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The present work generalizes a nonlocal version of the Polyakov-loop-extended Nambu and Jona-

Lasinio (PNJL) model to the case of three active quark flavors, with inclusion of the axial U(1) anomaly.

Gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov

loop. The thermodynamics of the nonlocal PNJL model accounts for both chiral and deconfinement

transitions. Our results obtained in mean-field approximation are compared to lattice QCD results for

Nf ¼ 2þ 1 quark flavors. Additional pionic and kaonic contributions to the pressure are calculated in

random phase approximation. Finally, this nonlocal three-flavor PNJL model is applied to the finite

density region of the QCD phase diagram. It is confirmed that the existence and location of a critical point

in this phase diagram depend sensitively on the strength of the axial U(1) breaking interaction.
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I. INTRODUCTION

Investigating the phase diagram of strongly interacting
matter is a persistently challenging theme of nuclear and
high-energy physics. Ultrarelativistic heavy ion collisions
at the Relativistic Heavy Ion Collider give evidence that a
strongly correlated quark-gluon phase is formed at tem-
peratures above 200 MeV, in accordance with lattice QCD
calculations (at zero baryon chemical potential) which
suggest a transition temperature in the same range for
chiral symmetry restoration and confinement-
deconfinement transitions. The ALICE experiment at the
Large Hadron Collider will shed further light on the region
of higher temperatures and low quark chemical potentials.

Lattice QCD computations can so far not be extended
systematically into the region of larger quark chemical
potentials �, but expansions around � ¼ 0 do suggest
the existence of a critical point at which the chiral cross-
over transition at small � turns into a first-order phase
transition. The precise location of this critical point and
possibly even its mere existence are still controversial.
Given that, at the present exploratory stage, neither lattice
QCD nor experiment can yet map out the QCD phase
diagram over large areas in the ðT;�Þ plane, it is useful
to work with models in order to identify the dynamically
relevant degrees of freedom.

Models of the Nambu and Jona-Lasinio (NJL) type [1]
have been quite useful for orientation in this context [2–17]
as they properly incorporate the chiral symmetry breaking
scenario of low-energy QCD. A basic element of such
models is the gap equation connecting the chiral conden-
sate and the dynamical quark mass, providing a mechanism
for spontaneous chiral symmetry breaking and the genera-
tion of quark quasiparticle masses. Thermodynamic as-
pects of confinement, while absent in the original NJL
model, can be implemented by a synthesis with
Polyakov-loop dynamics. The resulting Polyakov–
Nambu–Jona-Lasinio (PNJL) model [7–15,17] has been

remarkably successful in describing the two-flavor ther-
modynamics of QCD. However, this earlier version of the
PNJL approach still worked with an artificial momentum
space cutoff, �NJL � ð0:6–0:7Þ GeV, which prohibits es-
tablishing connections with well-known properties of QCD
at higher momentum scales such as the running coupling
and momentum-dependent quark mass function.
Furthermore, thermodynamically consistent results at
high temperatures and densities cannot be achieved using
the original (local) PNJL model. In particular, a mean-
ingful extrapolation to the high-density region with its
variety of color-superconducting phases cannot be per-
formed once the quark Fermi momentum becomes com-
parable to the NJL cutoff. The nonlocal PNJL model does
not have such a priori limitations.
In fact the nonlocal two-flavor PNJL model [2] solves

this problem by introducing momentum-dependent quark
interactions that permit realizing the high-momentum in-
terface with QCD and Dyson-Schwinger calculations at the
level of the quark quasiparticle propagators. The present
work takes a next major step by extending this nonlocal
PNJL model to Nf ¼ 3 flavors, now incorporating the

strange quark. This step involves a detailed study of the
axial U(1) anomaly, its role in separating the flavor singlet
component of the pseudoscalar meson nonet from the
Nambu-Goldstone boson sector, and its thermodynamical
implications. It will turn out that the nonlocal PNJL model
does not suffer from the pathologies mentioned above, and
hence it does not have any a priori limitations. Therefore, it
is well-suited to investigate the high-density and high-
temperature region of strongly interacting matter.
From hadron spectroscopy it is well-known that only

eight of the nine lightest pseudoscalar mesons (the pions,
the kaons, and the eta meson) have pseudo-Goldstone
boson character. The eta-prime meson, on the other hand,
has a mass ofm�0 ’ 958 MeV, about 400 MeV higher than

the eta mass: the �0 meson is not part of the Nambu-
Goldstone multiplet. The reason is the axial Uð1ÞA anom-
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aly [18] and its realization in QCD. The flavor singlet axial

current, j
�
5 ðxÞ, is not conserved. In fact one has @�j

�
5 /

~Ea � ~Ba; i.e., the divergence of the singlet axial current is
proportional to the product of color electric and magnetic
gluon fields. In the interpretation given by ’t Hooft [19], the
axial anomaly is induced by instanton effects and translates
into an axial Uð1ÞA breaking effective interaction between
quarks that has the form of anNf � Nf determinant [20] of

right- and left-handed quark bilinears, c ið1� �5Þc j. For

Nf ¼ 3 this is a genuine six-point vertex involving all three

u, d, and s quarks simultaneously. In its local form, this
’t Hooft determinant interaction has been widely used in
previous three-flavor NJL model calculations [16,17,21–
23]. Our present work generalizes this Uð1ÞA breaking
interaction for its use as part of the nonlocal Nf ¼ 3

PNJL model.
This paper is organized as follows. Sections II and III

introduce and develop the nonlocal PNJL model. Its con-
nection with the instanton model is outlined. A comparison
with results from Dyson-Schwinger calculations of the
Landau gauge QCD is performed. Properties of the pseu-
doscalar mesons, such as masses and decay constants, are
derived within a systematic expansion of the action around
the mean-field limit. Fundamental low-energy theorems
such as the Gell-Mann–Oakes–Renner relation are shown
to hold within the nonlocal framework. Section III pro-
ceeds with the thermodynamics of the nonlocal PNJL
model using the Matsubara formalism. The Polyakov
loop � is introduced as an (approximate) order parameter
for the confinement-deconfinement transition. The quarks
are coupled to � in the usual minimally gauge invariant
way. The gap equations following from the PNJL effective
action determine the temperature dependence of the chiral
up-, down-, and strange-quark condensates and of the
Polyakov loop. We also take into account contributions
to the pressure beyond mean-field approximation, calculat-
ing pionic and kaonic quark-antiquark correlations in ran-
dom phase approximation. The nonlocal PNJL model is
then applied to the finite density case, introducing non-
vanishing (quark) chemical potentials. We sketch a sim-
plified version of the QCD phase diagram (without
inclusion of diquark condensates). The variation of the
‘‘critical point’’ with changing strength of the ’tHooft
interaction is investigated. Section IV presents conclusions
and an outlook.

II. NONLOCAL THREE-FLAVOR NAMBU–JONA-
LASINIO MODEL

This section extends the previously developed nonlocal
NJL model [2] to Nf ¼ 3 flavors. It is designed so as to

correctly implement the spontaneously broken chiral
SUð3ÞR � SUð3ÞL symmetry of QCD at zero temperature
together with the anomalously broken axial Uð1ÞA
symmetry.

A. Chirally invariant nonlocal action

As in our previous work [2], the construction of the
interaction part of the effective quark action in Euclidean
space1 is guided by the nonlocal coupling of color currents.
A Fierz transformation leads to the following generic form
of the nonlocal 4-point interaction,

~Sð4Þ
int ¼

X
�

c�
Z

d4x
Z

d4z �c

�
xþ z

2

�
��c

�
x� z

2

�

� GðzÞ �c
�
x� z

2

�
��c

�
xþ z

2

�
: (2.1)

The nonlocality distribution, GðzÞ, is proportional to the
gluonic field correlator. As in Ref. [2] we restrict ourselves
to the diagonal part of the Lorentz tensor representing this
correlator. The coefficients c� result from a Fierz trans-
form of the color current-current interaction on which the
action (2.1) is based. The �� are a set of Dirac, flavor, and
color matrices. Their combination is determined by the
Fierz transform just mentioned. The quark field is given
as c ðxÞ ¼ ðuðxÞ; dðxÞ; sðxÞÞ> in terms of the u-, d-, and
s-quark fields. Their current quark masses are collected in
the mass matrix m̂q ¼ diagðmu;md;msÞ.
The coupling term (2.1) of the action shares with full

QCD a global chiral Uð3ÞR � Uð3ÞL symmetry. The axial
Uð1ÞA subgroup of Uð3Þ � Uð3Þ is broken by the anomaly
which will be treated by an additional term of the action, to
be described in subsection II B. Apart from a strictly
conserved U(1) symmetry associated with baryon number,
the remaining chiral SUð3ÞR � SUð3ÞL symmetry under-

goes dynamical (spontaneous) breaking through ~Sð4Þ
int , down

to flavor SU(3) (the well-known ‘‘eightfold way’’). Explicit
chiral and flavor symmetry breaking corrections are then
introduced by the quark mass term of the Lagrangian,
�c m̂qc .

In Eq. (2.1) we restrict ourselves to the color-singlet pair
of scalar and pseudoscalar operators as a minimal Uð3Þ �
Uð3Þ symmetric combination:

� �2f0;1;...;8g ¼ ð1; i�5Þ � ��;

with the Gell-Mann matrices f�0; �1; . . . ; �8g specifying a
basis in flavor space, where we have introduced the singlet

matrix �0 :¼
ffiffi
2
3

q
diagð1; 1; 1Þ. Other less relevant operators

(such as Lorentz vectors and axial vectors) will be ignored
in the present work. (See however the investigation of the
role of vector current interactions in Ref. [24].)
Furthermore, we replace the dimensionful nonlocality

distribution function G in Eq. (2.1) by a coupling strength
G=2 (with mass dimension �2) and a normalized distri-
bution C, i.e.,

1If not stated otherwise, all quantities are expressed in
Euclidean space-time, i.e., x ¼ ðx4; ~xÞ ¼ ðix0; ~xÞ, �4 :¼ i�0, etc.
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G ðzÞ ¼ G

2
CðzÞ; (2.2)

with
R
d4zCðzÞ ¼ 1. Note that the standard (local) NJL

model follows for the limiting case CðzÞ ¼ �ð4ÞðzÞ, with
the understanding that a momentum space cutoff is intro-
duced in this local limit in order to regularize loop
integrals.

1. Schwinger-Dyson equation

Following Ref. [2], the next obvious step is a bosoniza-

tion of the action ~Sð4Þ
int . Such a procedure was performed,

e.g., in Refs. [25–27] leading to the following Schwinger-
Dyson (SD) equation (gap equation) in momentum space
for the dynamical quark masses MuðpÞ ¼ MdðpÞ ¼
MsðpÞ � MðpÞ in the chiral limit (i.e., mu¼md¼
ms¼0):

MðqÞ ¼ 8NcG
Z d4p

ð2	Þ4
~Cðq� pÞ MðpÞ

p2 þM2ðpÞ : (2.3)

Here the Euclidean Fourier transform ~CðpÞ ¼R
d4ze�ipzCðzÞ of the distribution CðzÞ has been introduced,

with ~Cðp ¼ 0Þ ¼ 1. The mass functionMðpÞ is interpreted
as the momentum-dependent dynamical (constituent)
quark mass which, in the case of MðpÞ 6�0, expresses the
spontaneous chiral symmetry breaking. The gap equation
(2.3) can be solved iteratively relying on Banach’s fix-point
theorem. It turns out indeed that such a procedure leads to a
nontrivial solution with nonvanishing M (see Fig. 1).

2. Four-fermion separable interaction

The full solution of the SD equation (2.3) is, however,
not practical for our present purposes. If one were to solve

such an integral equation for finite temperature, one would
be confronted with the full complexity of finite tempera-
ture SD calculations (cf. Refs. [28–30]). We approximate
the distribution C by a separable form, replacing

G ðzÞ ¼ G

2
CðzÞ ! G

2

Z
d4z0C

�
zþ z0

2

�
C
�
z� z0

2

�

(compare also Ref. [31]). The model using this separable
ansatz will be worked out starting from the next subsection.
A comparison between the full SD calculation and the
separable approach in Sec. II E 1 demonstrates that the
separable action is a very good approximation to the full
SD-formalism for all practical purposes. We can now write
the chirally invariant four-fermion interaction in a more
tractable form:

~S ð4Þ
int ! Sð4Þ

int ¼ �G

2

Z
d4x½jS�ðxÞjS�ðxÞ þ jP�ðxÞjP�ðxÞ�;

(2.4)

where jS� and jP� are scalar and pseudoscalar densities,
given by

jS�ðxÞ ¼
Z

d4z �c

�
xþ z

2

�
CðzÞ��c

�
x� z

2

�
;

jP�ðxÞ ¼
Z

d4z �c

�
xþ z

2

�
CðzÞi�5��c

�
x� z

2

�
:

(2.5)

The particular functional form of CðzÞ used in this work
will be given in Sec. II E (see also Fig. 2).

B. Axial U(1) anomaly and instantons

So far, the generalization from the two-flavor to the
three-flavor case has been straightforward. The more diffi-

DSE
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FIG. 1. Comparison of the self-consistent solution of the
Schwinger-Dyson equation (2.3) (solid line) to the solution of
the gap equations (2.19) derived for a separable interaction
(dashed lines) for values of the chiral condensate h �uui ranging
between �ð260 MeVÞ3 and �ð280 MeVÞ3 (gray band).
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FIG. 2. Comparison of the distribution CðpÞ used in the non-
local NJL model (solid line) and the one derived from the
instanton model with instanton size d ¼ 0:35 fm (dashed line).
The dash-dotted line shows the function CðpÞ in a local NJL
model with Euclidean four-momentum cutoff.
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cult task concerning the extension of the nonlocal NJL
approach to three flavors is the implementation of the
mechanism that breaks the Uð1ÞA symmetry, leading to
the relatively large mass of the �0 meson.

At the level of an effective interaction between quarks,
this can be accomplished by introducing an interaction
term proportional to the Kobayashi-Maskawa-’t Hooft de-
terminant [19,20],Z

d4x½detJþðxÞ þ detJ�ðxÞ�

with

ðJ�ðxÞÞij ¼
Z

d4z �c j

�
xþ z

2

�
1

2
ð1� �5ÞKðzÞc i

�
x� z

2

�
;

(2.6)

whereKðzÞ represents the distribution of the Uð1ÞA break-
ing interaction strength. For Nf ¼ 3, this flavor determi-

nant generates a genuine 3-body interaction (or 6-quark
vertex) in which the u, d, and s quarks participate
simultaneously.

In his original paper [19], ’t Hooft derived the Uð1ÞA
breaking interaction starting from instantons. The instan-
ton liquid model gives a simple expression for K as the

density of zero modes. Its Fourier transform ~KðpÞ ¼R
d4ze�ipzKðzÞ is written [32,33] in terms of Bessel func-

tions and a characteristic instanton size, d ’ 0:35 fm, as
follows:

~KðpÞ ¼ 	p2d2
d

d

½I0ð
ÞK0ð
Þ � I1ð
ÞK1ð
Þ�

with 
 ¼ jpjd
2

: (2.7)

At this point we can anticipate a result of our present
studies (see Fig. 2), namely, that the distribution C in the
nonlocal chiral four-fermion interaction (2.4) turns out to
be very close to the distribution K that characterizes the
instanton induced interaction (2.6). We can therefore set
C ¼ K and work with a universal distribution involving a
single scale, e.g., the instanton size d. It is then not surpris-
ing that the local version of the (classic) NJL model
operates with a momentum cutoff scale that reflects the
inverse instanton size, �NJL 	 1=d.

With these preparations and following the steps outlined
in Appendix A, the ’tHooft determinant can be written in
terms of the nonlocal scalar and pseudoscalar densities
(2.5), leading to the following six-fermion part of the
action:

S ð6Þ
int ¼ �H

4

Z
d4xA���½jS�ðxÞjS�ðxÞjS�ðxÞ

� 3jS�ðxÞjP�ðxÞjP�ðxÞ�; (2.8)

where the constants A��� are expressed in terms of the

Gell-Mann matrices according to

A ��� :¼ 1

3!
"ijk"mn‘ð��Þimð��Þjnð��Þkl

for �;�; � 2 f0; . . . ; 8g:

Here H is the coupling strength of mass dimension �5,
representing the six-fermion vertex interaction.

C. Three-flavor nonlocal NJL model

Given the four- and six-fermion couplings in the non-
local framework, we can now write down the Euclidean
three-flavor nonlocal NJL action, SE, that will be the basis
of all calculations performed in this work. We have

SE ¼
Z

d4x

�
�c ðxÞ½�i��@� þ m̂q�c ðxÞ �G

2
½jS�ðxÞjS�ðxÞ

þ jP�ðxÞjP�ðxÞ� �H

4
A���½jS�ðxÞjS�ðxÞjS�ðxÞ

� 3jS�ðxÞjP�ðxÞjP�ðxÞ�
�
; (2.9)

where the first term is the kinetic term and m̂q ¼
diagðmu;md;msÞ is the mass matrix with the current quark
masses mu, md, ms; G and H are constants to be deter-
mined; and the densities jS�, j

P
� are given in Eq. (2.5) with

the nonlocality distribution CðzÞ yet to be specified.
In the remainder of Sec. II we demonstrate how this

approach works in reproducing zero-temperature QCD, the
nonperturbative vacuum, and its lowest quark-antiquark
excitations: the pseudoscalar meson nonet including decay
constants and �-�0 mixing. Thermodynamics and the im-
plementation of the Polyakov loop (the step from the non-
local NJL to the PNJL model) will be described in Sec. III
and performed as in Ref. [2] by the gauge covariant re-
placement @� ! @� þ iA���4, and by adding the

Polyakov-loop effective potential to the action.
As usual, we start from the partition function

Z ¼
Z

D �cDc e�SE (2.10)

and seek to replace the fermionic fields appearing in Eq.
(2.10) by bosonic fields. For this reason, we introduce 18
bosonic fields �� and 	� (� 2 f0; . . . ; 8g) and, addition-
ally, 18 auxiliary fields S�, P� in order to deal with the six-
fermion interactions induced by the ’t Hooft term.
Inserting a ‘‘one’’ in terms of delta functions,

1 ¼
Z

DS�DP��ðS� � jS�Þ�ðP� � jP�Þ

¼
Z

DS�DP�D��D	�e
R

d4z��ðS��jS�Þe
R

d4z	�ðP��jP
�
Þ;

the partition function can be written as

HELL et al. PHYSICAL REVIEW D 81, 074034 (2010)

074034-4



Z ¼
Z

D �cDcDS�DP�D��D	�

� exp

�
�
Z

d4x½ �c ð�i��@� þ m̂qÞc þ ��j
S
�

þ 	�j
P
��
�
exp

�Z
d4x

�
G

2
ðjS�jS� þ jP�j

P
�Þ

þH

4
A���ðjS�jS�jS� � 3jS�j

P
�j

P
�Þ þ ��S� þ 	�P�

��
:

The second term has expressions quadratic and cubic in the
densities j. Applying the inserted delta functions dictates a
replacement of jS� and jP� by S� and P�, respectively. The
first exponential, on the other hand, contains terms of the

form �c Â c ; hence the path integration over the fermionic
fields �c and c can be carried out by standard means,
leading to

Z ¼
Z

D��D	� detÂ
Z

DS�DP� exp

�Z
d4xð��S�

þ 	�P�Þ
�
exp

�Z
d4x

�
G

2
ðS�S� þ P�P�Þ

þH

4
A���ðS�S�S� � 3S�P�P�Þ

��
; (2.11)

where detÂ is the fermion determinant. In momentum
space one finds after a simple Fourier transformation

Aðp; p0Þ :¼ hpjÂjp0i
¼ ð�p6 þ m̂qÞð2	Þ4�ðp� p0Þ

þ C
�
pþ p0

2

�
��½��ðp� p0Þ þ i�5	�ðp� p0Þ�:

(2.12)

Here and in the following we conveniently write CðpÞ �
~CðpÞ for the Fourier transform of the distribution CðzÞ.

1. Stationary phase approximation

Owing to the cubic terms in S� and P� the path inte-
gration over these fields cannot be carried out explicitly.
Therefore, the stationary phase approximation (SPA) is
used, choosing the fields S�, P� so as to minimize the
integrand in the bosonized partition function Eq. (2.11).
Consequently, a necessary condition imposed on the fields
is

�� þGS� þ 3H

4
A���½S�S� � P�P�� ¼ 0;

	� þGP� � 3H

2
A���S�P� ¼ 0; (2.13)

where S�, P� are now to be considered as (implicit)
functions of ��, 	�. The bosonized action can thus be
written as

S bos
E ¼ � lndetÂ�

Z
d4x

�
��S� þ 	�P� þG

2
½S�S�

þ P�P�� þH

4
A���½S�S�S� � 3S�P�P��

�
:

(2.14)

2. Mean-field approximation, gap equations, and chiral
condensates

As a next step we expand the bosonized action, Sbos
E , in a

power series around the expectation values of the fields��,
	�,

��ðxÞ ¼ ��� þ ���ðxÞ; 	�ðxÞ ¼ �	�ðxÞ: (2.15)

A first constraint is imposed on the scalar fields by charge

conservation; i.e., the charge matrix Q̂ ¼ diagð23 ;� 1
3 ;� 1

3Þ
commutes with the SU(3) generators: ½Q̂; ��� ¼ 0. This is
only possible for �0, �3, �8, which means in turn that only
�0, �3, and �8 have to be considered (in the isospin limit
which will be investigated later one has the additional
constraint that �3 also vanishes). Given these conditions
it is useful to introduce

� ¼ diagð�u;�d; �sÞ :¼ �0�0 þ �3�3 þ �8�8; (2.16)

and, analogously, S ¼ diagðSu; Sd; SsÞ ¼ S0�0 þ S3�3 þ
S8�8.
Since we have h	�i ¼ hP�i ¼ 0 to leading order, the

action in mean-field approximation reads

SMF
E

Vð4Þ ¼ �2Nc

Z d4p

ð2	Þ4 Tr ln½p213�3 þ M̂2ðpÞ�

� 1

2

� X
i2fu;d;sg

�
��i
�Si þG

2
�Si �Si

�
þH

2
�Su �Sd �Ss

�
; (2.17)

where M̂ðpÞ ¼ diagðMuðpÞ;MdðpÞ;MsðpÞÞ with
MiðpÞ ¼ mi þ ��iCðpÞ; (2.18)

and 13�3 denotes the unity matrix in flavor space and Vð4Þ is
the four-dimensional Euclidean volume.
The mean-field equations (gap equations) are deduced

applying the principle of least action, �SMF
E =��i ¼ 0 for

�i ¼ ��i (i 2 fu; d; sg). Taking into account that Si and Pi

are both implicit functions of �i, determined through the
SPA equations in mean-field approximation [compare
Eq. (2.13)], one obtains the following set of coupled gap
equations:

��i ¼ �G �Si �H

4
"ijk"ijk �Sj �Sk; (2.19a)

�Si ¼ �8Nc

Z d4p

ð2	Þ4 CðpÞ
MiðpÞ

p2 þM2
i ðpÞ

: (2.19b)

Finally, the chiral condensate h �qqi can be calculated
from Sbos

E using the Feynman-Hellmann theorem, by dif-
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ferentiation with respect to the current quark mass mq.

Equivalently, one can use the definition

h �qqi ¼ �i Tr lim
y!xþ

½SFðx; yÞ � Sð0ÞF ðx; yÞ�; (2.20)

with the full fermion Green function,

SFðx; yÞ ¼
Z d4p

ð2	Þ4 e
ipðx�yÞSFðpÞ; (2.21)

and the free quark propagator Sð0ÞF subtracted. Using

SF ¼ 1

�p6 þMqðpÞ (2.22)

this leads to

h �qqi ¼ �4Nc

Z d4p

ð2	Þ4
�

MqðpÞ
p2 þM2

qðpÞ
� mq

p2 þm2
q

�
:

(2.23)

Note that MðpÞ ! mq for large p. The subtraction makes

sure that no perturbative artifacts are left over in h �qqi for
mq � 0.

3. Second-order corrections and meson masses

In order to calculate the masses of the pseudoscalar
mesons, we go beyond mean-field approximation and con-
sider second-order corrections to the mean-field action,
extracted from a functional Taylor expansion,

Sð2Þ
E ¼ 1

2

Z
d4xd4y

�2SE

������

���ðxÞ���ðyÞ

þ 1

2

Z
d4xd4y

�2SE

�	��	�

�	�ðxÞ�	�ðyÞ;

where the second derivatives, �2SE=½���ðxÞ���ðyÞ�, etc.,
are evaluated at the mean-field values��ðxÞ ¼ ���, etc. We
now focus on pseudoscalar mesonic excitations and change
the basis according to 	ij ¼ 1ffiffi

2
p ð��	�Þij. This gives a

standard representation of the pseudoscalar meson octet:

	ij ¼ ð	̂Þij

¼
	0ffiffi
2

p þ �8ffiffi
6

p þ �0ffiffi
3

p 	þ Kþ

	� � 	0ffiffi
2

p þ �8ffiffi
6

p þ �0ffiffi
3

p K0

K� �K0 � 2�8ffiffi
6

p þ �0ffiffi
3

p

0
BBB@

1
CCCA:

(2.24)

Defining analogously a matrix �̂ for the scalar mesons, the
fermion determinant, Eq. (2.12), can be written as

Aðp; p0Þ ¼ ð�p6 þ m̂qÞð2	Þ4�ð4Þðp� p0Þ þ C
�
p� p0

2

�

� ffiffiffi
2

p ½�̂ðp� p0Þ þ i�5	̂ðp� p0Þ�:
(2.120)

Next, we calculate the derivatives appearing in the
Taylor expansion. Some caveats of the calculation are
outlined in Appendix B. The resulting second-order con-
tributions to the action are given by

Sð2ÞE ¼ 1

2

Z d4p

ð2	Þ4 ½G
þ
ij;k‘ðpÞ��ijðpÞ��k‘ð�pÞ

þG�
ij;k‘ðpÞ�	ijðpÞ�	k‘ð�pÞ�; (2.25)

with

G�
ij;k‘ðpÞ ¼ �

ij�i‘�jk þ ðr�ij;k‘Þ�1; (2.26)

where

 �
ij ðpÞ ¼ �8Nc

Z d4q

ð2	Þ4 C
2ðqÞ

� qþ � q� �MiðqþÞMjðq�Þ
½ðqþÞ2 þM2

i ðqþÞ�½ðq�Þ2 þM2
j ðq�Þ�

;

(2.27)

q� ¼ q� p
2 , and ðr�Þ�1 is defined as the solution of the

system

�
G�km�n‘ �H

2
"knt"t‘knSt

�
ðr�ij;k‘Þ�1 ¼ �im�jn: (2.28)

The meson masses can now be determined by writing
the second-order term of the action, Eq. (2.25), in the
physical basis as

S ð2Þ
E jP ¼ 1

2

Z d4p

ð2	Þ4 fG	ðp2Þ½	0ðpÞ	0ð�pÞ

þ 2	þðpÞ	�ð�pÞ� þGKðp2Þ½2K0ðpÞ �K0ð�pÞ
þ 2KþðpÞK�ð�pÞ� þG88ðp2Þ�8ðpÞ�8ð�pÞ
þG00ðp2Þ�0ðpÞ�0ð�pÞ
þ 2G08ðp2Þ�0ðpÞ�8ð�pÞg;

where the functionsGP are defined according to Eq. (2.26).
If one considers only the isospin symmetric case, mu ¼
md, then one has
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G	ðp2Þ ¼
�
GþH

2
�Ss

��1 þ�
uuðp2Þ;

GKðp2Þ ¼
�
GþH

2
�Su

��1 þ�
usðp2Þ;

G88ðp2Þ ¼ 1

3

�
6G� 4H �Su � 2H �Ss
2G2 �GH �Ss �H2 �S2u

þ�
uuðp2Þ

þ 2�
ssðp2Þ

�
;

G00ðp2Þ ¼ 1

3

�
6Gþ 4H �Su �H �Ss

2G2 �GH �Ss �H2 �S2u
þ 2�

uuðp2Þ

þ�
ssðp2Þ

�
;

G08ðp2Þ ¼
ffiffiffi
2

p
3

�
Hð �Ss � �SuÞ

2G2 �GH �Ss �H2 �S2u
þ�

uuðp2Þ

��
ssðp2Þ

�
:

From the construction of the action it is clear that the
functions GP correspond to the inverse pseudoscalar me-
son propagators. The corresponding masses are given by
the poles of these propagators or, equivalently,

GPð�m2
PÞ ¼ 0; for P 2 	;K; �: (2.29)

Finally, we perform a last basis change in order to produce
the physical � and �0 mesons. We introduce the mixing
angle � ¼ �ðp2Þ and write

� ¼ �8 cos�� � �0 sin��;

�0 ¼ �8 sin��0 þ �0 cos��0 ;
(2.30)

where �� ¼ �ð�m2
�Þ, ��0 ¼ �ð�m2

�0 Þ. Introducing the (in-
verse) � and �0 propagators G� and G�0 , respectively,

instead of G00, G88, G08 we obtain for the mixing angle

tan2�ðp2Þ ¼ 2G08ðp2Þ
G00ðp2Þ �G88ðp2Þ (2.31)

and therefore

G�ðp2Þ ¼ G88 þG00

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

08 þ
�
G00 �G88

2

�
2

s
; (2.32)

G�0 ðp2Þ ¼ G88 þG00

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

08 þ
�
G00 �G88

2

�
2

s
: (2.33)

4. Renormalization constants

One usually introduces renormalized fields,2 ~’ðpÞ ¼
Z�1=2
’ ’ðpÞ, so that the quadratic part of the Lagrangian

can be written as

L ð2Þ
E ¼ 1

2ðp2 þm2
�Þ~’ðpÞ~’ð�pÞ;

and it is directly evident that masses are identified with
poles of the propagators. From this it is easy to obtain an
explicit expression for the renormalization constants,
namely,

Z�1
P ¼ dGPðp2Þ

dp2

��������P
; for P 2 	;K; �: (2.34)

5. Decay constants

In this subsection we calculate the (pseudoscalar) meson
decay constants defined as

h0jJ�A;�ð0Þj ~	�ðpÞi ¼ if��p�()
h0jJ�A;�ð0Þj	�ðpÞi ¼ if��Z

1=2
� p�; (2.35)

where J�A;�ðxÞ ¼ �c ðxÞ���5
��

2 c ðxÞ denotes the axial-

vector current. In Appendix C of Ref. [2] we outline in
some detail the calculation of the (unrenormalized) matrix
element h0jJ�A;�ð0Þj	�ðpÞi.
In order to calculate this matrix element one has to

gauge the nonlocal action in Eq. (2.9). This requires not
only the replacement of the partial derivative by a covariant
derivative,

@� ! @� þ i

2
�5��A�

�ðxÞ;
where A�

� (� 2 f0 . . . ; 8g) are a set of axial gauge fields,
but also the connection of nonlocal terms through a parallel
transport with a Wilson line,

W ðx; yÞ ¼ P exp

�
i

2

Z 1

0
d��5��

�A�
� ðxþ ðy� xÞ�Þðy� � x�Þ

�
;

where we have chosen a straight line that connects the
points x and y. This means that expressions of the form
�c ðxÞÔðzÞc ðyÞ [where ÔðzÞ is an arbitrary field operator]
in the action SE, Eq. (2.9), have to be replaced by
�c ðxÞW ðx; zÞÔðzÞW ðz; yÞc ðyÞ, which guarantees the
(local) gauge invariance of the underlying Lagrangian. It
turns out that the only term that is eventually affected by

the gauging is the fermion determinant Â, Eq. (2.12), which
then becomes, in coordinate space,

AGðx; yÞ ¼
�
�i6@y þ 1

2
�5��A� þ m̂q

�
�ðx� yÞ

þ Cðx� yÞW
�
x;
xþ y

2

�
��’�

�
xþ y

2

�

�W
�
xþ y

2
; y

�
: (2.36)

Here �� stands for either �� ¼ �� or �� ¼ i�5��, and’�

accordingly for either a scalar field, ��, or a pseudoscalar
field, 	�.

2Here ’ðpÞ stands generically for any of the fields 	�ðpÞ; . . . .
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The desired matrix element then follows from the gauged fermion determinant according to

h0jJ�A;�ð0Þj	�ðpÞi ¼ � �2 lndetÂG

�	�ðpÞ�A�
�ðtÞ

��������A¼0
t¼0

: (2.37)

After a lengthy evaluation of the functional derivatives, we obtain

h0jJ�A;�ð0Þj	�ðpÞi ¼ 2ið�ij
��

ji
� þ �ij

��
ji
�Þ tr

�
CðqÞ qþ�Miðq�Þ

ððqþÞ2 þM2
j ðqþÞÞððq�Þ2 þM2

i ðq�ÞÞ
�
þ 2ið�ij

��
ji
� þ �ij

��
ji
�Þ

� tr

�Z 1

0
d�q�

dCðqÞ
dq2

Miðqþ� Þ
ðqþ� Þ2 þM2

i ðqþ� Þ
�
þ 2i ��jð�ij

��
ji
� þ �ij

��
ji
�Þtr

�Z 1

0
d�q�

dCðqÞ
dq2

C
�
q� p

2
�

�

� qþ� � q�� þMjðqþ� ÞMiðq�� Þ
ððqþ� Þ2 þM2

j ðqþ� ÞÞððq�� Þ2 þM2
i ðq�� ÞÞ

�
; (2.38)

with

qþ� ¼ qþ p

2
ð1� �Þ; q�� ¼ q� p

2
ð1þ �Þ;

qþ ¼ qþ p

2
; q� ¼ q� p

2
:

(2.39)

Now, the decay constants can be derived from the expres-
sion (2.38) and their definitions, Eq. (2.35), by contraction
with p�; hence

f�� ¼ ip�h0jJ�A;�ð0Þj	�ðpÞi
Z�1=2
�

m2
�

; (2.40)

evaluated at the corresponding mass p2 ¼ �m2
�. Owing to

the properties of the Gell-Mann matrices one has f�� ¼
���f	 for � 2 f1; 2; 3g and f�� ¼ ���fK for � 2
f4; 5; 6; 7g. On the other hand, for the 0 and 8 component
we obtain

f88ðp2Þ ¼ 4

3
½2fssðp2Þ þ fuuðp2Þ�;

f00ðp2Þ ¼ 4

3
½2fuuðp2Þ þ fssðp2Þ�;

f08ðp2Þ ¼ f80ðp2Þ ¼ 4
ffiffiffi
2

p
3

½fuuðp2Þ � fssðp2Þ�:

D. Chiral low-energy theorems

In this section we derive the Goldberger-Treiman and
Gell-Mann–Oakes–Renner relations explicitly from the
nonlocal NJL model presented in this work. For this aim,
we expand the meson self-energy contribution �

uu,
Eq. (2.27), up to first order in the current quark mass mu

and the momentum p2:

 �
uuðp2; muÞ ¼

�Su;0
��u;0

� 2h �uui0
��2
u;0

mu þ Z�1
	;0p

2: (2.41)

The first term on the right-hand side follows immediately
from Eq. (2.27) by setting mu ¼ p2 ¼ 0 and using the gap
equation (2.19b) in the chiral limit, mu ¼ 0 (index ‘‘0’’).

The second term can be recovered by writing CðpÞ ¼ 1
��u
�

ðMuðpÞ �muÞ in Eq. (2.27) and using the definition of the
chiral condensate, Eq. (2.23). The last term follows from
the definition of the renormalization constant Z	,
Eq. (2.34).
Next we notice by expanding the pion decay constant,

Eq. (2.38), that only the term in the first line of this
equation contributes to order Oðp2Þ. One finds

lim
p2!0

fuuðp2Þ ¼ 1
4 ��u;0Z

�1
	;0: (2.42)

Using Eq. (2.40) this implies

f	;0 ¼ ��u;0Z
�1
	;0; (2.43)

which is nothing but the Goldberger-Treiman relation.
Finally, multiplying both sides of the expansion (2.41)
with Gþ H

2 and identifying the pion-mass definition,

Eq. (2.29), on the left-hand side, and the gap equation
(2.19a), on the right-hand side, we get

f2	;0m
2
	 ¼ �muh �uuþ �ddi0; (2.44)

which is the Gell-Mann–Oakes–Renner relation.
We have thus demonstrated that our nonlocal NJL model

is consistent, as expected, with fundamental low-energy
theorems based on chiral symmetry. At the same time the
nonlocal model reduces to the local NJL model results
when CðpÞ is chosen as a theta function.

E. Parameter fixing and numerical results

Now that all relevant formulas have been derived in the
preceding subsections, we fix the model parameters in
order to quantitatively reproduce physical observables.
Apart from the coupling strengths G and H of the four-
and six-fermion interaction vertices, this involves a speci-
fication of the nonlocality distribution C. In preparation of
this input we are guided by results of Schwinger-Dyson
QCD calculations and return briefly to the issue of the
separable ansatz for C used in the present approach.
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1. Schwinger-Dyson calculations vs separable approxi-
mation

For simplicity we restrict ourselves in this subsection to
the case of two degenerate (up- and down-quark) flavors
andH ¼ 0. The full SD equation is then given by Eq. (2.3),

while the separable equation follows by replacing ~Cðq�
pÞ ! CðqÞ � CðpÞ. In this case, the mass equation can be
written as MðqÞ ¼ mu þ ��uCðqÞ [see Eqs. (2.17) and
(2.19a)], withmu ¼ md the current quark masses and ��u ¼
��d the mean-field values of the � fields. Furthermore, for
this test case and exclusively in this subsection, we choose
a Gaussian for the momentum distribution function C in
both the full SD expression and the separable ansatz. The
parameters G, mu and the width of the Gaussian are fixed
such as to reproduce the pion mass, m	 ¼ 140 MeV, the
pion decay constant,3 f	 ¼ 92 MeV, and the chiral con-
densates ranging between h �uui ¼ h �ddi � �ð260 MeVÞ3
and �ð280 MeVÞ3.

Figure 1 shows results from the full SD and separable
nonlocal NJL approaches in comparison. It is evident that
the results coincide at the 5% level. One should recall at
this point that the volume element in four dimensions is
d4p	 p3dp, so that details of the low momentum behav-
ior of CðpÞ in the integrand do not dramatically influence
the value of the integral in the gap equation.

2. Parameters of the nonlocal three-flavor NJL model

Apart from the nonlocality distribution CðpÞ with its
characteristic scale, the parameters to be fixed are the
coupling strengths G and H and the current quark masses
mu ( ¼ md) and ms. Consider first the distribution CðpÞ
again. Its asymptotic form is constrained by QCD through
the high-momentum behavior of the quark mass function
MðpÞ to leading order in the operator product expansion:

MðpÞ / ��sðp2Þ
p2

h �uuþ �ddi at p > �	 1 GeV:

We use the leading order expression �sðp2Þ ¼
4	½�0 lnðp2=�2

QCDÞ��1 which is sufficient for our pur-

poses. We set �0 ¼ 9 (with three active flavors) and
�QCD ¼ 0:25 GeV which reproduces �s ¼ 0:12 at mZ ¼
91:2 GeV. At smaller momentum scales we are guided by
results from Schwinger-Dyson calculations (in Landau
gauge) and by extrapolations of lattice QCD data for
MðpÞ [34].

An alternative choice is to use an instanton model. All
these options lead to very similar shapes of CðpÞ. For the
actual calculations we adopt the parametrization intro-
duced in Ref. [2]:

C ðp2Þ ¼
�
e�p2d2=2 for p2 <�2

const � �sðp2Þ
p2 for p2 
 �2:

(2.45)

The normalization condition Cðp ¼ 0Þ ¼ 1 and the match-
ing at p ¼ � fix the remaining constant once d is chosen.
Setting d ¼ 0:35 fm guided by a typical instanton size,
CðpÞ closely resembles the instanton based distribution
(2.7), as demonstrated in Fig. 2. The resulting matching
scale in Eq. (2.45) is � ¼ 0:85 GeV.
Having determined CðpÞ we proceed by reproducing

masses and decay constants of the pseudoscalar meson
nonet. Two scenarios with marginally different coupling
strengths G [leaving CðpÞ and all remaining parameters
unchanged] will be considered. ‘‘Scenario I’’ optimizes the
�0 sector including �-�0 mixing. ‘‘Scenario II’’ provides a
best fit to pseudoscalar octet observables.
Choosing the parameters of scenario I as given in

Table I, one finds the values of the pseudoscalar masses,4

decay constants, and �-�0-mixing angle as shown in
Table II. The current quark masses are consistent with
those listed in the Particle Data Group table [36] at a
renormalization scale of about 2 GeV. The �0 mass is
very close to its experimental value. The same is true for
the ratio of the decay constants fK=f	 ¼ 1:25 [compared
to the experimental ðfK=f	Þexp ¼ 1:22]. The pion decay

constant f	, though, is approximately 10% off its experi-
mental value but close to its value at the chiral limit.
Furthermore, it is instructive to compare our result for

the �-�0-mixing angle, ��0 ¼ �29:1�, to the empirical

value. The most recent analysis [37] gives5 � ¼ �29:0�
and agrees perfectly with our result. Note, however, that in
Ref. [37] contributions from the gluon condensate are
included which our model does not explicitly account
for. The left part of Fig. 3 shows the momentum depen-
dence of the resulting dynamical up-quark mass, MuðpÞ,
compared to lattice data from Ref. [34].
The parameters of scenario II (Table III) differ from

those of scenario I only by a four-fermion coupling con-
stantG that is about 15% larger. We see from the calculated

TABLE I. Scenario I parameter set of the Nf ¼ 3 nonlocal
NJL model.

G H mu ms

ð0:96 fmÞ2 �ð0:63 fmÞ5 3.0 MeV 70 MeV

3For the SD equation we use the formulas given in Ref. [25],
while for the separable ansatz we use formulas (2.29) and (2.40).

4Note that the �uu threshold is lower than the �0 mass. Hence,
the integrals determining the �0 mass might be ill-defined owing
to poles in the integration region. Therefore, in fixing the �0
mass, we apply the regularization method described in
Refs. [3,35].

5Note the different definitions of the �-�0-mixing angle in this
work and in Ref. [37]. The cited number � ¼ �29:0� has,
however, already been translated to the definition, Eq. (2.30),
of the mixing angle used in the present work.
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quantities given in Table IV that the pseudoscalar meson
masses and decay constants now agree perfectly with their
empirical values. On the other hand, the magnitudes of the
chiral condensates and the dynamical quark masses Muð0Þ
and Msð0Þ increase, making them less compatible with
common phenomenology. This can easily be understood
from the Gell-Mann–Oakes–Renner relation (2.44) recall-
ing that the current quark and pion masses for scenario I are
the same as for scenario II, while the value of the pion
decay constant of scenario II is increased. The momentum

dependence of the dynamical quark mass, MðpÞ, is shown
on the right-hand side of Fig. 3. In particular, the
�-�0-mixing angle ��0 ¼ �22:3� now differs by 20%

from the deduced empirical value in Ref. [37].
Finally, a comparison with the standard local NJL model

is instructive. From Refs. [4,21–23] one finds the gap
equations

Mu ¼ mu � ~Gh �uui � ~H

2
h �uuih�ssi;

Ms ¼ ms � ~Gh�ssi � ~H

2
h �uui2:

The equivalent coupling strengths ~G and ~H of the local
model can be evaluated by comparison with Eq. (2.19a).

One derives for scenario I ~G ¼ G
�Su

h �uui � 11 GeV�2 and
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FIG. 3. Momentum dependence of the dynamical (constituent) up-quark mass Mu compared with lattice data extrapolated to the
chiral limit (from Ref. [34]). The left figure shows the result for scenario I; the right figure the result for scenario II.

TABLE III. Scenario II parameter set of Nf ¼ 3 nonlocal NJL
model.

G H mu ms

ð1:04 fmÞ2 �ð0:63 fmÞ5 3.0 MeV 70 MeV

TABLE II. Calculated physical quantities using the scenario I parameters of Table I.

h �uui ¼ h �ddi h�ssi Mu ¼ Md Ms

�ð0:282 GeVÞ3 �ð0:303 GeVÞ3 362 MeV 575 MeV

m	 mK m� m�0 f	 fK �� ��0

138 MeV 487 MeV 537 MeV 954 MeV 83.4 MeV 104.1 MeV 3.3� �29:1�

TABLE IV. Calculated physical quantities using the parameters of Table III. (These values
together with the parameters of Table III are referred to as ‘‘scenario II.’’)

h �uui ¼ h �ddi h�ssi Mu ¼ Md Ms

�ð0:304 GeVÞ3 �ð0:323 GeVÞ3 468 MeV 694 MeV

m	 mK m� m�0 f	 fK �� ��0

139 MeV 495 MeV 547 MeV 964 MeV 92.8 MeV 110.1 MeV 1.9� �22:3�
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~H ¼ H
�Su �Ss

h �uuih �ssi � 400 GeV�5, values that lie well in the

ballpark of typical local approaches [4,9–12,21–23].
We will comment further on the influence of the differ-

ent model parameters in Sec. III D when dealing with
thermodynamics resulting from the nonlocal approach.

III. THERMODYNAMICS OF THE NONLOCAL
PNJL MODEL

In this section we apply the nonlocal NJL scheme in the
modeling of QCD thermodynamics. Temperature T and
quark chemical potential � are introduced using the
Matsubara formalism [38]. Important features of the
confinement-deconfinement transition are introduced by
the Polyakov loop which serves as an order parameter for
confinement in the pure gauge case [39,40]. Coupling the
NJL quarks to a gluonic background field, expressed in
terms of the Polyakov loop, allows describing both the
chiral and the deconfinement transitions simultaneously.
The framework for this is the Polyakov Polyakov-loop-
extended nonlocal Nambu–Jona-Lasinio (nonlocal PNJL)
model. It should be noted, though, that the implementation
of the Polyakov loop in NJL type models does not generate
dynamical confinement, but introduces the proper weight-
ing on distribution functions carrying color (quarks and
diquarks) in such a way that these degrees of freedom are
suppressed in the thermodynamic potential below the de-
confinement transition.

A. Polyakov loop and its effective potential

The renormalized Polyakov loop, h�i, is defined
through

h�ð ~xÞi ¼ 1

Nc

htrc½Lð ~xÞ�i; (3.1)

where trc denotes the trace over color only and L is the
Polyakov loop, a timelike Wilson line connecting two
points at t ¼ 0 and t ¼ �i� in imaginary time, with
periodic boundary conditions:

Lð ~xÞ ¼ P exp

�
i
Z �

0
d�A4ð�; ~xÞ

�
: (3.2)

Here P is the path-ordering operator and A4 :¼ Aa
4ta ¼

iAa
0ta is the fourth component (in Euclidean space) of the

gluon field,6 and � ¼ 1=T.
As shown, e.g., in Ref. [39], h�i ¼ 0 implies an infinite

free energy, corresponding to confinement, while h�i ¼ 1
implies a vanishing free energy of the system and, thus,
deconfinement. According to Ref. [40], h�i strictly serves
as an order parameter for the confinement-deconfinement
phase transition only in absence of quarks. But even when

quarks are present h�i is still useful as an indicator for a
rapid crossover transition.
Without loss of generality we can restrict ourselves to

the diagonal elements of the SU(3) Lie algebra (the so-
called Polyakov gauge). We neglect spatial fluctuations
and treat A3

4 and A8
4 as constant fields, so that the Wilson

line (3.6) simplifies to a phase factor eið ~x� ~yÞ �
eiðx4�y4ÞðA3

4
t3þA8

4
t8Þ. The contribution of the nondiagonal ele-

ments of the SU(3) Lie algebra can be included by carrying
out the group integration, leading to the following Haar
volume,

Jð�3; �8Þ ¼ 1

VSUð3Þ

Z Y
i2f1;2;4;5;6;7g

d�i

¼ 2

3	2
ðcosð�3Þ � cosð ffiffiffi

3
p

�8ÞÞ2sin2ð�3Þ;
(3.3)

where we have set �3;8 ¼ �
A3;8
4

2 . This volume can be

written in terms of the Polyakov loop � and its conjugate
��,

Jð�;��Þ ¼ 9

8	2
½1� 6���þ 4ð��3 þ�3Þ

� 3ð���Þ2�; (3.4)

with � ¼ 1
Nc

trc½expðið�3�3 þ�8�8ÞÞ�. This procedure

leads to the construction of the following effective poten-
tial U [7,8] that incorporates the effects of the six non-
diagonal gluon fields:

Uð�;��; TÞ
T4

¼ � 1

2
b2ðTÞ���þ b4ðTÞ ln½1� 6���

þ 4ð��3 þ�3Þ � 3ð���Þ2�: (3.5)

The coefficients are parametrized as

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
;

b4ðTÞ ¼ b4

�
T0

T

�
3
:

The first term on the right-hand side is reminiscent of a
Ginzburg-Landau ansatz. The values of the coefficients are
taken from Ref. [10] and listed in Table V. The potentialU
is manifestly invariant under transformations with ele-
ments of Zð3Þ, the center of SU(3), which is the underlying
symmetry behind the confinement-deconfinement phase
transition.

TABLE V. Parameters of the Polyakov potential U (from
Ref. [10]).

a0 a1 a2 a3 b4

3.51 �2:56 15.2 �0:62 �1:68
6The color SU(3) matrices ta, a 2 f1; . . . ; 8g are defined

through the Gell-Mann matrices �a, a 2 f1; . . . ; 8g as ta :¼ �a

2 .
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The parametrization (3.5) of the Polyakov-loop effective
potential U is applicable at temperatures T up to about
twice the critical Tc. At higher temperatures, transverse
gluon degrees of freedom—not covered by the Polyakov
loop—begin to be important. Other parametrizations ofU
are possible. An example is the two-parameter ansatz [16]
based on the strong coupling limit. These two versions of
U differ at high temperatures but produce very similar
pressure profiles [16] at T & 2Tc, the temperature region
of primary interest in the present study.

B. Coupling of quarks and Polyakov loop

The coupling of the quarks and the Polyakov loop7 � is
introduced by the minimal gauge coupling procedure ap-
plied to nonlocal field theories. This implies, first, a re-
placement of the partial derivative @� by a covariant

derivative D�¼@�� iA�, or in momentum space

p�!p�þA�.
8 Furthermore, in close analogy to the

gauging of theories on a discrete lattice (see, e.g.,
Ref. [41]), one introduces the gluonic fields writing a
Wilson line (compare Sec. II C 5)

W Aðx; yÞ ¼ P
�
exp

�
i
Z y

x
ds�taA

a
�

��
(3.6)

between the (nonlocal) fermionic bilinears, i.e.,
�c ðxÞc ðyÞ ! �c ðxÞW Aðx; yÞc ðyÞ.

In the present context we set

A� ¼ ��4ðA3
4t3 þ A8

4t8Þ;

following our previous discussion, with constant fields

A3;8
4 . The gauge invariant replacement in quark momentum

space is then simply

p4 ! p4 � ðA3
4t3 þ A8

4t8Þ (3.7)

keeping the three-momentum ~p unchanged.
The next step is now the application of the Matsubara

formalism as described in the standard literature (e.g.,
Ref. [38]). The variable p4 is replaced by the fermionic
Matsubara frequency !n ¼ ð2nþ 1Þ	T, n 2 Z and tak-
ing into account the gauging (3.7). The resulting thermo-
dynamic potential in mean-field approximation is9

� ¼ �T

2

X
n2Z

Z d3p

ð2	Þ3 tr ln½�~S�1ði!n; ~pÞ�

� 1

2

� X
f2fu;d;sg

�
��f

�Sf þG

2
�Sf �Sf

�
þH

2
�Su �Sd �Ss

�

þUð�;��; TÞ; (3.8)

with

~S�1ði!n; ~pÞ ¼ i!n�0 � ~� � ~p� M̂� iðA4 þ i�̂Þ�0 0
0 i!n�0 � ~� � ~p� M̂� þ iðA4 þ i�̂Þ�0

 !
; (3.9)

where the momentum-dependent dynamical mass matrix M̂ is diagonal in color and flavor space,

M̂ ¼
diagcðMð!�

u;n; ~pÞ;Mð!þ
u;n; ~pÞ;Mð!0

u;n; ~pÞÞ
diagcðMð!�

d;n; ~pÞ;Mð!þ
d;n; ~pÞ;Mð!0

d;n; ~pÞÞ
diagcðMð!�

s;n; ~pÞ;Mð!þ
s;n; ~pÞ;Mð!0

s;n; ~pÞÞ

0
B@

1
CA

with !�
f;n ¼ !n � i�f � A3

4=2� A8
4=ð2

ffiffiffi
3

p Þ, !0
f;n ¼

!n � i�f þ A8
4=

ffiffiffi
3

p
. Note, that a quark chemical potential

�̂ ¼ diagfð�u;�d;�sÞ has been introduced that will, how-
ever, become important in Sec. III F.10 The trace may be
further simplified leading to

� ¼ �2T
X

f2fu;d;sg

X
i¼0;�

X
n2Z

Z d3p

ð2	Þ3 Refln½!i
f;n

2 þ ~p2

þM2ð!i
f;n; ~pÞ�g �

1

2

� X
f2fu;d;sg

�
��f

�Sf þG

2
�Sf �Sf

�

þH

2
�Su �Sd �Ss

�
þUð�;��; TÞ: (3.80)

This is the thermodynamic potential of the nonlocal PNJL
model in mean-field approximation. The auxiliary scalar
fields �Sf are determined by the SPA conditions,
Eq. (2.19a).

C. Gap equations in mean-field approximation

Once the thermodynamic potential � is calculated, the
fields �u ¼ �d, �s and A3

4, A8
4 can be determined by

requiring thermodynamic potential to be stationary. The

8The coupling strength g is absorbed in the definition of the
fields A�.

10The chemical potential enters the 4 component of the argu-
ment of the mass function according to the same reasoning
applied above for the gauging of the model, taking into account
that � can be considered as an imaginary potential in Euclidean
space.

9Note an extra factor 1
2 because of the doubling of the degrees

of freedom in Nambu-Gor’kov space.

7From here onward we omit angled brackets for notational
simplicity; i.e., we write h�i ! �.
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necessary conditions are given by the gap equations

@�

@ ��u

¼ @�

@ ��s

¼ @�

@A3
4

¼ @�

@A8
4

¼ 0; (3.10)

together with the stationary phase approximation equations
(2.19a). First, we limit ourselves to the zero-density, i.e.,
�̂ ¼ 0, case. Following Refs. [9–11] we have then � ¼
�� in the mean-field approximation and, consequently,
A8
4 ¼ 0.
Figure 4 shows the results for the temperature depen-

dence of the chiral up- and strange-quark condensate and
of the Polyakov loop using the parameters given in Table I
(scenario I) and Table V. This figure illustrates once more,
as already demonstrated in Refs. [2,10,12], the entangle-
ment of chiral dynamics and Polyakov-loop degrees of
freedom, a characteristic feature of the PNJL approach.
In the absence of a coupling between quark quasiparticles
and Polyakov loop the chiral transition (forNf ¼ 3 flavors)

and the first-order deconfinement transition (of pure gauge
QCD) appear at very different critical temperatures
(Tchiral � 110 MeV for the chiral transition and T0 �
270 MeV for deconfinement). The presence of quarks
breaks the Zð3Þ symmetry explicitly and turns the first-
order deconfinement phase transition into a continuous
crossover. The quark coupling to the Polyakov loop moves
this transition to lower temperature. At the same time the
chiral transition (with explicit symmetry breaking by non-
zero quark mass) turns into a crossover at an upward-

shifted temperature, just so that both transitions nearly
coincide at a common temperature Tc � 200 MeV.
This symmetry breaking pattern seems also to be real-

ized in recent lattice QCD results using staggered fermions
[42] where a common chiral and deconfinement transition
temperature Tc ¼ ð196� 3Þ MeV is observed. Figure 4
shows these lattice data for orientation. In the latest work
of the collaboration [43], domain-wall fermions are used
instead of staggered fermions, leading to Tc ¼ 171ð10Þ�
ð17Þ MeV, a value which is consistent with both Tc ¼
196 MeV and alternative lattice computations [44] that
find a lower chiral transition temperature Tc ¼ 151 MeV
and a displacement from the deconfinement transition.
Compared to the Nf ¼ 2 flavor case (Ref. [2]) we ob-

serve only minor changes at this point, in particular, the

transition temperature decreases slightly from T2f
c ¼

207 MeV to T3f
c ¼ 200 MeV. Eventually we comment

that the transition temperature Tc might be decreased
further if one uses a lower T0 in the parametrization of
the Polyakov-loop effective potential. According to
Ref. [45] one has T0 ¼ 190 MeV for 2þ 1 flavors instead
of T0 ¼ 270 MeV for the pure gluon case.

D. Parameter dependence

The chiral and deconfinement transition pattern shown
in Fig. 4 changes only marginally when scenario I (with the
parameter set listed in Table I) is replaced by scenario II
with a slightly larger coupling G. It is instructive also to
examine the dependence on other parameters such as the
current quark mass mu. In the chiral limit, mu ¼ md ! 0,
the chiral condensate displays a second-order phase tran-
sition as expected. Explicit chiral symmetry breaking with
mu;d � 0 turns this into a crossover transition as evident

from Fig. 4 for mu;d ¼ 3 MeV. Increasing the quark mass

to mu;d ¼ 10 MeV makes the crossover softer at T > Tc

while leaving the condensate unaltered at temperatures
below Tc. The reason is that, below the transition tempera-
ture, the dynamical quark mass MðpÞ entering the chiral
condensate in the finite temperature generalization of Eq.
(2.23) is dominated by the large scalar field ��u ’ 0:4 GeV.
Changes of the light quark mass mu;d within a 10 MeV

range are not important compared to that scale, whereas
they become more prominent above Tc where ��u drops
rapidly. The softening of the strange-quark condensate h �ssi
above Tc, as seen in Fig. 4, is much more pronounced,
given the larger s-quark mass ms ’ 70 MeV.
Corrections to the behavior of the chiral condensate and

the pressure below Tc come primarily from thermal pions
(and kaons) as will be discussed in the following
subsection.

E. Beyond mean field: Mesonic corrections

So far the calculations have been performed in the mean-
field approximation in which the pressure P ¼ �� is
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FIG. 4. Results of nonlocal PNJL calculations of the chiral and
deconfinement transition pattern using the parameter set of
scenario I. Left solid curve: temperature dependence of the chiral
condensate h �uui ¼ h �ddi. The strange-quark condensate h�ssi is
shown as the dashed curve. Right solid curve: temperature
dependence of the Polyakov loop �. Left dotted curve: light
quark condensate without coupling to Polyakov loop. Right
dotted curve: Polyakov loop in the absence of quarks (pure
gauge QCD). Also shown are lattice results for the chiral
condensate and the Polyakov loop from the ‘‘hotQCD’’ collabo-
ration [42]. The temperature is given in units of the transition
temperature Tc ¼ 200 MeV.
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determined by the quarks moving as quasiparticles in the
background provided by the expectation values of the
sigma fields, ��u ¼ ��d and ��s, and of the Polyakov loop
�. In order to get a realistic description of the hadronic
phase (at temperatures T & Tc), it is important to include
mesonic quark-antiquark excitations. The hadronic phase
in the absence of baryons is dominated by (the light)
pseudoscalar mesons (pions and kaons). The quark-
antiquark continuum is suppressed by confinement.
However, as pointed out in Ref. [46], mesons described
within the standard (local) PNJL model can still undergo
unphysical decays into the quark-antiquark continuum
even below Tc. In the nonlocal PNJL model, such unphys-
ical decays do not appear by virtue of the momentum-
dependent dynamical quark mass.11 This means that the
pressure below Tc is basically generated by the pion and
kaon poles of the corresponding one-loop q �q Green func-
tions, with their almost temperature independent position.
Therefore the calculated pressure below Tc corresponds to
that of a boson gas with constant masses.

To include the mesonic contributions to the pressure in
our nonlocal PNJL model we can basically use the formal-
ism described in Ref. [46]. One has to calculate
GPS;Sð�m; ~pÞ, Eq. (2.26), and, in particular, the quark loop

contribution to the pseudoscalar (PS) and scalar (S) mes-
onic self-energies PS;Sð�m; ~pÞ (where �m ¼ 2	mT, m 2
Z is the bosonic Matsubara frequency and ~p is the mo-
mentum of the incoming meson), given in Eq. (2.27), at

finite temperature. Using the replacement
R d4p

ð2	Þ4 !
T
P

n2Z

R d3p
ð2	Þ3 and the rules (3.7) this can be carried out

easily. The additional contribution of mesonic quark-
antiquark modes to the pressure is given by a ring sum of
random phase approximation chains, investigated in
Ref. [47] and leading to the expression

PmesonðTÞ ¼ �T
X

M¼PS;S

dM
2

X
m2Z

Z d3p

ð2	Þ3 ln½GMð�m; ~pÞ�;

(3.11)

where dM is the mesonic degeneracy factor (dM ¼ 3 for
pionic and dM ¼ 4 for kaonic modes). Because of the
momentum dependence of the nonlocality distribution
CðpÞ and the dynamical quark masses MqðpÞ, integrations
and summations in Eq. (3.11) can only be carried out
numerically.

Results for the pressure in the presence of pion, kaon,
and scalar modes are presented in Fig. 5.12 Apart from the
full result (solid line) we show the mean-field result (MF,
with the pressure determined by quark quasiparticles only)

and the mean-field result plus pion and corresponding
scalar contributions. It is evident that at low temperatures
the mean-field contribution from the quarks is suppressed
and the pressure can be described by a free meson gas.
Near the transition temperature the scalar mesonic modes
give a small additional contribution. Finally, above tem-
peratures T > 1:5Tc the mesonic contributions become
negligible and the quark-gluon mean fields dominate the
pressure.
The random phase approximation treatment of mesonic

contributions to the pressure allows us, in addition, to get
the corrections to the chiral condensates. Exploiting the
definition of the chiral condensate,

h �qqi ¼
R
DAD �cDc �qqe�SER
DAD �cDc e�SE

¼ @�

@mq

: (3.12)

The pionic corrections to h �uui are computed by differ-
entiating the pion pressure of Eq. (3.11) with respect to
the up-quark current quark mass:

�	h �uui ¼ �@P	

@mu

: (3.13)

It turns out, as expected, that the modification of the chiral
condensate owing to pions is very similar to the results
from chiral perturbation theory (cf., e.g., Ref. [48]). At
temperatures below Tc pions tend to soften the condensate
and make the chiral transition smoother in the range
0:5Tc < T < Tc.
Further quantities of interest are the energy density � and

the trace anomaly, ð�� 3PÞ=T4. The trace anomaly, in
particular, is relevant here since it is the quantity which
can be directly computed in lattice simulations (Ref. [42]).
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MF ,
in medium
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0.1 0.2 0.3 0.4 0.5
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FIG. 5. Pressure (in units of T4) calculated in the nonlocal
PNJL model as a function of temperature on an absolute tem-
perature scale. Solid curve: full calculation (i.e., mean-field
result plus mesonic corrections). Dash-dotted curve: mean-field
result (no mesonic corrections). Dashed curve: mean-field plus
pionic and corresponding scalar modes.

11With the possible exception of the �0 meson which will not be
considered in this section.
12The plot shown in Fig. 5 uses the parameters of scenario I.
The difference between pressure curves calculated from parame-
ter sets I and II turns out to be negligibly small.
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This quantity, representing the trace of the energy-
momentum tensor, is the ‘‘interaction’’ measure which
can be expressed in terms of a derivative of the pressure
with respect to temperature:

�� 3P

T4
¼ T

@

@T

�
P

T4

�
:

From there it is straightforward to calculate the energy
density. Figures 6 and 7 show the results that follow from
Fig. 5 both for the mean-field case and with the additional
inclusion of mesonic (pionic and kaonic) contributions.
Our results are compared to three-flavor lattice data of
Ref. [42].

F. PNJL thermodynamics at finite quark chemical
potential

The nonlocal PNJL approach described in this work can
be extended to finite quark chemical potential �̂ ¼
diagð�u;�d;�sÞ. We do this here with the aim of drawing
a schematic phase diagram in the ðT;�uÞ plane. We set
�̂ ¼ diagð�;�; 0Þ (i.e., we work in the isospin symmetric
case�u ¼ �d and with�s ¼ 0). For the sake of simplicity
we restrict ourselves to a scenario without diquark
condensates.

The introduction of a chemical potential13 is accom-
plished using the prescriptions of the Matsubara formalism
[see Ref. [38] and Eq. (3.9)]: shift the frequencies !f;n !
!f;n � i�f in the particle sector (i.e., in the upper-left

submatrix) of the Nambu-Gor’kov propagator (3.9) and

replace !f;n ! !f;n þ i�f in the corresponding antipar-

ticle sector (i.e., the lower-right submatrix). It is then
straightforward to compute the thermodynamic potential
�ðT; �̂Þ at nonzero �̂, following Eqs. (3.8) and (3.9) with
Matsubara frequencies properly shifted by the chemical
potential.
We focus here on the T and �udependence of the scalar

field ��u that acts as a chiral order parameter, deduced from

the condition @�ðT;�Þ
@ �� ¼ 0. The results are shown in Figs. 8

and 9 for scenarios I and II, respectively. The profile of ��u

displays once again the chiral crossover transition at �u ¼
0. It turns into a first-order phase transition at a critical
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FIG. 7. Energy density �=T4 for the mean-field and random
phase approximation case. (Legend as in Fig. 6.) Lattice data are
borrowed from Ref. [42].
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FIG. 8 (color online). Chiral order parameter ��u for scenario I,
normalized to its value ��0 at T ¼ � ¼ 0, as a function of
temperature and u-quark chemical potential (note �u ¼ �d,
�s ¼ 0). The thick blue line shows the border for the first-order
transition.
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FIG. 6. Trace anomaly ð�� 3PÞ=T4. Dash-dotted curve:
mean-field results. Solid curve: full calculation with inclusion
of pions, kaons, and scalar modes (results for scenario I). For
comparison, three-flavor lattice results from Ref. [42] are shown.

13For convenience we use a quark chemical potential through-
out this work. The corresponding baryon chemical potential is 3
times the u-quark chemical potential, i.e., �B ¼ 3�u.
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(end) point (CEP) (located at TCEP � 170 MeV and
�CEP � 180 MeV for scenario I and at TCEP � 195 MeV
and �CEP � 110 MeV for scenario II). This qualitative
feature is typical for NJL or PNJL type models with or
without explicit diquark degrees of freedom (see, e.g.,
Refs. [9,10,17]). Related work is reported in
Refs. [14,15] where the nonlocality of the fermionic inter-
action is introduced only in the three-momentum sector.
The critical points found in the present calculations differ
both in their T and �u values from the aforementioned
references. Reasons for such differences are given in
Refs. [10,16] where it is pointed out and demonstrated

that the location of the critical point is extremely sensitive
to model details and input parameters.
The projection of Figs. 8 and 9 onto the T-�u plane

gives the phase diagram of the nonlocal PNJL model,
Fig. 10. At low � this phase diagram shows the chiral
and deconfinement crossover transitions in close contact as
already discussed. The deconfinement transition is dis-
played here as a band bounded by dashed lines where the
upper and lower bounds are given by values � ¼ 0:5 and
� ¼ 0:3 of the Polyakov loop, respectively, reflecting the
relatively soft crossover of this transition (see also Fig. 4).
At larger values of the chemical potential, beyond the
critical point, a separation between the chiral and decon-
finement transition takes place.
The area between the (first-order) chiral phase transition

and the deconfinement crossover has recently been inter-
preted in terms of a ‘‘quarkyonic’’ phase [49]. It should be
pointed out, however, that, at nonzero baryon densities and
low temperature, PNJL type models are only schematic
and cannot be considered as realistic. From Fig. 10 it
appears that the chiral first-order transition boundary meets
the � axis at T ¼ 0 for values of the baryon chemical
potential as small as �B ¼ 3�< 0:9 GeV. This is the
domain of nuclear matter that is known to be a Fermi liquid
of nucleons. The PNJL model works instead with quarks as
quasiparticles, the ‘‘wrong’’ degrees of freedom in this
low-temperature phase at moderate baryon densities.
The deconfinement transition band at large � has been

calculated using the Polyakov-loop effective potential
(3.5). This effective potential does not include higher order
effects due to the presence of quarks at nonzero chemical
potential. Such additional �-dependent effects are ex-
pected to move the crossover boundary to lower tempera-
tures as � increases [50,51].
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FIG. 10 (color online). Phase diagram calculated within the nonlocal PNJL model using the parameters of scenario I (left picture)
and scenario II (right picture). The solid blue line shows the first-order chiral transition (the star denotes the critical end point). The
short-dashed blue line marks the (chiral) crossover transition while the long-dashed black lines correspond to the deconfinement
transition (the lower and upper lines correspond to � ¼ 0:3 and � ¼ 0:5, respectively).
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FIG. 9 (color online). Same as in Fig. 8, for parameters of
scenario II. The major difference between Figs. 8 and 9 is the
location of the critical point: ð�CEP; TCEPÞðIÞ ¼
ð180 MeV; 170 MeVÞ compared to ð�CEP; TCEPÞðIIÞ ¼
ð115 MeV; 195 MeVÞ.
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Figure 10 demonstrates that the position of the critical
point is sensitive to small changes of the four-fermion
coupling G. The relatively small increase of this coupling
strength between scenarios I and II, keeping hadronic
vacuum properties at T ¼ � ¼ 0 almost unchanged, re-
sults nevertheless in a significant shift of the critical point
in the ðT;�Þ plane.

We also confirm that the phase structure is sensitive to
variations of the ’tHooft interaction coupling strength H
(see Fig. 11). An increase of H by only 5% turns the chiral
transition even at �u ¼ 0 into a first-order transition. This
behavior might be expected considering the Columbia plot
(Ref. [52]). On the other hand, a decrease of H, corre-
sponding to a reduced �0 mass in the thermal medium,
moves the end point to higher chemical potentials and
lower temperatures. The sensitivity to the axial anomaly
observed here in the nonlocal PNJL model is, however, less
pronounced than that in the local model (Refs. [16,53]). We
do not observe that the end point is removed altogether
from the phase diagram as quickly as in the local PNJL
model.

Finally, using Eq. (3.80) we calculate the pressure P ¼
�� at finite chemical potential. In Fig. 12 the (normal-
ized) pressure difference

�PðT;�uÞ :¼ PðT;�uÞ � PðT;�u ¼ 0Þ (3.14)

is shown for selected values of �u ¼ �d and compared to
(2-flavor) lattice data from Ref. [54]. Figure 13 displays the
full result in the T-�u plane. Both figures have been
obtained using the parameter set of scenario I.

As already mentioned, the pictures drawn in Figs. 8–10
are to be taken as only schematic, for several reasons. First,
the location of the critical point is sensitive not only to the
coupling strengths G and H, but also to the input current
quark mass [10]. Second, the almost constant behavior of

��uðT ¼ 0; �uÞ with increasing quark chemical potential is
unrealistic in the absence of explicit baryon (nucleon)
degrees of freedom including their interactions.
Establishing a connection between a realistic nuclear equa-
tion of state, based on chiral effective field theory, and
highly compressed matter at high baryon densities, is in-
deed one of the prime challenges for further investigations.
What is actually required as a starting point for exten-

sions to nonzero chemical potential is a realistic equation
of state at finite baryon density, incorporating the known
properties of equilibrium and compressed nuclear matter.
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FIG. 12 (color online). Pressure difference at finite chemical
u-quark potential, �PðT;�uÞ ¼ PðT;�uÞ � PðT; 0Þ (parameters
of scenario I) for selected values of �u compared to lattice data
from Ref. [54].
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FIG. 13 (color online). Excess pressure �PðT;�uÞ ¼
PðT;�uÞ � PðT; 0Þ at finite chemical u-quark potential calcu-
lated in the nonlocal PNJL model in units of T4 for scenario I.
The thick solid blue line indicates the chiral crossover and first-
order transition line.
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FIG. 11 (color online). Location of the critical point depending
on several values of the ’t Hooft coupling strength H in units of
the coupling strength H0 of scenario II.
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In such a framework [55], the density dependence of the
chiral condensate h �uui (or of the scalar field ��u) is well-
known to be quite different from the profile shown in
Figs. 8 and 9. The magnitude of h �uui decreases linearly
with density � [56], with a slope controlled by the pion-
nucleon sigma term, and then stabilizes at densities above
normal nuclear matter through a combination of two- and
three-body correlations and Pauli blocking effects. The
transition towards chiral symmetry restoration at T ¼ 0
is shifted beyond at least twice the density of normal
nuclear matter [55].

Irrespective of these comments, the nonlocal PNJL ap-
proach is obviously instructive in modeling the chiral and
deconfinement thermodynamics at �̂ ¼ 0. Dealing with
finite baryon density requires ultimately yet another syn-
thesis, namely, a matching of PNJL above the chiral tran-
sition and in-medium chiral effective field theory with
baryons below that transition.

IV. CONCLUSIONS AND OUTLOOK

We summarize our findings as follows:
(i) The nonlocal generalization of the PNJL model to

Nf ¼ 3 flavors incorporates all important nonpertur-

bative features of low-energy QCD with inclusion of
strange quarks: spontaneous and explicit chiral sym-
metry breaking, the axial anomaly, and thermody-
namical aspects of confinement in terms of the
Polyakov loop. A separable form of the underlying
nonlocal effective interactions between quarks, in-
cluding the axial Uð1ÞA breaking six-fermion vertex,
proves to be successful in reproducing the physics of
the pseudoscalar meson nonet. Chiral low-energy
theorems are shown to be fulfilled.

(ii) At the level of generalized gap equations, the result-
ing momentum-dependent quark (quasiparticle)
masses permit establishing connections with instan-
ton physics, lattice QCD, and (Landau gauge)
Schwinger-Dyson approaches. The nonlocality dis-
tribution of the effective interaction between quarks
reflects typical instanton sizes of about 1=3 fm. This
distribution replaces the artificial sharp momentum
space cutoff in standard (local) NJL type models and
links the quark mass function MðpÞ smoothly to the
correct QCD behavior at large momentum scales.

(iii) The thermodynamics of the three-flavor nonlocal
PNJL model reproduces corresponding Nf ¼ 2þ 1

lattice QCD results with almost physical quark
masses surprisingly well. In particular, the dynami-
cal entanglement of the chiral and deconfinement
crossover transitions observed previously in two-
flavor PNJL models is confirmed also for Nf ¼ 3.

The interaction measure �� 3P is well reproduced
around the critical temperature Tc ’ 0:2 GeV.
Mesonic contributions to the pressure can be sys-
tematically incorporated.

(iv) The critical point in the phase diagram and its loca-
tion in the plane of temperature T and baryon chemi-
cal potential �B remain an open issue. The position
of this critical point turns out to be extremely sensi-
tive to fine-tunings of parameters (quark masses,
coupling constants), as already found in previous
studies.

(v) Previous calculations at large quark chemical poten-
tials, using local PNJL models, were limited by the
momentum space cutoffs characteristic of such mod-
els. While these limitations are overcome in the
nonlocal PNJL approach, one must still be aware
of the fact that, at low temperatures and moderate
baryon densities, PNJL models do not operate with
the proper nucleon degrees of freedom relevant at
such densities. In the baryonic phase around and
below �B 	 1 GeV, the phase diagram should rep-
resent a nuclear Fermi liquid and not a quarkyonic
quasiparticle system.
Implementing the constraints from realistic nuclear
or neutron matter equations of state on the QCD
phase diagram remains a challenge for the future.
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APPENDIX A: DERIVATION OF THE ’THOOFT
INTERACTION

In this appendix we show how the Kobayashi-
Maskawa-’t Hooft determinant expression, Eq. (2.6), can
be cast into the form used in this work, Eq. (2.8).
In order to write the ’t Hooft determinant in a more

tractable way, we apply Newton’s and Girard’s formula

detJ� ¼ 1
6ðtrJ�Þ3 � 1

2ðtrJ�ÞðtrðJ�Þ2Þ þ 1
3 trðJ�Þ3:

(A1)

Here tr indicates the trace over flavor space only. We use
the Gell-Mann matrices as a basis in flavor space,

f�0; �1; . . . ; �8g, with the additional definition �0 :¼ffiffiffiffiffiffiffiffiffiffiffið2=3Þp
diagð1; 1; 1Þ in order to maintain trf�� � ��g ¼

2��� for all �, � 2 f0; . . . ; 8g. This allows us to write

J � ¼ X8
�¼0

c����()trf��J�g ¼ 2c�� (A2)

and, consequently, c�� ¼ 1
2 trf��J�g.

Furthermore, from Eq. (2.6) we have with the definitions
(2.5)
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1

2
trf��J�ðxÞg ¼ 1

4

Z
d4z�ij

�
�c i

�
xþ z

2

�

� ð1� �5ÞCðzÞc j

�
x� z

2

�

¼ 1

4
jS�ðxÞ � 1

4i
jP�ðxÞ:

By means of Eq. (A2), this allows to write c�� ¼ 1
4 j

S
� �

i
4 j

P
�, or, inversely, j

S
� ¼ 2ðcþ� þ c�� Þ, jP� ¼ �2iðcþ� � c�� Þ.

Next, we return to Newton’s and Girard’s formula,
Eq. (A1), and use

tr ðJ�Þ ¼ 2

ffiffiffi
3

2

s
c�0 ;

trðJ�Þ2 ¼ trðc����c
�
���Þ ¼ c�� c��2��� ¼ 2c�� c�� ;

trðJ�Þ3 ¼ c�� c��c
�
� trð������Þ:

Inserting this into Eq. (A1), one has

detJþ þ detJ� ¼ 2

ffiffiffi
3

2

s
½ðcþ0 Þ3 þ ðc�0 Þ3� � 2

ffiffiffi
3

2

s
½cþ0 cþ� cþ�

þ c�0 c
�
� c

�
� � þ ½cþ� cþ�cþ�

þ c�� c��c�� � trð������Þ:
Now, using the relations between the c’s and the currents
jS, jP, we have

ðcþ0 Þ3 þ ðc�0 Þ3 ¼ 2Re½ðcþ0 Þ3�
¼ 1

32
jS0ðjS20 � 3jP

2

0 Þ;
cþ0 cþ� cþ� þ c�0 c�� c�� ¼ 2Re½cþ0 cþ� cþ� �

¼ 1

32
½jS0ðjS2� � jP

2

� Þ � 2jP0 j
S
�j

P
��;

cþ� cþ�c
þ
� þ c�� c��c

�
� ¼ 2Re½cþ� cþ�cþ� �

¼ 1

32
½jS�ðjS�jS� � jP�j

P
�Þ

� jP�ðjS�jP� þ jS�j
P
�Þ�:

Inserting this in the previous formula leads to

detJþ þ detJ� ¼ 1

16

ffiffiffi
3

2

s
jS0ðjS20 � 3jP

2

0 Þ

� 1

16

ffiffiffi
3

2

s
½jS0ðjS2� � jP

2

� Þ � 2jS�j
P
0 j

P
��

þ 1

96
½jS�jS�jS� � 3jS�j

P
�j

P
��;

where the summation over �, �, � 2 f0; . . . ; 8g is implicit.
Finally, using the SU(3) structure constants fk‘m, dk‘m,

defined through ½�k; �‘� ¼ 2ifk‘m�m and f�k; �‘g ¼
4
3�k‘ þ 2dk‘m�m, respectively, one obtains �k�‘ ¼

ifk‘m�m þ dk‘m�m þ 2
3�k‘ and, hence,

tr ð�k�‘�iÞ ¼ 2ifk‘m�mi þ 2dk‘m�mi (A3)

(for k, ‘, m, i 2 f1; . . . ; 8g) which allows us to write

detJþ þ detJ� ¼ 1

48

ffiffiffi
2

3

s
ðjS30 � 3jS0j

P2

0 Þ

� 1

32

ffiffiffi
2

3

s
ðjS0jSkjSk � jS0j

P
k j

P
k � 2jSkj

P
0 j

P
k Þ

þ 1

48
d‘kmðjS‘jSkjSm � 3jS‘j

P
k j

P
mÞ;

where, again, ‘, k, m 2 f1; . . . ; 8g.
If one sets

A ��� :¼ 1

3!
"ijk"mn‘ð��Þimð��Þjnð��Þkl

for �;�; � 2 f0; . . . ; 8g;
(A4)

then the expression above can be written in a more compact
form as

detJþ þ detJ� ¼ 1

32
A���ðjS�jS�jS� � 3jS�j

P
�j

P
�Þ: (A5)

This is the form given in Eq. (2.8), with the coupling
constant properly adjusted.

APPENDIX B: SECOND-ORDER CONTRIBUTIONS
TO THE ACTION

We demonstrate how the expressions for the inverse
meson propagators, GP, can be derived. The self-energy
contribution ij can easily be derived from the fermion

determinant, Eq. (2.120), using the following formulas for
the functional derivatives:

�

�	ijðkÞ lndetÂ ¼ �

�	ijðkÞ Tr lnÂ

¼ Tr

�
Â�1ðp; p0Þ�Âðp

0; p00Þ
�	ijðkÞ

�
;

�

�	ijðkÞ Â
�1 ¼ �Â

�Â

�	ij

Â�1:

Moreover, owing to the SPA equations, Eq. (2.13), the
auxiliary fields14 S�, P� are implicit functions of � and 	.
This implies calculating the second derivative of the ex-
pression

~S E :¼ ��S� þ 	�P� þG

2
ðS�S� þ P�P�Þ

þH

4
A���ðS�S�S� � 3S�P�P�Þ:

14From now on we omit the tildes on ~S�, ~P�.
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Neglecting first the space dependence of the fields we may
first introduce the matrices �$ ¼ 1ffiffi

2
p ���� and 	$ ¼

1ffiffi
2

p 	���. The SPA equations (2.13) in this new basis then

read

ffiffiffi
2

p
�$þGS��� þ 3H

4
A�����ðS�S� �P�P�Þ ¼ 0; (B1a)

ffiffiffi
2

p
	$þGP��� � 3H

2
A�����S�P� ¼ 0: (B1b)

From the first derivative of Eq. (B1a),

0þG
�S�
�	ij

�� þ 3H

4
A�����

�
2S�

�S�
�	ij

� 2P�

�P�

�	ij

�

¼ 0;

it follows that �S�
�	ij

¼ 0 for all � 2 f0; . . . ; 8g and i, j 2
f1; 2; 3g, recalling that P� ¼ 0 for all � in mean-field
approximation. The second derivative of Eq. (B1a) leads to

G��

�2S�
�	k‘�	ij

þ 3H

2
A�����S�

�2S�
�	k‘�	ij

¼ 3H

2
A�����

�P�

�	k‘

�P�

�	ij

: (B2)

Analogously, one has from the second equation

ffiffiffi
2

p
�im�jn þG

�P�

�	ij

ð��Þmn � 3H

2
A���ð��ÞmnS�

�P�

�	ij

¼ 0

or, by contraction with ð��Þnm,

G
�P�

�	ij

� 3H

2
A���S�

�P�

�	ij

¼ � 1ffiffiffi
2

p ð��Þij: (B3)

Finally, from the second derivative

0þG
�2P�

�	k‘�	ij

ð��Þmn � 3H

2
A���ð��ÞmnS�

�2P�

�	k‘�	ij

¼ 0;

and it follows that �2P�=�	k‘�	ij ¼ 0 for all �, i, j, k, ‘

in mean-field approximation. The sum of the SPA equa-
tions gives

��S� þ 	�P� þGðS�S� þ P�P�Þ
þ 3H

4
A���ðS�S�S� � 3S�P�P�Þ ¼ 0;

so that one can write

~SE ¼ � 1

2
GðS�S� þ P�P�Þ

�H

2
A���ðS�S�S� � 3S�P�P�Þ:

Finally, applying identities (B2) and (B3) we may deduce
the desired derivative

�2 ~SE

�	k‘�	ij

¼ 1ffiffiffi
2

p ð��Þij
�P�

�	k‘

:

We conclude that the additional term is given by the
solution of relation (B3) contracted by ��,

G
�P�

�	ij

ð��Þmn � 3H

2
A���ð��ÞmnS�

�P�

�	ij

¼ � ffiffiffi
2

p
�im�jn;

this can be further simplified by noting S� ¼ 1
2 trð��SÞ and

A ���ð��ÞmnS�
�P�

�	ij

¼ 1

3!
"rsk"uv‘ð��Þruð��Þsvð��Þk‘

� 1

2
Stð��Þttð��Þmn

�P�

�	ij

¼ 1

3
"ntk"mt‘

�P�

�	ij

ð��Þk‘St:

Consequently, the equation to be solved is

Gð��Þmn

�P�

�	ij

�H

2
"knt"t‘mStð��Þk‘

�P�

�	ij

¼ � ffiffiffi
2

p
�im�jn:

Defining ðrij;mnÞ�1 :¼ 1ffiffi
2

p ð��Þmn
�P�

�	ij
we may write

�2 ~SE

�	k‘�	ij

¼ �ðrij;k‘Þ�1; (B4)

where rij;k‘ solves the system given in Eq. (2.28).

Finally, we consider the functional derivative of terms of
the form

R
d4xS�ðxÞS�ðxÞS�ðxÞ, etc. The first derivative

with respect to 	ijðyÞ generates a � function, �ðx� yÞ,
hence

Z
d4xS�ðxÞS�ðxÞS�ðxÞ ! S�ðyÞS�ðyÞS�ðyÞ:

The second derivative with respect to 	k‘ðzÞ generates an
additional �ðy� zÞ. This means that in mean-field approxi-
mation the functional dependence of the fields after a
Fourier transformation is given by

r�1
ij;k‘

Z
d4yd4ze�ip�ye�ip0�z�ðy� zÞ�	ijðyÞ�	k‘ðzÞ

¼ r�1
ij;k‘�	ijðpÞ�	k‘ð�pÞ:

Treating analogously the contributions from the� field, we
arrive at Eq. (2.25).
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