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By implementing the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik

(DGLAP-CS) kernels recently developed by one of us in the HERWIG6.5 environment we generate a new

Monte Carlo (MC), HERWIRI1.0(31), for hadron-hadron scattering at high energies. We use MC data to

illustrate the comparison between the parton shower generated by the standard DGLAP-CS kernels and

that generated by the new IR-improved DGLAP-CS kernels. The interface to MC@NLO, MC@NLO/

HERWIRI, is illustrated. Comparisons with FNAL data and some discussion of possible implications for

LHC phenomenology are also presented.
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I. INTRODUCTION

In the era of the LHC, we must deal with requirements of
precision QCD, which entails predictions for QCD pro-
cesses at the total precision [1] tag of 1% or better, where
by total precision of a theoretical prediction we mean the
technical and physical precisions combined in quadrature
or otherwise as appropriate. We accordingly need re-

summed Oð�2
sL

nÞ, Oð�s�L
n0 Þ, Oð�2Ln00 Þ corrections for

n ¼ 0, 1, 2, n0 ¼ 0, 1, 2, n00 ¼ 1, 2, in the presence of
parton showers, on an event-by-event basis, without double
counting and with exact phase space. Essential large QED
and electroweak (EW) effects [2–4] are handled by the
simultaneous resummation of large QED and QCD infra-
red (IR) effects, QED � QCD resummation [5] in the
presence of parton showers, to be realized on an event-
by-event basis by Monte Carlo (MC) event generator
methods. Indeed, we know from Refs. [3,4] that no preci-
sion prediction for a hard LHC process at the 1% level can
be complete without taking the large EW corrections into
account.

In what follows, we present the first step in realizing our
new MC event generator approach to precision LHC phys-
ics with amplitude-based QED � QCD resummation by
introducing the attendant new parton shower MC for
QCD that follows from our approach. We recall that in
Ref. [6] our resummed QED MC methods, based on the
theory in Ref. [7], are already well developed and checked
in LEP1 and LEP2 precision physics applications. This
means that what we do here will set the stage for the
complete implementation, via MC methods, of the QED �
QCD resummed theory in which all IR singularities are
canceled to all orders in �s and �. As we will show
directly, this new parton shower MC, which is developed
in the HERWIG6.5 [8] environment and which we have called

HERWIRI1.0(31) [9],1 already shows improvement in com-

parison with the FNAL soft pT data on single Z production
as we quantify below. On the theoretical side, while the
explicit IR cutoffs in the HERWIG6.5 environment will not
be removed here, our new shower MC only involves inte-
grable distributions for its real emission so that in principle
these cutoffs could be removed. We discuss this point
further below as well.
Our discussion here proceeds as follows. We first review

our approach to resummation and its relationship to those
in Refs. [10,11]. Section III contains a presentation of the
attendant new IR-improved Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) [12,13]
theory [14,15]. Section IV features the implementation of
the new IR-improved kernels in the framework of
HERWIG6.5 [8] to arrive at the new, IR-improved parton

shower MC HERWIRI1.0(31). We illustrate the effects of
the IR improvement first with the generic 2 ! 2 processes
at LHC energies and then with the specific single Z pro-
duction process at LHC energies. We compare with recent
data from FNAL to make direct contact with observation.
Section V summarizes our discussion.

1We stress that we are completely replacing all the parton
shower kernels in HERWIG6.5 that generate real QCD radiation
and all the Sudakov form factors in HERWIG6.5 that realize the
attendant virtual corrections with the new forms that follow from
the results in Secs. II and III, together with the auxiliary
functions required for these new forms, so that the parton shower
physics, distributions, and MC behavior are all fundamentally
different from what is in HERWIG6.5. The attendant implementa-
tion has been carried out in agreement with and in close
collaboration with Webber and Seymour, principal authors of
the HERWIG6.5, who have also instructed us on the proper naming
and references for the resulting program as we further highlight
in the discussion below.

PHYSICAL REVIEW D 81, 076008 (2010)

1550-7998=2010=81(7)=076008(14) 076008-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.076008


For reference purposes and to put the discussion in the
proper perspective with regard to what has already been
achieved in the relevant literature, we note that the authors
in Refs. [16,17] have argued that the current state-of-the-
art theoretical precision tag on single Z production at the
LHC is ð4:1� 0:3Þ% ¼ ð1:51� 0:75Þ%ðQCDÞ �
3:79ðPDFÞ � 0:38� 0:26ðEWÞ% and that the analogous
estimate for single W production is �5:7%. We continue
to emphasize that these estimates show how much more
work is still needed to achieve the desired 1.0% total
precision tag on these two processes, for example.

II. QED �QCD RESUMMATION

We follow here the discussion in Refs. [5,14,15],
wherein we have derived the following expression for the
hard cross sections in the standard model SU2L �U1 �
SUc

3 EW-QCD theory

d�̂exp ¼ eSUMIRðQCEDÞ
X1

n;m¼0

1

n!m!

Z d3p2

p0
2

d3q2
q02

Yn
j1¼1

d3kj1
kj1

� Ym
j2¼1

d3k0j2
k0j2

Z d4y

ð2�Þ4

� e
iy�ðp1þq1�p2�q2�

P
kj1�

P
k0j2 ÞþDQCED

� ~��n;mðk1; . . . ; kn; k01; . . . ; k0mÞ; (1)

where the new YFS-style [7] residuals
~��n;mðk1; . . . ; kn; k01; . . . ; k0mÞ have n hard gluons and m
hard photons and we show the final state with two hard
final partons with momenta p2, q2 specified for a generic
2f final state for definiteness. The infrared functions
SUMIRðQCEDÞ, DQCED are defined in Refs. [5,14,15].

Equation (1) is an exact implementation of amplitude-
based simultaneous resummation of QED and QCD large
IR effects valid to all orders in� and in�s. When restricted
to its QED aspect, it is the basis of the well-established
YFS MC approach [6] to precision multiple photon radia-
tive effects that is well tested already in LEP1 and LEP2
precision physics applications. Thus what we present in
this paper, the first realization of the new parton shower
MC for QCD that follows from the QCD aspect of (1),
opens the way to the full MC implementation of all aspects
of our QED � QCD resummatiom theory approach to pre-
cision LHC physics predictions.

The approach to QCD resummation contained in (1) is
fully consistent with that of Refs. [10,11] as follows. First,
Ref. [18] has shown that the latter two approaches are
equivalent. We show in Refs. [14,15] that our approach is
consistent with that of Refs. [10] by exhibiting the trans-
formation prescription from the resummation formula for
the theory in Ref. [10] for the generic 2 ! n parton process
as given in Ref. [19] to our theory as given for QCD by
restricting Eq. (1) to its QCD component, where a key
point is to use the color-spin density matrix formulation of

our residuals to capture the respective full quantum me-
chanical color-spin correlations in the results in Ref. [19].
For completeness, we recapitulate the essence of the atten-
dant discussion here, as the arguments are not generally
well known. More precisely, to illustrate the relationship
between our approach and that in Ref. [10], we use as a
vehicle Ref. [19], which treats the 2 ! n parton process in
the resummation theory of Ref. [10], working in the IR and
collinear regime to exact 2-loop order. The authors in
Ref. [19] have arrived at the following representation for
the amplitude for a general 2 ! n parton process [f] at
hard scale Q, f1ðp1; r1Þ þ f2ðp2; r2Þ ! f3ðp3; r3Þ þ
f4ðp4; r4Þ þ � � � þ fnþ2ðpnþ2; rnþ2Þ, where the pi, ri label
4-momenta and color indices, respectively, with all parton
masses set to zero [so in our approach, we should have in
mind that the masses of the quarks (see the discussion
below) and the IR regulator mass of the gluon would all
be taken to zero or, we could, as it is done in Ref. [19], just
set all masses to zero at the outset and use dimensional
regularization to define both collinear and IR singular
integrals]

M ½f�
frig ¼

XC
L

M½f�
L ðcLÞfrig ¼ J½f�

XC
L

SLIH
½f�
I ðcLÞfrig; (2)

where repeated indices are summed, and the functions J½f�,
SLI, and H½f�

I are, respectively, the jet function, the soft
function which describes the exchange of soft gluons
between the external lines, and the hard coefficient func-
tion. The latter functions’ infrared and collinear poles have
been calculated to 2-loop order in Ref. [19]. How do these
results relate to Eq. (1)?
To make contact between Eqs. (1) and (2) identify in the

specific application �Q0Q ! �Q000Q00 þmðGÞ in (1) f1 ¼ Q,
f2 ¼ �Q0, f3 ¼ Q00, f4 ¼ �Q000, ff5; . . . ; fnþ2g ¼
fG1; . . . ; Gmg, in (2), where we use the obvious notation
for the gluons here. This means that n ¼ mþ 2. Then, to
use Eq. (2) in Eq. (1), one simply has to observe the
following:
(I) By its definition in Eq. (2.23) of Ref. [19], the

anomalous dimension of the matrix SLI does not
contain any of the diagonal effects described by
our infrared functions SUMIRðQCDÞ and DQCD,

where

SUMIRðQCDÞ ¼ 2�s ReBQCD þ 2�s
~BQCDðKmaxÞ;

2�s
~BQCDðKmaxÞ ¼

Z d3k

k0
~SQCDðkÞ�ðKmax � kÞ;

DQCD ¼
Z d3k

k
~SQCDðkÞ

� ½e�iy�k � �ðKmax � kÞ�; (3)

where the real IR emission function ~SQCDðkÞ and the
virtual IR function ReBQCD are defined by Eqs. (73)
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and (77) in Ref. [14]. Note that (1) is independent of
Kmax.

(II) By its definition in Eqs. (2.5) and (2.7) of Ref. [19],

the jet function J½f� contains the exponential of the
virtual infrared function �s ReBQCD, so that we have

to take care that we do not double count when we use
(2) in (1) and in the equations in Refs. [5,14,15] that
lead thereto.

When we observe these two latter points, we get the
following realization of our approach using the results in
Ref. [19]: In our result in Eq. (75) in Ref. [14] for the
contribution to (1) of m-hard gluons for the process under
study here,

d�̂m ¼ e2�s ReBQCD

m!

Z Ym
j¼1

d3kj

ðk2j þ �2Þ1=2

� �

�
p1 þ q1 � p2 � q2 �

Xm
i¼1

ki

�

� ��ðmÞðp1; q1; p2; q2; k1; . . . ; kmÞd
3p2d

3q2
p0
2q

0
2

; (4)

we can identify the residual ��ðmÞ as follows:

��ðmÞðp1; q1; p2; q2; k1; . . . ; kmÞ ¼ �P
colors;spinjM½f�

frigj2

	 X
spins;frig;fr0ig

hcsfrigfr0igj �J
½f�j2 X

C

L¼1

XC
L0¼1

S½f�LI H
½f�
I ðcLÞfrig

� ðS½f�
L0I0H

½f�
I0 ðcL0 Þfr0igÞy; (5)

where here we defined �J½f� ¼ e��sReBQCDJ½f�, and we in-
troduced the color-spin density matrix for the initial state,
hcs, so that hcsfrigfr0ig ¼ hcsfr1;r2gfr01;r02g, suppressing the spin in-

dices, i.e., hcs only depends on the initial state colors and
has the obvious normalization implied by (4). Proceeding
then according to the steps in Ref. [14] leading from (4) to
(1) restricted to QCD, we get the corresponding implemen-
tation of the results in Ref. [19] in our approach, without
any double counting of effects.

III. IR-IMPROVED DGLAP-CS THEORY

We show in Refs. [14,15] that the result Eq. (1) restricted
to QCD allows us to improve in the IR regime the kernels
in DGLAP-CS [12,13] theory as follows, using a standard
notation:

Pexp
qq ðzÞ ¼ CFFYFSð	qÞeð1=2Þ�q

�
1þ z2

1� z
ð1� zÞ	q � fqð	qÞ�ð1� zÞ

�
; Pexp

Gq ðzÞ ¼ CFFYFSð	qÞeð1=2Þ�q
1þ ð1� zÞ2

z
z	q ;

P
exp
GGðzÞ ¼ 2CGFYFSð	GÞeð1=2Þ�G

�
1� z

z
z	G þ z

1� z
ð1� zÞ	G þ 1

2
ðz1þ	Gð1� zÞ þ zð1� zÞ1þ	GÞ � fGð	GÞ�ð1� zÞ

�
;

Pexp
qG ðzÞ ¼ FYFSð	GÞeð1=2Þ�G

1

2
fz2ð1� zÞ	G þ ð1� zÞ2z	Gg; (6)

where the superscript ‘‘exp’’ indicates that the kernel has been resummed as predicted by Eq. (1) when it is restricted to
QCD alone and where

	q ¼ CF

�s

�
t ¼ 4CF

�0

; �q ¼
	q

2
þ �sCF

�

�
�2

3
� 1

2

�
; fqð	qÞ ¼ 2

	q

� 2

	q þ 1
þ 1

	q þ 2
;

	G ¼ CG

�s

�
t ¼ 4CG

�0

; �G ¼ 	G

2
þ �sCG

�

�
�2

3
� 1

2

�
;

fGð	GÞ ¼
nf

6CGFYFSð	GÞ e
�ð1=2Þ�G þ 2

	Gð1þ 	GÞð2þ 	GÞ þ
1

ð1þ 	GÞð2þ 	GÞ þ
1

2ð3þ 	GÞð4þ 	GÞ
þ 1

ð2þ 	GÞð3þ 	GÞð4þ 	GÞ ; (7)

FYFSð	Þ ¼ e�C	

�ð1þ 	Þ ; C ¼ 0:577 215 66 � � � ; (8)

where �ðwÞ is Euler’s gamma function and C is Euler’s
constant. We use a one-loop formula for �sðQÞ, so that

�0 ¼ 11� 2
3nf;

where nf is the number of active quark flavors and CF ¼
4=3 and CG ¼ 3 are the respective quadratic Casimir in-
variants for the quark and gluon color representations.

For the sake of completeness, let us illustrate how one
applies the result in (1) to obtain the results in (6). We use
the example of Pqq for definiteness. We apply the QCD

exponentiation master formula embedded in Eq. (1) to the
gluon emission transition that corresponds to PqqðzÞ, i.e., to
the squared amplitude for q ! qðzÞ þGð1� zÞ so that in
the specialized case already discussed above one replaces
everywhere the squared amplitudes for the �Q0Q ! �Q000Q00
processes with those for the former one plus its nG analogs
with the attendant changes in the phase space and kine-

NEWAPPROACH TO PARTON SHOWER MONTE CARLO . . . PHYSICAL REVIEW D 81, 076008 (2010)

076008-3



matics dictated by the standard methods. This implies that
in Eq. (53) of the first paper in Ref. [12] we have from the
application of the QCD aspect of Eq. (1) the replacement
(see Fig. 1)

PBA ¼ P0
BA 	 1

2
zð1� zÞ �X

spins

jVA!BþCj2
p2
?

) PBA

¼ 1

2
zð1� zÞ �X

spins

jVA!BþCj2
p2
?

z	qFYFSð	qÞeð1=2Þ�q ; (9)

where A ¼ q, B ¼ G, C ¼ q, and VA!BþC is the lowest
order amplitude for q ! GðzÞ þ qð1� zÞ, so that we get
the unnormalized exponentiated result [14,15]

PqqðzÞ ¼ CFFYFSð	qÞeð1=2Þ�q
1þ z2

1� z
ð1� zÞ	q : (10)

We see immediately that the exponentiation has removed
the unintegrable IR divergence at z ¼ 1. For reference, we
note that we have in (10) resummed the terms2 Oðlnkð1�
zÞt‘�n

s Þ, n 
 ‘ 
 k, which originate in the IR regime and
which exponentiate. The important point is that we have
not dropped outright the terms that do not exponentiate but

have organized them into the residuals ~��m in the analog of
Eq. (1).

The application of Eq. (1) to obtain Eq. (10) proceeds as
follows. First, the exponent in the exponential factor in
front of the expression on the right-hand side (rhs) of
Eq. (1) when restricted to QCD is readily seen to be, using
the known results for the respective real and virtual infra-
red functions from Refs. [14,15],

SUMIRðQCDÞ ¼ 2�s ReBQCD þ 2�s
~BQCDðKmaxÞ

¼ 1

2

�
2CF

�s

�
t ln

Kmax

E
þ CF

�s

2�
t

þ �sCF

�

�
�2

3
� 1

2

��
; (11)

where on the rhs of the last result we have already applied
the DGLAP-CS synthesization procedure as prescribed in
Refs. [14,15] to remove the collinear singularities,
ln�2

QCD=m
2
q � 1, in accordance with the standard QCD

factorization theorems [21]. This means that, identifying
the left-hand side of Eq. (1) as the sum over final states and
average over initial states of the respective process divided
by the incident flux and replacing that incident flux by the
respective initial state density according to the standard
methods for the process q ! qð1� zÞ þGðzÞ, occurring
in the context of a hard scattering at scale Q as it is for
Eq. (53) in the first paper in Ref. [12], the soft gluon effects
for energy fraction <z 	 Kmax=E give the result, from
Eq. (1) restricted to QCD, that, working through to the
~��1 level and using q2 to represent the momentum conser-
vation via the other degrees of freedom for the attendant
hard process,

Z �sðtÞ
2�

PBAdtdz ¼ eSUMIRðQCDÞðzÞ
Z �

~��0

Z d4y

ð2�Þ4 e
fiy�ðp1�p2Þþ

R
k<Kmax ðd3k=kÞ~SQCDðkÞ½e�iy�k�1�g þ

Z d3k1
k1

~��1ðk1Þ

�
Z d4y

ð2�Þ4 e
fiy�ðp1�p2�k1Þþ

R
k<Kmax ðd3k=kÞ~SQCDðkÞ½e�iy�k�1�g þ � � �

�
d3p2

p0
2

d3q2
q02

¼ eSUMIRðQCDÞðzÞ
Z �

~��0

Z 1

�1
dy

ð2�Þ e
fiy�ðE1�E2Þþ

R
k<Kmax ðd3k=kÞ~SQCDðkÞ½e�iyk�1�g þ

Z d3k1
k1

~��1ðk1Þ

�
Z 1

�1
dy

ð2�Þ e
fiy�ðE1�E2�k0

1
Þþ
R

k<Kmax ðd3k=kÞ~SQCDðkÞ½e�iy�k�1�g þ � � �
�
d3p2

p0
2q

0
2

; (12)

where we set Ei ¼ p0
i , i ¼ 1, 2 and the real infrared

function ~SQCDðkÞ is known as well:
~SQCDðkÞ ¼ ��sCF

8�2

�
p1

kp1

� p2

kp2

�
2
��������DGLAP-CS synthesized

(13)

and we indicate as above that the DGLAP-CS synthesiza-
tion procedure as prescribed in Refs. [14,15] is to be

FIG. 1 (color online). In (a), we show the usual process q !
qð1� zÞ þGðzÞ; in (b), we show its multiple gluon improve-
ment q ! qð1� zÞ þG1ð
1Þ þ � � � þGnð
nÞ, z ¼ P

j
j.

2Following the standard LEP Yellow Book [20] convention,
we do not include the order of the first nonzero term in counting
the order of its higher order corrections.
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applied to its evaluation to remove its collinear singular-
ities; we are using the kinematics of the first paper in
Ref. [12] in their computation of PBAðzÞ in their Eq. (53),
so that the relevant value of k2? is indeed Q2. It means that
the computation can also be seen to correspond to comput-
ing the IR function for the standard t-channel kinematics
and taking 1

2 of the result to match the single line emission
in PGq. The two integrals needed in (12) were already
studied in Ref. [7]:

IYFSðzE; 0Þ ¼
Z 1

�1
dy

2�
e½iyðzEÞþ

R
k<zEðd3k=kÞ~SQCDðkÞðe�iyk�1Þ�

¼ FYFSð	qÞ
	q

zE
;

IYFSðzE; k1Þ ¼
Z 1

�1
dy

2�
e½iyðzE�k1Þþ

R
k<zEðd3k=kÞ~SQCDðkÞðe�iyk�1Þ�

¼
�

zE

zE� k1

�
1�	q

IYFSðzE; 0Þ: (14)

When we introduce the results in (14) into (12) we can
identify the factor

Z �
~��0

	q

zE
þ

Z
dk1k1d�1

~��1ðk1Þ
�

zE

zE� k1

�
1�	q 	q

zE

�
d3p2

E2q
0
2

¼
Z

dt
�sðtÞ
2�

P0
BAdzþOð�2

sÞ; (15)

where P0
BA is the unexponentiated result in the first line of

(9). This leads us finally to the exponentiated result in the
second line of (9) by elementary differentiation:

PBA ¼ P0
BAz

	qFYFSð	qÞeð1=2Þ�q : (16)

Let us stress the following. In this paper, we have
retained for pedagogical reasons the dominant terms in
the resummation which we use for the kernels. The result
in the first line of (12) is exact and can be used to include
all higher order resummation effects systematically as
desired. Moreover, we have taken a one-loop representa-
tion of �s for illustration and have set it to a fixed value on
the rhs of (12), so that, thereby, we are dropping further
possible subleading higher order effects, again for reasons
of pedagogy. It is straightforward to include these effects as
well—see Refs. [14,15] for more discussion on this point.
Repeating the exhibited resummation calculation for the
other kernels leads to the results in (6). The latter results
have now been implemented by MC methods, as we ex-
hibit in the following sections.

We stress that the improvement in Eq. (6) should be
distinguished from the also important resummation in
parton density evolution for the ‘‘z ! 0’’ regime, where
Regge asymptotics obtain—see, for example,
Refs. [22,23]. This latter improvement must also be taken
into account for precision LHC predictions.

Let us now recall that already a number of illustrative
results and implications of the new kernels have been
presented in Refs. [14,15,24] which we summarize here

as follows for the sake of completeness. First, we note that
the connection to the higher order kernels in Ref. [25] has
been made in Ref. [14]. This opens the way for the system-
atic improvement of the results presented herein. Second,
in the nonsinglet case, we find [14] that the n ¼ 2 moment
is modified by �5% when evolved with Eq. (6) from 2 to
100 GeV with nf ¼ 5 and �QCD ffi 0:2 GeV, for illustra-

tion. This effect is thus relevant to the expected precision of
the HERA final data analysis [26]. Third, we have been
able to use Eq. (1) to resolve the violation [27,28] of the
Bloch-Nordsieck cancellation in initial state radiation
(ISR) at Oð�2

sÞ for massive quarks [29]. This opens the
way to include realistic quark masses as we introduce the
higher order EW corrections in the presence of higher
order QCD corrections—note that the radiation probability
in QED at the hard scale Q involves the logarithm
lnðQ2=m2

qÞ, and it will not do to set mq ¼ 0 to analyze

these effects in a fully exclusive, differential event-by-
event calculation of the type that we are constructing.
Fourth, the threshold resummation implied by Eq. (1) for
single Z production at the LHC shows a 0.3% QED effect
and agrees with known exact results in QCD—see
Refs. [5,30,31]. Fifth, we have a new scheme [15] for
precision LHC theory: in an obvious notation,

� ¼ X
i;j

Z
dx1dx2Fiðx1ÞFjðx2Þ�̂ðx1x2sÞ

¼ X
i;j

Z
dx1dx2F

0
iðx1ÞF0

jðx2Þ�̂0ðx1x2sÞ; (17)

where the primed quantities are associated with Eq. (6) in
the standard QCD factorization calculus. Sixth, we have
[5] an attendant shower/matrix element matching scheme,
wherein, for example, in combining Eq. (1) with HERWIG

[8], PYTHIA [32], MC@NLO [33], or new shower MC’s [34],
we may use either pT-matching or shower-subtracted re-

siduals f ~̂��n;mðk1; . . . ; kn; k01; . . . ; k0mÞg to create a paradigm

without double counting that can be systematically im-
proved order by order in perturbation theory—see Ref. [5].
The stage is set for the full MC implementation of our

QED � QCD resummation approach. We turn next to an
important initial stage of this implementation, that of the
kernels in Eq. (6).

IV. MC REALIZATION OF IR-IMPROVED
DGLAP-CS THEORY

In this section we describe the implementation of the
new IR-improved kernels in the HERWIG6.5 environment,
which results in a new MC, which we denote by
HERWIRI1.0, which stands for ‘‘high energy radiation with

IR improvement’’ [35].
Specifically, our approach can be summarized as fol-

lows. We modify the kernels in the HERWIG6.5 module
HWBRAN and in the attendant related modules [36] with
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the following substitutions:

DGLAP -CS PAB ) IR-I DGLAP-CS Pexp
AB ; (18)

while leaving the hard processes alone for the moment. We
have in progress [37] the inclusion of YFS synthesized
electroweak modules from Ref. [6] for HERWIG6.5, HERWIG

++ [38] hard processes, as the CTEQ [39] and MRST (MSTW)

[40] best (after 2007) parton densities do not include the
precision electroweak higher order corrections that do
enter in a 1% precison tag budget for processes such as
single heavy gauge boson production in the LHC environ-
ment [3].

For definiteness, let us illustrate the implementation by
an example [41,42], which for pedagogical reasons we will
take as a simple leading log shower component with a
virtuality evolution variable, with the understanding that
in HERWIG6.5 the shower development is angle ordered [41]
so that the evolution variable is actually �E� where � is
the opening angle of the shower as defined in Ref. [41] for a
parton initial energy E. In this pedagogical example, which
we take from Ref. [41], the probability that no branching
occurs above virtuality cutoff Q2

0 is �aðQ2; Q2
0Þ so that

d�aðt; Q2
0Þ ¼

�dt

t
�ðt; Q2

0Þ
X
b

Z
dz

�s

2�
PbaðzÞ; (19)

which implies

�aðQ2; Q2
0Þ ¼ exp

�
�
Z Q2

Q2
0

dt

t

X
b

Z
dz

�s

2�
PbaðzÞ

�
: (20)

The attendant nonbranching probability appearing in the
evolution equation is

�ðQ2; tÞ ¼ �aðQ2; Q2
0Þ

�aðt; Q2
0Þ

; t ¼ k2a

the virtuality of gluon a:

(21)

The respective virtuality of parton a is then generated with

�aðQ2; tÞ ¼ R; (22)

where R is a random number uniformly distributed in [0,
1]. With (note �0 ¼ b0jnc¼3 here, where nc is the number

of colors)

�sðQÞ ¼ 2�

b0 logðQ�Þ
; (23)

we get for example

Z 1

0
dz

�sðQ2Þ
2�

PqGðzÞ ¼ 4�

2�b0 lnðQ2

�2Þ
Z 1

0
dz

1

2
½z2 þ ð1� zÞ2�

¼ 2

3

1

b0 lnðQ2

�2Þ
; (24)

so that the subsequent integration over dt yields

I ¼
Z Q2

Q2
0

1

3

dt

t

2

b0 lnð t
�2Þ ¼

2

3b0
lnln

t

�2

��������
Q2

Q2
0

¼ 2

3b0

�
ln

�lnðQ2

�2Þ
lnðQ2

0

�2Þ

��
: (25)

Finally, introducing I into Eq. (20) yields

�aðQ2; Q2
0Þ ¼ exp

�
� 2

3b0
ln

�lnðQ2

�2Þ
lnðQ2

0

�2Þ

��
¼

�
lnðQ2

�2Þ
lnðQ2

0

�2Þ

��2=3b0
:

(26)

If we now let �aðQ2; tÞ ¼ R, then

�
lnð t

�2Þ
lnðQ2

�2Þ
�
2=3b0 ¼ R; (27)

which implies

t ¼ �2

�
Q2

�2

�
Rð3b0Þ=2

: (28)

Recall in HERWIG6.5 [8] we have

b0 ¼
�
11

3
nc � 2

3
nf

�
¼ 1

3
ð11nc � 10Þ;

nf ¼ 5;	 2

3
BETAF;

(29)

where in the last line we used the notation in HERWIG6.5.
The momentum available after a q �q split in HERWIG6.5 [8]
is given by

QQBAR ¼ QCDL3

�
QLST

QCDL3

�
RBETAF

; (30)

in complete agreement with Eq. (28) when we note the
identifications t ¼ QQBAR2, � 	 QCDL3, and Q 	
QLST.
The leading log exercise leads to the same algebraic

relationship that HERWIG6.5 has between QQBAR and
QLST but we stress that in HERWIG6.5 these quantities are
the angle-ordered counterparts of the virtualities we used in
our example, so that the shower is angle ordered.
Let us now repeat the above calculation for the IR-

improved kernels in Eq. (6). We have

P
exp
qG ðzÞ ¼ FYFSð	GÞe�G=21

2½z2ð1� zÞ	G þ ð1� zÞ2z	G�;
(31)

so that

Z 1

0
dz

�sðQ2Þ
2�

PqGðzÞexp

¼ 4FYFSð	GÞe�G=2

b0 lnðQ2

�2Þð	G þ 1Þð	G þ 2Þð	G þ 3Þ
: (32)

This leads to the following integral over dt:
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I¼
Z Q2

Q2
0

dt

t

4FYFSð	GÞe�G=2

b0 lnð t
�2Þð	Gþ1Þð	Gþ2Þð	Gþ3Þ

¼ 4FYFSð	GÞe	G=4

b0ð	Gþ1Þð	Gþ2Þð	Gþ3ÞEi
�
1;
8:369604402

b0 lnð t
�2Þ

���������
Q2

Q2
0

:

(33)

We finally get the IR-improved formula

�aðQ2; tÞ ¼ exp½�ðFðQ2Þ � FðtÞÞ�; (34)

where

FðQ2Þ¼ 4FYFSð	GÞe	G=4

b0ð	Gþ1Þð	Gþ2Þð	Gþ3ÞEi
�
1;
8:369604402

b0 lnðQ2

�2Þ
�
;

(35)

and Ei is the exponential integral function. In Fig. 2 we
show the difference between the two results for �aðQ2; tÞ.
We see that they agree within a few percent except for the
softer values of t, as expected. We look forward to deter-
mining definitively whether the experimental data prefer
one over the other. This detailed study will appear else-
where [43] but we begin the discussion below with a view
on recent FNAL data. Again, we note that the comparison
in Fig. 2 is carried out at the leading log virtuality level, but
the subleading effects suppressed in this discussion will not
change our general conclusions drawn therefrom.
For further illustration, we note that for the q ! qG

branching process in HERWIG6.5 [8], we have therein the
implementation of the usual DGLAP-CS kernel as follows:

WMIN ¼ MINðZMIN � ð1:�ZMINÞ;ZMAX � ð1:�ZMAXÞÞ
ETEST ¼ ð1:þ ZMAX � �2Þ � HWUALFð5�SUDORD � 2;QNOW � WMINÞ

ZRAT ¼ ZMAX=ZMIN
30 Z1 ¼ ZMIN � ZRAT � �HWRGENð0Þ

Z2 ¼ 1:�Z1
PGQW ¼ ð1:þ Z2 � Z2Þ

ZTEST ¼ PGQW � HWUALFð5�SUDORD � 2;QNOW � Z1 � Z2Þ
IFðZTEST:LT:ETEST � HWRGENð1ÞÞGOTO30

. . .

(36)

where the branching of q to G at z ¼ Z1 occurs in the
interval from ZMIN to ZMAX set by the inputs to the
program and the current value of the virtuality QNOW,
HWUALF is the respective function for �s in the program,
and HWRGENðJÞ are uniformly distributed random num-
bers on the interval from 0 to 1. It is seen that Eq. (36) is a
standard MC realization of the unexponentiated DGLAP-
CS kernel via

�sðQzð1� zÞÞPGqðzÞ ¼ �sðQzð1� zÞÞ 1þ ð1� zÞ2
z

;

(37)

where the normalization is set by the usual conservation of
probability. To realize this with the IR-improved kernel, we
make the replacement of the code in Eq. (36) with the lines

NUMFLAV ¼ 5
B0 ¼ 11:�2:=3: � NUMFLAV

L ¼ 16:=ð3: � B0Þ
DELTAQ ¼ L=2þ HWUALFð5�SUDORD � 2;QNOW � WMINÞ � 1:184056810

ETEST ¼ ð1:þ ZMAX � �2Þ � HWUALFð5�SUDORD � 2;QNOW � WMINÞ
�EXPð0:5 � DELTAQÞ � FYFSQðNUMFLAV�1Þ � ZMAX � �L

ZRAT ¼ ZMAX=ZMIN
30 Z1 ¼ ZMIN � ZRAT � �HWRGENð0Þ

Z2 ¼ 1:�Z1
DELTAQ ¼ L=2þ HWUALFð5�SUDORD � 2;QNOW � Z1 � Z2Þ � 1:184056810

PGQW ¼ ð1:þ Z2 � Z2Þ � EXPð0:5 � DELTAQÞ � FYFSQðNUMFLAV�1Þ
�Z1 � �L

ZTEST ¼ PGQW � HWUALFð5�SUDORD � 2;QNOW � Z1 � Z2Þ
IFðZTEST:LT:ETEST � HWRGENð1ÞÞGOTO30

. . .

(38)

so that with the identifications 	q 	 L, �q 	 DELTAQ, FYFSð	qÞ 	 FYFSQðNUMFLAV�1Þ, we see that Eq. (38) realizes
the IR-improved DGLAP-CS kernel Pexp

Gq ðzÞ via �sðQzð1� zÞÞPexp
Gq ðzÞ with the normalization again set by probability

conservation.
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Continuing in this way, we have carried out the corre-
sponding changes for all of the kernels in Eq. (6) in the
HERWIG6.5 environment, with its angle-ordered showers,

resulting in the new MC, HERWIRI1.0(31), in which the
ISR parton showers have IR improvement as given by the
kernels in Eq. (18). In the original release of the program,
version 1.0, we stated that the timelike parton showers had
been completely IR improved in a way that suggested the
spacelike parton showers had not yet been IR improved at
all. In the subsequent release, version 1.02, the part of the
spacelike parton showers without IR improvement associ-

ated with HERWIG6.5’s spacelike module HWSGQQ for the
spacelike branching process G ! q �q, a process which is
not IR divergent and which is, in any case, a subdominant
part of the shower, was IR improved. In the release in
version 1.031 the final missing IR improvement in the
spacelike module HWSFBR

3 has been implemented. The
IR improvement of the module HWSGQQ in the release
HERWIRI1.02 produces a small effect, as these considera-

tions suggest: we see effects at a level comparable to the
errors on the MC data in our plots when going from
version 1.0 to 1.02. In going from version 1.0 to 1.031,
we do some significant effects in the soft pT regime so that
we recommend the use of version 1.031 in comparison
with data, as we illustrate presently.
We now illustrate some of the results we have obtained

in comparing ISR showers in HERWIG6.5 and with those in
HERWIRI1.0(31) at LHC and at FNAL energies, where some

comparison with real data is also featured at the FNAL
energy. Specifically, we compare the z distributions,
pT distributions, etc., that result from the IR-improved
and usual DGLAP-CS showers in what follows [44].
First, for the generic 2 ! 2 hard processes at LHC

energies (14 TeV) we get the comparison shown in
Figs. 3 and 4 for the respective ISR z distribution and p2

T

distribution at the parton level. Here, there are no cuts
placed on the MC data and we define z as z ¼
Eparton=Ebeam where Ebeam is the center of momentum

system (cms) beam energy and Eparton is the respective

parton energy in the cms system. The two quantities z
and p2

T for partons are of course not directly observable

FIG. 3 (color online). The z-distribution (ISR parton energy
fraction) shower comparison in HERWIG6.5.
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FIG. 4 (color online). The p2
T-distribution (ISR parton) shower

comparison in HERWIG6.5.
FIG. 2 (color online). Graph of �aðQ2; tÞ for the DGLAP-CS
and IR-improved DGLAP-CS kernels Eqs. (26) and (34). Q2 is a
typical virtuality close to the squared scale of the hard subpro-
cess—here we use Q2 ¼ 25 GeV2 for illustration.

3We thank M. Seymour and B. Webber for discussion on this
point.
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but their distributions show the softening of the IR diver-
gence as we expect.

Turning next to the similar quantities for the �þ pro-
duction in the generic 2 ! 2 hard processes at the LHC, we
see in Figs. 5 and 6 that spectra in the former are similar
and spectra in the latter are again softer in the IR-improved
case. These spectra of course would be subject to some
‘‘tuning’’ in a real experiment and we await with anticipa-
tion the outcome of such an effort in comparison to LHC
data.

We turn next to the luminosity process of single Z
production at the LHC, where in Figs. 7–9 we show,
respectively, the ISR parton energy fraction distribution,
the Z pT distribution, and the Z rapidity distribution with
cuts on the acceptance as 40 GeV<MZ, p

‘
T > 5 GeV for

Z ! �þ��—all lepton rapidities are included. For the
energy fraction distributions and the pT distributions we
again see softer spectra in the former and similar spectra in
the latter in the IR-improved case. For the rapidity plot, we
see the migration of some events to the higher values of Y,
which is not inconsistent with a softer spectrum for the IR-
improved case. One might wonder why we show the Z
rapidity here as the soft gluons which we study only have
an indirect affect on it via momentum conservation? But,
this means that the rapidity predicted by the IR-improved
showers should be close to that predicted by the unim-
proved showers and we show this cross-check is indeed
fulfilled in our plots. To understand why one has the
migration to higher values of rapidity in the IR-improved
spectra, recall the IR-improved spectra move the radiated
partons to softer values of z and this means the produced
Z’s have harder values of energy for given pT as the pT

spectra are similar, and this in turn means these Z’s have
higher values of the rapidity variable. We look forward to
the confrontation with experiment, where again we stress
that in a real experiment, a certain amount of tuning will

affect these results. We note, for example, that the differ-
ence between the spectra in Fig. 8, while it is interesting, is
well within the range that could be tuned away by varying
the amount of intrinsic transverse momentum of partons in
the proton. The question will always be which set of
distributions gives a better �2 per degree of freedom.
Finally, we turn to the issue of the IR cutoff in

HERWIG6.5. In HERWIG6.5, there are IR cutoff parameters

used to separate real and virtual effects and necessitated by
the þ-function representation of the usual DGLAP-CS
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FIG. 6 (color online). The �þ p2
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parison in HERWIG6.5
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kernels. In HERWIRI, these parameters in principle can be
taken arbitrarily close to zero, as the IR-improved kernels
are integrable [14,15]. We note that in the current version
of HERWIRI, the formula for �sðQÞ is unchanged from that
in HERWIG6.5 so that there is still a Landau pole therein and
this would prevent our taking the attendant IR cutoff
parameters arbitrarily close to zero; however, we also
note that this Landau pole is spurious and a more realistic
behavior for �sðQÞ as Q ! 0 from either the lattice ap-
proach [45] or from other approaches such as those in

Refs. [46,47] could be introduced in the regime where
the usual formula for �sðQÞ fails and this would allow us
to approach zero with the IR cutoff parameters. With this
understanding, we now illustrate the difference in IR cutoff
response by comparing it for HERWIG6.5 and HERWIRI: we
change the default values of the parameters in HERWIG6.5

by factors of 0.7 and 1.44 as shown in Fig. 10. We see that
the harder cutoff reduces the phase space significantly only
for the IR-improved kernels and that the softer cutoff has
also a small effect on the usual kernels’ spectra, whereas as
expected the IR-improved kernels’ spectra move signifi-
cantly toward softer values as a convergent integral would
lead one to expect. One must note here that the spectra all
stop at approximately the same value z0 ffi
0:000 14–0:000 16 which is above some of the modulated
IR cutoff parameters and that the peaks in the spectra are
not at the respective IR cutoff values which are defaulted
[8] at z ¼ 0:000 114, 0.000 121 for quarks and gluons,
respectively, as the HERWIG environment has other built-
in cutoffs that prevent such things as the �s argument’s
becoming too small. What the curves in Fig. 10 show then
are the relative‘‘relative’’ probabilities for normalized
spectra above z0. Specifically, the areas under the six
curves in the figure are all equal. The curves then show
the difference in the shapes of the parton energy spectra for
the given values of the IR cutoff parameters when the
interplay with the HERWIG environment’s other built-in
cutoffs to prevent unphysical phenomena from occurring
in the simulation is taken into account. We can make an
estimate of the attendant relative relative probabilities as
follows. We compare the probability Pðz0 < z < z1Þ in a
normalized spectrum for the spectra with the IR cutoffs in
the usual case, where for soft gluon quanta we have dP�
dz0=z0 in usual DGLAP-CS theory for the IR singular part,
with the analogous probability in the IR-improved case,
where for soft gluon quanta we have dP� dz0=z01�	 with
	 ¼ 	A, A ¼ q,G. Considering the q case for definiteness,
we have, for z0 ffi 0:000 15, an IR cutoff [8] zcq ¼
0:80 GeV=7 TeV ffi 0:000 114 as noted above, so that we
need to compare the two relative probabilities

Pðz0 < zq < z1Þ ¼
� lnð1�z0Þ�lnð1�z1Þ

lnð1�zcqÞ�lnðzcGÞ ; unimproved;
ð1�z0Þ	�ð1�z1Þ	
ð1�zcqÞ	�zcG

	 ; IR improved;

(39)

where we also introduced notation for the HERWIG environ-
ment gluon IR cutoff [8] zcG ¼ 0:85 GeV=7 TeV ffi
0:000 121 with its default value. This shows that the two
relative probabilities are in the ratio r ffi ð1�
zcG

	Þ=ð�	 lnðzcGÞÞ so that the probability is enhanced in

the IR-improved spectra. Putting in the numbers we get
r ffi 0:16 for the suppression of the unimproved spectrum
relative to the IR-improved one. This is of course an over-
estimate of the effect because we only analyzed the IR
singular terms in the soft regime but we see that the
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FIG. 9 (color online). The Z rapidity-distribution (ISR parton
shower) comparison in HERWIG6.5.
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suppression effect is consistent with the plots in Fig. 10. If
we want to be more complete, we also need to analyze the
�q and G singular cases and to take the suppression of the
soft gluon spectrum in the IR-improved spectrum into
account. Concerning the �q case, it is the same as the q

case—we get an enhancement of the soft region in the IR-
improved spectrum relative to the unimproved one. For the
gluon case, when the branching is G ! GðzÞ þGð1� zÞ,
for the part of the gluon branching kernel that is singular in
z there is an enhancement in the relative probability that
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FIG. 10 (color online). IR cutoff sensitivity in z distributions of the ISR parton energy fraction: (a) DGLAP-CS, (b) IR-I DGLAP-
CS—for the single Z hard subprocess in HERWIG6.5 environment.
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FIG. 11 (color online). Comparison with FNAL data: (a) CDF rapidity data on (Z=	�) production to eþe� pairs, the circular dots are
the data, the green (blue) lines are HERWIG6.510 (HERWIRI1.031); (b) D0 pT spectrum data on (Z=	�) production to eþe� pairs, the
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are MC@NLO/HERWIRI1.031, and the green squares are MC@NLO/HERWIG6.510, where we use the notation (see the text) MC@NLO/X to
denote the realization by MC@NLO of the exact Oð�sÞ correction for event generator X. Note that these are untuned theoretical results.
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the gluon with fraction 1� z will be in the soft region; the
converse also holds. Finally, all of the soft gluon singular-
ities are suppressed in the IR-improved cases relative to
their unimproved cases, so that this will move particles
away from the soft regime in the IR-improved cases rela-
tive to the unimproved cases. What is crucial to the Fig. 10
results is the interplay with the HERWIG6.5 environmental
cutoffs such as that one on the argument of �s ¼
�sðQzð1� zÞÞ where Q is the HERWIG6.5 angle-ordered
evolution variable. This cutoff on the variable Q ¼ zð1�
zÞQ means that the regime where either z ! 0 or 1� z !
0 is suppressed in both sets of spectra. But, as the unim-
proved spectra have their largest enhancements in this
regime relative to the IR-improved spectra, the HERWIG6.5

environment kills a large part of this enhancement and
allows the other enhancements such as that in (39) to
prevail, as we see in the figure. The behavior illustrated
in Fig. 10 is expected to lead to a better description of the
soft radiation data at the LHC and this expectation should
be checked with experiment in the not-too-distant future.

We finish this initial comparison discussion by turning to
the data from FNAL on the Z rapidity and pT spectra as
reported in Refs. [48,49]. We show these results, for
1.96 TeV cms energy, in Fig. 11. We see that HERWIRI1.0

(31) and HERWIG6.5 both give a reasonable overall repre-

sentation of the CDF rapidity data but that HERWIRI1.031 is
somewhat closer to the data for small values of Y. The two
�2=d:o:f are 1.77 and 1.54 for HERWIG6.5 and HERWIRI1.0

(31), respectively. The data errors in Fig. 11(a) do not

include luminosity and PDF errors [48], so that they can
only be used conditionally at this point. We note as well
that including the next-to-leading order (NLO) contribu-
tions to the hard process via MC@NLO/HERWIG6.510 and
MC@NLO/HERWIRI1.031 [33]4 improves the agreement for

both HERWIG6.5 and for HERWIRI1.031, where the �2=d:o:f
are changed to 1.40 and 1.42, respectively. That they are
both consistent with one another and within 10% of the
data in the low Y region is fully consistent with what we
expect given our comments about the errors and the generic
accuracy of an NLO correction in QCD. A more precise
discussion at the NNLO level with DGLAP-CS IR im-
provement and a more complete discussion of the errors
will appear [43]. These rapidity comparisons are then
important cross-checks on our work.

We also see that HERWIRI1.031 gives a better fit to the D0
pT data compared to HERWIG6.5 for low pT (for pT <
12:5 GeV, the �2=d:o:f: are �2:5 and 3.3, respectively, if
we add the statistical and systematic errors), showing that

the IR improvement makes a better representation of QCD
in the soft regime for a given fixed order in perturbation
theory. We have also added the results of MC@NLO [33] for
the two programs and we see that the Oð�sÞ correction
improves the �2=d:o:f for the HERWIRI1.031 in both the soft
and hard regimes and it improves the HERWIG6.510 �2=d:o:f
for pT near 3.75 GeV where the distribution peaks. For
pT < 7:5 GeV the �2=d:o:f for the MC@NLO/HERWIRI1.031

is 1.5 whereas that for MC@NLO/HERWIG6.510 is worse.
These results are of course still subject to tuning as we
indicated above.

V. CONCLUSIONS

We have introduced a new approach to QCD parton
shower MC’s based on the new IR-improved DGLAP-CS
kernels in Refs. [14,15] and we have realized the new
approach with the MC HERWIRI1.0(31) in the HERWIG6.5

environment. HERWIRI1.0(31) then sets the stage for the
further implementation of the attendant [5] new approach
to precision QED � QCD predictions for LHC physics by
the introduction of the respective resummed residuals
needed to improve systematically the precision tag to the
1% regime for such processes as single heavy gauge boson
production, for example. Here, we already note that our
new IR-improved MC, HERWIRI1.0(31), [50], is expected to
allow for a better �2 per degree of freedom in data analysis
of high energy hadron-hadron scattering for soft radiative
effects. By comparison with the D0 FNAL data of single Z
production, we have given evidence that this is indeed the
case. As one would expect, the integration of HERWIRI into
MC@NLO is seamless, as one may replace HERWIG with

HERWIRI directly. In both cases, MC@NLO/HERWIG and

MC@NLO/HERWIRI, we see an improvement in the compari-

son with both the CDF rapidity data and the D0 pT data on
single Z production. We await further tests of the new
approach, both at FNAL and at the LHC.
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