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We compute the reduced cosmic shear up to second order in the gravitational potential without relying

on the small-angle or thin-lens approximation. This is obtained by solving the Sachs equation which

describes the deformation of the infinitesimal cross section of a light bundle in the optical limit, and maps

galaxy intrinsic shapes into their angular images. The calculation is done in the Poisson gauge without a

specific matter content, including vector and tensor perturbations generated at second order and taking

account of the inhomogeneities of a fixed redshift source plane. Our final result is expressed in terms of

spin-2 operators on the sphere and is valid on the full sky. Beside the well-known lens-lens and Born

corrections that dominate on small angular scales, we find new nonlinear couplings. These are a purely

general relativistic intrinsic contribution, a coupling between the gravitational potential at the source with

the lens, couplings between the time delay with the lens and between two photon deflections, as well as

nonlinear couplings due to the second-order vector and tensor components. The inhomogeneity in the

redshift of the source induces a coupling between the photon redshift with the lens. All these corrections

become important on large angular scales and should thus be included when computing higher-order

observables such as the bispectrum, in full or partially full-sky surveys.
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I. INTRODUCTION

In the early nineties, cosmic shear was predicted to be a
promising way to study the distribution of matter in the
Universe [1–3] and since its first detection [4–7] it has
shown to be a precious mean of investigations of the large-
scale structure of the Universe, enabling us to explore dark
energy properties or uncover signatures of mode coupling
effects [8–10].

So far cosmic shear surveys have covered only a limited
field in the sky. For instance, the CFHTLS,1 which has
produced very promising results over the last years (see
e.g. [11] for a recent account of these observations), is
limited to about a 170 squared degree range. With the
demonstration of the robustness of cosmic shear observa-
tions, (nearly) full-sky surveys such as Pan-STARRS, DES,
LSST, JDEM, or Euclid are under preparation. They will
open the way to new types of studies. Akin to CMB
observations, such surveys will be an excellent tool to
explore the physics of the Universe at scales comparable
to the Hubble radius, therefore testing genuinely general
relativistic effects.2 In particular, the study of mode cou-
plings, already well established on Newtonian scales, can
be extended at these very large scales therefore testing the
details of our understanding of the origin and formation of
the large-scale structure.

Such an investigation requires that we know the types of
mode couplings that are expected to be seen at such large
scales. Calculations have been undertaken to predict the

nonlinear growth of metric and density fluctuations after
modes reenter the Hubble radius [13–15]. In the context of
the CMB anisotropies, progress has been recently made in
understanding the effect of these nonlinearities, from con-
centrating on the large angular scales [16–18] to the details
of the physics of recombination (see for instance [19,20]).
So far the investigations of mode couplings in weak

lensing were limited to small angular scales, corresponding
to scales much smaller than the angular diameter distance
at the source. Accidentally, this distance roughly corre-
sponds to the Hubble radius at the source. Thus, on these
scales one can consistently neglect general relativistic
effects that are suppressed by the ratio between the scale
probed and the Hubble scale. On small angular scales the
dominant contribution to the cosmic shear comes from
fluctuations of the gravitational potential transverse to the
line of sight. Perturbations along the line of sight average
out and do not yield appreciable effects. In this regime the
dominant geometrical mode couplings were identified
more than a decade ago in [21]. They include the Born
correction and the lens-lens coupling. In the so-called Born
approximation one integrates the lensing distortion over an
unperturbed photon path. One can consider the correction
due to the fact that the photon path is perturbed. The lens-
lens coupling consists in the correction due to the defor-
mation of a distant lens caused by a foreground one. The
consequences of these effects have been extensively de-
scribed in the literature and they have been found to have
an impact on both the shear power spectrum and higher-
order statistical observables such as the bispectrum [22–
27]. As the shape distortion probes the reduced shear rather
than the shear itself, there is another correction associated
to the nonlinear conversion between these two quantities

1http://www.cfht.hawaii.edu/Science/CFHTLS
2See [12] for a recent account of these effects on galaxy

clustering observations.
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[27–29]. Finally, another nonlinear effect is the source-lens
clustering, due to the fact that the source of the lensed light
is itself a perturbed field with specific clustering properties
correlated with the lens [30,31]. For the current surveys
restricted to a limited angular field all these types of
couplings are undoubtedly the dominant ones.

In view of full-sky surveys one needs to go beyond the
small-angle approximation and probe scales of the order of
the angular diameter distance to the source. In this case
fluctuations along the line of sight are not negligible and
terms other than those described above may become im-
portant. Furthermore, as we are probing scales comparable
to the Hubble size, one needs to undertake a full general
relativistic treatment. This is important in order to compute
accessible higher-order observables in full or almost full-
sky surveys. In particular, in such surveys, it becomes
necessary if one wants to compute the lensing bispectrum
in the squeezed configuration, when one of the scales
probed is taken to be much larger than the other two.

We present here the exhaustive calculation of the weak
lensing cosmic shear at second order including all general
relativistic contributions and without relying on the small-
angle or thin-lens approximations. However, we do not
include in our study the effect of source-lens clustering
[30,31] and other intrinsic effects in the alignment and
ellipticity of galaxies. Wework in the so-called generalized
Poisson gauge without specifying the matter content of the
Universe. We assume that there are no primordial vector
and tensor perturbations. However, we will take into ac-
count vector and tensor components of the metric gener-
ated at second order from scalar fluctuations. In this gauge
we derive the reduced—i.e. observable—shear by solving
the Sachs equation [32] which describes the distortion of
the cross section of an infinitesimal bundle of light rays in
the geometric-optic limit. The advantage of using the
Sachs equation instead of the geodesic equation is that it
deals only with physically observable quantities. As the
resolution of the Sachs equation is extremely tedious and
involves a large number of terms we will develop tests that
allow us to check the validity of its solution. In particular,
some of the contributions to the second-order shear that we
compute—and that are usually neglected in the small-angle
approximation—can be compared to those expected from
the lensing shear at linear order in a universe with spatial
curvature.

Using the solution of the Sachs equation we will com-
pute the reduced shear by adding the nonlinear corrections
coming from the relation between this quantity and the
shear itself. Finally, as in the Poisson gauge hypersurfaces
of constant redshift are inhomogeneous, we take into ac-
count the corrections due to the inhomogeneity of the
redshift of the source [33]. The final observable reduced
shear field that we obtain is a gauge invariant quantity,
although its separate contributions are not necessarily so.
As it is customary for CMB polarization, we express the

reduced shear in terms of spin-2 operators on the sky. In
particular, angular gradients on the sky will be written in
terms of spin raising and lowering operators, whose eigen-
functions are the well-known spin-weighted spherical
harmonics.
The plan of the paper is the following. In Sec. II we give

the outline of our calculation. In particular, we describe the
Sachs equation and how the transverse size of a propagat-
ing beam can be related to the observable reduced shear
including the effects of the source redshift inhomogene-
ities. We will solve the Sachs equation at first order in
Sec. III while the full second-order calculation will be
presented in Sec. IV. We discuss and comment on our
results in Sec. V in the context of cosmic shear surveys
regarding the generation of B modes and the expected
contributions to the cosmic shear bispectrum.

II. THE WEAK LENSING EQUATIONS

We are interested in studying the propagation of a light
bundle, i.e. a collection of nearby light rays [32,34–38]. We
consider two nearby null geodesics x�ð�Þ and x�ð�Þ þ
��ð�Þ that lie in the past-light cone of an observer O,
connected by a deviation vector field ��. The affine pa-
rameter � is chosen in such a way that it assumes the same
value at O for all geodesics, i.e. �O ¼ 0. Thus, at the
observer ��ð0Þ ¼ 0. We denote by k� ¼ dx�=d� the
wave vector of the photons. This obeys the geodesic equa-
tion,

Dk�

D�
¼ 0; (1)

where D
D� � k�r� is the covariant derivative along the

geodesic. For rays with an infinitesimal separation the
connecting vector �� is also infinitesimal and lies on the
null surface, i.e. ��k� ¼ 0 everywhere along the geode-

sics. The evolution equation of the connecting vector reads
D��=D� ¼ ��r�k

�. Indeed, in some arbitrary coordinate
system one has

k�r��
� ¼ d

d�
�� þ ��

��k
���

¼ k�ðxþ �xÞ � k�ðxÞ þ �
�
��k

���

¼ ��@�k
� þ �

�
��k

���: (2)

By taking the covariant derivative of this equation along
the photon geodesic and using the geodesic equation (1)
one obtains the Sachs equation [32],

D2��

D�2
¼ R�

����
�k�k�; (3)

where we have used the Ricci identity ðr�r� �
r�r�Þk� ¼ R�

���k
� and R�

��� is the Riemann tensor.

This equation describes the evolution of a light bundle
along the geodesic.
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Let us consider the case of a light beam emitted by a
galaxy at spacetime position S and received by an observer
at O. We denote by v

�
O the observer 4-velocity. It is

convenient to define an orthonormal spacelike basis na
�,

with a ¼ 1, 2, orthogonal to k� and to the observer veloc-
ity v�

O and such that g��na
�nb

� ¼ �ab.
3 At the observer

position these vectors form a basis, fn1�; n2�; k�; v�
Og,

which can be parallel transported along the geodesic,

Dna
�

D�
¼ 0;

Dv
�
O

D�
¼ 0: (4)

The subspace defined by fn1�ð�Þ; n2�ð�Þg is called the
screen adapted to v

�
O and k�.

We can write the deviation vector ��ð�Þ in this basis.
Using the fact that ��k� ¼ 0 along the geodesic, the

component along v�
O vanishes and we have, for all �,

�� ¼ �ana
� þ �0k�; (5)

with �að0Þ ¼ 0 and �0ð0Þ ¼ 0 at the observer. We can then
plug this decomposition into the Sachs equation (3). Using
the symmetry properties of the Riemann tensor the right-
hand side of this equation becomes R�

����
ana

�k�k�.

Furthermore, using the equation of parallel transport for
na

� and v
�
O, Eq. (4), and projecting the Sachs equation

along the spatial basis na
�, one obtains an evolution equa-

tion for �a,

d2�a

d�2
¼ Ra

b�
b; (6)

where the 2D tensor Rab is defined by

R ab � R���	k
�k�na

�nb
	: (7)

As Eq. (6) is linear with initial condition �að0Þ ¼ 0, its
solution can be written in the form

�a ¼ Dab

b
O; (8)

where


bO � d�b

d�

���������¼0
(9)

is the (vectorial) angle between the photon geodesic and
the neighboring one at the observer.Dab is a linear matrix,
called Jacobi mapping. It relates the angle of observation

bO to the image on the screen adapted to v�

O and k�

described by the two spatial components of ��, �a. From
Eq. (8), Eq. (6) can be rewritten as an evolution equation

for Dab [35–38],

d2

d�2
Dab ¼ RacDcb: (10)

Equation (9) and �að0Þ ¼ 0 imply that Dabð0Þ ¼ 0 and
dDab=d�j�¼0 ¼ �ab. Note thatRab is symmetric butDab

is generally not.
We can decompose the linear mappingDab into a spin-0

component and a spin-2 component, respectively,

0D � D11 þD22 þ iðD12 �D21Þ; (11)

2D � D11 �D22 þ iðD12 þD21Þ: (12)

The spin-2 part, 2D, is directly related to the usual shear
spin-2 field � � �1 þ i�2. Indeed, by defining the vecto-
rial angular position at the source as 
aS � �a=�S one finds

the following relations [38]:

�1 ¼ � 1

2�S

ðD11 �D22Þ;

�2 ¼ � 1

2�S

ðD12 þD21Þ:
(13)

The spin-0 part, 0D, contains a real part, the trace D ¼
D11 þD22, which is related to the usual convergence by

� ¼ 1� 1

2�S

D: (14)

The imaginary part comes from the fact that, unlike Rab,
Dab is not necessarily symmetric. Indeed, as we will see, it
is not symmetric at second order. The imaginary part of 0D
corresponds to a rotation of the observed object and it is
related to the usual rotation parameter ! by

! ¼ � 1

2�S

ðD12 �D21Þ: (15)

At second order, the rotation has no observational conse-
quences on the observed galaxy polarization.4 Therefore
we will ignore it in the following. We are thus left with one
scalar degree of freedom describing the convergence and 2
degrees of freedom for the shear. The latter can be mapped
into the so-called ‘‘electric’’ and ‘‘magnetic’’ modes (see
Appendix B). Note that at second order the electric mode is
not necessarily equal to the convergence field as in the
linear case.

3More generally, it is possible to introduce an induced 2D
metric on the subspace described by na

� by imposing
g��na

�nb
� ¼ 2Dgab. This is particularly convenient when em-

ploying spherical polar coordinates to describe the 3D space. In
this case the Latin indices a; b; . . . are raised and lowered by the
metric 2Dgab. As here we take 2Dgab ¼ �ab, upper or lower
positions of the indices are irrelevant and repeated indices
represent a summation over a ¼ 1, 2.

4More precisely, one can define the observed complex shape
polarization as p ¼ ðm11 �m22 þ 2im12Þ=ðm11 þm22Þ where
mij is the luminosity distribution matrix of observed galaxies.
For an unpolarized source and in absence of rotation this is p ¼
2g=ð1þ gg�Þ [39]. In case of rotation this relation becomes ð1�
~��Þ=ð1� ~�Þp ¼ 2~g=ð1þ ~g~g�Þ where ~� is complex and defined
as ~� � �þ i! and ~g � g=ð1� ~�Þ. Thus, as ~� is real at linear
order and � vanishing at zeroth order, the imaginary part of ~�
enters in the expression of the observed polarization at third
order only.
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What we observe is the ratio between the anisotropic and
isotropic deformations, i.e. the reduced shear, defined as
[39]

g � �

1� �
: (16)

From Eqs. (13) and (14) this is given, in terms of the Jacobi
mapping Dab, by

g ¼ �2D=D: (17)

In the following we will solve Eq. (10) in a perturbed
universe. For the background we will assume a flat
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric
given by ds2 ¼ a2ð
Þð�d
2 þ dx2Þ, where 
 is the con-
formal time. Since null geodesics are not affected by
conformal transformations, it will be convenient to per-
form the calculation without the Friedmann expansion and
reintroduce the effect of the expansion only at the end.
Indeed, as shown in Appendix A, the effect of the expan-
sion can be simply taken into account by rescaling the
mapping Dab by the scale factor, e.g. Dab ! aDab.
Note that, as both 2D andD get rescaled by the conformal
transformation, the reduced shear (17) is not affected by
the expansion. We parametrize the photon geodesic such
that x0ð�ð
ÞÞ ¼ 
0 � 
. It is thus convenient to define
� � 
0 � 
 so that

k0 ¼ d�

d�
; (18)

and the evolution equation (10) now reads

d2

d�2
Dab þ 1

k0
dk0

d�

d

d�
Dab ¼ 1

ðk0Þ2 RacDcb: (19)

We can solve this second-order differential equation order
by order in the metric perturbations.

The solution of Eq. (19) gives the linear mapping be-
tween the observed angle and the shape of a source at a
given coordinate time 
S. Observationally, we are inter-
ested in a mapping where the source is defined at a given
redshift zS. As in an inhomogeneous universe the redshift is
a perturbed quantity, at second order we expect a contri-
bution to the reduced shear due to the coupling between
this perturbation and the lenses. Thus, the reduced shear at
constant redshift is given by

gz ¼ g� dg

dzS
�zS; (20)

where �z ¼ zþ 1� a0=a is the perturbation of the red-
shift. As this correction is not conformally invariant, it
introduces a dependence on the expansion. At first order,
though, only the trace of the linear mapping,D, is affected
by redshift perturbations [33], but the traceless part is not
and therefore in this case gz ¼ g.

III. THE SHEAR AND THE CONVERGENCE AT
FIRST ORDER

As a warm up exercise, before the calculation of the
shear at second order we derive here, using Eq. (19), the
shear and the convergence at first order. We consider a
perturbed FLRW metric in Newtonian gauge, written in
Cartesian coordinates as

ds2 ¼ a2ð
Þ½�ð1þ 2�Þd
2 þ ð1� 2c Þdx2�; (21)

where we have neglected primordial vector and tensor
perturbations. For convenience, we define also the Weyl
potential � as

� � ð�þ c Þ=2; (22)

and we will use it in the following whenever the combina-
tion �þ c appears. As explained in the previous section,
the reduced shear (17) is not affected by the expansion and
we can set the scale factor a ¼ 1.
Let us define k�ð0Þ � ð1; erÞ as the photon 4-momentum

at the observer, where er defines the direction of the line of
sight. Note that in this definition we have set the metric
perturbations at the observer position to zero. The final
result will be independent of this choice. Indeed, since
metric perturbations at the observer do not depend on the
direction of observation, they can be reabsorbed into the
homogeneous mapping. As in flat spacetime the
Christoffell symbols vanish, k�ð0Þ is parallel propagated
along the background geodesic, while the curvature tensor
R���� vanishes, thus making Rab at least a first-order

quantity. Then, at first order in perturbations Eq. (19)
simplifies to

d2

d�2
Dab þ dk0

d�

d

d�
Dab ¼ RacDcb; (23)

where we have used that dk0=d� vanishes on the
background.
On the background this equation becomes

d2Dab=d�
2 ¼ 0. Requiring that the homogeneous map-

ping is proportional to the unit matrix yields Dab ¼ ��ab

for the background solution. Furthermore, we can plug the
background solution forDab in the second term on the left-
hand side and on the right-hand side of Eq. (23) to obtain

d2

d�2
Dab þ dk0

d�
�ab ¼ �Rab: (24)

We then integrate this equation once up to the source using
the boundary condition dDab=d�jO ¼ �ab,

d

d�
Dab ¼ ð2� k0Þ�ab þ

Z �

0
d�0�0Rab: (25)

The solution of this equation, after an integration by parts,
can be written as
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Dabð�SÞ ¼
Z �S

0
d�ð2� k0Þ�ab þ

Z �S

0
d�ð�S � �Þ�Rab;

(26)

k0 can be obtained by solving the photon geodesic (1) at
first order,

k0 ¼ 1� 2�þ
Z �

0
d�02 _�; (27)

where the dot denotes a partial derivative with respect to �,
i.e. _�@=@�.

Let us now compute Rab. We denote by na
�ð0Þ �

ð0; eaÞ the spatial basis at the observer. As for the 4-
momentum of the photon, na

�ð0Þ is parallel propagated
along the background geodesic. Thus, according to the
definition (7), in order to computeRab we need to contract
the curvature tensor at first order with the unperturbed
k�ð0Þ and na

�ð0Þ, which yields

R ab ¼ �ea
ieb

j2�;ij � d2c

d�2
�ab: (28)

PluggingRab given in this equation and the expression for
k0 given in Eq. (27) into Eq. (26) and integrating by parts
d2c =d�2 we obtain the Jacobi mapping at linear order,

Dabð�SÞ ¼ ð1� c ð�SÞÞ�S�ab

þ
Z �S

0
d�½4�� 2ð�S � �Þ _���ab

� ea
ieb

j
Z �S

0
d�ð�S � �Þ�2�;ij: (29)

According to the Born approximation we can evaluate the
integral along the background geodesic so that in this
expression � ¼ �ð�; er�Þ.

Note that the metric (21) is conformal to ds2 ¼ �ð1þ
4�Þd
2 þ dx2. Thus, as photon geodesics are conformally
invariant, one would naively expectDab to depend only on
the combination � ¼ ð�þ c Þ=2 [37]. This is too quick a
conclusion. Indeed, parallel transport of the basis na

� is
not conformally invariant and the basis is deformed by the
spatial curvature at the source position. For this reason the
first term of Eq. (29) also depends on the curvature poten-
tial at the source, c S.

We now want to extract the shear and convergence from
the mapping Dabð�SÞ. In order to do so, it is useful to
introduce spin operators on the sphere (see Appendix B).
To each point of a 2D Riemannian manifold described by
an orthonormal basis fe1; e2gwe can associate a spin-s field
sX such that under the rotation of ea by an angle � it
transforms as sX ! ei�ssX (for more details see [40–42]).
More precisely, following [41], the local freedom in the
choice of the basis is equivalent to the transformations

e� � e1 � ie2 ! ei�e�: (30)

To every spin-s sX we can associate a symmetric and trace-

free tensor of rank s � 0, Xa1...as : for s � 0,

Xa1...as � 2�s
sXe

a1� . . . eas� : (31)

The inverse relation is

sX � ea1þ . . . easþXa1...as : (32)

For s < 0 we define Xa1...ajsj � 2�jsj
sXe

a1þ . . . e
ajsj
þ .

As we are interested in describing the lensing field on
the sphere of the sky, for the orthonormal basis we choose
the two coordinate basis vectors of a spherical polar coor-
dinate system, fe1; e2g � fe
; e’g. Let us rewrite the three
spatial vectors er and ea in the Cartesian representation as

e r ¼ ðsin
 cos’; sin
 sin’; cos
Þ; (33)

e 
 ¼ ðcos
 cos’; cos
 sin’;� sin
Þ; (34)

e ’ ¼ ð� sin’; cos’; 0Þ; (35)

where 
, ’ are the angles of observation. Furthermore, we
can define operators that increase or decrease the index of
the spin by 1,

@6 sX � �sins
ð@
 þ i csc
@’Þðsin�s
ÞsX;
�@6 sX � �sin�s
ð@
 � i csc
@’Þðsins
ÞsX:

(36)

With the definitions (33)–(35) above we have

eir@i ¼ @r; ei
@i ¼
1

�
@
; ei’@i ¼ 1

� sin

@’;

(37)

where we have used that r ¼ � along the photon geodesic.
Using these relations it is easy to verify that, if X ¼ Xð�Þ is
a scalar field,

eþiX;i ¼ � 1

�
@6 X; e�iX;i ¼ � 1

�
�@6 X: (38)

Then, employing the useful relation �e�i@ie�j ¼ cot
e�j

one can verify that

eþieþjX;ij ¼ 1

�2
@6 2X; e�ie�jX;ij ¼ 1

�2
�@6 2X; (39)

and, analogously with �e�i@ie�j ¼ � cot
e�j � 2er
j,

that

eþie�jX;ij ¼ e�ieþjX;ij ¼ 1

�2
�@6 @6 X� 2

�
X;r: (40)

Note that the 2D Laplacian on the sphere is given by

@6 �@6 X ¼ �@6 @6 X.
Let us first apply these definitions to Rab. By making

use of Eq. (32) we can define a spin-2 field on the sphere,

2R � eþaeþbRab, which by Eq. (39) reads

2R ¼ � 2

�2
@6 2�: (41)
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Then, using that ea
iea

j ¼ ðeþie�j þ e�ieþjÞ=2 and
Eq. (40), the trace of Rab reads

R ¼ � 4

�
�;r � 2

�2
�@6 @6 �� 2

d2c

d�2
: (42)

We can do the same for the mapping (29). One finds the
spin-2 mapping field,

2Dð�SÞ ¼ �2
Z �S

0
d�

�S � �

�
@6 2�: (43)

At first order the reduced shear g is given by 2D divided by

the background part of D, which is simply �D ¼ 2�S, i.e.

g ¼
Z �S

0
d�

�S � �

��S

@6 2�: (44)

Taking the trace of Eq. (29) and defining �D ¼ D� 2�
one finds, after an integration by part,

�Dð�SÞ ¼ �2c ð�SÞ�S

þ 2
Z �S

0
d�

�
2�� �S � �

�
�@6 @6 �

�
; (45)

which is proportional to the convergence, �. The first two
terms on the right-hand side are not usually included in the
convergence because they are negligible on small angular

scales.5 In particular, the first term is a relativistic effect
due to the deformation of the size of the source caused by
the curvature potential at the source. The second term is the
Shapiro time delay [43]. Both effects are negligible on
small angular scales.

We can check that the first two terms in Eq. (45) con-
tribute to the convergence by considering a nonexpanding
FLRW universe with constant nonzero spatial curvature K
and metric

ds2 ¼ �d
2 þ 1

ð1þ c KðrÞÞ2
ðdr2 þ r2d�2Þ; (46)

with c KðrÞ � Kr2

4
: (47)

In this universe the angular diameter distance is

DAð�Þ ¼
�
sinð ffiffiffiffi

K
p

�Þ= ffiffiffiffi
K

p
for K > 0;

sinhð ffiffiffiffiffiffiffijKjp
�Þ= ffiffiffiffiffiffiffijKjp

for K < 0:
(48)

For small curvature, K � 1, the expression above can be
expanded at first order in K to give

DAð�SÞ ¼ �S � K�3
S

6
: (49)

The first term on the right-hand side is the angular diameter

distance in a spatially flat universe while the second term is
a small perturbation to it, due to the curvature.
As the trace D corresponds to twice the angular diame-

ter distance, we can check that �Dð�SÞ=2, with �Dð�SÞ
given in Eq. (45), correctly reproduces this small perturba-
tion in this particular case. For � ¼ 0 and c ¼ c K (and
a ¼ 1) the flat perturbed metric in Poisson gauge, Eq. (21),
reproduces at first order in c K the spatially curved metric
(46). Thus, in this case � � ð�þ c Þ=2 ¼ Kr2=8. As the
Weyl potential � depends only on the radial coordinate,
the last term on the right-hand side of Eq. (45) vanishes so
that it does not contribute to the angular diameter distance.
Furthermore, the contributions from the first and the sec-
ond term of Eq. (45) are, respectively, �K�3

S=4 and

K�3
S=12, where we have used that, at lowest order in c K,

r ¼ � along the photon geodesic. This yields
�Dð�SÞ=2 ¼ �K�3

S=6, i.e. the second term of Eq. (49).

Note that the first two terms of Eq. (45) have no counterpart
in the shear. Indeed, a constant curvature deviates light rays
only isotropically. Furthermore, Kaiser’s relation [44] be-

tween shear and convergence, @6 � ¼ �@6 �, is only valid in the
limit of small angles, when the first two terms of Eq. (45)
are negligible.

IV. THE SHEAR AT SECOND ORDER

In this section we will compute the lensing shear at
second order. As we concentrate on the shear, we will
compute only the trace-free and symmetric part of the
matrix Dab. Indeed, at second order the trace and the
antisymmetric part contribute only to the convergence �
and the rotation !, respectively. We will do the calculation
in the so-called generalized Poisson gauge, where the
second-order metric can be written as [45]

ds2 ¼ a2ð
Þ½�e2�d
2 þ 2!id
dx
i

þ ðe�2c�ij þ hijÞdxidxj�: (50)

Here the vector component!i is divergenceless, @i!i ¼ 0,
and the tensor component hij is divergenceless and trace-

less, @ihij ¼ 0 ¼ hii. As we neglect primordial vector and

tensor perturbations, !i and hij are only second-order

quantities. Note that we have used the exponential form
for the gravitational potentials in the metric. Indeed, in this
form the metric is conformal to ds2 ¼ �e4�d
2 þ
2!id
dx

i þ ð�ij þ hijÞdxidxj so that the effect of scalar

perturbations on the null geodesic is only through the Weyl
potential � ¼ ð�þ c Þ=2. As done in the previous sec-
tion, we will drop the effect of the expansion setting a ¼ 1.
We will reintroduce the expansion in Sec. IVC.

A. Solving the Sachs equation

To solve the Sachs equation at second order let us go
back to Eq. (19). This can be integrated to obtain

5The Laplacian �@6 @6 introduces a factor lðlþ 1Þ in harmonic
space, thus enhancing the contribution to the power spectrum
from the third term of Eq. (45) with respect to the contribution of
the other terms.
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d

d�
Dab ¼ �ab þ

Z �

0
d�0

�
1

ðk0Þ2 RacDcb � 1

k0
dk0

d�

	 d

d�
Dab

�
; (51)

where we have used that dDab=d�jO ¼ �ab at the ob-
server. Since dk0=d� vanishes on the background we can
rewrite the last term of this equation using the first-order
equation (25) and integrate Eq. (51) up to the source S. We
obtain, after integration by parts,

D abð�SÞ ¼ �S�ab þ
Z �S

0
d�

�S � �

�
Sab; (52)

where we have defined the source term Sab as

Sab � �

ðk0Þ2 RacDcb � �

k0
dk0

d�
ð2� k0Þ�ab

� �
dk0

d�

Z �

0
d�0�0Rab: (53)

At second order we need to go beyond the standard Born
approximation. Since the source term Sab is at least first
order, we just need to integrate along a geodesic which is
perturbed at first order. Thus, we evaluate the source term
at the perturbed geodesic position xipertð�Þ ¼ xið�Þ þ
�xið�Þ, where �xi is the geodesic deviation. Expanding
Sab along the background geodesic,

S abðxipertÞ ¼ SabðxiÞ þ �xj 
 �ðSabÞjjx; (54)

where the shift �ðSabÞj will be computed below, we can

rewrite the source term Sab as a function of the unper-
turbed geodesic position xi as

Sab � �2

ðk0Þ2 Rab þ �Rac�Dcb � �

k0
dk0

d�
ð2� k0Þ�ab

� �
dk0

d�

Z �

0
d�0�0Rab þ �2�xj 
 �ðRabÞj; (55)

where to write the first two terms we have separated Dab

into its background and first-order part as Dab ¼ ��ab þ
�Dab and we have employed for the last term that at
leading order Sab ¼ �2Rab. We will now compute the
symmetric traceless part of the source Sab evaluating one
by one each of the terms on the right-hand side of Eq. (55).

Let us start with the first term in Eq. (55). Since on a flat
background spacetime the unperturbed part of R���� van-

ishes, according to the definition (7), i.e., Rab ¼
R����k

�k�na
�nb

�, in order to computeRab up to second

order we just need to consider the photon wave vector k�

and the basis na
� up to first order. Integrating the geodesic

equation (1) one obtains, up to first order,

k0 ¼ 1� 2�þ
Z �

0
d�02 _�; (56)

ki ¼ ð1þ 2c Þeri �
Z �

0
d�02@i�: (57)

Integrating up to first order the parallel transport equation
for na

�, Eq. (4), one finds

na
0 ¼ �ea

i
Z �

0
d�0@i�; (58)

na
i ¼ ea

ic þ er
iea

j
Z �

0
d�0@jc : (59)

Since the vector and tensor parts of the metric are already
second order, they enter linearly in R����, which just

needs to be contracted with the unperturbed k� and na
�.

Furthermore, it is convenient to compute the ratio ki=k0

which appears when combining ki in the definition (7) with
the denominator of the first term of Eq. (55). This yields

ki

k0
¼ er

ið1þ 2�Þ � ea
iea

j
Z �

0
d�02�;j: (60)

Finally, computing R���� up to second order and mak-

ing use of the definition (7), the traceless part of the first
term of Eq. (55) reads

�2

ðk0Þ2 ðRabÞT ¼��2eða
iebÞ

j

�
2�;ijþ 4�;i�;jþ 8��;ij

þ 8er
k�;ik

Z �

0
�;j� er

k!k;ijþ d

d�
!i;j

� 1

2
er

ker
lhkl;ij� 1

2

d2

d�2
hijþ 1

2

d

d�
er

khki;j

�
;

(61)

where the parenthesis in the indices denote symmetriza-
tion. After few manipulations, employing Eqs. (38) and
(39), and the useful relation �eþi@ier

j ¼ eþj, we can
write its contribution to 2S � eþaeþbSab as

�2@6 2�� 4@6 �@6 �� 8�@6 2�� 8ð�@6 �;r � @6 �Þ
	

Z �

0
d�0 1

�0 @6 �þ @6 2!r þ d

d�
ð�@6 1!Þ

þ 1

2
@6 2hrr þ d

d�
ð�@6 1hrÞ þ �

2

d2

d�2
ð�2hÞ; (62)

where!r � er
i!i, hrr � er

ier
jhij and we have defined the

spin-1 part of !, 1! � eþi!i, the spin-1 quantity 1hr �
eþier

jhij and the spin-2 part of the tensor mode hij,

2h � eþieþjhij.
6

The second term of Eq. (55) is the product of two first-
order quantities, Rac and �Dcb, both symmetric at first

6Note that !i and hij can be decomposed, respectively, as
!i¼!rer

iþ 1
2�1!eþiþ 1

21!e�i and hij¼hrrðerierj�
1
2e

ði
þejÞ�Þþ�1hreþ

ðierjÞþ1hre�
ðierjÞþ1

4�2heþ
ieþjþ1

42he�
ie�j.

These components are not independent, as they are related by the
divergenceless conditions !i;i ¼ 0 ¼ hij;i.
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order and containing a trace and a traceless part. The
symmetric traceless part of this product is simply given by

�ðRac�DcbÞST ¼ �ðRabÞT12�Dþ �1
2Rð�DabÞT; (63)

where �D is the perturbed trace of the mapping Dab and
R is the trace of Rab. Note that the term �RT

ac�DT
cb

contains a trace and an antisymmetric part and thus con-
tributes only to the second-order convergence and rotation.
Using the expressions for 2R and R, Eqs. (41) and (42),
and those for 2D andD, Eqs. (43) and (45), one obtains for
the contribution of the second term to 2S,

2c @6 2�� 2

�
@6 2�

Z �

0
d�0

�
2�� �� �0

�0
�@6 @6 �

�

þ 2

�
2�;r þ 1

�
�@6 @6 �þ �

d2c

d�2

�Z �

0
d�0 �� �0

�0 @6 2�:

(64)

The first line is � 2R�D while the second is �R 2�D.
The third term of Sab is a pure trace so that it does not

contribute to the shear. The traceless part of the fourth term
of Eq. (55) can be straightforwardly computed by noting
that

dk0

d�
¼ �2

d�

d�
þ 2 _�: (65)

Thus, its contribution to the source 2S is

4�

�
�d�

d�
þ _�

�Z �

0
d�0 1

�0 @6 2�: (66)

In order to express the last term of Eq. (55) in terms of a
spin-2 field we need to solve the geodesic equation at first
order. We can solve dxi=d� ¼ ki=k0 making use of
Eq. (60). After integrating by parts this yields the geodesic
deviation,

�xi ¼ er
i
Z �

0
d�02�� ea

iea
j
Z �

0
d�0ð�� �0Þ2�;j:

(67)

The shift ofRab, �ðRabÞi, is simply given by the variation
of� and d2c =d�2 along the geodesic in Eq. (28). We only
need to take the traceless part of �ðRabÞi. Thus we have

�ðRabÞTi ¼ �ea
jeb

k2�;ijk; (68)

which can be contracted with �xi of Eq. (67). Note that as
we are varying directly the scalar Weyl potential � it was
not necessary to introduce a covariant derivative on the
sphere as in [46]. With the definitions and relations of
Sec III it is possible to verify that

eþieþjeþkX;ijk ¼ � 1

�3
@6 3X;

eþieþje�kX;ijk ¼ � 1

�3
�@6 @6 2X � 4

�2

�
@6 X;r � 1

�
@6 X

�
:

(69)

Using these relations and ea
iea

j ¼ ðeþie�j þ e�ieþjÞ=2
one finds, for this last contribution,

4

�
2

�
@6 2�� @6 2�;r

�Z �

0
d�0�þ 2

�
@6 3�

Z �

0
d�0 �� �0

�0
�@6 �

þ 2

�
�@6 @6 2�

Z �

0
d�0 �� �0

�0 @6 �þ 8

�
@6 �;r � 1

�
@6 �

�

	
Z �

0
d�0 �� �0

�0 @6 �; (70)

where the first and second lines come from contracting
with the first and second terms on the right-hand side of
Eq. (67), respectively. Using the commutation rule for the
spin raising and lowering operators [41],

ð �@6 @6 � @6 �@6 ÞsX ¼ 2ssX; (71)

it is convenient to rewrite the second term in the second
line of Eq. (70) as

2

�
�@6 @6 2�

Z �

0
d�0 �� �0

�0 @6 � ¼ 2

�
@6 �@6 @6 �

Z �

0
d�0 �� �0

�0 @6 �

þ 4

�
@6 �

Z �

0
d�0 �� �0

�0 @6 �:

(72)

Finally, combining Eqs. (62), (64), (66), (70), and (72),
replacing partial derivatives with respect to r by using @r ¼
d=d�� @� (we remind the reader that _� ¼ @��) and

integrating the total derivatives by parts, we obtain

2Dð�SÞ ¼ 2
Z �s

0
d�

�S � �

�
@6
�
�@6 �þ 1

�

�
@6 2�

Z �

0
d�0 �� �0

�0
�@6 �þ �@6 @6 �

Z �

0
d�0 �� �0

�0 @6 �
��

þ 4
Z �s

0
d�

�S � �

�

�
1

2
@6 2�2 þ 1

2
c ð�SÞ@6 2���

1

�

Z �

0
d�0@6 2�þ @6 2

�
_�
Z �

0
d�0�

�

þ @6 � 1

�

Z �

0
d�0 �� �0

�0 @6 �
�
� 4

Z �S

0
d�

�
�

Z �

0
d�0 1

�0 @6 2�þ 1

�
@6 2

�
�

Z �

0
d�0�

��

þ �S

2 2hð�SÞ þ
Z �S

0
d�

�
�S � �

�
@6 2

�
!r þ 1

2
hrr

�
þ �S

�
@6 ð1!þ 1hrÞ

�
: (73)

This is the solution of the Sachs equation. It is written in terms of spin raising and lowering operators @6 and �@6 , which are
just the extensions on the sphere of the usual angular gradients: for small angles one can replace them by angular gradients
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~rer transverse to the line of sight. The advantage of using
this representation is that the eigenfunctions of these op-
erators are simply spin-weighted spherical harmonics (see
Appendix B).

In the small-angle approximation, i.e. when transverse
scales are much smaller than radial scales, Eq. (73) reduces
to its first line. Indeed, in harmonics space the presence of

the operators @6 and �@6 is associated to an l factor. Thus,
when observations are confined to large l one gets a larger

contribution from those terms containing more @6 and �@6
operators, such as the first line. The parentheses of the first
line contain the usual couplings considered in the literature
[21–25], i.e. the lens-lens correction and the correction to
the Born approximation. Note that there are other cou-
plings at play: the nonlinear growth of dark matter fluctua-
tions induced by gravity on small scales introduces other
second-order effects that are incorporated in the Weyl
potential �.7

In the small-angle approximation the last three lines of
Eq. (73) are suppressed by the ratio between the transverse
scales probed and the longitudinal distances. However, for
a full-sky survey where one probes larger scales they can
become important. Let us list here these terms collecting
them by their physical interpretation (for simplicity, inte-
gration over d� and d�0 will be omitted):

(i) An intrinsic contribution, integrated only once along
the line of sight,

2
�S � �

�
@6 2�2ð�Þ; (74)

coming from the Riemann tensor at second order.
This is a purely general relativistic effect of second-
order gravity.

(ii) A source-lens coupling,

2
�S � �

�
c ð�SÞ@6 2�2ð�Þ; (75)

which comes from the coupling between the lens and
the curvature at the source, inducing a deformation
of its shape. As we will see, this term is absent from
the final expression of the reduced shear, as it cancels
with an equivalent term coming from the corrections
due to the denominator of Eq. (17).

(iii) Time delay-lens couplings,

4
�S � �

�

�
��ð�Þ 1

�
@6 2�ð�0Þ þ @6 2 _�ð�Þ�ð�0Þ

þ _�ð�Þ@6 2�ð�0Þ
�
� 4

�
�ð�Þ 1

�0 @6 2�ð�0Þ

þ 1

�
@6 2�ð�Þ�ð�0Þ þ 1

�
�ð�Þ@6 2�ð�0Þ

�
; (76)

which come from the coupling between the lens and
the time delay that occurs during the longitudinal
photon path.

(iv) Deflection-deflection couplings,

4
�S � �

�

�
2@6 _�ð�Þ@6 �ð�0Þ þ @6 �ð�Þ

	 �� �0

�0 @6 �ð�0Þ
�
� 8

�
@6 �ð�Þ@6 �ð�0Þ; (77)

which are due to the couplings between two changes
in the photon directions. Note that the photon de-
flection is described by a spin-1 field (the deflecting
angle), i.e. a spin raising operator @6 acting on a
scalar. Taken alone it does not change the shear as
it just affects all photons of the beam in the same
way. However, the coupling of two deflections gen-
erate a spin-2 field which contributes to the shear.
These corrections, as well as the time delay-lens
ones, are integrated twice along the line of sight.

The last line of Eq. (73) contains the effects induced by
vector and tensor modes generated at second order. As
vectors and tensors are already second-order quantities,
they enter linearly in this expression. The vector compo-
nent enters only through terms integrated along the line of
sight. As the tensor component is a spin-2 field it induces
also a boundary term, which accounts for the distortion of
the shape at the source. The integrated contributions from
the tensor component agree with what was found in
[49,50]. Note that, at second order, the separation into
scalars, vectors, and tensors done here is gauge dependent.
Indeed, we expect all these different contributions to give
comparable effects to second-order observables such as the
bispectrum. This is similar, for instance, to what happens
when one computes the CMB bispectrum on large angular
scales [14]. Finally, note that our final result (73) cannot be
written as the action of @6 2 on a scalar quantity. Thus, the
shear will contain also B modes (see Appendix B).

B. Testing the solution

As the reader has certainly realized, the derivation of
Eq. (73) is extremely tedious and involves many steps.
Thus, it is important to develop tests in order to check
this equation and, in particular, the new nonlinear cou-
plings (74)–(77). One implicit check is that 2D behaves
as a spin-2 field under rotation of the screen basis. This is

automatically ensured by the use of the operators @6 and �@6
instead of the angular derivatives. Furthermore, we can
check the terms in Eqs. (74)–(76) by studying specific
cases where part of our calculation can be pursued non-
perturbatively. For instance, we can study the shear at
linear order in a universe with constant curvature. In the
limit where the curvature is small we must recover the
couplings between the curvature and the gravitational po-
tential given in Eqs. (74)–(76). As we will see, such a

7To a large extent, these effects are those that are expected to
dominate in the current surveys and that lead to detectable
effects [21,47,48].
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strategy can be generalized to other cases. Unfortunately
we were not able to develop an analogous test for the terms
appearing in Eq. (77).

1. Couplings from perturbing the spatial curvature

Let us consider a perturbed nonexpanding FLRW space-
time with constant curvature K and metric

ds2 ¼ �ð1þ 2�Þd
2 þ 1

ð1þ c KÞ2
ðdr2 þ r2d�2Þ;

(78)

with

� ¼ �ðx�Þ; c K ¼ Kr2

4
; (79)

where we have perturbed only the 00 part of the metric. At
linear order, the spin-2 mapping field 2D for this metric is
(see for instance [21])

2DKð�SÞ ¼ �
Z �S

0
d�

DAð�S � �Þ
DAð�Þ @6 2�; (80)

where DAð�Þ is the angular diameter distance given by
Eq. (48). Equation (80) is just the generalization of
Eq. (43), where DAð�Þ ¼ �, to a constant curved FLRW
universe. Since c K does not depend on the angles,
@6 2c K ¼ 0 and thus only @6 2� appears on the right-hand
side of this equation.

For a small curvature K we can expand Eq. (80) at first
order in c K. The angular diameter distance (48) reads
DAð�Þ ’ �� K�3=6. Furthermore, we have to evaluate
� on the geodesic solution for a curved universe, i.e. at
rð�Þ ¼ �þ K�3=12, which yields

@6 2�ðrð�Þ; 
; �Þ ¼ @6 2�ð�; 
;�Þ þ K�3

12
@6 2�;rð�; 
;�Þ:

(81)

Plugging these expressions into Eq. (80), replacing the
derivative with respect to r using @r ¼ d=d�� @�, and

integrating by parts we obtain, up to first order in c K,

2DK ¼ �
Z �S

0
d�

�
�S � �

�
@6 2�� K

12

�
2�3

S

�
� 3�2

� 6�2
S þ 6��S

�
@6 2�� K

12
ð�S � �Þ�2@6 2 _�

�
:

(82)

The last two terms on the right-hand side of this equation
can be seen as ‘‘second-order’’ corrections to the first-order
expression (43), of order �Oð�c KÞ, due to the coupling
between the gravitational potential � and the curvature
perturbation c K. These corrections are already incorpo-
rated in our second-order expression (73). Indeed, by re-
placing � ¼ ð�þ c KÞ=2 in this equation, neglecting
second-order terms of order �Oð�2Þ but keeping those

of order �Oð�c KÞ one finds, after integrating by parts,
Eq. (82).
This calculation can be extended to a spacetime with

radial-dependent curvature, i.e. c KðrÞ a generic function
of r. In this case the spin-2 mapping 2D is given by

2DKð�SÞ ¼ �
Z �S

0
d�

Gð�S; �Þ
DAð�Þ @6 2�; (83)

where the Green’s function Gð�S; �Þ and the angular di-
ameter distance DAð�Þ can be derived from using Eq. (19)
in a homogeneous universe with spatial curvature c K. In
this case the trace of Eq. (19) becomes

d2DAð�Þ
d�2

¼ RðrÞDAð�Þ; (84)

where, at first order in c K, R ¼ �c K;r=r� c K;rr, imply-

ing

c K ¼ �
Z �

d�0=�0 Z �0
d�00�00Rð�00Þ: (85)

The two solutions of Eq. (84), DAð�Þ and Cð�Þ, are
determined through their initial conditions, i.e. DAð�Þ !
� and Cð�Þ ! 1þOð�2Þ, so that

DAð�Þ ¼ �þ
Z �

0
d�0 Z �0

0
d�00�00Rð�00Þ; (86)

Cð�Þ ¼ 1þ
Z �

0
d�0 Z �0

0
d�00Rð�00Þ: (87)

The Green’s function is then given by

Gð�S; �Þ ¼ DAð�SÞCð�Þ �DAð�ÞCð�SÞ: (88)

Evaluating @6 2� on the geodesic solution for a curved
universe, and replacing Eqs. (86) and (88) into (83) we
obtain, at first order in � and c K but keeping terms of
order �Oð�c KÞ,

2DKð�SÞ ¼�
Z �S

0
d�@6 2�

�
�S��

�

�
1þ

Z �

0
d�0

	
Z �0

0
d�00Rð�00Þ� 1

�

Z �

0
d�0

	
Z �0

0
d�00�00Rð�00Þ

�
�
Z �S

�
d�0Z �0

0
d�00Rð�00Þ

þ 1

�

Z �S

�
d�0Z �0

0
d�00�00Rð�00Þ

�

�
Z �S

0
d�

�S��

�
@6 2�;r

Z �

0
c Kd�

0: (89)

We have checked that, after integration by part of the last
line, our general expression (73) reproduces this peculiar
case.
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2. Reparametrization invariance under a time shift

Until now we have tested the couplings between the 00
metric perturbation �ðx�Þ and a radial-dependent spatial
curvature c KðrÞ. Analogously, we can test the nonlinear
couplings between the spatial metric perturbation c ðx�Þ
and a 00 metric perturbation which depends only on time,
�Tð
Þ. Such a perturbation can be reabsorbed into the time
coordinate through a homogeneous shift of the time d� ¼
d~�ð1þ�Tð~�ÞÞ. As a homogeneous time shift does not
change the gauge, we expect our expression (73) to be
invariant under a first-order coordinate change

� ¼ ~�þ
Z ~�

0
d~�0�T; xi ¼ ~xi: (90)

Let us check that this is the case. At first order in �T ,
under this coordinate transformation the metric perturba-

tions change as�ð�Þ ¼ ~�ð~�Þ ��Tð~�Þ and c ð�Þ ¼ ~c ð~�Þ.
Evaluating� on the geodesic r ¼ � ¼ ~�þ R~�

0 d~�
0�T , the

first term of Eq. (73) transforms as

�2
Z �S

0
d�

�S � �

�
@2� ¼ �2

Z ~�S

0
d~�

~�S � ~�

~�
@2 ~�

� 2
Z ~�S

0
d~�

1

~�
@2 ~�

Z ~�

0
d~�0�T

þ 2
Z ~�S

0
d~�

~�S � ~�

~�
@2 _~�

	
Z ~�

0
d~�0�T: (91)

One can check that replacing �ð�Þ ¼ ~�ð~�Þ ��Tð~�Þ and
� ¼ ~� into the second-order terms of Eq. (73) exactly
cancels the second line of Eq. (91), leaving 2D invariant
under the transformation (90).

3. Reparametrization under conformal transformation

In Appendix Awe show that under the conformal trans-
formation of the metric g�� ! �2ðx�Þg�� the mapping

Dab transforms as

D ab ! �Dab: (92)

If the conformal factor is just� ¼ 1þ ��, where �� is a
small perturbation of order �, this conformal transforma-
tion is equivalent, at first order in ��, to a redefinition of
the potentials in the metric,

c ! c � ��; � ! �þ ��: (93)

Since, as expected, the Weyl potential � ¼ ð�þ c Þ=2
does not change under this transformation, in Eq. (73)
only the boundary term proportional to c ð�SÞ is not in-
variant. Transforming this term according to (93) yields a
contribution to 2Dð�SÞ in the new metric,

2Dð�SÞ ! 2Dð�SÞ � 2��ðx�S Þ
Z �S

0
d�

�S � �

�
@6 2�:

(94)

This is exactly what we expect from the conformal trans-
formation 2D ! ð1þ ��Þ2D.

C. The reduced shear

As mentioned in Sec. II, the quantity that we measure is
the reduced shear, which is given by the ratio between the
spin-2 anisotropic mapping 2D and the trace D, Eq. (17).
Expanding this equation up to second order using that
D ¼ 2�S þ �D we obtain for the reduced shear

g ¼ � 2D
2�S

þ 2D�D
ð2�SÞ2

; (95)

where 2D in the first term on the right-hand side is given
by Eq. (73) and, from Eqs. (43) and (45), the second-order
correction on the right-hand side is given by

2D�D
ð2�SÞ2

¼
Z �S

0
d�

�S � �

��S

�@6 @6 �
Z �S

0
d�0 �S � �0

�0�S

@6 2�

þ c ð�SÞ
Z �S

0
d�

�S � �

��S

@6 2�

� 2
Z �S

0
d��

Z �S

0
d�0 �S � �0

�0�2
S

@6 2�: (96)

The first line is the usual correction to the reduced shear
due to the coupling between the convergence and the shear
[28,29]. The two corrections in the second line are negli-
gible in the small-angle approximation. The term propor-
tional to c ð�SÞ comes from the coupling between the lens
and the curvature perturbation at the source contained in
the trace ofDab, see Eq. (45). Note that it cancels with the
one in the expression of 2D. Indeed, as both the isotropic
and anisotropic part of Dab change according to Eq. (92)
under conformal transformation, we expect the reduced
shear, which is their ratio, to depend only on the Weyl
potential �, which is invariant under conformal transfor-
mation. The last term in the second line is the coupling
between the time delay contained inDwith the lens. These
terms are thus of the same order as those discussed in
Eqs. (74)–(76).
The expression of the reduced shear above is given

taking the source at constant conformal time 
S.
However, in order to relate this quantity to observations
we need to compute it using a constant redshift zS for the
source, given by

zS ¼ k�SvS�

k�OvO�

� 1: (97)

As in the Poisson gauge the z ¼ const hypersurfaces do not
coincide with the 
 ¼ const hypersurfaces, the redshift zS
is not homogeneous and we expect a correction to Eq. (95)
coming from the coupling between the perturbed redshift
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plane of the source and the lens. As explained in Sec. II,
Eq. (20), the reduced shear at constant redshift is given by

gz ¼ gþ �gz; �gz � � dg

d�S

d�S

dzS
�zS; (98)

where �zS is the perturbation of the redshift (97). We must
now reintroduce the expansion of the Universe. By taking
the derivative with respect to �S of the linear expression for
g, Eq. (44), we find

dg

d�S

d�S

dzS
¼ 1

�2
SHS

Z �S

0
d�@6 2�; (99)

where H is the Hubble rate defined from the cosmic time t,
dt ¼ �ad�, as H � 1

a
da
dt .

To compute �zS we can perturb at first order Eq. (97)
using the expression for k0 given in Eq. (27). Setting to
zero the perturbations of the metric and of the velocity at
the observer position, we obtain

�zS ¼ �ð1þ zSÞ
�
�ð�SÞ þ erj�S


 vS � 2
Z �S

0
d� _�

�
:

(100)

In the three terms on the right-hand side of this equation
one recognizes the Sachs-Wolfe, the Doppler, and the
integrated Sachs-Wolfe effects contributing to the photon
redshift perturbation. Finally, combining the expression
(99) and the redshift perturbation (100) we obtain for the
redshift correction (98),

�gz ¼ 1þ zS
�2
SHS

�
�ð�SÞ þ erj�S


 vS � 2
Z �S

0
d� _�

�

	
Z �S

0
d�@6 2�: (101)

The observed reduced shear at constant redshift be-
comes then8

gz ¼ � 2D
2�S

þ 2D�D
ð2�SÞ2

þ �gz; (102)

where the first, the second, and the third terms on the right-
hand side are, respectively, given by Eqs. (73), (96), and
(101). This is the main result of this article.

V. CONCLUSION

In this article we have derived the expression of the
reduced cosmic shear up to second order in the perturba-
tions with full-sky validity. Our main result is summarized
in Eq. (102). As it is expressed in terms of spin-2 operators
on the sphere it can be decomposed as sum of spin-
weighted spherical harmonics on the sky. Indeed, this

description ensures that our observable has a genuine
spin-2 behavior on the celestial sphere.
Our result is written in terms of the metric perturbations

in the generalized Poisson gauge. These are the scalar
potentials � and c and the vector and tensor components
of the metric generated at second order, respectively, !i

and hij. Let us first comment on the first two terms on the

right-hand side of Eq. (102). Remarkably, the contribution
from scalar perturbations from the sum of these two terms
can be expressed in terms of the Weyl potential� ¼ ð�þ
c Þ=2 only. As explained, this is due to the fact that null
geodesics are conformally invariant. These two terms con-
tain the well-known second-order corrections due to lens-
lens coupling and departure from the Born approximation,
which dominate in the small-angle approximation. On
larger angular scales new couplings become important.
These are an intrinsic contribution which is a purely gen-
eral relativistic effect at second order, a coupling between
the gravitational potential at the source with the lens and
corrections due to couplings between the lens and the
photon time-delay. We have checked that these contribu-
tions can be independently reconstructed from the calcu-
lation of the shear at first order in a universe with a radially
dependent spatial curvature. Other checks, such as the
invariance under a homogeneous time shift and a confor-
mal transformation can be used to verify the validity of
these new corrections. Another scalar correction appears in
the form of products of two spin-1 fields and comes from
the couplings between two photon deflections. Finally,
besides the scalar contributions, the shear gets a contribu-
tion from spin-2 quantities defined from the vector and
tensor components of the metric generated at second-order.
Note that the separation between all these contributions is
not gauge invariant.
In Poisson gauge, the correction due to the coupling

between the photon redshift perturbation and the lens
cannot be written in terms of� only. Indeed, the integrated
contribution to the photon redshift—the integrated Sachs-

Wolfe effect—is a time integral over _� but the intrinsic
contributions—Sachs-Wolfe and Doppler effects—are ex-
pressed in terms of the Newtonian gravitational potential
and the velocity along the line of sight and do not depend
on � only.
We are now in the position to explore the phenomeno-

logical consequences of these results in view of the future
(partially) full-sky lensing surveys. In particular, the new
corrections that we have computed should become relevant
in deriving the lensing bispectrum on large angular scales.
For instance, to compute the bispectrum in the squeezed
limit one needs to take one of the three modes to be much
smaller than the other two, corresponding to angular scales
comparable to the depth of the survey. As the lensing is a
cumulative effect integrated along the line of sight, it is
difficult, at this stage, to precisely guess the relative im-
portance of the various contributions. In particular,

8Note that the only effect of the transverse velocity of the
source is to modify the direction under which the galaxy is
observed. Thus, it has no effect on the shear.
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although the lens-lens coupling terms are a priori larger by
a factor of �‘2 compared to the others, they may be
damped by geometrical factors. We leave these investiga-
tions for the future.

ACKNOWLEDGMENTS

It is a pleasure to thank Chiara Caprini for useful dis-
cussions and collaboration in the early stage of the prepa-
ration of this article and Nicolas Van de Rijt for spotting
few typos. C. B. and F.V. acknowledge support from the
EU Marie Curie Research and Training network
UniverseNet (MRTN-CT-2006-035863).

APPENDIX A: CONFORMAL RELATIONS

We consider two conformally related metrics ~g�� ¼
�2ðx�Þg��. We want to show that the corresponding

Jacobi mappings computed using Eq. (10) with the respec-

tive metrics are related by ~Dab ¼ �Dab. We can decom-
pose the Riemann tensor in terms of the Ricci tensor R��

and the Weyl tensor C���	 as [34]

R���� ¼ C���� þ g�½�R��� � g�½�R��� � 1
6Rg�½�g���;

(A1)

where the brackets in the indices denote antisymmetriza-
tion. With this decomposition, the definition of Rab,
Eq. (7), simply yields

R ab ¼ C����na
�k�k�nb

� � 1
2�abR��k

�k�; (A2)

where we have used the normalization properties of na
�

and k�.
Using this expression, let us study how Rab transforms

under a conformal transformation. As na
� is normalized to

unity it transforms as ~na
� ¼ ��1na

�. If � is an affine
parameter of the null geodesic in the metric g��, then the

affine parameter computed using the metric ~g�� is related

to � by d~� ¼ �2d� [34]. Thus, ~k� ¼ ��2k�.
Furthermore, as the Weyl tensor with one upper index
C���

� is invariant under conformal transformation, the

first term of (A2) transforms as

~C����~na
�~k�~k�~nb

� ¼ ��4C����na
�k�k�nb

�: (A3)

The Ricci tensor transforms as [34]

~R�� ¼ R�� � 2r�r� ln�� g��g
�	r�r	 ln�

þ 2ðr� ln�Þr� ln�

� 2g��g
�	ðr� ln�Þr	 ln�: (A4)

Projecting this expression by ~k�~k�, the two terms propor-
tional to g�� vanish because of the null condition of the

photon wave vector, while the covariant derivatives can be
written as derivatives along the null geodesic. Using the
geodesic equation one obtains

~R��
~k�~k� ¼ ��4

�
R��k

�k� � 2
d2 ln�

d�2
þ 2

�
d ln�

d�

�
2
�
:

(A5)

Thus, from Eq. (A2) Rab transforms as

~R ab ¼ ��4

�
Rab þ d2 ln�

d�2
�ab �

�
d ln�

d�

�
2
�ab

�
:

(A6)

Finally, using this transformation it is easy to show that if
Dab is the solution of

d2

d�2
Dab ¼ RacDcb; (A7)

then ~Dab ¼ �Dab is the solution of the corresponding
equation for the metric ~g��,

d2

d~�2
~Dab ¼ ~Rac

~Dcb: (A8)

The relation between Dab and ~Dab can be easily under-
stood by noting that Dab relates distances at the source,
that scale like�, to angles at the observer that are invariant
under a conformal transformation.

APPENDIX B: SPIN OPERATORS ON THE SPHERE

The construction of spin fields can be easily done on a
plane identified with the complex plane of coordinates z ¼
xþ iy. Let us consider a complex field sXðzÞ whose value
depends on z. This field will be said to have spin-s if its
value is changed in eis�sXðzÞ after a rotation of angle �.
For instance, if 0XðzÞ is a scalar (i.e. a spin-0) field, then

1XðzÞ ¼ @x 0XðzÞ þ i@y 0XðzÞ; (B1)

is a spin-1 field. This relation can alternatively be written
as 1XðzÞ ¼ 2@z 0XðzÞ, where the partial derivative is to be

taken for a fixed value of �z. In general, the successive
application of the operator @6 � 2@z leads to the construc-

tion of spin-s fields. Equivalently, the operator �@6 � 2@�z

lowers the spin by one. In the context of standard first-order
lensing theory, the complex shear field � ¼ �1 þ i�2 is a
spin-2 field that derives from the projected potential c , i.e.
� ¼ @6 2c .
This construction can be extended to the sphere when

one does not want to rely on the small-angle approxima-
tion. The early elements of such a construction date back to
[40,42]. In general, one is naturally led to introduce the
Euler angles ð
; ’; �Þ so that the coordinates of a point on
the unit sphere are ðsin
 cos’; sin
 sin’; cos
Þ. To each of
these points one can associate a radial vector er and two
tangential vectors e1 and e2 that can be conveniently
chosen along the lines ’ ¼ const and 
 ¼ const, respec-
tively, if � ¼ 0. The angle � then corresponds to a rotation
around the axis er that rotates e
 and e’ with an angle �.
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As for the plane, a spin-s field is such that its phase
varies as s�, by rotation of an angle �. The construction of

the operators @6 and �@6 relies on the use of the complex
stereographic coordinates,

� ¼ cot

�



2

�
expði’Þ; (B2)

which map the sphere onto the complex plane. More
specifically it can be shown that the expressions of the

operators @6 and �@6 depend explicitly on the spin of the field

sX to which they are applied,

@6 sX ¼ 2P1�s@�P
s
sX and �@6 sX ¼ 2P1þs@ ��P

�s
sX;

(B3)

where P ¼ 1
2 ð1þ � ��Þ. Expressing these operators in terms

of 
 and ’, one finds

@6 sX ¼ �ðsin
Þsð@
 þ i csc
@’Þðsin
Þ�s
sX and

�@6 sX ¼ �ðsin
Þ�sð@
 � i csc
@’Þðsin
ÞssX:
(B4)

In analogy to the case of the plane, the Laplacian operator

formally reads � ¼ �@6 @6 . Note, however, that the relation
�@6 @6 ¼ @6 �@6 holds only when the operators act on a scalar

field. In general we have ð �@6 @6 � @6 �@6 ÞsX ¼ 2ssX.
Spherical harmonics, Ym

l ð
;’Þ, are spin-0 functions that
are the eigenfunctions of the Laplacian with eigenvalue
�lðlþ 1Þ, i.e. �Ym

l ð
; ’Þ ¼ �lðlþ 1ÞYm
l ð
; ’Þ with

@’Y
m
l ð
; ’Þ ¼ imYm

l ð
;’Þ and with a specific normaliza-

tion. The orthogonality relation,

Z
d2�Ym0

l0 ð
; ’ÞYm�
l ð
;’Þ ¼ �l0l�m0m; (B5)

is the key property that makes it possible to decompose any
function into spherical harmonics.

In general spin-s fields are decomposed on the basis of
the spin-weighted spherical harmonics, which can be ob-

tained through the application of the operator @6 and �@6 on
the spherical harmonics. More specifically, we define

sY
m
l ð
; ’Þ with

sY
m
l ð
; ’Þ ¼

�ðl� sÞ!
ðlþ sÞ!

�
1=2

@6 sYm
l ð
; ’Þ; ð0 � s � lÞ;

(B6)

sY
m
l ð
;’Þ ¼

�ðlþ sÞ!
ðl� sÞ!

�
1=2ð�1Þs �@6 �sYm

l ð
;’Þ;
ð�l � s � 0Þ: (B7)

The spin-weighted spherical harmonics obey the following
relations:

sY
m�
l ð
; ’Þ ¼ ð�1Þm�sY

�m
l ð
;’Þ; (B8)

�@6 @6 sY
m
l ð
; ’Þ ¼ �ðl� sÞðlþ sþ 1ÞsYm

l ð
;’Þ; (B9)

Z
d2�sY

m0
l0 ð
; ’ÞsYm�

l ð
; ’Þ ¼ �l0l�m0m; (B10)

X
lms

sY
m
l ð
0; ’0ÞsYm�

l ð
; ’Þ ¼ �ð’� ’0Þ�ðcos
� cos
0Þ;

(B11)

with
R
d2� � R

2�
0 d’

R
1
�1 d cos
.

One usually defines two scalars, E and B, associated to
the spin-2 shear �. To do that, one decomposes the shear �
and its complex conjugate �� as

�ð
; ’Þ ¼ X
lm

2alm2Y
m
l ð
; ’Þ;

��ð
; ’Þ ¼ X
lm

�2alm�2Y
m
l ð
; ’Þ:

(B12)

As in the context of CMB polarization (see [51]), E and B
can be defined through their harmonic decomposition,

Eð
;’Þ ¼ � 1

2

X
lm

ð2alm þ �2almÞYm
l ð
; ’Þ and

Bð
; ’Þ ¼ i

2

X
lm

ð2alm � �2almÞYm
l ð
;’Þ:

(B13)

E is invariant under parity change, whereas B changes
signs.
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