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We reveal the center vortex content of SUð2Þ calorons and ensembles of them. We use Laplacian center

gauge as well as maximal center gauges to show that the vortex in a single caloron consists of two parts.

The first one connects the constituent dyons of the caloron (which are monopoles in Laplacian Abelian

gauge) and extends in time. The second part is predominantly spatial, encloses one of the dyons and can be

related to the twist in the caloron gauge field. This part depends strongly on the caloron holonomy and

degenerates to a plane when the holonomy is maximally nontrivial, i.e. when the asymptotic Polyakov

loop is traceless. Correspondingly, we find the spatial vortices in caloron ensembles to percolate in this

case. This finding fits perfectly in the confinement scenario of vortices and shows that calorons are suitable

to facilitate the vortex confinement mechanism.
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I. INTRODUCTION

To answer the question of what drives confinement and
other nonperturbative effects in QCD, basically three sorts
of topological excitations have been intensively examined
over the years: instantons, magnetic monopoles and center
vortices. Instantons as solutions of the equations of motion
are special: they are the relevant objects in a semiclassical
approach. While the generation of a chiral condensate is
very natural via the (quasi) zero modes,1 confinement
remained unexplained in this model.

At finite temperature, where the classical solutions are
called calorons [1–3], there has been quite some progress
recently, due to two effects. First of all, the asymptotic
Polyakov loop plays a key role determining the properties
of a new type of caloron solutions (for more details on
calorons see Sec. II and the reviews [4]). Under the con-
jecture that the asymptotic Polyakov loop is related to the
average Polyakov loop, the order parameter of confine-
ment, calorons are sensitive to the phase of QCD under
consideration.

Second, the new calorons with nontrivial holonomy
consist of N dyons/magnetic monopoles for the gauge
group SUðNÞ. In this way, contact is seemingly made to
the dual superconductor scenario. We stress that the dyon
constituents of calorons appear in an unambiguous way as
classical objects.

This is in contrast to Abelian monopoles and also center
vortices, the other sorts of objects used to explain confine-

ment. In the sense, that they are widely accepted, they are
not of semiclassical nature. They represent gauge defects
of codimension 3 and 2, respectively, which remain after
the respective gauge fixing and projection. Their interrela-
tion and the fact that they are a prerequisite for the occur-
rence of topological charge in general has been
quantitatively studied in the past [5].
Monopoles are usually obtained by applying the maxi-

mal Abelian gauge (MAG). Center vortices in lattice QCD
can be defined through a center projection (therefore called
P-vortices) after the lattice gauge field has been trans-
formed into the maximal center gauge (directly by direct
maximal center gauge [DMCG] or indirectly by indirect
maximal center gauge [IMCG], with the MAG as precon-
ditioner) or into the Laplacian center gauge (LCG). We
refer to Sec. III for the technicalities.
We would also like to mention another important devel-

opment during recent years. Fermionic methods have be-
come available to study topological structures without the
necessity of smoothing. Singular, codimension 1 sheets of
sign-coherent topological charge have been found and
proposed to be characteristic for genuine quantum configu-
rations [6,7] and potentially important for the confinement
property. The relation to the other low-dimensional singu-
lar topological excitations is still not completely under-
stood. In this scenario, (anti)self-dual objects like calorons
typically appear as topological lumps after smearing [8],
i.e. at a resolution length bigger than the lattice spacing [7].
The physical mechanisms assigned to calorons would be

based on their quantum weight [9], their moduli space
metric [10], the particular features of their fermionic zero
modes [11] and the specific suppression of dyons accord-

1This mechanism is based on the index theorem and thus will
work for any object with topological charge.
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ing to the action they acquire in different phases [12]. The
last observation suggests an overall description of confine-
ment [13] and deconfinement in terms of calorons’ dyon
constituents as independent degrees of freedom. The pro-
posed generalized (approximative) moduli space metric,
however, presents some difficulties [14] which are not yet
overcome.

Since calorons unify instanton and monopoles, it is
natural to ask for the relation to center vortices. In four
dimensions the latter are two-dimensional world sheets
with Wilson loops taking values in the center of the gauge
group if they are linked with the vortex sheet. Vortices that
randomly penetrate a givenWilson loop very naturally give
rise to an area law. Since vortices are closed surfaces, the
necessary randomness can be facilitated only by large
vortices. This is further translated into the percolation of
vortices, meaning that the size of the (largest) vortex
clusters becomes comparable to the extension of the space
itself. This percolation has been observed in lattice simu-
lations of the confined phase [15], while in the deconfined
phase the vortices align in the timelike direction and the
percolation mechanism remains working only for spatial
Wilson loops [16,17]. This parallels percolation properties
of monopoles. Moreover, it conforms with the observation
at high temperatures that the spatial Wilson loops keep a
string tension in contrast to the correlators of Polyakov
loops.

In this paper we will merge the caloron and vortex
picture focussing on two aspects: (i) to demonstrate how
the vortex content of individual calorons depends on the
parameters of the caloron solution—in particular the hol-
onomy—and (ii) to obtain the vortices in corresponding
caloron ensembles and analyze their percolation proper-
ties. For simplicity we will restrict ourselves to gauge
group SUð2Þ. We will mainly use LCG, which has found
a correlation of vortices to instantons cores in [18,19]. We
recall that LCG has been abandoned for finding vortices in
SUð2ÞMonte Carlo configurations because the vortex den-
sity did not possess a good continuum limit [20]. This
observation does not invalidate the application of LCG to
smooth (semiclassical) field configurations. We also com-
pare with results obtained by DMCG and IMCG. In order
to enable the application of these gauge-fixing techniques
we discretize calorons on a lattice, which is known to
reproduce continuum results very well.

In the combination of Laplacian Abelian gauge (LAG)
and LCG, magnetic monopole worldlines are known to
reside on the vortex sheets, and we will confirm this for
the calorons’ constituent dyons (see [18] for some first
findings).

In addition, we find another—mainly spatial—part of
the vortex surfaces. It is strongly related to the twist of the
dyons within the caloron. We explain this by analytic
arguments that yield good approximations for the locations
of these spatial vortices.

For a single caloron, both parts of the vortex system
together generate two intersection points needed to con-
stitute the topological charge in the vortex language.2

In caloron ensembles we find the spatial vortex surfaces
to percolate only at low temperatures (where the holonomy
is maximally nontrivial), while the space-time vortex sur-
faces are rather independent of the phase (i.e. the holon-
omy), both in agreement with physical expectations and
with observations in caloron gas simulations that have
evaluated the Q �Q free energy on one hand and the space
like Wilson loops on the other [21].
From the results for individual calorons it is clear that

the Polyakov loop, which we treat as an input parameter for
the caloron solution, is responsible for the percolation and
hence the string tension in the confined phase. This lends
support for the hypothesis that the holonomy is important
as the ‘‘correct background’’ for the classical objects fea-
turing in a semiclassical understanding of finite tempera-
ture QCD.
The paper is organized as follows. In the next two

Secs. II and III we review the properties of calorons and
vortices, including technicalities of how to discretize the
former and how to detect the latter. In Sec. IV we describe
the vortex content of single calorons. In Sec. V we dem-
onstrate how the vortex content of caloron gases changes
with the holonomy parameter. We conclude with a sum-
mary and a brief outlook. Part of our results have been
published in [22].

II. CALORONS

A. Generalities

Calorons are instantons, i.e. self-dual3 Yang-Mills fields
and therefore solutions of the equations of motion, at finite
temperature. In other words, their base space is R3 � S1

where the circle S1 has circumference� ¼ 1=kBT as usual.
As it turns out from the explicit solutions [1–3], calorons

consist of localized lumps of topological charge density,
which—due to self-duality—are lumps of action density,
too. For the gauge group SUðNÞ one can have up to N
lumps per unit topological charge. When well separated,
these lumps are static.4 Moreover, they possess (quantized)
magnetic charge equal to their electric charge and hence
are called dyons. Consequently, the moduli of calorons are
the spatial locations of the dyons, which can take any
value, plus phases [10].
Another important (superselection) parameter of the

new solutions by Kraan/van Baal and Lee/Lu [2,3] is the
holonomy, the limit of the (untraced) Polyakov loop at

2Of course, for the caloron as a classical object the topological
charge density is continuously distributed.

3The results for (anti)self-dual calorons with negative topo-
logical charge are completely analogous.

4The gauge field, generically, can and will be time dependent;
see Sec. II B.
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spatial infinity,

P 1 ¼ lim
j ~xj!1

P exp

�
i
Z �

0
A0dx0

�
: (1)

Because of the magnetic neutrality of the dyons within a
caloron, this limit is independent of the direction the limit
is taken. (In our convention the gauge fields are Hermitian,
we basically follow the notation of [3] but multiply their
anti-Hermitian gauge fields by i and reinstate �.)

In SUð2Þ we diagonalize P1,

P 1 ¼ expð2�i!�3Þ (2)

with �i the Pauli matrices. Note that! ¼ 0 or 1=2 amount
to trivial holonomies P1 ¼ �12, whereas the case ! ¼
1=4, i.e. trP1 ¼ 0 is referred to as maximal nontrivial
holonomy.

The constituent dyons have fractional topological
charges (‘‘masses’’) governed by the holonomy, namely,
2! and 2 �! � 1� 2!, cf. Figure 1 upper panel, such
that—from the point of view of the topological density—
the constituent dyons are identical in the case of maximal
nontrivial holonomy ! ¼ 1=4.

To be more concrete, the gauge field of a unit charge
caloron in the periodic gauge5 is given by

A3
� ¼ � 1

2
��3
��@� log�� 2�!

�
��;0;

A1
� � iA2

� ¼ � 1

2
�ð ��1

�� � i ��2
��Þ

�
@� þ 4�i!

�
��;0

�
~	;

(3)

where �� is the ’t Hooft tensor (we use the convention in
[3]) and � and 	 are (x0-periodic) combinations of trigo-
nometric and hyperbolic functions of x0 and ~x, respec-
tively; see the Appendix and [3]. They are given in terms
of the distances

r ¼ j ~x� ~z1j; s ¼ j ~x� ~z2j (4)

from the following constituent dyon locations

~z 1 ¼ ð0; 0;�2�!
2=�Þ; ~z2 ¼ ð0; 0; 2� �!
2=�Þ;
(5)

which we have put on the x3-axis with the center of mass at
the origin (which can always be achieved by space rota-
tions and translations) and at a distance of d � �
2=� to
each other.

In case of large 
, the action consists of approximately
static lumps (of radius �=4�! and �=4� �! in spatial
directions) near ~z1 and ~z2. In the small 
 limit the action
profile approaches a single 4D instantonlike lump at the

origin. In Ref. [3] one can find more plots of the action
density of SUð2Þ calorons with different sizes and
holonomies.
In the far-field limit, away from both dyons the function

~	 behaves like

~	 ¼ 4d

ðrþ sþ dÞ2 fre
�4� �!r=�e�2�ix0 þ se�4�!s=�g

� ½1þOðe�minð4� �!r=�;4�!s=�ÞÞ�; (6)

and hence the off-diagonal part of A� decays exponen-

tially, while the Abelian part from

� ¼ rþ sþ d

rþ s� d
þOðe�minð4� �!r=�;4�!s=�ÞÞ (7)

becomes a dipole field [3].
The Polyakov loop in the bulk plays a role similar to an

exponentiated Higgs field in the gauge group: it isþ12 and
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FIG. 1. Action density (top panel, shown in logarithmic scale
and cut below e�12) and Polyakov loop (bottom panel) in the
ðx1; x3Þ-plane (measured in units of �) at x0 ¼ x2 ¼ 0 for a
caloron with intermediate holonomy ! ¼ 0:12 and size 
 ¼
0:9� as discretized on a 8� 482 � 80 lattice. The dyon locations
are ~z1 ¼ ð0; 0;�0:61Þ and ~z2 ¼ ð0; 0; 1:93Þ.

5This gauge is in contrast to the nonperiodic ‘‘algebraic
gauge’’ where A0 asymptotically vanishes and the holonomy is
carried by the transition function.
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�12 in the vicinity of ~z1 and ~z2,
6 respectively, cf. Figure 1

lower panel. The existence of such points is of topological
origin [24]. Thus the Polyakov loop is a more suitable
pointer to the constituent dyon locations, which agrees
with the maxima of topological density for the limiting
case of well-separated dyons, but is valid even in case the
two topological lumps merged into one for small 
.

B. The twist

A less-known feature of the caloron we want to describe
next is the Taubes twist. It basically means that the gauge
field7 of one of the dyons is rotated by a time-dependent
gauge transformation (rotated in the direction of the hol-
onomy, here the third direction in color space) with respect
to the gauge field of the other dyon when they are com-
bined into a caloron. This is the way the dyons generate the
unit topological charge [3].

The simplest way to reveal the twist is to consider the
limit of well-separated dyons, i.e. when their distance d is
much larger than their radius �=4�! and �=4� �!. Let us

consider points near the first dyon, ~x ¼ ~z1 þ ~�, where the

distance � � j ~�j is small compared to the separation d, but
not necessarily compared to the dyon size. Then the rele-
vant distances are obviously

r ¼ �; s ¼ jð0; 0;�dÞ þ ~�j ¼ d� �3 þOð�2=dÞ:
(8)

In the Appendix we derive the form of the functions � and
~	 in this limit,

�ð ~x ¼ ~z1 þ ~�Þ ’ 2d

� cothð4� �!�=�Þ � �3

; (9)

~	ð ~x ¼ ~z1 þ ~�Þ ’ e�2�ix0=�
1

2d

�

sinhð4� �!�=�Þ : (10)

The large factors of 2d cancel in the expressions @� log�

and �@� ~	 relevant for A�, Eq. (3).

In the vicinity of the other dyon, ~x ¼ ~z2 þ ~�, with

s ¼ �; r ¼ dþ �3 þOð�2=dÞ; (11)

we get very similar expressions with �! replaced by ! and
�3 by ��3, but the time-dependent phase factor is absent,

�ð ~x ¼ ~z2 þ ~�Þ ’ 2d

� cothð4�!�=�Þ þ �3

; (12)

~	ð ~x ¼ ~z2 þ ~�Þ ’ 1

2d

�

sinhð4�!�=�Þ : (13)

This staticity of course also holds for A� of this dyon and

all quantities computed from it.
Plugging in those functions into the gauge field of

Eq. (3) one can find that the corresponding gauge field
components are connected via a combined parity-time
reversal (PT) transformation, and the exchange of! and �!

ðA1
� � iA2

�Þðx0; ~z2 þ ~�;!Þ
¼ �ðA1

� � iA2
�Þð�x0; ~z1 � ~�; �!Þe�2�ix0=�; (14)

A3
�ðx0; ~z2 þ ~�;!Þ ¼ �A3

�ð�x0; ~z1 � ~�; �!Þ � �

�
��;0;

(15)

and a gauge transformation, namely,

A�ðx0; ~z2 þ ~�;!Þ ¼ �TA�ð�x0; ~z1 � ~�; �!Þ (16)

with the time-dependent twist gauge transformation

T ðx0Þ ¼ exp

�
��i

x0
�
�3

�
: (17)

This gauge transformation is nonperiodic, Tð�Þ ¼ �12
(but acts in the adjoint representation).
The Polyakov loop values inside the dyons are obtained

from ~	ð ~x ¼ ~z1;2 þ �Þ ¼ Oð�2Þ and

�ð ~x ¼ ~z1 þ �Þ ¼ 2d

�=4� �!� �3 þOð�2Þ ; (18)

�ð ~x ¼ ~z2 þ �Þ ¼ 2d

�=4�!þ �3 þOð�2Þ ; (19)

which results in

A0ð~z1Þ ¼ ��

�
�3; P ð~z1Þ ¼ �12; (20)

A0ð~z2Þ ¼ 0; P ð~z2Þ ¼ þ12: (21)

Actually, the gauge field around ~z2 is that of a static
magnetic monopole with the Higgs field � identified with
A0 through dimensional reduction. Indeed, it vanishes at
the core according to (21) and approaches the ‘‘vacuum
expectation value’’ j�j ¼ 2�!=� away from the core.
Accordingly, Di� is identified with DiA0 ¼ Fi0 ¼ Ei,
and the Bogomol’nyi equation with the self-duality
equation.
The gauge field around ~z1 is that of a twisted monopole,

i.e. a monopole gauge rotated with T. The corresponding
Higgs field is obtained from that of a static monopole by
the same T, transforming in the adjoint representation.
Therefore, the Higgs field � of the twisted monopole
agrees with the gauge field A0 apart from the inhomoge-
neous term in Eq. (15). � vanishes at the core, too, and
approaches the vacuum expectation value 2� �!=�.
The electric and magnetic charges, as measured in the�

direction through the ’t Hooft field strength tensor, are

6On the line connecting the dyons the Polyakov loop can
actually be computed exactly [23].

7The twist can be formulated in a gauge-invariant way by field
strength correlators between points connected by Schwinger
lines [25].
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equal and the same for both dyons. This is consistent with
the fact that self-dual configurations fulfilling the
Bogomol’nyi-Prasad-Sommerfield bound must have posi-
tive magnetic charge.

These fields are in some unusual gauge: around the dyon
cores the Higgs field has the hedgehog form �a � ð ~x�
~z1;2Þa which is called the radial gauge. Far away from the

dyons the Higgs field � becomes diagonal up to exponen-
tially small corrections. Indeed, if one neglects the expo-
nentially small ~	’s of (10) and (13) and replaces the
hyperbolic cotangent by 1 in the denominator of (9) and
(12), this would be the so-called unitary gauge with diago-
nal Higgs field and a Dirac string singularity (along the line
connecting the dyons). Far away from the caloron’s dyons,
however, the ‘‘hedgehog’’ � is not ‘‘combed’’ completely
and there is no need for a singularity.8 In other words the
covering of the color space happens in an exponentially
small but finite solid angle.

More precisely, the Higgs field � approaches
�2�!�3=� and þ2� �!�3=� away from the static and
twisting dyon, respectively, for almost all directions. These
values differ by ��3=�, and hence the corresponding A0’s
can be glued together (apart from a gauge singularity at the
origin). Moreover, in A0 the leading far-field corrections to
the asymptotic value, namely, monopole terms, are of
opposite sign with respect to the fixed color direction �3

and therefore do not induce a net winding number in the
asymptotic Polyakov loop. Hence the holonomy is inde-
pendent of the direction.

We remind the reader that this subsection has been
dealing with the limit of well-separated dyons, i.e. all
formulas are correct up to exponential corrections in �=d
and algebraic ones in �=d.

C. Discretization

In order perform the necessary gauge transformations or
diagonalizations of the Laplace operator in numerical form
we translate the caloron solutions—and later caloron gas
configurations—into lattice configurations. For a space-
time grid (with a temporal extent N0 ¼ 8 and spatial sizes
of Ni ¼ 48; . . . ; 80; see specifications later) we compute
the links U�ðxÞ as path-ordered exponentials of the gauge

field A�ðxÞ [for single-caloron solutions given by Eq. (3)].

Practically, the integral

U�ðxÞ ¼ P exp

�
�i

Z xþa�̂

x
A�ðyÞdy�

�
(22)

is decomposed into at least N ¼ 20 subintervals, for which
the exponential (22) is obtained by exponentiation of
iA�ð~yÞa=N with A�ð~yÞ evaluated in the midpoint of the

subinterval. These exponential expressions are then multi-

plied in the required order (from x left to xþ a�̂ right). A
necessary condition for the validity of this approximation
is that a=N � 
with 
 characterizing the caloron size or a
typical caloron size in the multicaloron configurations.
Still this might be not sufficient to ensure that the

potential A�ðyÞ is reasonably constant within the subin-

terval of all links and give a converged result. In particular,
the gauge field (3) is singular at the origin and has big
gradients near the line connecting the dyons, as visualized
in Fig. 2 of [26]. Hence we dynamically adjust the number
of subintervals N for every link, ensuring that further
increasing N would leave unchanged all entries of the
resulting link matrix U�ðxÞ.
The lattice field constructed this way is not strictly

periodic in the three spatial directions, but this is not
important for the lattices at hand withNi � N0. The action
is already very close to 8�2, the maximal deviation occurs
for large calorons (! * 0:9�) and is about 15%.
Later on, we will make heavy use of the lowest

Laplacian eigenmodes in the LCG. When computing these
modes in the caloron backgrounds we enforce spatial
periodicity by hand. In maximal center gauges we also
consider the caloron gauge field as spatially periodic.

D. Caloron ensembles

The caloron gas configurations considered later in this
paper have been created along the lines of Ref. [21]. The
four-dimensional center of mass locations of the calorons
are sampled randomly as well as the spatial orientation of
the ‘‘dipole axis’’ connecting the two dyons and the angle
of a global Uð1Þ rotation around the axis �3 in color space.
The caloron size is sampled from a suitable size distribu-
tion Dð
; TÞ.
The superposition is performed in the so-called alge-

braic gauge with the same holonomy parameter! taken for
all calorons and anticalorons.9 Finally, the additive super-
position is gauge-rotated into the periodic gauge. Then the
field A�ðxÞ is periodic in Euclidean time and possesses the

required asymptotic holonomy. We have applied cooling to
the superpositions in order to ensure spatial periodicity of
the gauge field.
In Sec. V we will compare sequences of random caloron

gas configurations which differ in nothing else than the
global holonomy parameter !.

III. CENTER VORTICES

To detect center vortices, we will mainly use the LCG
procedure, which can be viewed as a generalization of
DMCG with the advantage to avoid the Gribov problem
of the latter [27]. We will compare our results to vortices

8In contrast, the gauge field A4 written down in Sec. IIA of [9]
is diagonal and A’ has a singularity at the x3-axis.

9Superposing (anti)calorons with different holonomies would
create jumps of A0 in the transition regions.
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from the maximal center gauges DMCG and IMCG in
Sec. IVE.

In LCG one has to compute the two lowest eigenvectors
of minus the gauge covariant Laplacian operator in the
adjoint representation,10

��½UA��0;1 ¼ �0;1�0;1; (23)

�ab
xy ½UA� ¼ 1

a2
X
�

ðUA
�ðxÞab�xþa�̂;y þUA

�ðx� �̂Þba�x�a�̂;y

� 2�ab�xyÞ; a; b ¼ 1; 2; 3; (24)

which we do by virtue of the ARPACK package [28].
For the vortex detection, the lowest mode �0 is rotated

to the third color direction, i.e. diagonalized,

V�0 ¼ j�0j�3: (25)

The remaining Abelian freedom of rotations around the
third axis, V ! vV with v ¼ expði��3Þ is fixed (up to
center elements) by demanding for �1 a particular form
with vanishing second component and positive first com-
ponent, respectively,

ðvV�1Þa¼2 ¼ 0; ðvV�1Þa¼1 > 0: (26)

Defects of this gauge-fixing procedure appear when �0

and �1 are collinear, because then the Abelian freedom
parametrized by v remains unfixed. In [27] it was shown,
that the points x, where �0ðxÞ and �1ðxÞ are collinear,
define the generically two-dimensional vortex surface, as
the Wilson loops in perpendicular planes take center ele-
ments. This includes points x, where�0 vanishes,�0ðxÞ ¼
0, which define monopole worldlines in the LAG [29].

We detect the center vortices in LCG with the help of a
topological argument: after having diagonalized �0 by
virtue of V, Eq. (25), the question whether �0 and �1

are collinear amounts to V�1 being diagonal too, i.e. hav-
ing zero first and second component. We therefore inspect
each plaquette, take all four corners and consider the
projections of V�1 taken in these points onto the
ð�1; �2Þ-plane; see Fig. 2.

By assuming continuity11 of the field V�1 [more pre-
cisely, its ð�1; �2Þ-projection] between the lattice sites of
this plaquette, we can easily assign a winding number to it.
By normalization of the two-dimensional arrows this is
actually a discretization of a mapping from a circle in
coordinate space to a circle in color space. In the contin-

uum this could give rise to any integer winding number,
while with four discretization points the winding number
can only take values f�1; 0; 1g. This winding number can
easily be computed by adding the angles between the two-
dimensional vectors on neighboring sites.
A nontrivial winding number around the plaquette im-

plies that the ð�1; �2Þ-components of V�1 have a zero

point inside the plaquette, which in turn means that the
two eigenvectors are collinear in color space on a point
somewhere in the plaquette. In this case we can declare the
midpoint of that plaquette belonging to the vortex surface.
The vortex surface is a two-dimensional closed surface
formed by the plaquettes of the dual lattice. The plaquettes
of the dual lattice are orthogonal to and shifted by a=2 in
all directions relative to the plaquettes of the original
lattice.
At face value the above procedure is plagued by points

where the lowest eigenvector �0 is close to the negative
�3-direction. Such situations are inevitable when �0

has a hedgehog behavior around one of its zeroes, i.e. for
monopoles in the LAG. Then the diagonalizing gauge
transformation V changes drastically in space. The corre-
sponding transformed first excited mode V�1 may give

artificial winding numbers and thus unphysical vortices if
we insist on the continuity assumption in this case.
Actually, to detect vortices, the lowest eigenvector can

be fixed to any color direction [27], i.e. to different direc-
tions on different plaquettes. Using this we rotate �0

plaquette by plaquette to the direction of the average ��0

over the four corners of the plaquette. This gauge rotation
is in most cases a small rotation. Afterwards we inspect
�1’s color components perpendicular to the average
direction [this can be done by inspecting V�1 in the

ð�1; �2Þ-plane after diagonalizing the four-site averaged
lowest eigenvector, the resulting gauge transformation now
changes only mildly throughout the four sites of the
plaquette].
Note that the winding number changes sign under�0 !

��0, but not under �1 ! ��1 (both changes of sign do
not change the fact that these fields are eigenmodes of the
Laplacian). Hence the global signs of �0, �1 and also the
signs of the winding numbers are ambiguous.

Vφ
1

φV
0

FIG. 2. The topological argument to detect vortices on a given
plaquette: The transverse components of the first excited mode
�1 to the direction of the lowest mode �0 (after both have been
gauge transformed by V) are plotted for the four sites of a
plaquette. The configuration shown here has a nonvanishing
winding number, which implies that the two eigenvectors are
collinear in color space somewhere inside the plaquette.

10We use � with a subindex for the eigenmodes of the
Laplacian, not to be confused with the auxiliary function �
involved in the caloron gauge field, Eq. (3).
11The continuity assumption underlies all attempts to measure
topological objects on lattices. For semiclassical objects it is
certainly justified.
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IV. VORTICES IN INDIVIDUAL CALORONS

The following results are obtained for single calorons
discretized on space-time lattices with N0 ¼ 8 (meaning
that our lattice spacing is a ¼ �=8) and N1 ¼ N2 ¼ 48,
N3 ¼ 80 or N1 ¼ N2 ¼ N3 ¼ 64 points.

For the LCG vortices we have to take an ambiguity into
account, namely, the dependence of the adjoint Laplacian
spectrum on the lattice discretization, in particular, the
ratio N3=N1;2. From experience we can summarize that

the lowest adjoint eigenmode �0 is rather independent of

that ‘‘aspect ratio.’’ The first excited mode�1 depends on it
in the following way, cf. Figure 3: for large N3=N1;2 the

first excited mode �1 is a singlet, whereas for intermediate
and small N3=N1;2 it is a doublet.

This ambiguity reflects the fact that we are forcing states
of a continuous spectrum into a finite volume, which—like
waves in a potential well—are then sensitive to the peri-
odic boundary conditions.12 Localized bound states, on the
contary, should not depend much on the discretization.
Indeed, the absolute values and degeneracies of the

eigenvalues can be understood by mimicking the caloron
with constant links,

U0 ¼ expð2�i!�3=N0Þ; Ui ¼ 12; (27)

that reproduce the holonomy (and have zero action). For
Laplacian modes in the fundamental representation this
approximation was shown to be useful in [31].
In this free-field configuration the eigenmodes are waves

proportional to
Q

� expð2�in�x�=N�aÞ with integer n�.

At nontrivial holonomies and on our lattices with N0 �
N1;2 	 N3 one can easily convince oneself, that the lowest

part of the spectrum is formed by modes in the third color
direction,�� �3, which do not depend on x0, n0 ¼ 0. The
eigenvalues are then given by trigonometric functions of
2�ni=Ni, which for large Ni can be well approximated by

� ’ 1

a2
X
i

�
2�

ni
Ni

�
2 ðlowest�Þ: (28)

In other words, a wave in the ith direction contributes n2i
‘‘quanta’’ of ð2�=NiÞ2 to the eigenvalue. The lowest ei-
genvalue in this approximation is always zero. This fits our
numerical findings quite well; see Fig. 3.
In the asymmetric case, N3 ¼ 80, N1;2 ¼ 48 obviously

the ‘‘cheapest excitation’’ is a wave along the x3-axis
(connecting the dyons), i.e. n3 ¼ �1. This gives a doublet,
which in the presence of the caloron is split into two lines,;
see Fig. 3 top, the first excited mode is thus a singlet (the
next modes are those with nontrivial n1 ¼ �1 or n2 ¼ �1
forming an approximate quartet and so on).
In the symmetric case, Ni ¼ 64, on the other hand,

excitations along all xi give equal energy contribution.
For the excited modes this gives a sextet, which is again
split by the caloron; see Fig. 3 bottom. It turns out that the
first excited mode remains two-fold degenerate. The eigen-
modes are close to combinations of waves with nontrivial
n1 ¼ �1 and with nontrivial n2 ¼ �1, reflecting the cal-
orons’ axial symmetry around the x3-axis.
This finally explains the different spectra and different

shape of the eigenmodes on the different lattices.

1

2

4

8
2

4

8

1

6

12

8

FIG. 3. The lowest 30 eigenvalues of the adjoint Laplacian
operator for a caloron with ! ¼ 0:12 and 
 ¼ 0:7� discretized
on 8� 482 � 80 (top left panel) and 8� 642 � 64 (bottom left
panel). Two-fold degeneracies are plotted as bold lines (and
some eigenvalues have been slightly shifted to be distinguishable
at this resolution). For comparison we plotted in the right panels
the free spectra on the same lattices marking their degeneracies
by numbers. The lowest singlets on the right-hand side always
belong to the eigenvalue � ¼ 0.

12A similar effect has been observed in Fig. 1 of [30], where the
adjoint modes in the background of an instanton over the four-
sphere have been shown to depend on the radius of the sphere.
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A. The lowest eigenvector and the LAG monopoles

As it turns out, away from the dyons the lowest mode�0

becomes diagonal13 and constant, for normalizability rea-

sons it is then approximately ð0; 0; 1= ffiffiffiffiffiffiffiffi
Vol

p ÞT with Vol ¼
N0N1N2N3.

Near each dyon core we find a zero of the third compo-
nent of the lowest mode, �a¼3

0 ; see Fig. 4 top panel.

Together with the first and second component being very
small on the whole x3-axis, we expect zeroes in the modu-
lus j�0j at the constituent dyons, which means that the
dyons are LAG monopoles, cf. Fig. 3 in [18] and Fig. 10 in
[31].

Such zeroes can be unambiguously detected by a wind-
ing number on lattice cubes similar to that of Sec. III. As a

result we find almost static LAG-monopole worldlines for
large calorons at the locations of their dyons, while mono-
pole loops around the caloron center of mass are seen for
small calorons (with 
 & 0:5, where the action density is
strongly time dependent as well); see Fig. 5. Note that these
locations are part of the LCG vortex surface by definition.

0 1 2 3 41234

0.0010

0.0005

0.0005

0.0010

0 1 2 3 41234

4

3

2

1

1

FIG. 4 (color online). Top panel: The third component of the
lowest mode,�a¼3

0 , along the x3-axis (in units of � at x0 ¼ �=2)
for a caloron with intermediate holonomy ! ¼ 0:1 and size 
 ¼
1:0 discretized on a 8� 482 � 80 lattice. The dyons have
x3-locations �0:63� and 2:51�. Note that for that lattice
1=

ffiffiffiffiffiffiffiffi
Vol

p ¼ 0:000 82, a value that is indeed taken on by the lowest
mode far away from the dyons. The other components�a¼1;2

0 are

found to be of order 10�8 [not shown]. Bottom panel: the gauge
field Aa¼3

0 (in units of inverse �), which is related to the Higgs

field � used to explain the behavior of the lowest mode around
the dyons (see text). Note that A3

0 takes the value��=� near the

twisting dyon.

-3 -2 -1 0 1 2 3
-0.4
-0.2

0.2
0.4

-3 -2 -1 0 1 2 3
-0.4
-0.2

0.2
0.4

FIG. 5. Zeroes of the lowest adjoint mode, i.e. monopoles in
Laplacian Abelian gauge, in the ðx0; x3Þ-plane (both in units of
�, x3 horizontally, at x1 ¼ x2 ¼ 0) for calorons of holonomy
! ¼ 0:1 and sizes 
 ¼ 0:5� [upper panel, ~z1 ¼ ð0; 0;�0:16Þ,
~z2 ¼ ð0; 0; 0:63Þ] and 
 ¼ 0:9� [lower panel, ~z1 ¼ ð0; 0;�0:51Þ,
~z2 ¼ ð0; 0; 2:04Þ]. At the origin a closed monopole wordline of
minimal size occurs, which we ascribe to the gauge singularity in
the caloron gauge field.
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FIG. 6 (color online). The twist of the caloron gauge field
reflected in the behavior of the adjoint Laplacian modes.
Shown are the individual color components of the lowest
mode (top panel) and the first excited mode (bottom panel) as
a function of time x0 in the vicinity of the twisting dyon at ~z1.
The dashed curve depicts the (almost constant) third color
component. The corresponding plots in the vicinity of the static
dyon would simply show static lines.

13The third direction in color space is distinguished by our
(gauge) choice of the holonomy, Eq. (2).
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Similar monopole worldlines have been obtained in the
MAG [8,32]. Adjoint fermionic zero modes, on the other
hand, detect the constituent dyons by maxima [33].

The lowest mode also reflects the twist of the caloron:
the first and second component of �0 near the dyon core
are either static or rotate once with time x0 evolving from 0
to �. Figure 6 shows this for the lowest mode as well as for
the first excited mode. Our results are essentially equal to
Fig. 9 of [31], just with a resolution of N0 ¼ 8 (instead of
N0 ¼ 4) more clearly revealing the sinelike and cosinelike
behaviors.

In order to understand the behavior found for the lowest
adjoint mode �0, we propose to compare it to the Higgs
field � discussed in Sec. II B. For the static dyon one has
from time independence D0� ¼ 0 and from the equation
of motion DiðDi�Þ ¼ DiFi0 ¼ 0. Therefore � of a single
static dyon is a zero mode of the adjoint Laplacian �� ¼
�D2

�. For the twisting dyon the same equations apply due

to the transformation properties of � (under T) and the
latter is again a zero mode of the Laplacian. These zero
modes approach a constant (the vacuum expectation value)
asymptotically, so they are normalizable like a plane wave.

Around each dyon core, the lowest adjoint mode �0

behaves similar to � of that dyon: it vanishes at the dyon
core, becomes constant and dominated by the third com-
ponent away from the dyons, it reveals the Taubes twist
(around the twisting dyon) and is in the same gauge as �.
Since the latter are zero modes of�� in the background of
isolated dyons, a combination of them is a natural candi-
date to be the lowest mode of that (non-negative) operator
in the caloron background.

The lowest adjoint mode �0 for calorons with well-
separated dyons is therefore best described in the following
way, cf. Figure 4: Around the static dyon at ~z2 one has
�0 �� ¼ A0, where the proportionality constant of
course disappears from the eigenvalue equation (23), but

is approximately given by the normalization, j�0j !
ð0; 0; 1= ffiffiffiffiffiffiffiffi

Vol
p ÞT . Around the twisting dyon at ~z1, one has

to compensate for the inhomogeneous term �0 �� ¼
A0 þ �3ð�=�Þ [cf. Eq. (15)]. The proportionality constant
there turns out to be negative, such that the lowest mode is
able to interpolate between these shapes with a rather mild
variation throughout the remaining space; see Fig. 4 upper
panel.

B. Dyon charge induced vortex

In the following we present and discuss one part of the
calorons’ vortex that is caused by the magnetic charge of
constituent dyons. Our findings are summarized schemati-
cally in Figs. 7 and 9.

The ambiguity of the first excited mode�1 of the adjoint
Laplacian influences this part of the vortex most such that
we have to discuss the singlet and doublet cases separately.
We find that for the singlet �1, e.g. for N3=N1;2 ¼ 80=48,
the vortex consists of the whole ðx0; x3Þ-plane at x1 ¼ x2 ¼

0 only; see Figs. 7 and 8. Hence this part of the vortex is
space-timelike. It includes the LAG-monopole worldlines,
which are either two open (straight) lines or form one
closed loop in that plane. In other words, the space-time

x0

x3

β/2

−β/2

0twisting dyon static dyon 

x0

x3

β/2

−β/2

0

FIG. 7. The dyon charge induced part of the vortex in case the
first excited mode is a singlet: for a large caloron (top panel) and
for a small caloron (bottom panel), shown schematically in the
plane x1 ¼ x2 ¼ 0.
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FIG. 8 (color online). The dyon charge induced part of the
vortex from the singlet first excited mode as measured in a
caloron with holonomy ! ¼ 0:25 and 
 ¼ 0:6� in a time slice.
The outcome is identical to the x3-axis and the same for all time
slices. The dots denote points on the vortex (lines along x0)
where the flux changes, i.e. the LAG monopoles.
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vortex connects the dyons once through the center of mass
of the caloron and once through the periodic spatial bound-
ary of the lattice.

The magnetic flux (measured through the winding num-
ber as described in Sec. III) at every time slice points into
the �x3-direction. Its sign changes at the dyons as indi-
cated by arrows14 in Fig. 7. The flux is always pointing
towards the twisting dyon.

Independently of the flux one can investigate the align-
ment between the lowest and first excited mode. It changes
from parallel15 to antiparallel near the static dyon, because
the lowest mode �0 vanishes (i.e. the dyon is a LAG
monopole) [27]. In addition we find two other important
facts not mentioned in [27]: the alignment does not change
at the twisting dyon since both modes �0 and �1 vanish
there and it changes at some other locations outside of the
calorons’ dyons because �1 has another zero there [not
shown].

For the doublet excited mode, i.e. at smaller N3=N1;2 ¼
64=64, the dyon charge induced vortex is slightly different:
again it connects the dyons, but now (for a fixed time) via
two lines in the ‘‘interior’’ of the caloron, passing near the
center of mass; see Figs. 9 and 10. These lines exist for all

times for which the monopole worldline exists, that is for
all times if the caloron is large and for some subinterval of
x0 if the caloron is small (and the monopole worldline is a
closed loop existing during the subinterval).
These two vortex surfaces spread away from the x3-axis

which connects the dyons. The axial symmetry around this
axis is seemingly broken. However, using other linear
combinations of the doublet in the role of the first excited
mode (keeping the lowest one) in the procedure of center
projection, the vortex surface is rotated around the x3-axis.
The situation is very similar to the ‘‘breaking’’ of spherical
symmetry in the hydrogen atom by choosing a state of
particular quantum number m out of a multiplet with fixed
angular momentum l.
The magnetic flux flips at the dyons, just like in the case

with singlet �1. Notice that these vortices are predomi-
nantly space-timelike, but have parts that are purely spa-
tial, in particular, for small calorons, namely, at minimal
and maximal x0 of the dyon charge induced vortex surface
(and at other locations in addition, when the smooth con-
tinuum surface is approximated by plaquettes).

C. Twist-induced vortex

In this section we will discuss the second part of the
LCG vortex surfaces we found for individual calorons. We

x0

x30twisting dyon static dyon 

β/2

−β/2

x1

x0

x3

β/2

−β/2

x1

FIG. 9. The dyon charge induced part of the vortex from the
doublet first excited mode for a large caloron (top panel) and for
a small (bottom panel) caloron schematically at x2 ¼ 0.
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FIG. 10 (color online). The dyon charge induced part of the
vortex from the doublet first excited state as measured in a
caloron with holonomy ! ¼ 0:25 and 
 ¼ 0:6� (same as in
Fig. 8) at a fixed time slice. Like in Fig. 8 the dots denote points
on the vortex where the flux changes. The x3-axis has been added
to guide the eye, it is not part of the vortex surface here.

14We have fixed the ambiguity in the winding number described
in Sec. III by fixing the asymptotic behavior of the lowest mode.
15In itself, calling �0 and �1 parallel is ambiguous as that
changes when one of these eigenfunctions is multiplied by �1.
The transition from parallel to antiparallel or vice versa, how-
ever, is an unambiguous statement.
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start again by discussing the singlet case. The twist-
induced vortex in the singlet case appears at a fixed time
slice and hence is a purely spatial vortex. In contrast to the
space-time part, this vortex surface does not contain the
monopole/dyon worldlines. Hence it is not obvious that
this part of the vortex structure is caused by them.

The properties of this spatial vortex depend strongly on
the holonomy, which will be very important for the perco-
lation of vortices in caloron ensembles in Sec. V.

In short, our finding is that the twist-induced part of the
vortex is a closed surface around the twisting dyon as long

as the holonomy parameter is !< 1=4, and becomes a
closed surface around the static dyon for !> 1=4, we will
refer to these surfaces as ‘‘bubbles.’’ For maximal non-
trivial holonomy ! ¼ 1=4 the vortex is the x3 ¼ 0 plane,
i.e. the midplane perpendicular to the axis connecting the
dyons, we will refer to it as ‘‘degenerate bubble.’’
The bubble depends on the holonomy ! as shown in

Fig. 11. For two complementary holonomies ! ¼ !0 and
! ¼ 1

2 �!0 the bubbles are of same shape just reflected at

the origin, thus one of them encloses the static dyon and
another encloses the twisting dyon. This is to be expected
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FIG. 11 (color online). Twist-induced part of the vortex (bubble) from singlet first excited modes for calorons of size 
 ¼ 0:6� and
holonomies from left to right: ! ¼ 0:1, 0.12, 0.16 (upper row) ! ¼ 0:2, 0.25, 0.3 (middle row) and ! ¼ 0:34 (lower row, left panel).
The plot in the lower right panel summarizes the results for! ¼ 0:1, 0.12, 0.16, 0.2, 0.25, 0.3, 0.34, at x1 ¼ 0, i.e. the bubbles are cut to
circles. The plane near the boundary in the ! ¼ 0:25 picture is an artifact caused by periodic boundary conditions.
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from the symmetry of the underlying calorons. In the limit
of! ! 1=4 the bubbles grow to become a flat plane which
enables to turn over to the other dyon.

In our! ¼ 0:25 data we find another piece of the vortex
near the boundary of the lattice; see Fig. 11. It is an artefact
of the finite periodic volume. Likewise, very large bubbles

in our results have deformations since they come close to
the boundary of the lattice. The intermediate bubbles
shown in these figures are generally free from discretiza-
tion artefacts and can easily be extrapolated (at least quali-
tatively) to these limits.
The size of the bubble also depends on the size parame-

ter 
 of the caloron, i.e. the distance between the dyons, as
shown in Fig. 12.
The time coordinate of LCG bubbles in large calorons is

always consistent with x0 ¼ 0:5�. For small calorons, on
the other hand, x0 ¼ 0 is the exclusive time slice: the
action density peaks there and the LAG monopoles are
circling around it (cf. Fig. 5). However, the bubbles of
small calorons are too small to be detected.
In the case of the first excited mode being a doublet,

similar bubbles have been found. They also enclose one of
the dyons and degenerate to the midplane for ! ¼ 1=4.
Their sizes, however, may be different and they are dis-
tributed over several time slices. Considering the collection
of all time slices, these fragments add up to full bubbles.

Analytic considerations

In the following we present two analytic arguments—
relying on the twist—that support the existence of the
bubbles (playing the role of spatial vortices) and help to
estimate their sizes.
The first one is specific for vortices in LCG. As we have

demonstrated in Sec. IV, the lowest mode �0 twists near
the twisting dyon and is static near the static dyon. The
same holds for the first excited mode �1; see Fig. 6.
Then a topological argument shows that they have to be

(anti)parallel somewhere inbetween, cf. Figure 13. As �0,
�1 and the diagonalizing gauge transformation V are static
around the static dyon, so is V�1 and its projection along

the third direction (see the right part of Fig. 13). We assume
that this projection is nonzero, otherwise the two states are
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FIG. 12 (color online). Spatial part of the vortex (bubble) for calorons of fixed intermediate holonomy ! ¼ 0:12 and sizes from left
to right: 
 ¼ 0:6�, 0:7�, 0:9�. The panel on the very right shows a summary of the bubbles for 
 ¼ 0:6�, 0:7�, 0:8�, 0:9� at x1 ¼ 0.
That the bubble for 
 ¼ 0:9� is much bigger than that for 
 ¼ 0:7�, 0:8� is probably a finite volume effect. For small sizes 
 (and
also in the limiting cases of holonomy ! close to the trivial values 0 and 1=2) we have met difficulties in resolving the corresponding
small bubbles in the lattice dicretization.

σ3

FIG. 13. Behavior of the nondiagonal elements of V tran-
formed first excited mode V�1 in the twisting region (left) and
in the static region (right) with time x0 evolving upwards. The
lattice sites in between are indicated only at x0 ¼ 0. On the
entire discretized rectangle the field has winding number 1,
meaning it contains the twist-induced vortex. More precisely,
it is the plaquette marked with filled circles that contains the
winding (in analogy to Fig. 2) and thus the vortex (in all other
plaquettes the field performs a partial winding but then winds
back).
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obviously (anti)parallel and the point would belong to the
vortex already.16

In the twisting region called S, the two lowest modes
behave like (suppressing arguments ~x)

�0ðx0Þ ¼ Tðx0Þ�0ðx0 ¼ 0ÞTyðx0Þ;
�1ðx0Þ ¼ Tðx0Þ�1ðx0 ¼ 0ÞTyðx0Þ

(29)

with the twisting transformation/rotation from Eq. (17).
The time dependence of the diagonalizing V can be de-
duced easily,17

Vðx0Þ ¼ Tðx0ÞVð0ÞTyðx0Þ; (30)

such that

V�1ðx0Þ ¼ Tðx0ÞV�1ð0ÞTyðx0Þ: (31)

Again we assume that the two modes are not (anti)
parallel at x0 ¼ 0. Then V�1ð0Þ has a nonvanishing com-
ponent perpendicular to �3. According to Eq. (31) this
component then rotates in time x0 around the third direc-
tion (left part of Fig. 13). This immediately implies that
there is a space-time ‘‘plaquette’’ (in the sense of Fig. 2,
marked in Fig. 13 with filled circles) that contains a point
where the two modes are collinear. Notice the similarity of
Figs. 13 and 2.

This argument applies to all pairs of points with one
point in the twisting region S and one point in the static
region (its complement) �S: on any line connecting the two
there exists a point which belongs to the vortex. This
results in a closed surface at the boundary between S and
�S (see below). The time coordinate of this surface is not
determined by these considerations.

Our argument can be extended to vortices beyond LCG.
For that aim we mimic the caloron gauge field by A0 ¼ 0,
Ai ¼ 0 in the static region �S and A0 ¼ ��3ð�=�Þ, Ai ¼ 0
in the twisting region S [cf. Eq. (15)] [22]. In this simplified
gauge field vortices can be located directly by the defini-
tion that�1Wilson loops are linked with them. Obviously
rectangular Wilson loops connecting ð0; ~x1Þ, ð�; ~x1Þ,
ð�; ~x2Þ, ð0; ~x2Þ and ð0; ~x1Þ are�12 if and only if ~x1 belongs
to S and ~x2 belongs to �S (or vice versa). This again predicts
spatial vortices at the boundary between the twisting and
the static region.

Actually, this argument is exact if one chooses for the
points ~x1;2 the dyon locations ~z1;2: the path-ordered expo-

nentials at fixed ~x1;2 are the Polyakov loops 
12 and the

remaining spatial parts are inverse to each other because of
periodicity and cancel. Hence there should always be a
spatial vortex between the two dyons.

Thus the twist in the gauge field of the caloron itself
gives rise to a spatial vortex. This vortex extends in the two
spatial directions perpendicular to lines connecting S and
�S, just like a bubble.
Note that the two arguments above do not work purely

within the twisting region or purely within the static region.
It remains to be specified where the boundary between

the twisting region S and its complement �S is. To that end
one should consider the competing terms—twisting vs
static—in the relevant function ~	; see Eq. (A3). Actually
its derivatives enter the off-diagonal gauge fields; see
Eq. (3). In the periodic gauge we have used so far, there
is an additional term proportional to ~	 itself. To decide
whether the static or the twisting part dominates (at a given
point) it is better to go over to the algebraic gauge, where
this term is absent and where ~	 must be replaced by 	 ¼
expð4�i!x0=�Þ~	 [3]. The two competing terms become

e4�i!x0=�
sinhð4� �!r=�Þ

c r
� fstatic; (32)

e�4�i �!x0=�
sinhð4�!s=�Þ

c s
� ftwist (33)

with c given in Eq. (A1). Note that the time dependence of
these functions still differs by a factor expð2�ix0=�Þ.
We finally define the twisting region S as where the

gradient of ftwist dominates

j@�ftwistj2 � j@�fstaticj2 (34)

and its boundary where the equality holds.
In two particular cases this can be determined analyti-

cally. For the case of maximally nontrivial holonomy ! ¼
�! ¼ 1=4, the two functions fstatic;twist only differ by the

arguments r vs s. Then the boundary of S is obviously r ¼
s, which gives the midplane between the dyons. This in-
deed amounts to our numerical finding, the degenerate
bubble for ! ¼ 1=4.
In the large caloron limit and if we further assume the

solutions of the equality in Eq. (34) to obey !r=�,
�!s=� � 1, it is enough to compare in fstatic;twist the ex-

ponentially large terms in sinh and c . This yields for the
boundary of S the equation �!r ¼ !s, which can be worked
out to give

x21 þ x22 þ ðx3 ��dÞ2 ¼ ð�dÞ2; � � 2! �!

!� �!
: (35)

Thus, the boundary of the twisting region S is a sphere with
midpoint ð0; 0;�dÞ and radius j�jd. This sphere always
touches the origin, is centered at negative and positive x3
for !< 1=4 and !> 1=4, respectively, and again degen-
erates to the midplane of the dyons for maximally non-
trivial holonomy ! ¼ �! ¼ 1=4.
In Fig. 14 we compare the boundary of S obtained from

the equality in Eq. (34) to the numerically obtained bubbles

16in particular to the space-time part since then the two modes
are (anti)parallel for all x0
17The first factor is necessary, otherwise V is singular around
the north pole and nonperiodic.
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in LCG for two different values of the caloron parameter 
.
The graphs agree qualitatively.

One could also think of characterizing the locations ~x of
the twist-induced vortex by a fixed value of the traced
Polyakov loop, say trP ð ~xÞ ¼ 0. This also encloses one of
the dyons and becomes the midplane for ! ¼ 1=4. In the
large separation limit, however, this surface is that of a
single dyon of fixed size set by � and ! (just like the
topological density). It does not grow with the separation
d, which however seems to be the case for the measured
vortices as well as for the boundary of S using the far-field
limit, Eq. (35). Hence the local Polyakov loop seems not a
perfect pointer to the spatial vortex.

D. Intersection and topological charge

To a good approximation the dyon charge induced vor-
tex extends in space and time connecting the dyons twice,
whereas the twist-induced vortex is purely spatial around
one of the dyons. This results in two intersection points
generating topological charge as we will describe now.

The notion of topological charge also exists for (singu-
lar) vortex sheets. In order to illustrate that let us choose a

local coordinate system and denote the two directions
perpendicular to the vortex sheet, in which a Wilson loop
is�1, by � and �. The Wilson loop can be generated by a
circular Abelian gauge field decaying with the inverse
distance, which generates a gauge field F�� (the magnetic

field, say B3 / F12 for a static vortex in the x3-direction, is
tangential to the vortex, respectively). The corresponding
flux is via an Abelian Stokes’ Theorem connected to the
Wilson loop and is nothing but the winding number used in
LCG to detect the vortex.
In order to generate topological charge proportional to

��
�F��F
�, the vortex thus needs to ‘‘extend in all

directions.’’ This is made more precise by the geometric
objects called writhe and self-intersection. The relation to
the topological charge including example configurations
has been worked out for vortices consisting of hypercubes
in [34] and for smooth vortices in [35]. The result is that a
(self)intersection point—where two branches of the vortex
meet such that the combined tangential space is four
dimensional—contributes �1=2 to the topological charge.
The contribution of the writhe is related to gradients of the
vortex’ tangential and normal space with respect to the two
coordinates parametrizing the vortex. Two trivial examples
are important for vortices in a caloron: a two-dimensional
plane as well as a two-dimensional sphere embedded in
four-dimensional space have no writhe. Since the two parts
of our vortex are of these topologies, we immediately
conclude that the topological charge of vortices in calorons
comes exclusively from intersection points.
We first discuss the position of the intersection points in

the singlet case, cf. Figure 15 top panel. The twist-induced
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FIG. 14 (color online). The bubbles measured for calorons
with holonomy ! ¼ 0:12, size 
 ¼ 0:6� (top panel) and 
 ¼
0:9� (bottom panel), respectively, as a function of x2 (vertically)
and x3 (horizontally) at x1 ¼ 0 compared to the boundary of the
twisting region S, the smooth curve computed from the equality
in Eq. (34).

x3

x1

x2

x3

x1

x2

FIG. 15. The intersection of the spatial bubble (at fixed x0 ¼
�=2) for!< 1=4 with the space-time part of the vortex from the
singlet (top panel) and the doublet (bottom panel) excited mode
(in the doublet case the bubble is distributed over several time
slices).
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bubble occurs at a fixed time slice and so does any inter-
section point. The dyon-induced vortex consists of two
static straight lines from one of the dyon to another and
therefore intersects the bubble twice on the x3-axis.

There are two exceptions to this fact: for small calorons
(small 
) the dyon-induced vortex exists in some time
slices only and the number of intersection points depends
on whether the time coordinate of the bubble is within that
time interval (but the bubble is usually too small to detect
when 
 is small).

The case of maximal nontrivial holonomy is particular
because for the corresponding degenerate bubble there is
only one intersection point at the center of mass of the
caloron, the other one moved to x3 ! �1 as ! ! 1=4�
0 in infinite volume.

Concerning the sign of the contributions, it is essential
that the relative sign of the vortex flux is determined: the
magnetic flux of the dyon-induced vortex flips at the dyons
and hence is of opposite sign at the intersection points on
the bubble. One can depict the flux on the bubble by an
electric field normal to the bubble (i.e. hedgehoglike). It
follows that in LCG the contributions of the intersection
points to the topological charge of the vortex are both
þ1=2.

The vortex in the caloron is thus an example for a
general statement, that a nonorientable vortex surface is
needed for a nonvanishing total topological charge. In our
case the two branches of the dyon charge induced vortex
have been glued together at the dyons in a nonorientable
way: the magnetic fluxes start or end at the dyons as LAG
monopoles (this construction is impossible for the bubble
as the dyons are not located on them). Thus, vortices
without monopoles on them possess trivial total topologi-
cal charge.

In the doublet case with its fragmented bubbles there are
still two intersection points (cf. Figure 15 bottom panel)
which again contribute topological charges of þ1=2 each.

To sum up this section we have demonstrated that the
vortex has unit topological charge like the caloron back-
ground gauge field. This result is not completely trivial as
there is to our knowledge no general proof that the topo-
logical charge from the gauge field persists for its vortex
‘‘skeleton’’ after center projection (P-vortices). Moreover,
the topological density of the caloron is not maximal at the
two points where the topological density of the vortex is
concentrated and the total topological charge of the caloron
is split into fractions of 2! and 2 �! whereas that of the
vortex always comes in equal fractions 1=2 from two
intersection points, close to the static dyon if !< 1=4
and close to the twisting dyon if !> 1=4.

E. Results from maximal center gauges

We have performed complementary studies of vortices
both in the direct [36] and in the indirect maximal center
gauges [37]. The DMCG in SUð2Þ is defined by the max-

imization of the functional

FDMCG½U� ¼ X
�;x

ðtrgU�ðxÞÞ2; (36)

with respect to gauge transformations gðxÞ 2 SUð2Þ.
U�ðxÞ are the lattice links and gU�ðxÞ ¼ gyðxÞU�ðxÞgðxþ
�̂Þ the gauge transformed ones. Maximization of (36)
minimizes the distance to center elements and fixes the
gauge up to a Zð2Þ gauge transformations. The correspond-
ing, projected Zð2Þ links are defined as

Z�ðxÞ ¼ signðtrgU�ðxÞÞ: (37)

The Gribov copy problem is known to spoil gauges with
maximizations such as DMCG. In practice we also applied
random SUð2Þ gauge transformations before maximizing
FDMCG and selected the configuration with the largest
value of that functional.
The IMCG goes an indirect way. At first, one fixes the

maximal Abelian gauge [38] by maximizing the functional

FMAG½U� ¼ X
�;x

trðgU�ðxÞ�3ðgU�ðxÞÞy�3Þ; (38)

with respect to gauge transformations g 2 SUð2Þ. The
MAG minimizes the off-diagonal elements of the links
and fixes the gauge up to Uð1Þ. Therefore, the following
projection to a Uð1Þ gauge field through the phase of the
diagonal elements of the links, ��ðxÞ ¼ argððgU�ðxÞÞ11Þ, is
not unique. Exploiting the remaining Uð1Þ gauge freedom,
which amounts to a shift ��ðxÞ ! ���ðxÞ ¼ ��ðxÞ þ
��ðxÞ þ �ðxþ �̂Þ, one maximizes the IMCG functional

FIMCG½U� ¼ X
�;x

ðcosð���ðxÞÞÞ2; (39)

that serves the same purpose as FDMCG in (36). Finally, the
projected Zð2Þ gauge links are defined as

Z�ðxÞ ¼ signðcosð���ðxÞÞÞ: (40)

Finally, the Zð2Þ links are used to form Zð2Þ plaquettes.
All dual plaquettes of the negative Zð2Þ plaquettes form
closed two-dimensional surfaces—the vortex surfaces.
In the background of calorons we tried to confirm both

dyon charge induced and twist-induced vortices seen in
LCG. In DMCG, the dyon charge induced vortices are
observed and the twist-induced part splits into several parts
in adjacent time slices. Choosing the best among random
gauge copies, the dyon charge induced part disappears and
the twist-induced vortex bubble occurs at fixed time slice.
In both cases, the bubble is much smaller than that found in
LCG.
In IMCG, the situation for dyon charge induced vortices

is rather stable: we find always a space-time vortex con-
necting the dyons or better to say the Abelian monopoles
representing the dyons in MAG [8,32]. Similar to the LCG
doublet case two vortex lines pass near the center of mass
of the caloron. This structure propagates either statically or
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nonstatically in time, depending on the distance between
dyons in the caloron.

Straight lines through the center of mass and through the
outer space, as found in the LCG singlet case, were never
observed. One can convince oneself, that it is actually
impossible to get such vortex structures from Zð2Þ link
configurations.

The situation with twist-induced vortices is unstable, as
a rule they do not appear in IMCG. The reason for this
could be partially understood in IMCG considerations. Let
us consider two gauge equivalent Abelian configurations
that generate local Polyakov loops 1

2 trP ð ~xÞ ¼ cosðað ~xÞÞ
and how their temporal links contribute to the Abelian
gauge functional FIMCG given in Eq. (39). In the quasitem-
poral gauge when all subsequent temporal links are the
same, they give a contribution equal toN0 cosðað ~xÞ=N0Þ2 to
the corresponding part of the functional. When, on the
other hand, all but one temporal links are trivial, the
contribution is equal to N0 � 1þ cosðað ~xÞÞ2. For
cosðað ~xÞÞ � �1 and for sufficiently large N0 we
have N0 cosðað ~xÞ=N0Þ2 ’N0�að ~xÞ2=N0>N0� sinðað ~xÞÞ2.
This means that after maximizing the functional (39) and
projecting onto Zð2Þ, we get all temporal links trivial in all
points ~x, where the Polyakov loop is not equal to �1. So,
the twist-induced vortex shrinks to one point where the
(untraced) Polyakov loop is equal to �12.

Maximization of the functional (39) is equivalent to the
minimization of the functional

F½U� ¼ X
�;x

ðsinð���ðxÞÞÞ2: (41)

If we would replace it by the functional

F0½U� ¼ X
�;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinð���ðxÞÞÞ2

q
; (42)

the situation with the Zð2Þ projected Polyakov loop would

change because N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðað ~xÞ=N0Þ2

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðað ~xÞÞ2p

on
points where cosðað ~xÞÞ< 0 and now we would have �12
temporal links in some time slice and trivial temporal links
in all other time slices in the spatial region where the
Polyakov loop is negative as well as trivial temporal Zð2Þ
links in all time slices in the region where the Polyakov
loop is positive. Numerical studies support the appearance
of twist-induced vortex on the boundary where initial
Polyakov loop changes the sign from negative to positive.

One may conclude from this section that the Gribov
copy problems of DMCG and IMCG persist for the smooth
caloron backgrounds. The basic features of the vortices can
be reproduced, but for clarity we stick to the vortices
obtained in the Laplacian center gauge.

V. VORTICES IN CALORON ENSEMBLES

In this section we present the vortex content of ensem-
bles of calorons. The generation of the latter has been

described in Sec. II D. We superposed 6 calorons and 6
anticalorons with an average size of �
 ¼ 0:6� on a 8�
643 lattice.
The most important feature of these ensembles is their

holonomy P1 ¼ expð2�i!�3Þ. Under the conjecture
mentioned in the introduction we will use 1

2 trP1 ¼
cosð2�!Þ as equivalent to the order parameter h12 trP i. In
particular, caloron ensembles with maximally nontrivial
holonomy ! ¼ 1=4 mimic the confined phase with
h12 trP i ¼ 0.

For each of the holonomy parameters ! ¼
f0:0625; 0:0125; 0:01875; 0:25g we considered one caloron
ensemble with otherwise equal parameters. Again we com-
puted the lowest adjoint modes in these backgrounds and
used the routines based on winding numbers to detect the
LCG vortex content.
In Figs. 16 and 17 we show the space-time part, respec-

tively, the purely spatial part of the corresponding vortices
as a function of the holonomy !. One can clearly see that
with holonomy approaching the confining value 1=4 the
vortices grow in size, especially the spatial vortices start to
percolate, which will be quantified below.
Figure 18 shows another view on this property. In these

plots we have fixed one of the spatial coordinates to a
particular value, such that vortices become linelike or
remain surfaces (and may appear to be nonclosed, when
they actually close through other slices than the fixed one).
These plots should be compared to Fig. 7 of Ref. [17],
which however does not show a particular vortex configu-
ration, but the authors’ interpretation of measurements (in
addition, the authors of [17] seem to have overlooked that
vortices cut at fixed spatial coordinate still have surfacelike
parts, i.e. dual plaquettes).
We find that vortices in the deconfined phase tend to

align in the timelike direction, while in the confined phase
vortices percolate in the spatial directions. We remind the
reader that we distinguish the different phases by the values
of the holonomy, ! ’ 0, ! ’ 1=2 vs ! ¼ 1=4, and not by
different temperatures, which would lead to different cal-
oron density and size distribution.
We start our interpretation of these results by the fact

that the caloron background is dilute in the sense that the
topological density is well approximated by the sum over
the constituent dyons of individual calorons (of course, the
long-range Aa¼3

� components still ‘‘interact’’ with the

short-range Aa¼1;2
� components inside other dyon cores).

Therefore it is permissible and helpful to interpret the
vortices in caloron ensembles as approximate recombina-
tion of vortices from individual calorons presented in the
previous sections.
Indeed, the space-time vortices resemble the dyon-

induced vortices which are mostly space-timelike and
therefore linelike at fixed x0. The spatial vortices, on the
other hand, resemble the twist-induced bubbles in individ-
ual calorons.
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Following the recombination interpretation, the bubbles
should become larger and larger when the holonomy ap-
proaches the confining holonomy ! ¼ 1=4, where they
degenerate to flat planes. This is indeed the case in caloron

ensembles: towards! ¼ 1=4 the individual vortices merge
to from one big vortex; see also the schematic plot Fig. 7 in
[22]. In other words, the maximal nontrivial holonomy has
the effect of forcing the spatiall vortices to percolate.

FIG. 17 (color online). The spatial part of vortices in the caloron ensembles of Fig. 16 (with the same values of the holonomy !)
summed over all time slices. Again the upper row shows the entire vortex content and the lower row the corresponding biggest vortex
cluster.

FIG. 16. The space-time part of vortices in caloron ensembles in a fixed time slice. Only the holonomy varies from left to right:
! ¼ f0:0625; 0:0125; 0:01875; 0:25g (from deconfined phase to confined phase). The upper row shows the entire vortex content in each
caloron ensemble, the lower row shows the corresponding biggest vortex cluster.
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Consequently the vortices yield exponentially decaying
Polyakov loop correlators, the equivalent of the Wilson
loop area law at finite temperature (see below).

Note also that there is no similar scenario for the space-
time vortices. The dyon-induced vortices in each caloron

are either always as large as the lattice (in the singlet case)
or are always confined to the interior of the caloron (in the
doublet case). This is consistent with the physical picture,
that spatial Wilson loops do not change much across the
phase transition.
In order to quantify the percolation we measured two

observables. The first one concerns the spatial and space-
time extensions of the largest vortices. We have included
plots of them in the second row of Figs. 16 and 17,
respectively.
For the spatial extension we superpose the purely spatial

vortex plaquettes of all time slices in one 3D lattice,
whereas for the space-time extension we remove all purely
spatial vortex plaquettes. Then we pick the largest con-
nected cluster in the remaining vortex structure.
Table I shows the extension of largest spatial and space-

time vortex clusters for different holonomy parameters of
otherwise identical caloron ensembles. The spatial-spatial
vortex cluster extension changes drastically with the hol-
onomy parameter ! whereas the space-time one almost
keeps to percolate.
The second row in Table I is related to confinement

generated by vortices. If center vortices penetrate a
Wilson loop with extensions T and L randomly, the proba-
bility to find n vortices penetrating the area A ¼ TL is
given by the Poisson distribution

Prðn;T; LÞ ¼ ðpAÞn
n!

e�pA; (43)

where p is the density of (spatial) vortices. The index r
characterizes the perfect randomness of this distribution, in
order to distinguish it from an arbitrary empirical distribu-
tion. The average Wilson loop in such a center configura-
tion is given by an alternating sum

hWðT; LÞi ¼ X
n

ð�1ÞnPðn;T; LÞ: (44)

Obviously, for the Poisson distribution Pr one obtains an
area law, loghWi / TL, with a string tension � ¼ 2p.
We explore space-time Wilson loops hWðL;�Þi, which

amount to Polyakov loop correlators at distance L and
probe confinement, as well as purely spatial Wislon loops
as a function of their area, hWðL; L0Þi � hWðA ¼ LL0Þi. As
Fig. 19 clearly shows, the values of loghWðL;�Þi show a
confining linear behavior (like from random vortices)
reaching larger and larger distances L when the holonomy
approaches the confinement value ! ¼ 1=4. At the same
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FIG. 18 (color online). The vortex content of a caloron en-
semble in the deconfined phase (upper panel, mimicked by
holonomy ! ¼ 0:0625 close to trivial) and in the confined phase
(lower panel, maximal nontrivial holonomy ! ¼ 0:25) in a
lattice slice at fixed spatial coordinate. The short direction is
x0 while the other directions are the remaining spatial ones, all
given in units of �. TABLE I. Extensions of the largest vortex cluster (see text) in

the caloron ensembles of Figs. 16 and 17. Note that the largest

extension on a 8 � 643 lattice is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8=2Þ2 þ 3 � ð32=2Þ2p ¼ 55:6.

Holonomy parameter 0.0625 0.125 0.1875 0.25

Space-time extension 47 56 56 56

Spatial extension 20 35 56 56
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time the corresponding string tensions also grow by an
order of magnitude.

One can also explain the deviation from the confining
behavior in holonomies far from 1=4. The probability
Pð2;L;�Þ for two vortices penetrating the Wilson loop is
found much larger than in the case of Poisson distribution
[not shown]. This comes from small bubbles, which very
likely penetrate a given rectangular twice.

The behavior of loghWðAÞi on the other hand changes
only slightly for different holonomies; see Fig. 20. The
corresponding slopes (’’string tensions’’) vary by a factor
of approximately 2. For holonomy ! ¼ 0:25 we find an
exponential decay stronger than proportional to the area. A
quantitative analysis of this effect needs to include suitable
caloron densities and size distributions around the critical
temperature.

VI. SUMMARYAND OUTLOOK

In this paper we have extracted the vortex content of
SUð2Þ calorons and ensembles made of them, mainly with
the help of the Laplacian center gauge, and studied the
properties of the emerging vortices. Our main results are

(1) The constituent dyons of calorons induce zeroes of
the lowest adjoint mode and therefore appear as
monopoles in the Laplacian Abelian gauge. The
corresponding worldlines are either two static lines
or one closed loop for large and small calorons,
respectively.

(2) One part of the caloron’s vortex surface contains the
dyon/monopole worldlines. The vortex changes its
flux there (hence the surface should be viewed as
nonorientable). These are general properties of LCG
vortices. The specific shapes of these dyon-induced
vortices depend on the caloron size as well as on the
lattice extensions. These vortices are predominantly
space-timelike.

(3) Another part of the vortex surface consists of a
‘‘bubble’’ around one of the dyons, depending on
the holonomy. The bubble degenerates into the mid-
plane of the dyon ‘‘molecule’’ in the case of maxi-
mal nontrivial holonomy ! ¼ 1=4. This part is
predominantly spatial. We have argued that it is
induced by the relative twist between different
dyons in the caloron.

(4) Both parts of the vortex together reproduce the unit
topological charge of the caloron by 2 intersection
points with contributions 1=2.

(5) In dilute caloron ensembles—that differ only in the
holonomy mimicking confined and deconfined
phase—the vortices can be described to a good
approximation by recombination of vortices from
individual calorons. The spatial vortices in ensem-
bles with deconfining holonomies! ’ 0 form small
bubbles. With the holonomy approaching the con-
finement value ! ¼ 1=4, the spatial bubbles grow
and merge with each other, i.e. they percolate in
spatial directions. We have quantified this by the
extension of the largest cluster on one hand and by
the quark-antiquark potential revealed by the
Polyakov loop correlator on the other.

In particular the last finding is in agreement with the (de)
confinement mechanism based on the percolation of center
vortices.
We postpone a more detailed analysis of this mechanism

as well as working out the picture for the more physical
case of gauge group SUð3Þ to a later paper.
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APPENDIX: CALORON GAUGE FIELDS

Here we give the functions necessary for the gauge fields
of calorons [3] including � and their form in the limits
described in Sec. II. The first set of two auxiliary dimen-
sionless functions are

c ¼ � cosð2�x0=�Þ þ coshð4� �!r=�Þ coshð4�!s=�Þ

þ r2 þ s2 þ d2

2rs
sinhð4� �!r=�Þ sinhð4�!s=�Þ

þ d

�
sinhð4� �!r=�Þ

r
coshð4�!s=�Þ

þ coshð4� �!r=�Þ sinhð4�!s=�Þ
s

�
; (A1)

ĉ ¼ � cosð2�x0=�Þ þ coshð4� �!r=�Þ coshð4�!s=�Þ

þ r2 þ s2 � d2

2rs
sinhð4� �!r=�Þ sinhð4�!s=�Þ:

(A2)

We remind the reader that r ¼ j ~x� ~z1j and s ¼ j ~x� ~z2j
are the distances to the dyon locations and d ¼ j~z1 � ~z2j ¼
�
2=� is the distance between the dyon locations, the
‘‘size of the caloron.’’ The next set of two auxiliary func-
tions entering Eq. (3) are

� ¼ c

ĉ
;

~	 ¼ 1

c
d

�
sinhð4� �!r=�Þ

r
þ e�2�ix0=�

sinhð4�!s=�Þ
s

�
:

(A3)

For the twist we have analyzed the limit of large size

d � � in Sec. II. For points ~x ¼ ~z1 þ ~� near the location

of the first dyon, r ¼ j ~�j is small and s ¼ d� �3 þ

Oð�2=dÞ is large. Hence the argument 4�!s=� is much
larger than 1 (unless trivial holonomy ! ¼ 0) and the
hyperbolic functions can be replaced by exponential func-
tions with exponentially small corrections. On the other
hand, no manipulations are made in all functions with
argument 4� �!r=�, such that we get the exact expressions
in terms of the distance r,

c ¼ e4�!s=� d

r
sinhð4� �!r=�Þ;

ĉ ¼ 1

2
e4�!s=�

�
coshð4� �!r=�Þ � �3

r
sinhð4� �!r=�Þ

�
:

(A4)

The exponentially large prefactors cancel in the functions
� and ~	:

�ð ~x ¼ ~z1 þ ~�Þ ¼ 2d

� cothð4� �!�=�Þ � �3

; (A5)

~	ð ~x ¼ ~z1 þ ~�Þ ¼ e�2�ix0=�
1

2d

�

sinhð4� �!�=�Þ ; (A6)

where we have replaced r by j ~�j.
For points ~x ¼ ~z2 þ ~� near the location of the second

dyon, s ¼ j ~�j is small and r ¼ dþ �3 þOð�2=dÞ is large
leading to

c ¼ e4� �!r=�d
sinhð4�!s=�Þ

s

ĉ ¼ 1

2
e4� �!r=�

�
coshð4�!s=�Þ þ �3

s
sinhð4�!s=�Þ

�

(A7)

and

�ð ~x ¼ ~z2 þ ~�Þ ¼ 2d

� cothð4�!�=�Þ þ �3

; (A8)

~	ð ~x ¼ ~z2 þ ~�Þ ¼ 1

2d

�

sinhð4�!�=�Þ : (A9)
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