rate in s�1 is
	nlðEeÞ, and easily shown by detailed balance considera-
tions to be [51]

	nlðEeÞ ¼ �nlðEeÞ 2
7=2


ffiffiffiffiffiffiffiffiffiffiffiffi
Ee�

3
p

h3gl
: (9)

The free-electron abundance is xe ¼ �e=�H, where �e

is the free-electron density. We restrict our attention to
times after helium recombination, and so the free proton
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abundance xp ¼ xe. The net bound-free rate [Eq. (6)]

includes both spontaneous and stimulated recombination.
The electron energy distribution is a Maxwellian with
matter temperature TM:

PMðTM; EeÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee


ðkTMÞ3
s

e�Ee=ðkTMÞ: (10)

B. Radiative transfer and escape probabilities

Numerically solving the radiative transfer problem is
computationally intensive, but tremendous simplification
can be achieved with the Sobolev escape probability for-
malism, also known as the Sobolev approximation [47].
The Hubble flow can be used to define a length scale over
which the bulk flow induces a velocity change equal to the

thermal velocity: L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kTM=matom

p
=HðTRÞ, whereHðTRÞ

is the value of the Hubble expansion parameter when the
radiation has temperature TR and matom is the mass of an
atom [44]. The conditions of the Sobolev approximation
are [44,47,62] (i) L is much smaller than the typical length
scales over which cosmological quantities vary, (ii) L=c is
much smaller than the typical time scales over which
cosmological quantities vary, (iii) complete frequency dis-
tribution—the rest-frame frequency of an outgoing scat-
tered photon � does not depend on the incoming frequency
�0—and (iv) no other emission, absorption, or scattering
processes occur in the vicinity of the line. Corrections to
the Sobolev approximation result from diffusion around
resonance lines [65,66], atomic recoil [62,67], Thomson
scattering near resonances [68,69], and overlap of the
higher Ly series lines, leading to important corrections to
cosmological recombination calculations. In this work,
however, we work in the Sobolev approximation to focus
on other physical effects.

In the Sobolev approximation, the escape probability for
photons produced in the downward transition ½n0; l0� !
½n; l� is [44]

Pl;l0
n;n0 ¼

1� e
��l;l

0
n;n0

�l;l
0

n;n0
; (11)

where the Sobolev optical depth is given by

�l;l
0

n;n0 ¼
c3�H

8
H�3
n;n0

Al;l0
n;n0

�
gl0

gl
xn;l � xn0;l0

�
; (12)

with transition frequency

�n;n0 ¼ En;n0

h
¼ IH

h

�������� 1

n2
� 1

n02

��������: (13)

Correct expressions for n0 < n are obtained by reversing
arguments. During cosmological recombination, transi-

tions between excited states are optically thin (Pl;l0
n;n0 �

0:999 72) [51], and so we set Pl;l0
n;n0 ¼ 1 in our calculations

for non-Lyman lines.

Transitions in the Lyman (Ly) series (n0 > n ¼ 1, l0 ¼
1, l ¼ 0) are optically thick (�l;l

0
n;n0 � 1) [51], and so P0;1

1;n0 ’
1=�0;1

1;n0 . Ly transitions cannot, however, be ignored in the

recombination calculation, as the rate at which atoms find
their way to the ground state through the redshifting of

resonance photons, P0;1
1;n0A

0;1
1;n0 is comparable to �2s!1s and

other two-photon rates [51]. Strictly speaking, �0;1
1;n0 de-

pends on xn0;1, and so one should solve for xn0;1 and then

iteratively improve the solution. The populations of the
excited states, however, are very small and the maximum
resulting correction to the optical depth is 2� 10�12 (for
n0 ¼ 2, z ¼ 1600) [51]. We thus drop the second term in
Eq. (12), simplifying our computation by working in the
approximation where the Lyman-n (Lyn) line optical depth
depends only on the ground-state population and not on the
excited-state populations.
Another aspect of the Lyman-series lines is feedback: a

photon that escapes from the Lyn (np ! 1s) line will
redshift into the Lyðn� 1Þ line and be reabsorbed.
RECSPARSE has the ability to implement the resulting feed-
back, using the iterative technique of Ref. [70]. This slows
down the code by a factor of a few, however, and so to
efficiently focus on the nmax problem, we turned feedback
off. For the high Lyman lines, feedback is almost instan-
taneous: the Universe expands by a factor of� lna � 2n�3

during the time it takes to redshift from Lyn to Lyðn� 1Þ.
In the instantaneous-feedback limit, the Lyn lines do not
lead to a net flux of H atoms to the ground state. To
approximate this net effect we turned off Lyman transitions
with n > 3; this leads to a smaller error than would result
from leaving these transitions on but disabling feedback.
Previous tests using the code of Ref. [62] show resulting
errors in the recombination history at the � 1% level; in
any case, this should only weakly be related to the nmax

problem. All of the recombination histories and plots in
this paper were produced by running RECSPARSE with both
feedback and Lyman transitions from n > 3 disabled.
Electrons, though nonrelativistic during recombination,

interact with photons through Thomson scattering. As a
result, they do not follow the simple adiabatic scaling TM /
a�2, where a is the cosmological scale factor. The matter
temperature is set using the asymptotic solution of
Ref. [51] for z > 500, after which the relevant ordinary
differential equation (ODE) is solved numerically; this
transition point occurs in the regime of mutual validity
for the numerical and asymptotic solutions. We neglect
subdominant processes, such as free-free, line, photo-
recombination, and collisional ionization cooling, as well
as photoionization and collisional recombination heating
[44].

C. The steady-state approximation

The wide range of disparate time scales in this problem
would naively necessitate a stiff differential equation
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solver. This computational expense can be avoided by
repackaging Eqs. (1), (2), and (5)–(8). These equations
may be rewritten for excited states as (½n; l� � ½1; 0�)

_x n;l ¼ �X
n0l0

Tl;l0
n;n0xn0;l0 þ sn;l; (14)

with

Tl;l0
n;n0 ¼ �l;l0

n;n0

�
Inl þ �nl þ

X
n00;l00

�l00;l0
n00;n0

�
� �l;l0

n;n0 ; (15)

where the integrated photoionization rate from ½n; l� is

I nl ¼
Z

	nlðEeÞIðEe; TRÞdEe (16)

and �l;l0
n;n0 is defined in Eq. (2).

The downward flux to the ground state is

�nl ¼ A0;1
1;nP

0;1
1;nð1þN þ

1nÞ�l;1 þ�2s;1s�
l;0
n;2; (17)

where the first term describes Lyn series transitions (stimu-
lated and spontaneous) while the second accounts for the
½2; 0� ! ½1; 0� two-photon transition. Kronecker delta

symbols (�l;l0
n;n0 and �l;l0) are employed throughout to en-

force ½n; l� ¼ ½n0; l0� and l ¼ l0).
The source term snl includes flux from the ground state

and direct recombination into the state ½n; l�:

sn;l ¼ �Hx
2
e

Z
�nlðEeÞSðEe; TM; TRÞdEe

þ x1s�2s;1se
�E2s;1s=ðkTRÞ�l;0

n;2

þ x1sglA
0;1
1;nP

0;1
1;nN

þ
1n�l;1=2: (18)

This can also be rewritten in matrix notation: d~x=dt ¼
�T ~xþ ~s, where T is the matrix of rates with components
given by Eq. (15).

The left-hand side of Eq. (14) is associated with the
recombination time scale, while both terms on the right-
hand side are associated with much shorter atomic time
scales. For example, the longest lifetimes in the recombi-
nation problem are those of the 2s and 2p states (�2s;1s �
10 s and A2p;1sP2p;1s � 1 s when Ly-� optical depth peaks

at �� 6� 108), considerably shorter than the recombina-
tion time scale of trec � 1012s. Thus we make a steady-state
approximation, _xnl ¼ 0, which is formally valid because
the reciprocal of the minimum eigenvalue of T peaks at
0:8 s, which is �10�12 of the duration of recombination.
Thus the excited-state abundances are given by

~x ’ T�1 ~s: (19)

The rates in T and ~s depend on xe, x1s, TM, TR, andN . The
ground-state population is given by x1s ¼ 1� xe �P

½n;l��½1;0�xn;l, but since excited-state populations are small

(xn;l < 10�13), x1s can be eliminated from Eq. (18) using

the approximation x1s ’ 1� xe. We can then solve for the

evolution of xe, leaving out ineffective direct recombina-
tions to the ground state:

_xe ’ � _x1s ¼ x1s�2s;1se
�E2s;1s=ðkTRÞ

� X
½n;l��½1;0�

�
�nlxn;l � gl

2
A0;1
1;nP

0;1
1;nN 1nx1s�l;1

�
: (20)

The steady-state approximation thus allows us to convert
a stiff system of ordinary differential equations into a large
system of coupled linear algebraic equations, along with a
single ordinary differential equation.

III. RECOMBINATION WITH HIGH-N STATES

The original ‘‘effective 3-level atom’’ (TLA) treatments
of cosmological recombination in Refs. [40,41] were built
on the assumption that the primary bottlenecks to effective
recombination are the slow 2s ! 1s transition rate and the
reabsorption of 2p ! 1s resonance photons by the opti-
cally thick plasma. Other crucial assumptions included
radiative equilibrium between excited states,

xn ¼ x2e
�ðEn�E2Þ=ðkTRÞn2=4 if n > 2; (21)

xn 	 X
l<n�1

xn;l; (22)

and statistical equilibrium between angular momentum
sublevels:

xn;l ¼ xn
ð2lþ 1Þ

n2
: (23)

Recombination to higher excited states was included
through an effective ‘‘Case B’’ total recombination con-
stant �BðTÞ (recombinations to the ground state are omit-
ted) [40,44].
As the radiation field cools and the baryon density falls

at late times, the transitions coupling high n to low n
become inefficient, as do those coupling different l sub-
levels with the same n. This leads to a breakdown of
statistical equilibrium (note however that the steady-state
approximation is still valid), and so Eqs. (22) and (23)
cease to apply. In Ref. [44], Eq. (22) is relaxed while
Eq. (23) is still imposed, and �10% corrections to the
TLA prediction for xeðzÞ result. At late times, nonequilib-
rium effects cause a net flux downward from states with
quantum number n to the ground state, accelerating
recombination.
The inclusion of progressively more shells increases the

number of downward cascade channels to the ground state
for continuum electrons. Thus higher nmax leads to faster
recombination and lower xeðzÞ. Reference [44] reports
results for nmax as high as 300. The Lyman (np ! 1s)
transitions from very high-n states overlap with the
Lyman continuum, motivating Ref. [44]’s claim that there
is no need to go past n ¼ 300. The real question as to
whether the different values of n are well defined, however,
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is whether the broadening of the state, @=� (where � is the
lifetime), is larger than the splitting of adjacent energy
levels, �E � 2IHn

�3. The intrinsic broadening for a typi-
cal level with l=n�Oð1Þ is @=�� �3IHn

�5 [71]. Thus
@=� 
 �E and so these extremely high-n energy levels are
well defined; indeed, transitions between highly excited
states in such nonequilibrium plasmas are seen in inter-
stellar H II regions and are a useful diagnostic of physical
conditions [72].

For extremely large n, the above physical argument may
break down because of additional broadening contributed
by interactions with the radiation field and the plasma. For
example, the broadening due to stimulated emission and
absorption scales as �n�2 (the spontaneous n�5 times the
phase space density for photons in the �n ¼ �1 transi-
tions) and that due to electron-impact collisions scales as
�n2 [73]; at sufficiently high n these will dominate over
n�3 and the atomic energy levels will become blended.
However, the orders of magnitude of the collisional coef-
ficients [73] suggest that this occurs at values of n larger
than those considered in this paper. We have also verified
that for conditions of interest for the recombining cosmo-
logical plasma, the plasma Debye length is greater than the
average bound electron radius a0n

2 as long as n & 105.
More recent work [60,61] shows that additional �1%

corrections to xeðzÞ arise when Eq. (23) is not imposed and
the populations of l sublevels are followed separately.
Bottlenecks to decays from high l imposed by l0 ¼ l� 1
slow down cascades to the ground state, and thus lead to
slower recombination. In this case, the side length of T is
N ¼ Oðn2maxÞ. Since the number of computational steps
needed to invert a matrix is generically a N3 process, the
computational time needed for a single ODE time step in
the recombination time will be proportional to n6max.

As noted in Ref. [61], a recombination calculation with
nmax ¼ 100 already takes �6 days on a standard work-
station. It this thus difficult to explore how quickly xeðzÞ
converges for progressively higher values of nmax. Even
between nmax ¼ 80 and nmax ¼ 100, �1% changes are
seen in the TT and EE multipole moments (C‘’s) of the
CMB1 [61]. In spite of the computational challenge, it is
thus crucial to push the calculation to sufficiently high nmax

that corrections to xeðzÞ from remaining n > nmax are so
small that they do not affect CTT

‘ or CEE
‘ at a level statis-

tically significant compared to the predicted Planck sample

variance (e.g., several parts in 104 for l > 1000) [69].
There are two challenges in treating such a big multilevel
atom. The first is the calculation of atomic transition rates
at extremely high n; this is tractable because of some
convenient recursion relations. The second is simulta-
neously evolving the populations of nmaxðnmax þ 1Þ=2
states. We discuss these in turn below.

A. Rates

Here we discuss the Einstein coefficients for dipole
bound-bound and bound-free transitions in atomic hydro-
gen, which are used in our recombination computation. We
omit reduced-mass corrections to make a consistent com-
parison with Refs. [71,75–78], but include them when
calculating actual recombination histories.

1. Bound-bound rates

The spontaneous electric dipole transition rate ð1ÞAl0;l
n0;n

for a nonrelativistic hydrogen atom is given by [79]

ð1ÞAl;l0
n;n0 ¼

64
4�3
n;n0

3hc3
maxðl; l0Þ
2lþ 1

e2a20jð1ÞXl;l0
n;n0 j2; (24)

ð1ÞXl;l0
n;n0 	

�Z 1

0
x3Rn0l0 ðxÞRnlðxÞdx

�
; (25)

where e is the charge of an electron, h is the Planck

constant, and ðpÞXl;l0
n;n0 denotes the radial matrix element

between the states ½n; l� and ½n0; l0� at order p in the multi-

pole expansion. For example, ð2ÞAl0;l
n0;n denotes the quadru-

pole rate, and so on. The restriction l0 ¼ l� 1 enforces
electric dipole selection rules. Here RnlðxÞ is the radial
wave function of an electron in a hydrogen atom, with
principal quantum number n and angular momentum quan-
tum number l, at a dimensionless distance x. All dimen-
sionless distances are measured in terms of a0. For
Coulomb wave functions, this integration yields the
Gordon formula [79]:

ð1ÞXl;l0
n;n0 ¼

ð�1Þn0�l

4ð2l� 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ lÞ!ðn0 þ l� 1Þ!
ðn� l� 1Þ!ðn0 � lÞ!

s
ð4nn0Þlþ1

ðnþ n0Þnþn0

� ðn� n0Þnþn0�2l�2Wðn; n0; lÞ; (26)

where l0 ¼ l� 1,

Wðn; n0; lÞ ¼ 2F1ðu;�n0 þ l; 2l; wÞ

�
�
n� n0

nþ n0

�
2

2F1ðv;�n0 þ l; 2l; wÞ; (27)

with u ¼ �nþ lþ 1, v ¼ �nþ l� 1, and w ¼
�4nn0=ðn0 � nÞ2. Here 2F1ða; b; c; xÞ is Gauss’s hypergeo-
metric function for integer a, b, and c, evaluated using the
recursion relationship

1In Ref. [74], the results of Ref. [61] are used to explore the
effect of progressively higher nmax on CMB C‘’s. In that work, It
is noted that the fractional difference between the C‘’s for
nmax ¼ 60 and nmax ¼ 120 falls within a heuristic Planck per-
formance benchmark. Higher values of nmax come even closer to
the fiducial case of nmax ¼ 120, a fact used to argue that even
nmax ¼ 60 recombination is adequate for Planck data analysis.
From the Cauchy convergence criterion, however, we know that
a meaningful convergence test requires a comparison between
successive members in a sequence. Using the results of Ref. [61]
alone, the question of convergence with nmax thus remains open.
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ða� cÞ2F1ða� 1; b; c; xÞ
¼ að1� xÞ½2F1ða; b; c; xÞ � 2F1ðaþ 1; b; c; xÞ�

þ ðaþ bx� cÞ2F1ða; b; c; xÞ; (28)

with initial conditions

2F1ð0; b; c;xÞ ¼ 1; 2F1ð�1; b; c;xÞ ¼ 1� bx

c
: (29)

We use Eqs. (25)–(29) to calculate bound-bound transition
rates at the beginning of a MLA computation, storing them
for easy and repeated access.

We compared the resulting radial matrix elements with
several values for high n in Ref. [75] and found agreement
to all 3 published digits. We calculated oscillator strengths
and compared with Ref. [76] (all transitions with n and n0
were evaluated, as was the entire Balmer series for n � 60)
and found agreement to all 6 published digits. We also
compared with the results in Ref. [77] (in which oscillator
strengths were computed up to n ¼ 500 for �n � 5) and
found agreement to 5 digits. We attribute the difference in
oscillator strengths to the fact that a polynomial expansion
of 2F1 was used in Ref. [77], rather than the more stable
recursion relationship. We also compared with the dipole
one-photon rates used for the nmax ¼ 30 MLA computa-
tion of Ref. [51]. Most rates agreed to 7 or more significant
figures. Transition rates between s and p orbitals only
agreed to �5 significant figures. We ran our MLA model
using the rates of Ref. [51] and verified that these small
disagreements do not lead to any differences in xeðzÞ at the
desired level of accuracy. Given the high quantum numbers
considered, it was important to verify that no numerical
instability plagues our numerical implementation of these
recursions. We thus checked matrix elements computed
using Eqs. (26)–(29) against values estimated using the
WKB approximation, as detailed in the Appendix.

2. Bound-free rates

Bound-free rates are evaluated using the same principle,
but one of the two states used to evaluate matrix elements
must be a continuum Coulomb wave function. The result-
ing matrix element is [80]

gl;l
0

n;� ¼ 1

n2

Z 1

0
x3RnlðxÞF�l0 ðxÞdx; (30)

where F�l0 is the continuum Coulomb wave function for a
recombining photoelectron with angular momentum quan-
tum number l0 and dimensionless energy �2 ¼ Ee=IH ¼
h�
IH
� 1=n2. The energy of the outgoing photon is h�. This

integral may also be evaluated in terms of hypergeometric
functions, which in turn yields a recursion relationship for

gl;l
0

n;� [78]:

Gl;l0
n;� 	 gl;l

0
n;�

ð2nÞl�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþlÞ!
ðn�l�1Þ!

Q
l0
s¼0ð1þ s2�2Þ

q ;

Gl�2;l�1
n;� ¼ ½4ðn2 � l2Þ þ lð2l� 1Þð1þ n2�2Þ�Gl�1;l

n;�

� 4n2ðn2 � l2Þ½1þ ðlþ 1Þ2�2�Gl;lþ1
n;� ;

Gl�1;l�2
n;� ¼ ½4ðn2 � l2Þ þ lð2lþ 1Þð1þ n2�2Þ�Gl;l�1

n;�

� 4n2½n2 � ðlþ 1Þ2�ð1þ l2�2ÞGlþ1;l
n;� : (31)

The initial conditions of the recursion are [78]

Gn�1;n
n;0 ¼

ffiffiffiffi



2

r
8n

ð2n� 1Þ! ð4nÞ
ne�2n;

Gn�1;n
n;� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�ð2
=�Þp � e2n�2��1atanðn�Þ

ð1þ n2�2Þnþ2
Gn�1;n

n;0 ;

Gn�2;n�1
n;� ¼ ð2n� 1Þð1þ n2�2ÞnGn�1;n

n;� ;

Gn�1;n�2
n;� ¼

�
1þ n2�2

2n

�
Gn�1;n

n;� : (32)

These matrix elements are tabulated at the beginning of
each MLA run for all l < n � nmax, and 10�25 � �2n2 �
4:96� 108; this range of � is partitioned into 50 logarith-
mically spaced bins, with each bin containing 11 equally
spaced � values. Bound-free matrix elements were com-
pared with tabulated values for low n in Ref. [78] and
agreed to all 4 listed digits. Matrix elements were also
compared with those used in Ref. [51]; we found agree-
ment to one part in 107, aside from s-p transitions, as
already discussed.
The recombination rate to ½n; l� as a function of energy is

then

�nlðEeÞ ¼ 4
ffiffiffiffi



p
�4a20cI

3=2
H

3n2ðkTMÞ3=2
X

l0¼l�1

maxfl; l0g�l;l0
n;�; (33)

with

�l;l0
n;� ¼

�
1þ n2Ee

IH

�
3jgl;l0n;�j2: (34)

At each value of TM, the tabulated matrix elements,
Eqs. (6) and (33), are used to calculate thermally averaged
recombination rates, using an 11-point Newton-Cotes [81]
formula for the integration and neglecting stimulated emis-
sion. Large bins are added into the integral until it has
converged to a fractional precision of 5� 10�15. We com-
pared our values with integrated rates tabulated in Ref. [78]
and found agreement to all 4 listed digits. Comparing with
the rates used in Ref. [51], we found agreement to one part
in 107, aside from s-p transitions. In Saha equilibrium,

�2
e�nlðEeÞ½1þN ðE�; TRÞ�PMðEe; TMÞ
¼ �Hxn;lN ðE�; TRÞ	nlðE�Þ; (35)

and so by the principle of detailed balance,
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Z
dEe	nlðE�Þ ¼ x2e�H

xn;l

Z
dEe�nlðEeÞ

� ½1þN ðE�; TRÞ�
N ðE�; TRÞ

��������eq
PMðEeÞ: (36)

We verified that our computed thermally averaged recom-
bination and ionization rates satisfied this equality to ma-
chine precision. We also checked bound-free matrix
elements computed using Eq. (31) against values estimated
using the WKB approximation, as detailed in the
Appendix.

B. Sparse-matrix technique

The key to making the recombination problem tractable
for high values of nmax is the sparsity of Eqs. (14) and (15).
Dipole selection rules only allow coupling of states with
angular momentum quantum numbers l and l0 if l0 ¼ l� 1.
It is easiest to understand how sparsity simplifies the
problem with a slight change of notation. We can compose
the vector ~x (with components xn;l) of excited-state pop-

ulations, as

~x ¼
~v0

~v1

. . .
~vlmax

0
BBB@

1
CCCA; (37)

where lmax ¼ nmax � 1 and ~vl denotes a vector of the
populations of all states with angular momentum l, except
for the 1s state. Specifically,

~v l ¼
xnmin;l

xnminþ1;l

. . .
xnmax;l

0
BBB@

1
CCCA; (38)

where

nmin ¼
�
2 if l ¼ 0;
lþ 1 if l � 0:

(39)

The source vector ~s can similarly be written by concate-
nating source vectors ~sl; each ~sl feeds all states with
angular momentum l.

The rate matrix may be similarly built of submatrices
Ml;l0 , as illustrated in Fig. 1. The complete rate matrix is

block tridiagonal, and the blocks decrease in dimension as
l increases. The matrix Ml;l0 has components

Mn;n0
l;l0 ¼ �l;l0

n;n0

�
Inl þ �nl þ

X
n00;l00

�l00;l0
n00;n0

�
� �l;l0

n;n0 : (40)

In the steady-state approximation, Eq. (14) can be re-
written as a system of matrix equations. If l ¼ 0,

M 0;0 ~v0 þM0;1 ~v1 ¼ ~s0: (41)

If 0< l < lmax,

M l;l�1 ~vl�1 þMl;l ~vl þMl;lþ1 ~vlþ1 ¼ ~sl: (42)

To close the system, we must truncate the hierarchy by
excluding states with n > nmax as both sources and sinks,

which is equivalent to setting Al;l�1
n;n0 ¼ 0 for maxfn; n0g>

nmax. Then for l ¼ lmax,

M lmax;lmax�1 ~vlmax�1 þMlmax;lmax
~vlmax

¼ ~slmax
: (43)

It might be possible to approximate the correction due to
this truncation error, using asymptotic expressions for

Al;l�1
n;n0 and Saha equilibrium abundances for n > nmax.

This will only work if nmax is sufficiently high for nearly
perfect equilibrium Saha equilibrium to hold between
states with n > nmax and the continuum.
At any given time step, the actual quantity of interest is

not the inverse T�1 of the rate matrix but the solution set
f ~vlg to the steady-state rate equations. The closed form
solution to Eqs. (41)–(43) is

~v l ¼ Kl

�
~sl �Ml;lþ1 ~vlþ1 þ

Xl�1

l0¼0

ð�1Þl0�lSl;l0 ~sl0

�
; (44)

if l < lmax. If l ¼ lmax, then

~v l ¼ Kl

�
~sl þ

Xl�1

l0¼0

ð�1Þl0�lSl;l0 ~sl0

�
: (45)

Here

K l ¼
�
M�1

00 if l ¼ 0;
ðMl;l �Ml;l�1Kl�1Ml�1;lÞ�1 if l > 0;

(46)

and

S l;i ¼
�
Ml;l�1Kl�1 if i ¼ l� 1;
Sl;iþ1Miþ1;iKi if i < l� 1:

(47)

Our new MLA code, RECSPARSE, operationally imple-
ments this solution at each time step as follows:
(1) Using the values of TR and xe, TM is calculated as

described in Sec. II B.
(2) All relevant Ml;l0 and ~sl are computed using Eqs.

(18) and (40) and stored.
(3) All Kl and Sl;i are computed using Eqs. (46) and

(47) and stored.
(4) Equation (45) is applied to obtain the solution for

~vlmax
.

(5) Equation (44) is iterated to obtain the solutions for
all ~vl.

The free-electron fraction xe is then evolved forward in
time using f ~vlg and Eq. (20). It would also be interesting to
compute the cumulative spectral distortion emitted by the
line and continuum processes responsible for recombina-
tion [43,60,61,82]. This fractional perturbation of 10�7 to
the blackbody intensity of the CMB could be detectable
with future experiments and would offer a test both of our
understanding of recombination and of new physics behind
the surface of last scattering (e.g., time variation of funda-
mental constants, energy injection by decaying/annihilat-
ing dark matter) [83–87]. This and the development of a
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fast code for Planck data analysis including all the relevant
physical effects will be the subject of future work.

C. Numerical methods

RECSPARSE begins at z ¼ 1606, assuming Saha equilib-
rium to compute the initial value of xe and setting TM as
discussed in Sec. II B. Excited-state populations are ob-
tained using the method of Sec. III B. Submatrix inversions
are implemented using the double precision routine
DGESVX from the LAPACK library [88]. Time evolution of

xeðzÞ with Eq. (20) is implemented using the 5th-order
Runge-Kutta-Cash-Karp (RKCK) implementation in
Numerical Recipes [89]. The rapid time scale for return
to Saha equilibrium introduces a stiff mode into the equa-
tions at early times, necessitating care in the choice of a
step size for the integrator. Wewere able to achieve relative
precision of �� 10�8 by placing 59 time steps at z � 1538
and 250 steps in the range 200 � z � 1538, partitioning
each interval into equally sized steps in � lna; relative
errors were estimated by halving step size and comparing
values of xeðzÞ at identical time steps. The computation
time tcomp for RECSPARSE scales as tcomp / n�max, where

2<�< 3. This is an empirical estimate for the range of
nmax that we have explored, and may not extend to higher
nmax values. In contrast, for standard MLA codes, tcomp /
n6max. We can calculate recombination histories for nmax ¼
200 in 4 days on a standard workstation; this would likely
take weeks using a conventional MLA code.

IV. EXTENSION TO ELECTRIC QUADRUPOLE
TRANSITIONS

Early work on recombination highlighted the impor-
tance of forbidden transitions, as half of the hydrogen
atoms in the Universe form by way of the 2s ! 1s ‘‘for-
bidden’’ transition [40,41]. Recent work has included addi-

tional ‘‘forbidden’’ transitions in the MLA treatment,
namely, two-photon transitions (ns ! 1s and nd ! 1s)
in H [48–51], two-photon and spin-forbidden transitions
in He [52–55], as well as electric quadrupole (E2) transi-
tions in He [69,70].
Until this work, the impact of E2 transitions in H on

recombination has not been considered, even though they
are optically thick for transitions to/from the ground state.
For optically thick lines, the overall transition rate is

proportional to Al0l
nn0=�

l0l
nn0 . Since �l

0l
nn0 / Al0l

nn0 , the overall

transition rate is independent of the rate coefficient.
Transitions such as electric quadrupoles, which seem
‘‘weaker’’ judging from rate coefficients alone, can thus
be as important as ‘‘stronger’’ transitions, like the Lyn
lines. For example, this is why the semiforbidden He I
591 Å line is important in cosmological recombination
[69,70]. We thus include E2 quadrupole transitions in our
MLA computation to properly assess their relevance for
cosmological recombination. M1 (magnetic dipole) tran-
sition rates in H are typically suppressed by an additional
factor of 107–108, and are thus negligible [90].

A. Rates

The electric quadrupole (E2) Einstein-A coefficient for
transitions from states with ½n; l� to states ½n0; l0� is [91]

ð2ÞAl0;l
n0;n ¼ �!5

n;n0a
4
0

15gac
4
jhnljjQð2Þjjn0l0ij2; (48)

where the quadrupole matrix element is

hnljQð2Þjn0l0i ¼ hljjCð2Þjjl0ið2ÞXl0;l
n0;n: (49)

The matrix elements of the reduced angular tensor op-

erator Cð2Þ are given by

FIG. 1. Schematic of the sparse rate matrix T with components given by Eq. (15) and submatrix building blocks given by Eq. (40).
Boldface zeros denote block matrices of all zeros, and enforce the dipole selection rule that the initial state l0 angular momentum obeys
l0 ¼ l� 1, where l is the final state angular momentum. The submatrix Mll0 has dimension ðnmax � nmin þ 1Þ � ðnmax � n0min þ 1Þ,
where nmin ¼ 2 if l ¼ 0, and nmin ¼ lþ 1 if l > 0. Note that submatrices Ml;l on the block diagonal of the larger rate matrix T are

themselves diagonal, as seen from Eq. (40) and the fact that in the purely radiative case, �l;l0
n;n0 ¼ 0 if n � n0 and l ¼ l0.
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hljjCð2Þjjl0i ¼ ð�1Þl ffiffiffiffiffiffiffiffiffiffi
glgl0

p l 2 l0
0 0 0

� �
; (50)

where the last factor is the well-known Wigner-3J symbol.
This operator is defined as

hljjCðkÞjjl0i ¼ ð�1Þl�m
l k l0

�m q m0

 !�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4


2kþ 1

s
hlmjYkqð
;�Þjl0m0i: (51)

The dimensionless radial quadrupole integral is

ð2ÞXl0;l
n0;n ¼

Z 1

0
x4Rn0l0 ðxÞRnlðxÞdx: (52)

The radial matrix element for the nd ! 1s transition is a
special case of Eq. (B.13) of Ref. [92] with n0 ¼ 1:

ð2ÞX0;2
1;n ¼ ð�1Þn�126n4

�ðnþ 2Þ!
ðn� 3Þ!

�
1=2 ðn� 1Þn�4

ðnþ 1Þnþ4
: (53)

B. Inclusion in multilevel atom code

The obvious way to include quadrupole transitions into
our MLA code would be to generalize Eq. (42) to include
�l ¼ �2 transitions:

Ml;lþ2vlþ2 þMl;lþ1vlþ1 þMl;lvl

þMl;l�1vl�1 þMl;l�2vl�2 ¼ sl: (54)

The resulting system is obviously not as sparse as in the
dipole case, and solving for all vl would be computation-
ally more expensive, slowing down the whole MLA code.
Since the contribution from even the largest quadrupole
rates may turn out to be small, we pursue a computationally
less expensive approach.

Higher energy E2 transitions will proceed much faster
than lower energy ones, since E2 rates scale as !5

nn0 . In

particular, transitions to and from the 1s ground state will
dominate any other quadrupole contributions to the recom-
bination problem, since

ð2ÞA0;2
1;n

ð2ÞA0;2
q;n

� !5
1n

!5
qn

¼
�
q2ðn2 � 1Þ
n2 � q2

�
5
* 103 if q � 2: (55)

Moreover, the nd ! 1s lines are optically thick for small
n. We thus restrict our consideration to nd $ 1s transi-
tions, since other quadrupole transitions are ‘‘corrections to
a correction.’’ A further simplification follows if we recall
that the Lyn lines are all optically thick [51]. Thus, the
transition nd ! 1s is highly probable to be immediately
followed by a transition 1s ! np. This yields a net nd !
np transition, analogous to an l-changing collision, which

occurs with forward rate ð2Þ�0;2
1;n ¼ xnd

ð2ÞA0;2
1;n. The reverse

process occurs with rate ð2Þ�0;2
1;n ¼ xnp

ð2ÞA0;2
1;nD, whereD is a

factor relating forward and backward rates. If the p and d
states were in equilibrium, the two rates would cancel, so
by the principle of detailed balance, D ¼ ðxnd=xnpÞeq ¼
5=3, where ‘‘eq’’ denotes an equilibrium value. The net
np $ nd transition rate due to E2 transitions is thus

_x np ¼ � _xnd ¼ ð2ÞA0;2
1;nðxnd � 5

3xnpÞ: (56)

Since this overall rate obeys the �l ¼ �1 selection rule, it
can be numerically implemented within the same frame-
work as the dipole rates.

V. RESULTS

We ran the RECSPARSE code for a variety of nmax values.
Here we omitted E2 transitions to focus on the effect of
deviations from statistical equilibrium and increasing nmax.
We begin by discussing deviations from equilibrium, and
proceed to discuss the recombination history and numeri-
cal convergence with nmax.

A. State of the gas

The assumptions of statistical equilibrium between dif-
ferent l sublevels within the same n shell and Boltzmann
equilibrium between different n states fail at late times, as
discussed in Sec. III. Furthermore, as reactions become
inefficient on the Hubble time scale and xeðzÞ freezes out,
Saha equilibrium between the continuum and excited states
of H also fails. Below, we discuss each of these failures
quantitatively.

1. Populations of angular momentum sublevels

At early times, the populations of hydrogen atoms in
states with the same n but different angular momentum l
are in statistical equilibrium [see Eq. (23)]. Radiative
transitions do not include reactions that are l changing
but n conserving. The l sublevels must thus be kept in
equilibrium by a combination of sequences of allowed
radiative transitions and atomic collisions. These processes
become inefficient at later times, leading the different l
sublevels to fall out of equilibrium. Both the TLA treat-
ment of Peebles and the later MLA treatment of Seager,
Sasselov, and Scott rely on the statistical equilibrium as-
sumption. Our RECSPARSE code relaxes this assumption
and follows the populations of all l sublevels separately.
For n > 5, the resulting populations are marked by

several features, shown in Figs. 2 and 3 at early and late
times, respectively. We use

�xn;l ¼ xn;l � x
eq
n;l (57)

to compare actual with equilibrium populations, where

x
eq
n;l 	 xn

ð2lþ 1Þ
n2

: (58)

Deviations begin modestly at early times (j�xn;l=xeqn;lj &
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0:1% for 1300 & z & 1600) but are quite large by late
times (j�xn;l=xeqn;lj � 60% by z & 600).

Lower l states depopulate efficiently, and are signifi-
cantly underpopulated relative to statistical equilibrium
expectations. States with l ¼ 0 can only make downward
dipole transitions in n if l0 ¼ 1. These rates are several
order of magnitude lower than Lyman-series rates with the
same �n, and so l ¼ 0 states depopulate less efficiently
than other low-l states. This explains the upturn at the
lowest l values. The �l ¼ �1 selection rule implies that
higher l states couple efficiently to neighboring bound

states (l0 ¼ l� 1) with a limited range of accessible n0,
since n0 > l0. These states thus depopulate less efficiently
than states with lower l due to this bottleneck.
The recombination rate �nl peaks in the range 0:3 &

l=lmax & 0:4. Together, these facts imply the presence of a
peak in �xnl=x

eq
nl , which turns out to occur in the range

32 & l & 37 for a wide range of n at all times. The
transition to xnl=x

eq
nl � 1 occurs in the range 16 & l &

21, also for a wide range of n at all times. At very high l,
recombination rates are so slow that these states are again
underpopulated relative to statistical equilibrium, though
less dramatically than they are at low l.
The observed amplitude and shape of the curves in

Figs. 2 and 3 qualitatively agree with the results in
Refs. [60,61], including the upturn near the lowest l and
sharp minimum at l ¼ 2. The minimum is due to fast
Balmer transitions out of the l ¼ 2 state. When we com-
puted a recombination history with these rates (nd ! 2p
for n � 2) artificially set to zero, the minimum moved to
l ¼ 1, as shown in Fig. 4. It is interesting that the curves in
Figs. 2 and 3 exhibit the same behavior with l as the
departure coefficients of Ref. [93], which describe neutral
hydrogen (also in the steady-state approximation) in inter-
stellar H II regions.
RECSPARSE only takes into account radiative transitions,

and omits l- and n-changing collisions. These rates would
flatten all the curves in Figs. 2–4, lessening deviations from
statistical equilibrium between the different l sublevels
[61]. Indeed, the assumption of statistical equilibrium be-
tween these states at all times is formally equivalent to the
limit of infinite l-changing collision rates. Theoretical
estimates for collisional rates all depend on different as-
sumptions and tabulated rates disagree by factors of two or

,

,

FIG. 2 (color online). Early time deviations from statistical
equilibrium between different l at fixed n and nmax, as computed
by RECSPARSE.

,

,

FIG. 3 (color online). Deviations from statistical equilibrium between different l at fixed n and nmax, shown as computed by
RECSPARSE at a variety of times through the recombination process. The left panel shows results for states with n ¼ 25, while the right
panel shows results for states with n ¼ 140.
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more (see, e.g., Ref. [94]). As a function of redshift z, we
estimate the ratio fcollnl 	 �Hxeqnltnl of collisional to ra-

diative transition rates out of the state ½n; l�, where qnl is
the collisional rate coefficient (in cm3 s�1), and tnl is the
total radiative lifetime of the state, including stimulated
emission and absorption.

Using the rate coefficients in Ref. [95], we estimate that
collisional rates (per unit time) are of the same order of
magnitude as radiative rates for n * 52 at z� 1600, n *
83 at z� 1080, n * 160 at z� 740, and n * 250 at z�
200. In other words, as the primordial gas cools, collisions
come to only influence the highest H energy levels, which
contain the least bound electrons. This occurs because of
the exponential decrease in the free-electron density �Hxe
in the early stages of recombination, which drives down
collision rates accordingly. Near z� 1600 and shortly
thereafter, radiative rates alone are high enough to keep
the excited states in l-equilibrium. Collisions thus have
little effect on xeðzÞ at early times. There may, however,
be a window at some intermediate redshift, when collision
rates are still relatively high, but departures from
l-equilibrium are large enough to warrant including colli-
sions in the recombination model. A full calculation is
necessary to understand the actual effect. A final answer
on the effect of resolving l sublevels on both the recombi-
nation history xeðzÞ and the recombination spectrum awaits
a robust theoretical calculation of the relevant collisional
rates. This is an area of future investigation.

2. Populations of Rydberg energy levels

We may also compare the total population of the nth
energy level to values in Boltzmann equilibrium with n ¼
2:

xBoltzn 	 x2e
�ðEn�E2Þ=ðkTRÞn2=4: (59)

The recombination rate to states with n > 2 is greater than
the downward cascade rate, creating a bottleneck to depop-
ulating these states. This bottleneck causes an overpopu-
lation of the excited states compared to the equilibrium
values of Eq. (59), as shown in Fig. 5. The ratio xn=x

Boltz
n is

Oð1Þ at early times but grows as high as 3� 104 by z ¼
555. The ratio approaches a constant at high n, as energy
levels get closer to the continuum and the energy differ-
ences between successive levels shrink.
Relative to n ¼ 2, excited states are overpopulated, but

there is no population inversion or cosmic maser here.
Excited states are still less populated than the n ¼ 2 energy
level, just not as dramatically as they would be if Eq. (59)
held. Among highly excited states, some pairs of levels do
exhibit population inversion. For effective maser action,
inversion must occur between pairs of radiatively con-
nected levels, and the coherence of the radiation field
must not be destroyed along the line of sight. This effect
will be explored in detail in future work. In extremely
dense structure-forming regions, more dramatic population
inversion may result and lead to local masing; if these
masers were observed, they could offer interesting new
probes of structure formation near z� 1000 as well as
the physics of reionization [96].
Recombination becomes inefficient at late times; i.e., the

recombination time scale ½�BðTÞxenH��1 becomes longer
than the age of the Universe. Saha equilibrium expressions
for xe and x1 s fail dramatically at late times. The free-
electron fraction xe freezes out and is higher than the Saha
equilibrium value, and thus x1s is lower than the Saha
equilibrium value. Excited states are overpopulated rela-

,

,

FIG. 4 (color online). The origin of the l ¼ 2 dip in Figs. 2 and 3 is illustrated. Deviations from statistical equilibrium between
different l at fixed n and nmax are shown at a variety of times through the recombination process. The left panel shows standard results
with RECSPARSE. The right panel shows the results obtained if l ¼ 2 Balmer rates are artificially set to zero in the code. This figure
highlights the relatively rapid l ¼ 2 Balmer transitions as the origin of the l ¼ 2 dip.
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tive to the ground state, but still not enough to be in Saha
equilibrium with the continuum. The tower of excited
states is thus also underpopulated relative to Saha equilib-
rium, as shown in Figs. 6 and 7. Lower energy levels fall
out of Saha equilibrium faster than higher energy levels.
Higher energy levels are closest to Saha equilibrium, but at
late times (z� 200), even the population of the n ¼ 250
level is nearly 10% below its Saha equilibrium value.
Modeling the effect of states with n > nmax may require
Saha equilibrium abundances to hold in the regime past the
cutoff. To this end, it is important to properly model atomic
collisions (which would push atoms towards Saha equilib-
rium at a lower transitional value of nmax), and apply even
greater computational resources to obtain xeðzÞ for even
higher nmax.

B. The effect of extremely high-n states on
recombination histories and the CMB

To explore the relative convergence of xeðzÞ over a wide
logarithmic range of nmax values, we computed xeðzÞ for
nmax ¼ 4, 8, 16, 32, 64, 128, and 250. We define a relative
error:

�xieðzÞ ¼ xn
i�1
max

e ðzÞ � xn
i
max

e ðzÞ: (60)

Here nimax is the ith nmax value. We show the resulting
recombination histories and �xieðzÞ in Fig. 8. As nmax

increases, the larger number of pathways to the ground
state makes recombination more efficient, decreasing

x
nimax
e ðzÞ and making �xieðzÞ positive. The relative error
�xieðzÞ shrinks with nmax, indicating that relative conver-
gence is taking place, as demonstrated in Fig. 9. Note,

however, that the relative error may not be a good proxy
for the absolute error. Suppose that the absolute error is

given by xn
i
max

e ¼ �xabs;ie þ xe, where �xabs;ie ¼ AðnimaxÞp,
for some normalization A and power-law index p < 0.
Then it is easy to show that for nimax ¼ 2ni�1

max,

�xie=�x
abs;i
e ¼ ð1� 2pÞ. In other words, the relative error

will underestimate the absolute error. To demonstrate ab-
solute convergence, one should demonstrate that the phys-
ics neglected by ignoring transitions to n > nmax does not

FIG. 6 (color online). Actual population of the nth shell com-
pared to the Saha equilibrium population, as computed by
RECSPARSE at a variety of times through the recombination
process.

FIG. 5 (color online). Actual population of the nth shell com-
pared to its population in Boltzmann equilibrium with n ¼ 2, as
computed by RECSPARSE at a variety of times through the
recombination process.

FIG. 7 (color online). Actual population of energy shells com-
pared to Saha equilibrium values, shown for several n values as
an explicit function of cosmological redshift z.

COSMOLOGICAL HYDROGEN RECOMBINATION: THE . . . PHYSICAL REVIEW D 81, 083005 (2010)

083005-13



cause large changes in xeðzÞ. We also calculated recombi-
nation histories for nmax ¼ 20, 50, 90, 105, and 160.

We may also assess the effect of the computed changes
in xeðzÞ on the CMB C‘’s. To this end, we replace the usual
recombination history generated and used in the RECFAST
module of CMBFAST with a table of our own output for
different nmax values, smoothly stitching our history onto
the usual RECFAST history at the boundaries z ¼ 1606 and
z ¼ 200. The results for temperature and E-mode polar-
ization anisotropy power spectra (CTT

‘ and CEE
‘ ) are shown

in Figs. 10 and 11, respectively. Here we also define a
relative error:

�CXX;i
‘ ¼ CXX;nimax

‘ � CXX;ni�1
max

‘ : (61)

Here XX denotes the TTor EE label of the power spectrum

under consideration. The relative error �CXX;i
‘ is always

positive, indicating that increasing nmax also increases
CXX
‘ , as shown in Figs. 10 and 11. The common (TT and

EE) origin for this effect is clear from Fig. 8. Higher nmax

makes recombination more efficient, driving down the
freeze-out value of xeðzÞ and the residual optical depth �,
leading to the high-l plateaus seen in Figs. 10 and 11. As a
result, the smearing out of primary CMB anisotropies by
relic free electrons, C‘ ! C‘e

�2� [35], is less dramatic

when nmax is increased. The relative error �CXX;i
‘ shrinks

with increasing nmax.

Taken as a proxy for the absolute error, �CXX;i
‘ may be

compared to a crude (cosmic variance) estimate of the
required accuracy of CXX

‘ predictions in the damping tail:

�CXX
‘

CXX
‘

� 3� 10�4f�1=2
sky : (62)

Here fsky is the fraction of the sky covered by a CMB

experiment. For fsky ¼ 0:70, results are shown in Figs. 10

and 11 and we see that only for nmax ¼ 250 does the

FIG. 8 (color online). The left panel shows relative errors between successively more accurate recombination histories with the
indicated values of nmax. Higher values of nmax make recombination more efficient and yield lower freeze-out values of xeðzÞ. As nmax

increases, relative errors shrink, indicating that recombination is convergent with nmax. The right panel contains the absolute
recombination histories xeðzÞ and a legend. The relative error �xie is defined in Eq. (60).

FIG. 9 (color online). Relative errors between successively
more accurate recombination histories. Values are shown here
for 3 different values of redshift z. Errors shrink with nmax,
indicating relative convergence. Note, however, that this figure
gives no scale for the absolute error.
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relative error shrink to a level comparable with the cosmic
variance. The ultimate aim is for the total correction from
recombination physics to be less than statistical errors, so
any individual contribution such as the truncation error at
nmax should be 
 1�. In any case, collisions must be
properly included to show absolute convergence, and so
this should be a key focus of future work on highly excited
states in hydrogen recombination. To more realistically
assess the importance of high-n states, �CXX

‘ should be

compared with a realistic error estimate for Planck.

C. Statistical significance of corrections to
recombination history

As a test of the importance of the modified recombina-
tion history for Planck, we have compared our corrections
to the power spectrum �C‘ with the forecast Planck error
bars. The comparison is done by means of the statistic

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ll0
Fll0�Cl�Cl0

s
; (63)

where Fll0 is the Fisher matrix for the CMB power spec-
trum. For the temperature-only case, ‘ ranges from 2 to
‘max and hence F is an ð‘max � 1Þ � ð‘max � 1Þ matrix;
when polarization is included, F expands to a 3ð‘max �
1Þ � 3ð‘max � 1Þ matrix incorporating TT, EE, and TE
spectra. The Z statistic is the number of sigmas at which

the corrected and uncorrected power spectra could be
distinguished assuming perfect knowledge of the cosmo-
logical parameters, and hence represents the largest pos-
sible bias (in sigmas) on any combination of cosmological
parameters in any fit that incorporates the CMB [51]. We
use the forecast noise and beam curves for Planck data
70 GHz (Low-Frequency Instrument) and 100 and
143 GHz (High-Frequency Instrument) channels in the
Blue Book [22], and assume a usable sky fraction of fsky ¼
0:7.
The computation considering the difference between the

nmax ¼ 128 and 250 curves gives a Z value of 0.36.
However, the actual error in the nmax ¼ 128 calculation
is somewhat greater because even the nmax ¼ 250 calcu-
lation is not completely converged. If the error in the Cl’s
scales as �npmax and has a shape that varies slowly with
nmax, then our value of Z should be increased by a factor of
½1� ð250=128Þp��1; for p � �1:9 (as suggested by
Fig. 9) this is 1.39. Thus if the power-law extrapolation is
to be trusted there is a 0:50� error (Z ¼ 0:50) in the CMB
power spectrum if one restricts attention to nmax ¼ 128,
and a �4 times smaller error (Z ¼ 0:14) at nmax ¼ 250. A
similar comparison between nmax ¼ 64 and 250 implies an
error of Z ¼ 1:79 at nmax ¼ 64. This suggests that in the
purely radiative problem the CMB power spectrum is
converged (in the sense that our remaining errors are small

FIG. 11 (color online). Relative errors between E-mode polar-
ization anisotropy spectra CEE

‘ computed using CMBFAST, modi-

fied to include successively more accurate RECSPARSE
recombination histories. Pairs of nmax values used for the com-
parison are indicated in the legend of Fig. 10. CEE

‘ increases with

nmax, as discussed in Sec. VB. The correction shrinks with
increasing nmax. The long dashed line indicates the cosmic
variance target for �C‘=C‘, as discussed in the text.

FIG. 10 (color online). Relative errors between temperature
anisotropy spectra CTT

‘ computed using CMBFAST, modified to

include successively more accurate RECSPARSE recombination
histories. Pairs of nmax values used for the comparison are
indicated in the legend. CTT

‘ increases with nmax, as discussed

in Sec. VB. The correction shrinks with increasing nmax. The
long dashed line indicates the cosmic variance target for
�C‘=C‘, as discussed in the text.
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compared to projected Planck errors) at nmax � 128; how-
ever this issue will have to be reconsidered in future work
when collisions are included.

D. The effect of electric quadrupole transitions on
recombination histories and the CMB

Using the treatment of Sec. IV and an integration step
size fine enough to obtain a fractional accuracy of 10�10 in
xe, we compute the effect of E2 quadrupole transitions on
cosmological hydrogen recombination for several values
of nmax. We can parametrize this effect using

�xe 	 xejno E2 transitions � xejwith E2 transitions (64)

and

�C‘ 	 C‘jwith E2 transitions � C‘jno E2 transitions: (65)

Note that unlike the case of varying nmax, these are the
absolute errors induced by ignoring E2 transitions.

The results are shown in Fig. 12. The maximum effect of
E2 transitions occurs at z� 800 with a fractional enhance-
ment of �xe=xe ’ 10�5, and the calculation seems well
converged by nmax ¼ 30. Corrections due to higher excited
states would be a correction to a correction, and so we
ignore them. Although the correction from E2 transitions is
small, it extends over a broad epoch at late times after
reaching its maximum. To determine if this could affect
CMB anisotropies in an observable way, we modify and
run CMBFAST [97] using recombination histories com-
puted with/without E2 transitions. We incorporated
RECSPARSE recombination histories including E2 transi-
tions into CMBFAST by applying the same method em-
ployed in Sec. VB.

Running the recombination histories including E2 quad-
rupole transitions through CMBFAST gives a maximum
change �C‘=C‘ � 3� 10�6 in both temperature and po-
larization, negligible compared to cosmic variance. Thus
E2 transitions in hydrogen are negligible for CMB
applications.

VI. CONCLUSIONS

We have developed a new recombination code,
RECSPARSE, optimized for tracking the populations of
many energy shells of the hydrogen atom while resolving
angular momentum sublevels. The code runs more quickly
than would be anticipated using simple scaling arguments,
which would yield the scaling tcomp / n6max. Using

RECSPARSE, we find empirically that for the range of
nmax values used, computation time scales as tcomp /
n�max, where 2<�< 3. With this code, we have computed
cosmological hydrogen recombination histories for a series
of nmax values going as high as nmax ¼ 250 and explored

the highly nonequilibrium state of the resulting atomic
hydrogen.
The resulting correction �xeðzÞ satisfies �xeðzÞ=xeðzÞ<

0:01 for z > 200 when nmax ¼ 250 and converges with
�xeðzÞ=xeðzÞ / n�1:9

max . The correction to the C‘’s becomes
of order the cosmic variance when nmax ¼ 250. In light of
realistic error estimates for Planck, the resulting CMB
anisotropy spectra CXX

‘ are converged to 0:5� at Fisher-

matrix level for nmax ¼ 128 in the purely radiative case,
assuming error extrapolations may be trusted.
To definitively answer the question of absolute conver-

gence, collisions must be included to speed the approach to
Saha equilibrium at high n, allowing a conclusive treat-
ment of states beyond the truncation limit, with n > nmax.
Future work should also properly account for the overlap of
the Lyman resonance line series at high n. It will also be
interesting to determine if there is coherent stimulated
emission between excited states, given its relevance for
the detectability of faint CMB spectral distortions from the
epoch of recombination. Finally, the sparse-matrix meth-
ods applied here or similar techniques could be profitably
applied in the development of fast recombination codes for
CMB data analysis, even at early times in recombination,
when only lower values of nmax are relevant.
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APPENDIX:WKBAPPROXIMATION FOR RADIAL
DIPOLE INTEGRALS

The development of laser spectroscopy of high-n states
in hydrogen and other atoms, along with the study of
nonlinear and multiphoton ionization, required the compu-
tation of dipole radial matrix elements for high and even
fractional quantum numbers in a Coulomb or perturbed
Coulomb potential [98]. Until adequate algorithms for
these computations were ultimately developed, the
Wentzel, Kramers, Brillouin, and Jeffreys (WKBJ) semi-
classical approximation (quite accurate for n � 1) [54,99]

proved a useful tool for estimating ðnÞXl0;l
n0;n. At high n, radial

wave functions in the Coulomb potential have a large
number of nodes and thus a short wavelength �. For the
WKB approximation to be valid, it is necessary that
jd�=dxj 
 2
. Because of the large number of nodes in
the Coulomb wave functions at high n, the WKB approxi-
mation is ideally suited to estimating matrix elements for
transitions between high n.

In the classically allowed region, the nonrelativistic
WKB radial wave function for a hydrogen atom is

xRnlðxÞ ¼
�

2


n3kðxÞ
�
1=2

cos

�Z x

x1

knlðxÞdx� 


4

�
(A1)

with

knlðxÞ ¼
�
� 1

n2
þ 2

x
� lðlþ 1Þ

x2

�
1=2

; (A2)

where the inner classical turning point x1 is a solution of

the equation knlðxÞ ¼ 0. Substituting Eq. (A2) into Eq. (25)
for the dipole matrix element, and making several addi-
tional approximations, the following expression is ob-
tained if jn0 � nj 
 n, n0 and n, n0 � l [99]:

ð1ÞXl0;l
n0;n ¼

n2c
2s

��
1þ �l

lc
nc

�
Jsþ1ð�sÞ

�
�
1� �l

lc
nc

�
Js�1ð�sÞ

�
; (A3)

with s ¼ n� n0, �l ¼ l0 � l, lc ¼ ðlþ l0 þ 1Þ=2, nc ¼
2nn0=ðnþ n0Þ, and �2 ¼ 1� ðl2c=n2cÞ. Here � is the eccen-
tricity of a Keplerian orbit with the quantum numbers nc
and lc, and JsðxÞ is a Bessel function of the first kind. These
estimates agree with matrix elements computed using
Eq. (26) to a precision of 5%–50%; the agreement worsens
as jn0 � nj ! n, n0.
If l 
 n0, n and s� n, n0, then [100]

ð1ÞXl�1;l
n0;n ¼ 2

l2



ffiffiffi
3

p ðnn0Þ�3=2y�1

�
K2=3

�
l3y

6

�
� K1=3

�
l3y

6

��
;

(A4)

with y ¼ jn�2 � n02j. Here KsðxÞ is a modified Bessel
function of the second kind. These estimates agree with
matrix elements computed using Eq. (26) to a precision of
1%–20%; the agreement worsens as s shrinks, at which
point Eq. (A3) becomes more accurate.
A WKB estimate of bound-free matrix elements is ob-

tained by making the substitution n0 ! i=� in Eq. (A4)
[100]. The resulting estimate is reasonable if l 
 n, ��1

and agrees with matrix elements computed using Eq. (31)
to a precision of 50%. This analysis confirms that the high
n and l values under consideration do not afflict our
evaluation of Eqs. (26) or (31) with any instability that
would throw computed rates off by orders of magnitude.
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