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We consider the gluon propagator Dðp2Þ at various lattice sizes and spacings in the case of pure SU(3)

Yang-Mills gauge theories using the Landau gauge fixing. We discuss a class of fits in the infrared region

in order to (in)validate the tree level analytical prediction in terms of the (refined) Gribov-Zwanziger

framework. It turns out that an important role is played by the presence of the widely studied dimension

two gluon condensate hA2i. Including this effect allows to obtain an acceptable fit around 1 to 1.5 GeV,

while corroborating the refined Gribov-Zwanziger prediction for the gluon propagator. We also discuss the

infinite volume extrapolation, leading to the estimate Dð0Þ ¼ 8:3� 0:5 GeV�2. As a by-product, we can

also provide the prediction hg2A2i � 3 GeV2 obtained at the renormalization scale � ¼ 10 GeV.
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I. INTRODUCTION

Although confinement of gluons in pure Yang-Mills
gauge theories should be understood in a gauge invariant
setting, one should also observe in some way the messen-
gers of confinement in gauge variant quantities. In particu-
lar, let us assume that we have fixed our gauge freedom by
means of the Landau gauge, @�A

a
� ¼ 0. We expect that the

nonperturbative physics responsible for confinement will
also reveal their influence on the n-point correlation func-
tions of the gauge fixed theory. The most elementary, albeit
already nontrivial, example of such correlation function is
the gluon propagator. Because of the transverse nature of
the Landau gauge, we can write

hAa
�ðpÞAb

�ð�pÞi ¼ Dðp2Þ�ab

�
��� �

p�p�

p2

�
; (1)

and focus attention on the scalar quantity Dðp2Þ. This
quantity has been the topic of a lot of investigations in
the recent past, be it from a numerical [1–15] or an ana-
lytical viewpoint [16–37]. All data and analytical estimates
agree on the fact that the gluon is infrared suppressed.
There is still some discussion whether it actually vanishes
at zero momentum or not, but most lattice data seems to
indicate that it does not.

An important asset in the computation Dðp2Þ is the role
played by Gribov copies [16,38]. In principle, the gauge
configuration A� is in the (absolute) Landau gauge if it

corresponds to the absolute minimum of the functional

R½A� � A2
min ¼ min

u2SUðNÞ

Z
ddxðAu

�Þ2: (2)

The set of absolute minima defines �, the so-called fun-

damental modular region (FMR). It is then an easy exercise
to show that A� is part of the Gribov region, defined as

� ¼ fA;@�Aa
� ¼ 0;Mab > 0g; (3)

with Mab the (Hermitian) Faddeev-Popov operator, de-
fined by

M ab ¼ �@�D
ab
� ¼ �ð�ab@2 þ gfabcAc

�@�Þ: (4)

Notice that the requirement Mab > 0 is necessary to re-
move many redundant gauge configurations, as the trans-
versality condition @�A� ¼ 0 has multiple solutions along

each gauge orbit. Said otherwise, the Landau gauge is
plagued by the existence of Gribov copies. It is important
to mention that A� 2 � does not necessarily mean that A�

corresponds to the absolute minimum of R½A�; it can also
constitute a relative minimum. Said otherwise, the FMR �
is a subset of the Gribov region �. This means that the
Gribov region � still contains gauge copies, see for in-
stance [39–41]. It can be shown that� is convex, bounded
in all directions and that is crossed by any gauge orbit
[20,41,42].
In lattice computations, one fixes the Landau gauge

numerically by searching for the ‘‘best’’ solution of the
minimization procedure for R½A�. As such, one hopes to
bring each configuration as close as possible to a gauge
equivalent one in �.
In the continuum, it appears to be an incredibly difficult

task to implement the absolute Landau gauge. In a first
approximation, one uses the perturbative Faddeev-Popov
action,

SYMþgf ¼ 1

4

Z
ddxFa

��F
a
�� þ

Z
ddxðba@�Aa

�

þ �ca@�D
ab
� cbÞ; (5)

which just implements @�A� ¼ 0, by means of the equa-
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tion of motion of the auxiliary b field. The corresponding
Jacobian determinant is represented by the ghost term
�ca@�D

ab
� cb. This approach completely ignores the exis-

tence of Gribov copies, but it is perfectly well suited for the
perturbative quantization of gauge theories.

A second approximation involves the restriction of the
allowed gauge configurations to the Gribov region �,
which already partially resolves the issue of gauge copies.
It was worked out at lowest order in a saddle point ap-
proximation in [16] and later on generalized to all orders in
[17,18]. We shall skip the details, and just mention the
result, i.e. the local action

SGZ ¼ SYMþgf þ
Z

ddxð �’ac
� @�ðDab

� ’bc
� Þ

� �!ac
� @�ðDab

� !bc
� Þ � gfabc@� �!ak

� Dbd
� cd’ck

�

� �2gfabcAa
�ð’bc

� þ �’bc
� Þ � dðN2 � 1Þ�4Þ; (6)

which contains the (Gribov) mass parameter �2. This
parameter is not free, but self-consistently fixed by means
of the so-called horizon condition [17,18], which reads in
its local version hgfabcAa

�ð’bc
� þ �’bc

� Þi ¼ �2dðN2 �
1Þ�2. Upon solving, the horizon condition shall give �2 /
�QCD. A crucial feature of this local formulation of the

restriction is that we can control its ultraviolet behavior, i.e.
the action defines a renormalizable quantum field theory
[18,22,43,44]. As such, a consistent computational frame-
work is obtained. So far, no one has been able to improve
upon this restriction, in particular, it is unclear whether it
would be possible to implement the restriction to the FMR
� to completely overcome the gauge fixing ambiguity. We
can only refer to the conjecture of [20] stating that at the
level of expectation values, no difference will be found
upon restricting to � or to its subset �. Anyhow, the
presence of the mass parameter �2 / �QCD will clearly

be generating nonperturbative effects in, e.g. gluon and
ghost propagator.

A well-known important source of nonperturbative ef-
fects in gauge theories are condensates, viz. vacuum ex-
pectation values of certain local operators. Next to the
famous gauge invariant condensate hF2

��i, of paramount

importance for phenomenological applications [45], recent
years1 have also witnessed an increased interest in the
dimension two condensate hA2i in the Landau gauge
[48,49], and related to it the issue of 1=Q2 power correc-
tions [50]. The latter corrections would correspond to an
extension of the usual Shifman-Vainshtein-Zakharov sum
rule study of physical correlators. Some important early
contributions to this field of research can be found in, for
example, [51–59]. These works were based on renormalon
analyses, lattice considerations of the interquark potential
and condensates, nonperturbative short distance physics,

etc. Also at the propagator level such power corrections
were identified in [60].
From the definition (2), it is clear that hA2

mini is a gauge
invariant quantity by construction. This leads very natu-
rally to the introduction of hA2i in the Landau gauge since
we can write [61]

A2
min ¼

1

2

Z
ddx

�
Aa
�

�
��� �

@�@�

@2

�
Aa
�

� gfabc
�
@�
@2

@Aa

��
1

@2
@Ab

�
Ac
�

�
þOðA4Þ; (7)

from which it easily follows that hA2
mini ¼ hA2i in the

Landau gauge. This condensate then made its appearance
in a variety of works, see e.g. [22,62–79]. In the works
[48,49], the relation was explored between this condensate
and magnetic degrees of freedom, which are generally
believed to play an important role for confinement.
Recently, this was further investigated by looking at the
electric and magnetic components of hA2i at finite tem-
perature, hinting toward an interesting connection with the
phase diagram [70].
Measurements of hA2i at T ¼ 0 have been obtained

using the lattice gluon propagator and the operator product
expansion (OPE) in [64], based on earlier work [62,63],
giving the following estimate:

hg2A2i ¼ 5:1þ0:7
�1:1 GeV2 (8)

at the renormalization scale � ¼ 10 GeV. hA2i also ap-
peared as a source of power corrections in, e.g. [78,79]. An
independent estimate using the OPE and the quark propa-
gator in a quenched lattice simulation gave [77]

hg2A2i ¼ 4:4� 0:4 GeV2: (9)

An ab initio calculation of hA2i was presented in [65,68]. It
was shown that it is possible to construct an effective
potential for hA2i, which is consistent with the renormal-
ization (group) [65,66]. A nonvanishing condensate due to
dimensional transmutation was favored as it lowered the
vacuum energy. Using a resummation of Feynman dia-
grams, more evidence for hA2i � 0 was given in [67].
The extension of the effective potential formalism to the

Gribov-Zwanziger (GZ) case was first tackled in [22].
More recently, it also became clear that other d ¼ 2 con-
densates can play an important role in the GZ formalism.
When the dynamics of the extra fields is taken into account,
next to hA2i other dimension two condensates appear quite
naturally [23,24], and these condensates alter the behavior
of the propagators quite drastically. In particular, the d ¼ 2
condensates related to the auxiliary fields
f’ab

� ; �’ab
� ;!ab

� ; �!ab
� g give a ghost propagator behaving

like �1=p2 in the infrared, while the gluon propagator is
suppressed and tends to a nonzero constant at very low
momentum. This framework is now known as the refined
Gribov-Zwanziger (RGZ) formalism, which is a dynamical
improvement of the original Gribov-Zwanziger approach.

1The d ¼ 2 gluon condensate was already considered in
[46,47].
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In [23,24], the effects of the condensate h �’ab
� ’ab

� �
�!ab
� !ab

� i were explored by means of variational perturba-

tion theory. hA2i was left out of this analysis for simplicity,
as the qualitative conclusions about the deep infrared
behavior were not depending on this condensate, but it
was already discussed in [24] that in principle it can be
included. In [80], a more complete treatment will be pre-
sented. We shall not dwell upon details here, but focus on
the form of the tree level propagator in the presence of
these condensates, which is

Dðp2Þ ¼ p2 þM2

p4 þ ðM2 þm2Þp2 þ 2g2N�4 þM2m2
; (10)

where M2 is the mass scale related to the d ¼ 2 conden-
sates in f’ab

� ; �’ab
� ;!ab

� ; �!ab
� g, m2 to hA2i and �4 is the

Gribov parameter. We shall introduce the shorthand �4 ¼
2g2N�4 þM2m2.

The aim of this paper is to find out whether the propa-
gator (10) can reproduce not only qualitatively the gluon
propagator, but that it also works out well at the quantita-
tive level. We shall therefore analyze the lattice gluon
propagator in pure SU(3) Yang-Mills gauge theories and
investigate to what extent the propagator (10) can match
the data, by treating the mass scales m2, M2 and �4 as
fitting parameters.

The paper is organized as follows. In Sec. II, we sum-
marize the introduction of the lattice gluon propagator and
discuss its renormalization. In Sec. III, we analyze the
propagator and discuss a class of fits related to the RGZ
propagator (10). It shall turn out that none of the parame-
ters m2,M2, or �4 can be put equal to zero to find a decent
fit, which thereby shows that the analytical (refined)
Gribov-Zwanziger restriction is in compliance with the
lattice data, but that it needs to be complemented with
the condensate hA2i, as well as the RGZ mass scale M2,
related to a new d ¼ 2 condensate in the
f’ab

� ; �’ab
� ;!ab

� ; �!ab
� g fields [24], which is crucial to find

Dð0Þ> 0. We shall also derive an estimated value for the
condensate hg2A2i, and we shall see that it compares
acceptably well with the OPE estimates (8) and (9). In
addition, we can also derive an infrared gluon mass scale,
which lies in the same ballpark as other values in the
literature. We end with conclusions in Sec. IV.

II. THE LATTICE GLUON PROPAGATOR AND
RENORMALIZATION PROCEDURE

Lattice QCD simulations are performed on a finite 4D
torus. Therefore, either the infinite volume limit should be
taken or the simulations must be performed in a sufficiently
large volume. Of course, the precise meaning of a suffi-
ciently large volume depends on the problem to be ad-
dressed. Considering pure Yang-Mills theory and taking
the mass of the lightest glueball, i.e. Mglueball � 1:7 GeV

[81,82] as a typical hadronic scale, the corresponding

length scale is L� 0:1 fm. However, the scale at which
nonperturbative physics sets in is already at �1 fm. To
investigate nonperturbative physics and, in particular, the
infrared gluon propagator, one should consider volumes
well above the 1 fm scale.
In this work we will analyze the propagator computed

from the lattices described in Table I. Of the three� values,
� ¼ 6:0 will be used to perform an extrapolation to the
infinite volume limit, while the Berlin-Moscow-Adelaide
at � ¼ 5:7 and � ¼ 6:2 will be used to cross check the
final results. In what concerns the computation of the gluon
propagator, we will use standard definitions which can be
found in, for example, [1,4], and as such, it will not be
repeated here. The gauge configurations were generated
using version 6 of the MILC [84].
The lattice data for the propagators computed at� ¼ 6:0

and � ¼ 6:2 were chosen as follows. For momenta higher
than �1 GeV, only those momenta which survive the
conic cut [1] are used. In this way we avoid the problems
associated with the breaking of rotational invariance. For
momenta below �1 GeV, all momenta were included in
the analysis. In this way, we hope to have obtained a decent
description in the infrared.
Our simulations are done at different lattice spacings.

Therefore, in order to compare the propagators computed
at different � values, the data has to be renormalized. In
practice, we have renormalized the gluon propagator, after
performing a conic cut, by fitting the data to

DLatðp2Þ ¼ Z
½lnðp2

�2Þ���

p2
; (11)

Using the lowest order� function and the coefficient of the

TABLE I. The lattice setup. For the conversion to physical
units we took the lattice spacing measure from the string tension
[83]. The first set of configurations, i.e. those with � ¼ 5:7, were
generated by the Berlin-Moscow-Adelaide group and the results
published in [15]. Note that in their paper, the lattice spacing was
taken from r0. The Berlin-Moscow-Adelaide data was rescaled
appropriately to follow our conventions.

� ¼ 5:7 a ¼ 0:1838 fm

L 64 72 80 88 96

aL (fm) 11.8 13.2 14.7 16.2 17.6

# Conf 14 20 25 68 67

� ¼ 6:0 a ¼ 0:1016 fm

L 32 48 64 80

aL (fm) 3.25 4.88 6.50 8.13

# Conf 126 104 120 47

� ¼ 6:2 a ¼ 0:07 261 fm

L 48 64

aL (fm) 3.49 4.65

# Conf 88 99
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lowest order anomalous gluon dimension for pure SU(3)
Yang-Mills theory, extracted from, e.g. [85,86], gives � ¼
13=22. The fits to Eq. (11) were performed for a wide
interval of momenta ½pmin; pmax�. For each lattice, the
fitting range was chosen so that �2=d:o:f:� 1, while keep-
ing the largest possible fitting interval. For the various
lattices, the fitting range and the quality of the fit can be
found in Table II.

The renormalized gluon propagator,

Dðp2Þ ¼ ZRDLatðp2Þ; (12)

is related to the bare lattice propagator DLatðp2Þ by requir-
ing that

Dðp2Þjp2¼�2 ¼ 1

�2
; (13)

which defines (part of) a particular momentum subtraction
scheme. This condition defines the renormalization con-
stant ZR. Here, we chose� ¼ 3 GeV. The values of ZR are
reported in Table II. The renormalized propagator can be
seen in Fig. 1 for � ¼ 5:7 and in Fig. 2 for the other �
values.
The � ¼ 5:7 data seems to define a unique curve. In this

sense, one can claim that finite volume effects are under
control. On the other hand, the propagators computed with
larger � values show a small dependence on the volume,
especially in the infrared region. Note that, for the largest
two lattices, despite the larger statistics, the � ¼ 5:7 data
displays a kind of ‘‘wiggling’’ structure. It is unclear
whether this structure is of any relevance, as the � ¼ 6:0
and � ¼ 6:2 data shows no such fluctuations in the infra-
red. Of course, fluctuations inDðp2Þ, even if they are small,
can compromise the quality of the fittings. We also observe
that the � ¼ 5:7 data is below the � ¼ 6:0 and � ¼ 6:2
data for momenta smaller than �400 MeV, as it is clear
from Figs. 1 and 2.

III. THE LATTICE GLUON PROPAGATOR AND
THE REFINED GRIBOV-ZWANZIGER APPROACH

A. Preliminaries

In [23,24] the gluon propagator, among other things, was
investigated by exploiting the refined Gribov-Zwanziger
action, and the tree level result (10) was derived. This
propagator counts three mass scales: (1) M2, related to
the condensation of the new fields f’ab

� ; �’ab
� ;!ab

� ; �!ab
� g

introduced by Zwanziger [17,18] to localize the Gribov-

TABLE II. Ultraviolet fits to Eq. (11). Note that for � ¼ 5:7
and the lattice 724, the �2=d:o:f: was never below 3. The
renormalization constants ZR were computed as described in
the text and using � ¼ 3 GeV as renormalization scale. The
errors on ZR were computed assuming Gaussian error propaga-
tion.

� ¼ 5:7 a ¼ 0:1838 fm

L 64 72 80 88 96

pmin (GeV) 2.512 — 2.471 2.486 2.498

pmax (GeV)4.418 — 4.148 4.148 4.148

�2=d:o:f: 1.65 — 1.08 1.65 0.94

ZR 0.617(25) 0.63(13) 0.621(29) 0.622(18) 0.64(31)

� ¼ 6:0 a ¼ 0:1016 fm
L 32 48 64 80

pmin (GeV) 2.812 2.494 1.514 1.516

pmax (GeV)5.078 5.021 5.141 5.048

�2=d:o:f: 0.91 0.97 0.89 1.20

ZR 0.149(21) 0.150(18) 0.1477(38)0.1478(54)

� ¼ 6:2 a ¼ 0:07 261 fm
L 48 64

pmin (GeV) 2.121 1.591

pmax (GeV)5.286 5.110

�2=d:o:f: 0.95 1.02

ZR 0.0743(72)0.0740(27)
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FIG. 1 (color online). Renormalized gluon propagator for � ¼
5:7 simulations.
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FIG. 2 (color online). Renormalized gluon propagator for � ¼
6:0 and � ¼ 6:2 simulations.
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Zwanziger action, which was nonlocal after the first step of
the construction, (2) m2 related to the hA2i condensate, and
(3) �4 multiplying the horizon function, which is intro-
duced to suppress the Gribov copies in the functional
integration. The differences between the (refined)
Gribov-Zwanziger action and the usual Faddeev-Popov
action can only show up in the infrared, as the difference
between both is of a soft nature, i.e. proportional to �2, see
the action (6). Indeed, if we formally set �2 ¼ 0, the GZ
action reduces to the usual Faddeev-Popov action as the
f’ab

� ; �’ab
� ;!ab

� ; �!ab
� g fields can be integrated out to form a

unity.
In principle, one can expect that the gluon propagator

(10) should be able to reproduce the lattice data in a certain
momentum region. Note that being a tree level result, it
does not include the logarithmic correction which has been
observed, for example, when fitting the ultraviolet region.
Remember that the logarithmic dependence was explored
to renormalize the lattice gluon propagator. Therefore,
assuming that (10) describes the lattice data, one can
expect that it will not reproduce the ultraviolet data, the
difference being caused by the lack of the perturbative
logarithmic correction. Anyway, one can explore the lattice
results to check if (10) can reproduce the propagators
reported in Figs. 1 and 2 up to a certain maximum mo-
mentum, as in the infrared, we expect that the logarithm
will ‘‘freeze’’ due the presence of infrared mass scales.
Furthermore, given the relation between the different mass
scales and the condensates, by setting either M2 or m2 to
zero one can check for the corresponding contribution to
nonperturbative physics.

B. Gluon propagator and evidence for the d ¼ 2 gluon
condensate hA2i

Let us first consider the condensation of the extra fields
f’ab

� ; �’ab
� ;!ab

� ; �!ab
� g. Given that the lattice gluon propaga-

tor does not vanish at zero momentum, one must have
M2 � 0. Indeed, the motivation to introduce the conden-
sate associated with the new ghost-type fields was pre-
cisely to be able to have a Dð0Þ � 0 [23,24]. We shall
need the following correspondence between the tree level
gluon mass m2 and the condensate hA2i [22,65]

hg2A2i ¼ ��0m
2; �0 ¼ 9

13

N2 � 1

N
; (14)

which follows from the construction of [65]. From this
relation, it is clear that the presence of the condensate
requires a nonvanishing m2. This can be tested setting
m2 ¼ 0 in the tree level expression (10) and trying to fit
the lattice data to

Dðp2Þ ¼ p2 þM2

p4 þM2p2 þ 2g2N�4
: (15)

Despite the similar structure of (10) and (15), the lattice
data distinguishes quite clearly the two functional forms.

Indeed, while (10) is able to reproduce the lattice propa-
gator on a wide range of momentum starting at 0 GeV and
going up to 1–1.5 GeV, in the sense that the corresponding
fit have�2=d:o:f: < 2, the fits corresponding to (15) always
have a �2=d:o:f: larger than 3, and can as such be rejected.
As an example of a fit with m2 � 0, in Fig. 3 we show

the renormalized gluon propagator computed using the
�¼6:0 and 644 lattice and the fits corresponding to (10).
Although the fits use only the momentum in ½0; pmax�, in
Fig. 3 we show the propagator if one uses (10) over the
entire momentum region. There is a small difference be-
tween the lattice data and the prediction of (10) in the
ultraviolet region, which is clearly seen in the gluon dress-
ing function—see Fig. 4. As discussed previously, the
small observed differences2 are expected as (10) does not
take into account the perturbative logarithmic corrections.
Our interpretation of the fits to (10) and (15) is that the

lattice data points toward a nonvanishing gluon condensate
hA2i. In Sec. III D, we shall discuss this in more detail and
extract an estimate for hA2i.

C. Measuring the scales in the refined Gribov-
Zwanziger gluon propagator using the lattice data

In this section we aim to investigate the compatibility of
the tree level gluon propagator computed using the refined
Gribov-Zwanziger action and the lattice data. In particular,
we would like to measure the different mass parameters in
(10). As discussed previously, it is not expected that (10) is
able to describe the lattice propagator for the full range of
momenta. Therefore, we perform a sliding window analy-
sis, i.e. we shall fit the propagator using momenta in ½0; p�,
with increasing values for p. Then, the �2=d:o:f: can be
used to establish a maximum range of momenta described
by (10)—see Fig. 5. For the largest two� values and for the
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FIG. 3 (color online). Gluon propagator and fit to (10) using
the momentum range ½0; pmax�. pmax ¼ 1:243 GeV is the largest
fitting range, which has a �2=d:o:f: < 2. The figure includes the
outcome of the fits for the two fitting ranges considered.
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largest lattices, the refined Gribov-Zwanziger tree level
propagator is able to describe the lattice data well above
1 GeV. In particular, for the largest volume, being the � ¼
6:0 and 804 case, the lattice gluon propagator can be fitted
by (10) beyond 1.5 GeV. We draw the reader’s attention by
noticing that for this particular set of data the ‘‘perturba-
tively’’ inspired expression (11) describes the lattice data
starting from 1.5 GeV (see Table II). For the smaller � ¼
5:7 simulations, the situation is similar, with the exception
of the largest two lattices (884 and 964). In the Appendix,
we have spent a few words about these latter two lattices,
and we explain the motivation behind why we shall keep

them out of our analysis. We shall however use the other
� ¼ 5:7 data to check our results later on.
In Fig. 6, we report the result of fitting (10) to the

renormalized gluon propagator computed from the � ¼
6:0 and 644 lattice data as a function of the fitting range
½0; pmax�. Similar plots can be shown for the remaining fits.
As Fig. 6 shows, the estimated values forM2,M2 þm2 and
�4 ¼ 2g2N�4 þM2m2 are stable against a change on
pmax. For each simulation, as a set of values, we choose
those which correspond to the largest fitting range with a
�2=d:o:f:� 1. For example, for the � ¼ 6:0 and 644 data,
we take pmax ¼ 0:929 GeV and M2 ¼ 2:589�
0:068 GeV2, M2 þm2 ¼ 0:539� 0:025 GeV2, �4 ¼
0:2837� 0:0059 for a �2=d:o:f: ¼ 1:07. When the
�2=d:o:f: never crosses or become to close to 1, such as
happens in the smallest fitting lattice volume, we choose
the set of values which minimizes �2=d:o:f: for the largest
possible fitting range.
In Table III we report the estimates of the different

parameters defining the refined Gribov-Zwanziger tree
level gluon propagator for each lattice simulation. The
values are plotted in Fig. 7 as a function of the inverse of
the lattice length L. The data shows a small dependence on
1=L, especially for M2 þm2, and on the lattice spacing,
i.e. on �. Nevertheless, for � ¼ 6:0, the four volumes can
be combined to perform a linear extrapolation to the infi-
nite volume limit.
As a function of 1=L, M2 is reasonably well described

by a linear function. Indeed, the �2=d:o:f: of the fit is 2.13,
giving

M2 ¼ 2:15� 0:13 GeV2; (16)
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in good agreement with the value computed from the
largest � ¼ 5:7 volume.

For M2 þm2, the linear fit gives an infinite volume
value of

M2 þm2 ¼ 0:337� 0:047 GeV2; (17)

for a �2=d:o:f: ¼ 2:04.
For �4, the linear extrapolation has a �2=d:o:f: larger

than 3. Fortunately, it seems that �4 shows the smallest
dependence on 1=L and the lattice spacing, with the largest
volumes providing numbers which are compatible, within

1 standard deviation. Therefore, given the results reported
in Table III for the largest volumes, one can claim that

�4 ¼ 0:26 GeV4; (18)

which are the reliable digits from the largest two lattices—
see the Table. The linear extrapolations can be see in Fig. 8.
We observe that the figures for the � ¼ 5:7 data and the
linearly extrapolated results are pretty close, giving us
further confidence in the extrapolation.
If one uses the extrapolated values, one can write down

that

m2 ¼ �1:81� 0:14 GeV2: (19)

Simultaneously, we find

TABLE III. Tree level gluon propagator parameters from fitting the refined Gribov-Zwanziger
propagator (10) to the renormalized lattice gluon propagator. The errors reported are statistical
and computed assuming Gaussian error propagation.

L pmax M2 M2 þm2 �4 �2=d:o:f:

� ¼ 5:7
64 1.255 2:132� 0:052 0:364� 0:020 0:2553� 0:0051 0.99

72 0.814 2:017� 0:097 0:302� 0:028 0:245� 0:011 1.21

80 1.089 2:151� 0:047 0:359� 0:016 0:2604� 0:0049 1.55

� ¼ 6:0
32 1.072 2:82� 0:13 0:652� 0:054 0:2708� 0:0096 1.40

48 0.757 3:07� 0:33 0:71� 0:10 0:312� 0:030 1.46

64 0.929 2:589� 0:068 0:539� 0:025 0:2837� 0:0059 1.07

80 1.103 2:346� 0:043 0:463� 0:019 0:2561� 0:0030 1.03

� ¼ 6:2
48 1.419 2:40� 0:11 0:473� 0:045 0:2677� 0:0095 1.17

64 1.476 2:366� 0:066 0:476� 0:027 0:2721��0:0057 1.37
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FIG. 7 (color online). Parameters for the tree level gluon
propagator of the refined Gribov-Zwanziger action, computed
fitting the renormalized gluon propagator, as a function of the
inverse of the lattice length L. The reader should remember that,
for � ¼ 5:7 and 724, the lattice data was not well described by
the UV fit (11) used to define the renormalization constant ZR,
see the discussion on the renormalization procedure. This can
explain the observed fluctuations in the � ¼ 5:7 results.
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2g2N�4 ¼ 4:16� 0:38 GeV4: (20)

Furthermore, assuming that (10) describes the infrared
gluon propagator, then

Dð0Þ ¼ M2

�4
¼ 8:3� 0:5 GeV�2: (21)

The zero momentum gluon propagator computed using the
extrapolated values for M2 and �4 is in excellent agree-
ment, within 1 standard deviation, with the lattice Dð0Þ
computed from lattice QCD for � ¼ 5:7 where Dð0Þ �
7� 8:5 GeV�2, � ¼ 6:0 and 804 data where Dð0Þ ¼
8:93� 0:47 GeV�2 and for � ¼ 6:2 and 644 data, which
has a Dð0Þ ¼ 8:95� 0:22 GeV�2.

D. Extracting a value for the dimension two gluon
condensate hg2A2i

In order to obtain an estimate that can be compared with
other values available on the market, we shall rely on the
renormalization group. In particular, we wish to compare
with the values (8) and (9), being

g2A2 ¼ 5:1þ0:7
�1:1 GeV2; (22)

and

hg2A2i ¼ 4:4� 0:4 GeV2: (23)

For the relevant one loop renormalization group equations,
we have, in any (massless) renormalization scheme3

[22,65]

�
@

@�
g2 ¼ �2�0g

4; �0 ¼ 11

3

N

16	2
;

�
@

@�
m2 ¼ �0g

2m2; �0 ¼ � 3

2

N

16	2
:

(24)

Hence, our estimate (19) corresponds to a positive gluon
condensate, as using (14) yields for N ¼ 3

hg2A2i ¼ 3:35� 0:26 GeV2; (25)

i.e. a positive gluon condensate. We recall that in this work
we have renormalized at a scale � ¼ 3 GeV.

The value (22) was obtained in the so-called T scheme,
which is kind of momentum subtraction scheme compat-
ible with the renormalization prescription (13), at a renor-
malization scale � ¼ 10 GeV. The fundamental scale �T

of this T scheme is related to the conventional �MS one
through the conversion formula [64]

�T ¼ �MSe
507=792: (26)

Using (24), we have at one loop

�
@

@�
m2 ¼ �0

2�0

1

ln �
�T

m2: (27)

Introducing the auxiliary variable 
 ¼ ln �
�T

, this can be

easily integrated to

m2 ¼ m2
0

�




0

�
�0=2�0 ¼ m2

0

�ln �
�T

ln�0

�T

��9=44
; (28)

using the numbers given in (24). The estimate �MS ¼
0:224 GeV determined in [64] consequently leads to

hg2A2i�¼10 GeV ¼ 3:03� 0:24 GeV2; (29)

employing (14) and hg2A2i ¼ 3:29 GeV at�0 ¼ 3 GeV as
input values. We notice that our estimate is at least in the
same ballpark as the ones of (22) and (23), which were
obtained in a completely independent way. In these works,
it was observed that even at relatively large momenta Q2,
there was a discrepancy between the perturbatively ex-
pected results, and the lattice estimates for the gluon or
ghost propagator and strong running coupling constant.
Usually, such discrepancies can be accommodated for by
nonperturbative power corrections. It was discussed in
[62,64] that a power correction proportional to hA2i=Q2

was necessary to obtain a sensible estimate for, e.g. �MS.

In the current work, we obtained a lattice estimate for the
same condensate hg2A2i in a completely different way,
hence it is quite remarkable a compatible value is retrieved
at the end of each analysis.

E. Extracting an infrared mass scale from the gluon
propagator

As a final effort we would like to estimate an infrared
mass scale by using the gluon propagator. A similar at-
tempt was done in [8]. The infrared lattice data is well
described by Eq. (10), which however depends on multiple
mass scales. For small enough momenta, p & 0:2 GeV,
the propagator (10) is well approximated by the so-called
pole (or Yukawa) propagator fit

Dðp2Þ � M2

ðM2 þm2Þp2 þ �4
¼ Z

p2 þm2
IR

; (30)

where

m2
IR ¼ �4

M2 þm2
(31)

is the infrared mass scale we can associate to infrared pure
QCD. Using the infinite volume estimates for �4 andM2 þ
m2, it follows that

mIR ¼ 771ð108Þ MeV: (32)

This infrared mass scale is in excellent agreement with the
infrared mass scale estimates from large volume SU(3)
simulations [7], where a gluon mass in the range 600–
800 MeV was claimed, and in good agreement with the
recent value obtained in [87], where a mIR¼651ð12ÞMeV

2For the highest lattice momenta p ¼ 7:76 GeV, the measured
propagator is 0:01 205ð32Þ GeV�2, while (10) predicts
0:0172 GeV�2.

3We recall that the lowest order anomalous dimensions are
universal quantities.
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was measured. Furthermore, the value given in Eq. (31)
agrees also well with the SU(2) result found in [88], i.e.
mIR ¼ 856ð8Þ MeV, and it is only slightly larger than the
SU(2) infrared mass scale derived in [8]. In the latter work,
it was however noticed that a pole fit like (30) does not
work out well. Indeed, we observe that in our case, the
fitting range is only something like p 2 ½0; 0:2�working in
GeV, while the corresponding mass is about 0.85 GeV, so
the name of a ‘‘pole propagator fit’’ is a bit misguided of
course as at p � mIR the fit is already invalid. As an
alternative, the authors of [8] proposed a Gaussian fit in
the continuum

Dðp2Þ ¼ Be�ðp�p0Þ2=m2
IR ; (33)

identifying from this an infrared mass scale m2
IR. As far as

we know, there is no theoretical motivation behind this
kind of propagator yet. Roughly said, one should identify a
mechanism that can generate a momentum exponential
into the effective action in the A� A sector. It should
also be noticed that in order to write down the expression
(33), an external momentum vector p0 must be introduced,
thereby sacrificing Lorentz invariance.4

IV. CONCLUSIONS

In this paper, we have shown that

Dðp2Þ ¼ p2 þM2

p4 þ ðM2 þm2Þp2 þ 2g2N�4 þM2m2
; (34)

which is the analytical tree level version of the gluon
propagator found in the (refined) Gribov-Zwanziger for-
malism [24], can describe very well the lattice data for the
SU(3) Landau gauge gluon propagator in the infrared.
More precisely, for momenta up to 1.5 GeV, a good fit
was established, which was only possible with nonzero
values for all mass parameters appearing in (34). We dis-
cussed their continuum extrapolation, which yielded the
following estimates:

M2 ¼ 2:15� 0:13 GeV2;

m2 ¼ �1:81� 0:14 GeV2;

2g2N�4 ¼ 4:16� 0:38 GeV4;

(35)

giving the following continuum value for Dð0Þ:
Dð0Þ ¼ 8:3� 0:5 GeV�2; (36)

which is in good agreement with large volume lattice data.
Since m2 is related to the hA2i condensate, we were also

able to present the value

hg2A2i�¼10 GeV ¼ 3:03� 0:24 GeV2; (37)

which compares fairly with other estimates of this d ¼ 2
gluon condensate.
We conclude that the current work has collected evi-

dence that the refined Gribov-Zwanziger formalism is
perfectly well capable of explaining the infrared behavior
of the (lattice) Landau gauge gluon propagator, with its
nonvanishing zero momentum limit. This is good news, as
fitting lattice data is one thing, but one should also be able
to explain which effects are behind a particular fit. We
notice that also certain Schwinger-Dyson results for the
same propagator describe the lattice data well, see, e.g.
[34,35], perhaps indicative of a close connection between
these formalisms and the (R)GZ one, a fact already ex-
plored in the work [30]. At the same time, we have also
provided further evidence that one cannot ignore the ef-
fects of the dimension two gluon condensate hA2i in the
Landau gauge.
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APPENDIX: A FEW WORDS ABOUT THE � ¼ 5:7
DATA AT VOLUMES 884 AND 964

The gluon propagator computed at� ¼ 5:7 and volumes
884 and 964 turns out to be rather problematic to fit. A
closer look shows that for these largest two lattices the data
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FIG. 9 (color online). A zoom of the infrared gluon propagator
computed at � ¼ 5:7.

4Or more precisely, rotational invariance as we are working in
Euclidean space. The breaking is evident as the resulting propa-
gator is no longer a function of the invariant p2.
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fluctuates quite strong in the infrared, see Fig. 9. If one
ignores these data points, the data does behave similarly as
for the � ¼ 6:0 and � ¼ 6:2 simulations. For example, for
the largest volume, removing the smallest five momenta,
i.e. taking into account only p � 214 MeV, the largest
fitting range with a �2=d:o:f < 1:6 corresponds to a pmax ¼
1:587 GeV.

The observed infrared fluctuations can be understood
from the combination of the (poor) statistics and the par-
ticular choice of �.

In Fig. 10 we show the results of fitting the 884 and 964

propagators to Eq. (10) in the range ½0; pmax� as a function
of pmax. The plots only show the fitting parameters with a
�2=d:o:f: smaller than 3; we recall that, typically, one
considers �2=d:o:f: below two. As shown in the figure,
the values are not stable against a change of pmax, in sharp
contrast with the data shown in Fig. 6. Moreover, looking at
Fig. 10 we see that the values grow with increasing pmax

and seem to try to approach the typical numbers reported in

Table III. We call the reader’s attention that in Fig. 6 a
similar situation happens for the smallest fitting ranges.
Indeed, only for pmax larger than, let us say, �600 MeV,
the fitted parameter values start to become stable. In fact,
also for all other lattice volumes we did consider in the
main text, using smaller values of pmax would give numeri-
cal values smaller than those reported in Table III, while
being unstable against variation around the chosen pmax.
The inability to fit the 884 and 964 data over wider

momentum ranges can thus be explained by the infrared
fluctuations. By performing infrared cuts, one could re-
move these fluctuations and fit the 884 and 964 propagators
up to a pmax well above 1 GeV. However, given that we
want to discuss precisely the infrared region, we do not
want to perform cuts at low momenta. Besides, if one cuts
the infrared data for those lattices, then one should also
investigate its effect for all other lattices. Because of all
that, we choose not to include the 884 and 964 data in the
analysis.
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