PHYSICAL REVIEW D 81, 074032 (2010)
Nonrelativistic QCD predictions of D-wave quarkonia 3D J(J =1, 2, 3) decay

into light hadrons at order «;

3
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In this paper, in the framework of nonrelativistic QCD we study the light hadron (LH) decays of the

spin-triplet (S = 1) D-wave heavy quarkonia. The short-distance coefficients of all Fock states in the 3D,
(J =1, 2, 3) quarkonia including the D-wave color singlet, P-wave color octet, and S-wave color singlet
and color octet are calculated perturbatively at a7 order. The operator evolution equations of the four-
fermion operators are also derived and are used to estimate the numerical values of the long-distance
matrix elements. We find that for the c¢¢ system, the LH decay widths of (1°D;) predicted by
nonrelativistic QCD 1is about 2 ~ 3 times larger than the phenomenological potential model results,
while for the bb system the two theoretical estimations of I'(Y(1°D,) — LH) are in coincidence with each
other. Our predictions for (13D,;) LH decay widths are I'(#(1°D,) — LH) = (435, 50, 172) keV for
J=1,2,3;and for Y(1*D,), [(Y(1*D,) — LH) = (6.91,0.75,2.75) keV for J = 1, 2, 3.

DOI: 10.1103/PhysRevD.81.074032

L. INTRODUCTION

The production, decay, and mass spectrum of heavy
quarkonium have been interesting topics since the first
charmonium state J/ i was discovered in 1974. Because
of their large mass scales and nonrelativistic nature, heavy
quarkonia are good probes to study and understand quan-
tum chromodynamics (QCD) from both perturbative and
nonperturbative aspects. In fact, one of the earliest appli-
cations of QCD is to calculate the inclusive decay rates of
heavy quarkonia. In early times, it was assumed that such a
decay process can proceed through two steps. First, the
heavy quarkonium transforms into a free QQ pair, which is
a long-distance nonperturbative effect. Then, the heavy-
quark pair annihilates into light hadrons (LH) through
gluons, which can be calculated perturbatively. In the non-
relativistic limit, the long-distance part is related to the QQ
Schrodinger wave functions or their derivatives at the
origin. In this picture, the free QQ are in color singlet
and have the same quantum numbers J7€ as the bound state
heavy quarkonium. This is referred to as the *“‘color-singlet
model.” Explicit calculations at next-to-leading order
(NLO) in a; for S-wave quarkonium decays support the
color-singlet model factorization formula. But it breaks
down in the calculations of P-wave [1,2] and D-wave
[3,4] heavy quarkonium LH decays at a7 order, where
infrared divergences appear. Phenomenologically, these
infrared divergences are regularized by the binding energy
of Q0 bound states.

In Ref. [5], Bodwin, Braaten, and Lepage first intro-
duced the color-octet matrix elements to absorb the infra-
red logarithms, then they developed nonrelativistic QCD
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(NRQCD) effective field theory [6], based on which the
inclusive decay rate of heavy quarkonium can be given by a
rigorous factorization formula, and calculated in a system-
atic way by double expansion of «, the coupling constant
of QCD, and v, the typical velocity of heavy quarks in the
heavy quarkonium. In their formula, heavy quarkonium is
treated as a superposition state of |QQ), |0Q0g), |00gg),
and other higher order Fock states, rather than the |QQ)
color-singlet state only. The contribution of each Fock state
is organized in powers of v?, and can be written as a
product of the long-distance matrix element and the corre-
sponding short-distance coefficient. Huang and Chao [7]
first got the infrared finite LH decay width of the spin
singlet P-wave state, h., with QCD radiative corrections
in the framework of NRQCD. The decay widths of ., —
LH were calculated to «? order in Refs. [8,9]. Complete
and detailed results of color-singlet and octet short-
distance coefficients of S-wave and P-wave spin-triplet
states were given in Ref. [10]. In Refs. [10,11], the authors
also explained why the infrared divergences disappear in
the NRQCD factorization approach.

NRQCD is now a widely accepted effective field theory
for heavy quarkonium. In the framework of NRQCD, lots
of theoretical work has been done to study S- and P-wave
quarkonium decays, and some significant successes have
been achieved (for a review see Ref. [12]). Recently, the
order v’ results of S- and P-wave heavy quarkonium
inclusive hadronic decays were obtained by Brambilla
et al. [13]. However, compared with S- and P-wave heavy
quarkonium, little work has been done on D-wave states in
NRQCD. In this paper, we will calculate the LH decay
widths of spin-triplet D-wave states °D; (J =1, 2, 3).
Here the subprocesses 3St"8) — LH and 3P — LH at
leading-order (LO) in v? are all included, in which the
short-distance coefficients are calculated in a different way
and in agreement with the results in Ref. [10]. As the main
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part of these D-wave quarkonium decays, the infrared safe

short-distance coefficients of 3D51] — LH are first obtained
in this paper. We use the covariant projection method,
which was first introduced in [14] and generalized in
Refs. [10,15], to do the perturbative calculations. At LO
in v2, the long-distance matrix elements of color-singlet
D-wave four-fermion operators are related to the wave
function’s second derivative at the origin. And the matrix
elements of the S-wave and P-wave octet and of S-wave
singlet four-fermion operators could be studied in lattice
simulations, or determined by fitting experimental data, or
roughly estimated through velocity scaling rules. To give
numerical predictions, here we use operator evolution
equations to estimate the values of the matrix elements.
The rest of our paper is organized as follows: In Sec. II, we
briefly introduce the NRQCD effective field theory and
give the general formulas used in D dimension. In Sec. III,
all the subprocesses will be calculated to a3 order. And
after matching the full QCD results with the NLO NRQCD
ones, the infrared safe short-distance coefficients as well as
the operator evolution equations are obtained in Sec. I'V. In
Sec. V, we will discuss the numerical results and their
phenomenological applications to ¢ and bb systems.

II. GENERAL FORMULAS
The Lagrangian for NRQCD is [6]

L xroep = Liight T Leavy + 6L, (D

where Lo includes gauge field and light quark parts, and
£heavy is the nonrelativistic Lagrangian for the heavy
quarks and antiquarks:

2

. D . D?
£heavy = lzbJr(lDt + )¢ + )(T(ID, - )Xr )
2mg 2mg

where i and ! are the Pauli spinor fields that annihilate
heavy quark and antiquark, respectively, and D, and D are
the time and space components of the gauge-covariant
derivative D*. 8§ L describes the relativistic effects. The
leading-order v? corrections are the bilinear terms:

6£bilinear = %[lPT(Dz)Zﬁb - XT (D2)2X]

t e 2[W(D ¢E —E - gD)y
+X*(D'gE—E'gD)X]

%[W(in X gE — gE X iD) - of
+ xt(iD X gE — gE X iD) - o]

Mo
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where c¢; could be obtained by using the Foldy-
Wouthuysen-Tani transformation [16], diagonalizing the
Dirac theory so as to decouple the heavy-quark and anti-
quark degrees of freedom. To reproduce the full QCD
Lagrangian and to describe the annihilation of the heavy-
quark pair, four-fermion local operator terms are also
needed:

fn(/-LA)
Q

5£4 -fermion — Z o (IU’A) (4)

where O, (u ) is the local four-fermion operator with the
general form (Y1 I x)(xTKip), and f,(ny) is the
Wilson coefficient. In effective theory both operators and
coefficients are dependent on the factorization scale w,,
but their combinations cancel the dependence. With the
help of the optical theorem the inclusive decay rate of a
heavy quarkonium state H could be expressed as

F(H - LH) = 21In<l—1|5-£4 fermion|H>

= 3 2D 10, (uim). 5)
n mQ

In principle, we need infinite terms to give theoretical
predictions, but in practice only a finite number of these
terms are needed to give an order of v? result, since the
long-distance matrix elements can be ordered in powers of
v? by applying the velocity scaling rules summarized in
Ref. [6]. And the short-distance coefficients (Wilson co-
efficients), defined in the matching condition below, can be
calculated perturbatively as a perturbation series in QCD
coupling constant a

A (QQ — QQ)lpertQCD
— Zf"(MA) <QQ|(9QQ(MA)|QQ>|pert NRQCD-
(6)

When quark and antiquark are in a particular angular
momentum state J and color state 1 or 8, the imaginary part
of the left-hand side of Eq. (6) can be calculated with the
covariant projection method [10]:

ZImﬂ((QQ)E;ﬁ]LJ - (QQ)E;F]L )lpertQCD
<@(2S+1L1)>QCD

< [¥ |m<<QQ)£!ﬁL

— LH)|2dP,

(7)

where (O(*S*'L)))ocp equals to the corresponding
NRQCD four-fermion operator expectation value at tree
level, L is the orbital angular momentum, S is the total spin

074032-2



NONRELATIVISTIC QCD PREDICTIONS OF D-WAVE ...

of the heavy-quark pair, and K is the degree of freedom of
the initial state. For spin-triplet states with L =0, L = 1,

and L = 2, the relations between .7\/1(QQ)[1 81 and the full
QCD Feynman amplitude M are

M(Q0)s™ — LH) = I TCIIP M]|, . (8a)

_ _ d
M(QO); —LH)= ea’;']d— T CITLP M]| =, (8b)

1 o) @
“abr dq.dq,

X Te[ TP M| o, (8¢

M(QQ), —LH)=

P D oo
where €, €qp, and Ea;% , are the polarization tensors for

L = S, P, D states with total angular momentum 1, P,, D,
respectively. For spin-triplet states, the spin projector of the
incoming heavy-quark pair accurate to all orders of v? is
[15]

= 2\/_(E1+ mQ)< ?”HmQ)

where P* is the four momentum of the heavy meson and
P? = 4F?, and 2¢* is the relative momentum between the

quark and antiquark. The color projectors are Cl! = %,’-
and C[S] = \/E(Ta)t,]
In the Fock space, the (3D, ) states are represented by

’D,) = 0(1)|@0CG DY) + Ow)|QOC P
+ 0| QOGS + ... (10)

Here, the probability of P-wave and S-wave states are
suppressed by v? and v* relative to the D-wave state,
respectively, but their operators scale as v~2 and v™*
relative to O,(*D,). The relativistic effect and other Fock
state contributions are suppressed at least by v>. Thus at
leading order in v? the NRQCD formula for D decay into
LH is

PHYSICAL REVIEW D 81, 074032 (2010)

F(3D] — LH)
= 21mf(3D[jl])<‘/’(3D1)|(91’S6QDJ)|¢(3DJ)>
+ Z 2 tmpps) FCPAIOPo 14 CD,)
o
+ 2Imf(3S[8]) <¢(3D1)|@8(%S )l lp(SDJ»
1 mQ
+21mf<3sgu)<¢<3 ,)|@1<3s Iy CD,)
mo
(1D
where the four-fermion operators are defined' as
ox x'oy. (12a)
05CS) = ylaTx xtaTey, (12b)

0y0P) = 305D (5B o)rew, (120

(98(3P)—%¢( DXO’)T“/\/ X(;BXU)T%&,

(12d)
0s(P,) = % l//‘f(%’ ‘f)("af))Ta XX*(%’ i)’“aﬁ)Ta ¥,

(12e)
0,CD)) —W‘NKU(XTK"P (12f)
0,(D,) = 12N (12g)
0,(D) = U Ky Ky (12h)

The notations K are K'= o/SV, KV = e*lg!Sik +
eMlglsik Kik = grigit + gigki + kil — %0.1(5]'1{511 +
8kiSI + §'SK), where S = (5)X(D'D/ — 1D*8Y).

For some processes, we need to calculate the NLO QCD
corrections. To handle the ultraviolet (UV) and infrared
(IR) divergences in the dimensional regularization scheme,
one should extend the projection method into D = 4 — 2¢
dimensions. The definitions of y matrixes in D dimensions
can be found in quantum field theory books. And the sums
over polarization tensors EE;S], eEf;;], and € of)Bjr]) in D dimen-

sion are

'The normalizations of the color-singlet four-fermion opera-
tors agree with those in Ref. [10]
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Ze(l) e 11, (13a)
1
0) (0 _
Zeap €ary = =7 Nap oyt (13b)
1
e
€ap a’p’ —E(H pr/ - /H o ) (130)
1
@) (2
Zé'ap a'p! 5 /H ’+Hap’Ha’p) H Ha’p’: (13d)
D—1
M = _
2611/,3,0 a,B, ,-m(ﬂapnalp/nlgﬁ/ + HBPH,BIPIHQQ/ + H“PHB/p/HalB +HﬁPH0z'p/HC¥B'
_ﬁ(napﬂa/ﬁ/ﬂﬁp/+HBpHa!B!Hap!+Ha/p/H BHB/ +HB/ /HaIBHa/p)
4
(D 3B = U Y § O ) (13e)
1
@ @ _
Zeaﬁp a/,B/ ,—6( Haa’HBB’H /+2H B/H /BH Haa/HBp/HPB/ —Haﬁ/Hﬁp/Hpa/ _HaPIHBBIHPaI
1
—Hap/HBa/HpB/)+m(—4HaBHa/B/HPP/+2Hap/Ha/ﬂ«HBp~I—2HapHBp/Ha/B/
+2Ha,3Ha/pHB’p/+2H0(BHB/pHa/p’_HaB/Ha/p/H,BP_HOZPH(X’,BHB/p/_Haa’/HﬁpHﬁ’p/
_HQPHBB/HQ/P/)’ (13f)

) B
Z ea,Bp o' By
1

+ ! ! / -
Moy MM parll, ) 3(D+1)

+ HOZPH,B,B/HD(/p/ + HQ’PH,BP/HOZ/,B/ + H,BpHao/H,B’p’ + H,BPHQ/B/H

And the degrees of freedom are D — 1 for the S-wave state;
1, (D 1)(0 2 DFDD=D) fop 7 — 0, 1, 2 P-wave states; and
D1, 2 (- 3)(D3 1)ED+1) D=2 DO+ g ] — 12 3
D-wave states. The rather trivial extensions for L =0
and 1 cases were given in Ref. [10]. Here three principles
are adopted to construct the nontrivial results for the
D-wave case. First, the symmetry of the three indexes
should be kept; second, the inner products between one
tensor and the other two are zero; third, the completeness
condition should be satisfied:

(1) (1)* 2 @)= (3) ()=
Zeaﬁp ot Zeaﬁp a’,B’ o+ Zeaﬂp a/B

= <§(Haa/H,BB’ + Ha/,B’Ha’,B)

1

—mﬂaﬁﬂa/ﬁ/)ﬂpp/. (14)
We calculate the degrees of freedom of each 3D state with
group theory and get Eq. (13e). Then we derive out
Eq. (13g) with the help of the first two principles. In the end

(13f) = (14) — (13e) — (13g).
To get the NLO NRQCD results, the operator mixing
equation (15) between P-wave and D-wave operators in

1
= ¢ Maallggllyy + Mool gy Il g 4 oMl gor I+ o1l gL, + o Mg TL

(HQ.BHPCY/Hﬁ'P/ + HaﬁHpﬁ/Ha/p/ + HaBpr«Ha/B/ + HapH,Ba’HB/p’

a'p! + H,BpHap’Ha’,B’)' (13g)

|
momentum space should also be extended into D dimen-

sion for consistency:

3 Cr10,((00), 10CD,)IQ0),)

= (Q0): |OCP)I(QD)p )i §.  (15)

where Cp, p, are the generalized Clebsch-Gordan coeffi-
cients:

|6aﬁp(D1) *(51)62(S=1)|2

CP/’DJ - (D)

: 16
€D B D) (10)

where the repeated indexes mean being summed in D
dimension.

After resolving the above problems, one can do calcu-
lations from both full QCD and NRQCD straightforwardly.

II1. FULL QCD CALCULATION

In Sec. II, it has been explained that at leading order of

v? the LH decays of 3D, contain the subprocesses of

00';™. 00F) (7 =0.1,2). and Q0F) (J =0.1,2.3)
J J
anmhllatmg into gluons or light quarks. When doing the
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k1 (000000 kl
D/m< . +k1, k2exchanged
k2 000000 k2

QO — a7 (QQ), — g9

FIG. 1. Feynman diagrams for (QQ)EE;] — qq, (QQ)E? —
1 02
88-

calculation with full QCD theory, for simplicity, only the
explicit imaginary part of A is given here

2ImA((Q0)5, — (Q0)™, lperiacn

1 _ _
=< [ S 190, —LryPac.

a7)
In the following subsections, the contributions at a% order,
and the corresponding real and virtual corrections will be
given in Secs. III A, III B, and III C respectively. As for the
processes whose tree level diagrams are already at a3
order, their results will also be given in Sec. III B.

A. LO results

There are three subprocesses (QQ)ESS] —qq, (QQ)E% -
1 0,2

gg with nonvanishing imaginary parts at O(a?2). The
Feynman diagrams are shown in Fig. 1. And the results
in D dimension are

1—€ 8Nfa§7TZM4ECD(2)

2ImA(sE))Bom = S . (18a)
3—2e ny
_ | — € 144Bpalm p*<d
@ImACPpom == 25 E 0 (18b)
€ I’I’lQ

5 4€> —13e + 6 32Bpa’m*utcd
3 pl81y\Bom _— FAT R 0)
CImACH ) = B =26 - 20 i ’
(18¢)

where @) = L FF((ZI:;E)) (%)f is the two-body phase space

in D dimension.

B. Real corrections

Besides the real corrections (RC), other processes with
three bodies in final states include (QQ)EIS'SJ—Gg,
1

(Q0)) —3g. (QO)) —qgg. and (QQ)p —3g. And
the typical Feynman diagrams for ggg and 3g are shown
in Fig. 2 and 3, respectively.2

We calculate the Feynman amplitudes and do the phase
space integrations both in D dimension, and check the
results with eikonal approximation relations or Altarelli-
Parisi splitting functions when one gluon is soft or two

%In the Feynman gauge the ghost diagrams are also needed,
where a three-gluon or four-gluon vertex will appear.

PHYSICAL REVIEW D 81, 074032 (2010)

[ [q1] g [ [q2] : [ [43] :
[ [q4] % [ Cg‘ [45] :

FIG. 2. Feynman diagrams for (QQ)ggL] — qqg.
J

light partons (gluon or light quark) are collinear. Three

variables x; =rf—; are introduced to describe the
(Q0); = k; + k, + k5 process. For energy conservation

x; + x5 + x3 = 2. The three-body phase space in D di-
mension becomes

TR e S A VTR
4m)*T(1 — €) \m},
X (1= x3)]7¢6(Q2 — x; — x, — x3)dx,dxydx5.
(19)

In the phase space, the x; = 0 region is the soft region of
particle with momentum k;, and the x; = 1 region is the
collinear region of the other two particles. And the inner
products of those four momenta are P - k; = 2m2Qx,», k-

When L = § and P, the real corrections contributing to
2 ImJ’Zl(3L[Jl’8])RC are

1

x [ 31300~ ggg)Pady

1
T Ko K

x [ 313(00) = qag)Pddy,

(20)

2Im A CLPHRE =

k1

-k
k2
k3

(o000 kil
0000 k2

-

0000 k3

[91] [92] [G1]
k1 kL !
k2 [ gk:;\ k2 [ ! A,é% k3

G[2) [G3]

73

k2 < +k1, k2, k3permutation >
k3

FIG. 3. Feynman diagrams for (QQ)3L[|,3] — 3g. Diagrams
with different positions of k; are neglected. In Feynman gauge
the ghost diagrams should also be contained.

[94]

074032-5



ZHI-GUO HE, YING FAN, AND KUANG-TA CHAO

where K., = 1, K. = N> — 1, and K| is the polarization
number of angular momentum J state. In the D-wave case,
because of parity conservation, only the 3g process is left.

1. (QQ)s s — g88
There are 18 diagrams in the QQ — ggg process.
Because of JPC conservation, only class [g1] is needed in
35[11] — ggg and 3D[Jl] — ggg processes. In the 3P[18] —
ggg processes, the diagrams are those in class [gl], class
[g2] and the corresponding ghost ones in class [G1]. And

all the diagrams should be calculated in the 35[18] — ggg
case. We now proceed to show how to get the physical
results at a differential cross section level when ghost
diagrams are contained. In the Feynman gauge, when the
three or four gluon vertex appears, the nonphysical (NP)
degrees of freedom are removed by ghost diagrams. Label
the square of the amplitudes of the gluon diagrams in the

Feynman gauge with the subscript NP, and express the
|

PHYSICAL REVIEW D 81, 074032 (2010)

ghost result as
MGl i, = D IM(QQ)Y — G Gy )l 2D)

where G, and G_k]_ are for ghost and antighost with mo-
mentum k; and k.,-; respectively. To cancel the NP part of
each gluon, all possibilities of indexes i, j should be
summed over. Then proper physical results at the differen-
tial level are

> IM(QO); "= gg9)P = 3. | Myp(QO;*) = g0)I?

= 1Ml (22)
ij

Here we omit the details and only give the real correc-
tions below

1 - _ 4003 (m* — 9)
[ _, 2 _ s
SeEr: [ SIMQON — sgo)Pdb == (232)
1 - - 5(677* — 657)a’
M 8] _, 24P . — s 23b
TG 39 | Z M@0 — ssaPae o (23b)
1 _ Cia,Fe(1 7  875— 607> _
8] _, 2 _CaasFel T ) 3 pl81)\Bom
3I(NZ — 1) fZlM((QQ)3p0 288)*dd - (62 3e 6 (2ImA(CPgY))Bom,
(23c)
2 _ CaBp(— 13872 + 1369)a3
M 8 24P, = —A2F < 23d
TG 39039 | XM, = ssaPde, St 234)
2 _ Caa,Fe(1 7T 4679 — 43872
M 8 2dd 5 = 4= E(—+—+—)
3I(NE — 1)(5 — 26)(2 — 2e€) 2| M(QQY:;, — ssg)l*d® & 3e 432
X (2 Im A (2 PLE))Bom, (23e)
1 _ - 32 608  —7744 + 16057*
[1] — Zd(D — B-D,F 3 46(_ )
T o2g | ZIMQQ — seolPay = 5 e Bk oradut (= g+ )
(231)
3 —— ) 32 ( 8 —23024 + 2125772)
i, — On) = — B Py F madp*e( —— + ,
3'(5 — 26)(3 — 26)(1 — 26) _[Z |M((QQ)D2 ggg)l d (3) 3m6Q FlleTag 15€¢ 1800
(232)
6 o 32 32 28656 + 26457
[, 2d®y) = —— By ®,F mwaj} 45(——+ )
31(7 — 26)(3 — 26)(2 — 2¢) fz IMQQ):, — s58) P 3m, AT Tse 6300 ’
(23h)

2

where the “="" are correct at O(1), F. = (“5-)¢I'(1 + €), C4, = 3, and B = 5/12 are color factors. The expressions of

m

Sy Ij/l((QQ)EgJ — ggg)|? are too complicateQd to be given here.

2. (QQ_)3L[JI'8] —qq8
At O(a?) there are four subprocesses: (QQ); 1 — qqg, which include all the Feynman diagrams in Fig. 2, and
1

(QQ):pw — qqg. in which there are only two diagrams g[2] and ¢[5]. As in the 3g processes both the Feynman amplitudes
J
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and the phase space integrals are calculated in D dimension directly and the results are

1 — -
(N2 = 1)~ 2¢) | S 19100 — qgg)aee, =

(N}—_l) | S19100)5) — agg)awe = (v,

€ 2€ 12

T

a,F, 1 3 57—8a
(3

ﬁ [Z |.7_\4((QQ_)EE;]I — qqQ)I*ddg) = (Nf @Fe (— ! ))(2 Im.A (¢ PL¥l))Bom

(NZ.;—I) [Z U_Vl((QQ_)EE;]2 — qGg)l*d®), = (Nf

C. Virtual corrections

The virtual corrections are performed with a renormal-
ized Lagrangian, in which the renormalization constants of
the QCD gauge coupling constant g, = /4ma,, heavy-
quark mg, heavy-quark field ¢ ,, light quark field ¢ ,, and
gluon field A , are defined as

g(s) = Zgg.w m% = ZQOQ’ lr//% = ZQQ dl’
o =yZoyw,  A)=\Z;A, (25)

where the superscript 0 labels bare quantities, and Z; =
1 + 6;. Here a mixing renormalization scheme [17] is
adopted. The quark mass m, heavy-quark field i, light
quark field ¢, and gluon field A, are defined in the on-
shell condition, while g, is in the minimal-subtraction(MS)
scheme. Then in this mixing scheme, these renormalization
constants are

F 1 2
5298 = — Cra,Fe <_ +——+3In(4) +4 + (9(6)>,
4m  \eyy €
(26a)
F 1 1
5795 = - %<_ - 4 (9(e)>, (26b)
4m  \eyy €
F 2 2
5290 = %le (g cp( 2 - 2w o@) ese
T €yv  €IR
F 1 4
o295 = =28l (Ly g 1 h0@)  eso
e 4ar Eyy 3
L 2
5ZI1S = — M(L _ ln('u—2> + (f)(e)), (26e)
477 Eyy 4mQ

111 _
+Cy (E + g))(2 Im A (3 St8))Bom, (24a)
aF, 1 =
(e
4 _ F. 29N
— 9—ZBFaS<3(ZImﬂ(3S[18]))B°“‘—E +3 A ag), (24b)
mQ mTE mQ
7 \ 3e
4 _ F. 8N,
- BFas(3(2 Im A (sifh)yBom —€ 4 7 af), (24c)
9mQ mTE 3mQ
aF, 1 - om
(- Aemacrn
4 _ F. 58N
- 9?lzwx<3(2 ImJZL(3S[f‘]))B°mE + 15m§ az). (24d)

0 0

[

where B = ”6C" - %, and N is the number of light flavor

quarks. The representative virtual correction Feynman dia-
grams for the Born processes in Sec. III A are shown in
Figs. 4 and 5, without external leg correction diagrams in
this scheme. The UV divergences in self-energy and tri-
angle diagrams will be canceled by the counterterm dia-
grams correspondingly. To regularize the Coulomb % poles
in the virtual processes, the loop integrals are done first
before setting the relative momentum ¢ = 0. Also in

(QQ_)??02 — gg processes, we integrate the loop momen-

tum first then compute the first derivative of the Feynman
amplitudes with respect to ¢“. When g # 0, the momenta
of Q and Q are Py =% + ¢, P5 =% — ¢, where P is the
meson total momentum, and the momenta of the two
massless final state particles are labeled with k; and k,.
Then the scalar functions of the loop integrals can be
expressed in the Mandelstam variables:

KR RS RS
RSN
T

FIG. 4. One-loop Feynman diagram for (QQ); pisl — 88.
02
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EE N e S

ol = W\Q’W + m+>

FIG. 5. One-loop Feynman diagram for (QQ); s — ¢4.
1

b7

|
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where s = 4m2Q /(1 — v?). We do the calculations diagram

by diagram and summarize the results in the following
form:

ZImﬂl(3L[l 8])VC — ZImﬂ(%L[l 8])Born ‘

- 2w

(28)

where D), for each process are listed in Table I, II, and III.
The contributions of the counter-term diagrams are put
together with the corresponding self-energy and vertex
diagrams to show explicit cancelation of the UV divergen-
ces. The IR divergences left will be canceled by the RC.

s=(Pg+Pp? t=(Po—k) u=(Py— k) D. Summation of real and virtual corrections
27 Collecting the RC with virtual correction, we obtain the
full QCD results at O(a?):
TABLE 1. Virtual corrections to (QQ); §8 = q4.
Diag. D,
bl + bd + b6 C1=2C; | Ca=3Ci—By | CaO-2m)H4C,(—6+m) | @ ln("—z
261R €IR 6
b2 + b3 + b5 (ZCF4CA)7T _ /30 + CA(7+21“(2)) 12Cr + 50 ln( )
2€r 4m'
b7 e - - b
IR
b8 2Cr = C)(z- - - )
b9 GCa—3N) o, %C — 5N
TABLE II. Virtual corrections to (QQ); P8 — 88
Diag. Dy
al + a2 cF o+ cF(5+gzln(z))
&3+ ad + a9 ;ECA 4 =% QS;R—M;C, 4 Cele st 12§ln(2)+3'n’) n /‘(3x+x1n(2) ) 4 B 1n(4mQ)
as S+ ﬁ—%-‘r By + 14 ln(2))
ab 0
_c T
al (Cr—PE+T —§+ 5+ 2 @)
a8 CA( 2+ 70 ln(2))
TABLE III.  Virtual corrections to (QQ); A8 — 88-
Diag. D,
al + a2 CF(++Q+QIH(2))
3C, | —32By+15C,—64C, _ Cp(100+172In(2)+37%) | C,y(75+112In(2)+1872)
a3 + a4 + a9 165”: + i - ¥ : r - 2ln 5 27—|— A . 20 + BoIn(}~ )
a5 7 q Toer ~ 288 + 7T + ln(2))
ab 0
a7 (Cr—DE+Lm-3+17 +11n(2)
IR
a8 fCA(5 2 1n(2))
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40a3(m* —9)
2
81mQ

2

108m?

2ImAC S[ll])) |pert @cp =

’

2ImAC 528])) |pert @cp =

—277% + 721n(2) + 368, In

PHYSICAL REVIEW D 81, 074032 (2010)

(29a)

2
(Sa (—657 + 677%) + Nf(367r + as(36(2CF - CA):LT_ + 642 — 20N,
v

2

)

_ 5 2 2
Q@IMACPEY) e oep = 432“ . (21677 +a (54(2CF CO) T 43032 + 2172 + 8401n(2)
v
2 4 F. 29N
+ 2168, 1n(“—2))) - —2Bpa5(3(2 Im A (si8)yBom Ze o Z07 ag‘), (29¢)
9mQ TE 3mQ
5a2(1369 — 13872) 4 F. 8N
2ImACPI)pere 0cp = ( ™) 5 Bpas(s(z Im A ({))Borm —< —ia%), (29d)
216mQ 9mQ mTE 3mQ
~ 2 2
QImACPEN) | ocp = 21‘6” . (14477 + a, (36(ch — )T+ 4187 — 25872 + 3361n(2)
v
2 4 F. 58N
+ 1448, ln( i ))) - —ZBFaS(3(2 Im A (3 sifl))Bom Z€ 4 ZS a§>, (29¢)
4dm 9mQ TE 15mQ
7 3 ll] 32 . L 7744+ 16057
@I ACD Dhroen = 30 BrdaFemadiet( = 35+ ) 290
_ 32 | ~23024 + 212577
1 €
(2 Imﬂl(3D£ ]))lpertQCD = %BF‘I’zF o ut ( 1300 ) (29¢)
32 | ~28656 + 2645
2ImACDY ))lpertQCD = 3—BF(I)2F 7Tag 46( 6300 T ) (29h)

Mg

There are still infrared divergences and Coulomb singular-
ities in some of the expressions above. As explained in
Ref. [6], the infrared divergence comes from the soft gluon
emission of heavy quarks, and the Coulomb singularity
reflects the behavior of heavy quarks in the potential
region. In next section, both of them will be repeated
precisely when doing the NLO corrections for NRQCD
matrix elements in the corresponding regions.

As mentioned above, the S- and P-wave subprocesses
have been studied by Petrelli et al. [10]. In their paper, the
soft and collinear singularities are separated with the help
of eikonal approximation and Altarelli-Pasrisi splitting
functions, then they calculate the finite part in 4 dimension.
In this paper, we recalculate them in D dimension directly
as a cross check, and get the same results. The D-wave
subprocesses have also been considered in Refs. [3,4] but
they did the calculations in 4 dimension, and regularized
the infrared divergence with the binding energy.

IV. NRQCD RESULT AND OPERATOR
EVOLUTION EQUATIONS

There are three typical energy scales in the heavy quark-
onium system, related to the small parameter v. They are
mg (the heavy-quark mass), myv (the typical momentum
of heavy quarks in heavy quarkonium), and myv? (the

binding energy). Then, there are three dynamical regimes
in the NRQCD effective theory, in which either the heavy-
quark or the gluon is on mass shell, and they are

soft regime: A%': ky ~ k| ~ mov,
Y T~ |pl ~mgu,
potential regime: A} ko ~ mov?, k| ~ mov,
v, T~va2, |pl ~ mgu,
ultrasoft regime: A%: ko ~ |k| ~ mov?, (30)

where k, and p, are the momenta of the gluon field and

heavy quark field, respectively, and T = p, —mgy =

2m + O(v*). Because there are more than one regimes in

the nonrelativistic system, matching the production and
annihilation of external heavy-quark and antiquark pairs
at certain order in v can not be manifest, though the power
counting rule, velocity scaling rule, of operators in
NRQCD is simple. This problem has been addressed in
several papers [18-25], and the matching prescriptions
based on dimensional regularization in NRQCD were
also clarified. Furthermore, the potential NRQCD
(pPNRQCD) effective theory was proposed by introducing
the potential to manage the nonperturbative effect in

074032-9
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(T.9) L0k

t - : = A MWW, =
soft : Qs = e As = i
(T.p) ,
ie . . . — K
potential : @, : > o
g
o
A - e - — =t A oo iy
.0 By P —R2ie’

ultrasoft : A:, AVAVAVAVAVAVES Fﬁ?

FIG. 6. NRQCD Feynman rules for heavy-quark and gloun
propagators in different regimes.

Ref. [26]. The NRQCD Feynman rules for propagators in
the Coulomb gauge [25], are shown in Fig. 6, where §;. =
5, — ki

L] |k|2 .
the NRQCD Lagrangian, where the antiheavy terms are
neglected, is ig, 1 (A, + (A.Z%QV.A))JI. And it turns to be

igsyt(Ay + %)tp, for V- A = 0 in the Coulomb gauge.

The Feynman rules for vertex can be read directly and are
listed in Fig. 7.> The Feynman rules for anti-heavy quark
can be gotten by charge-conjugation symmetry.

Since the short-distance coefficients are obtained by
matching full QCD results with NRQCD results, we only
need to calculate the real parts of the matrix elements.
Figure 8 gives the LO Feynman diagram. At NLO in «y,
when the inner gluon line joints two incoming or outgoing
quark lines, a nonvanishing real part only appears in the
potential region. When the inner gluon line connects with
one incoming quark line and one outgoing quark line, the
power counting rules [25] tell us that the soft region will
provide the leading order contribution in v. The external
self-energy diagrams are dropped to be in accordance with
the renormalization scheme in full QCD calculation. Then
we only need to calculate, two class, six NLO Feynman
diagrams shown in Fig. 9.

For convenience, we present the detailed NLO correc-

At leading order in v?, the interaction term of

tions of the P-wave octet matrix elements, ((9(3P[18])>,
which are more representative than the S-wave ones. The

LO result ((9(3P[18]))Bom is trivial. Using the Feynman rules
for propagators in the soft regime and vertices, the loop
integral of diagram (a) reads

; _ig [d% p-p'—(p K@ k)/K
“ sz 2m)P k3 — k2 + ie
1 1
k() + ie ko + l.E‘

(31

After performing the contour integrating of ky = |k| — i€,

>The Feynman rules are the same for the corresponding
interaction terms in different regimes though their power count-
ing may not be.

PHYSICAL REVIEW D 81, 074032 (2010)

(T,p) (T".9) ige ;1 (T, p) (T",9)

mq

—9s

(a) (0)

FIG. 7. NRQCD Feynman rules for a heavy-quark gluon ver-
tex.
OCL;")
FIG. 8. NRQCD Feynman Diagram for LO matrix elements.
_ & [(d'k p-p—(p K K/K 32)
“ 2m2Q (2m)P~1 k|3 ’

which is both infrared and ultraviolet divergent. In the
dimension regularization scheme the result is

a 1 1 ,
=g (2= e p (33)
7TmQ Eyy €

The integrals of (b—d) in Fig. 9 could be calculated in the
same way:

L—q =

a—( : —1)p~p’- (34)

37Tm2Q Eyy €

The loop integral of diagram (e) in potential regime could
be written down similarly:

(T',9) (T.p)

(T, 1)

FIG. 9. NRQCD Feynman Diagrams for NLO matrix ele-
ments.
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L[ APk 1 1
I, = —igs D 1.2
2m° K T + k, p+k) + ie
X ! (35)
T — ko — pzjlk) + i€

where T = |"| . When k is integrated out:

A’ 'k 1 1
CmP T k2Kk>+2p -k —

I, = gimg (36)

This could be done in D dimension directly. Regularize the

Coulomb singularity by introducing v = M , then at v~

order we have

: /1 m2 v
AR ) o
4v T \€E >
The integral of diagram (f) has the same real part but with a
plus sign before the virtual part.
The color structures for diagrams (a), (c) and (b), (d) and

(e), (f) are obtained by the color decomposition listed in
the first, second, and third line below, respectively:

11
27T ® TP2T° = C x/_TC®\/—TC
FJ?T N
1
2TeTt @ \2TeT? =
VRV

N2 -2
+ e 2T ® 2T,
W \/— \/—
1
TO\2TaT? @ 2T = (CF — ECA)\/ETC ® V2T,  (38)

Combining the integrals with the according color factors
and summing them over, we obtain the NLO NRQCD
corrections for the P-wave octet operator matrix elements,
which are UV divergent and need to be renormalized:

<o°<3P58])>NLo={( iﬂ(cF lc))fmfrc

1
e o R
37TmQ €Eyy €

+ Bp\/iTc ® \/ETC:IP . p/}<(_9(3pj)>Bom>

(39)

where OGPy = OCP,)V2T° ® 2T, B, = fN— and

the superscript ““0” means the matrix elements of the
bare operators. As expected, at NLO the P-wave octet
operators are mixed with the D-wave singlet and octet
ones, and with the help of Eq. (15), they could be reex-
pressed as

PHYSICAL REVIEW D 81, 074032 (2010)

1
(©CP o= (1+ 57 (Cr = 3Ca) KOCP e
2B (L N0 D
3mmg \€yy €
+ B {O°CDS)gom), (40)

where C; ; are defined in Eq. (16) and for J' =1, 2, 3,

— (D=2)(D+1) . — (4D 3 . _
COJ’_W’ 0. 0: Coy=3p-n> 3> O Coy =
(D37

R 4, 1. The P-wave operators are mixed with the
D-wave operators at NLO in «a,. But the NLO NRQCD
corrections of D-wave operators are related to the relativ-
istic corrections of P-wave operators. Then at leading-
order of v?2, the renormalization transformations of those

operators in MS scheme are

(@z(jP[;]])) _ 1 C[JIJ],( L+ Ind7 — yE>
0°CD.") 0

1

(QR(3P[8])
x (@R(’%D[l] S

[1] _ 4a,Cr
where C]J/ CJ,J/ 377_sz .

with each other, the renormalization constants Z’s are not
numbers but matrices. The D-wave octet operators are also
dropped, for they do not appear in full QCD calculations.
The matrix elements of the renormalized operators
@R(3P[Jg]) at NLO are now UV finite, but there are still 1
poles in D-wave terms, Eq. (42), and Coulomb singular-
ities, which will absorb the infrared and Coulomb diver-
gences in full theory;

When the operators are mixed

(O P a0 = 1+ 57 (Cr = 5€4) O P

401 sCp ()

—37TWZQ ( — Indm + yE)
X (C <@R(3D[1])>B0rn
+ Br(OFC D)) gomm), (42)

where w, is the renormalization scale. The matrix ele-
ments of the S-wave octet operator at NLO could be
computed in the same way:

B 1
<(9R(3S[18])>NLO = ( a2:' (CF - 5
N 4C¥S(%A2)25 (_ 1
37er
X (CH{ORCP) o
+ B(ORCPEYp ). (43)

Ca) KOS

— Ind7m + yE)

074032-11



ZHI-GUO HE, YING FAN, AND KUANG-TA CHAO PHYSICAL REVIEW D 81, 074032 (2010)

The matrix elements of the S-wave singlet operator and D-wave singlet operators at NLO do not need to be calculated, for
their LO short-distance coefficients are already at O(a?).
Multiply the matrix elements with the short-distance coefficients, we obtain the NRQCD result at NLO in «:

3¢ll]
QImACS wacn = SOOI, g (@)
m
0
2Imf s
2ImACSH))wrocn = mf; (2 i )<1 + O;W<CF - zCA))<@(3S“‘])BOH,, (44b)
0
3 pl8] 3 [8]
2 Imﬂ(3P%8]))NRQCD = {2 Imf(4 Py )(1 + aSW(CF — lCA)> 4a,Bp 2Imf(C'S )( ) ra+ E)}
) 2v 2 37TmQ € ,uA
X (OCPENER (44c)
3 pl8] 3 ol8]
2 Im A CP) o = {ZImf(4P1 )<1 + ““‘”(cF - 1@,)) 4a,By 2ImfCS, )( ) (1 + e)}
my 2v 2 37TmQ € ,LLA
X (OCPENR (44d)
3 pl8] 3 cl8]
@ ImACPP))rocn = {ZImf(fz )(1 + “”T(CF - 1CA)) 4a,By 2ImfCS, )( ) T + e)}
) 2v 2 37TmQ € ,uA
X (OGP (44¢)
2Imf (D 4a,CrCyy 2ImfCPR) 4
2 Imﬂ(3D[ll]))NRQCD = { m]};(G ) Z a377_:1 -1 mfi )< ZM F(l + 6)}<(9(3D[1])>B0m, (441)
0 7 0 A
3plll 3 pl8] E
QImACDY)roen = {2 Imf( D) Z4a CrCy 2/ CF, )< ) (1 + e)}<(9(3D[”)>Bom, (44g)
7 37TmQ € A
21 3D“] 4a,CrC,5 2ImfCPY) (Amp?
2 Imﬂ(3Dg1]))NRQCD = ( mjl;((, ) Z a3m:16 %3 mfi ! )< W';L ) ra+ 6))(0(3D 1])>Bom. (44h)
0 7 0 A

Finally, matching the NRQCD results with full QCD results, we get infrared safe short-distance coefficients at O(a3):

403 ( —
21my (sl = 2B 29 (;Tl 2, (450)
2 Imf st = o (36Nf77 +a (5( 657 + 6772) + N,(642 — 20N, — 2772 + 721n2) + 728,N; ln%)), (45b)
2ImfCPR)) = 1 20 (6487r +a <9096 464N, + 6372 + 252012 + 12968, ln— + 96N ln—)) (45¢)
mo MA
. 534107 — 64N, — 41472 + 48N 1n2’”Q)
2Imf(PY) = (45d)
648
3 pl8] 2 M ZmQ
20mfCPY) = =5 (4327 + (12561 — 464N, — 77472 + 1008 In2 + 8648, In-—— + 240N, In"—2 ), (45¢)
o (32177 — 8032 - 29184 Infi)ard
2Imf(Cpt) = 4
mfCDP) = 5832 : 51
Ly, (42577 — 4816 — 384 Infd)ad
2Imf(DSY) = E , (452)
Ly, (5297 — 8688 — 5376Indit)ad
2Imf(DM) = . 45h
mf(D37) 2268 (45h)

The P- and D-wave short-distance coefficients are w, dependent, and their w, dependence can be canceled by the
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renormalized operator w5 dependence. The u, dependence of the renormalized operators could be derived out by finding
the derivative of both sides of Eq. (41) with respect to w:

dORGPE C, 8a,C

L2 _ 5 CorBasCr ol (46a)
dnp T 37TmQ
dOR(s!8) 8a,Br

= ZE ORGP, 46b
dlnpy 2377'sz CP) (46b)
1
dORCs) _ 825 oo pls) 460)
dlnpm, T 2N¢ 3mm3, I
d@O(?L[lg])

Remember, for bare quantities,

= 0. For a phenomenological reason, we also give the u, dependence of

0@ Sm) though we do not calculate 1tsANLO NRQCD corrections. By solving the differential equations, all S- and P-wave
operators’ expectation values in |H /) states are related to that of the D-wave singlet operators:

(H | ORCPEN () H ) = (Hp | ORCPEY (up ) H ) + C

as(/-"Ao)

In
as(/U“A)

CrB 8
(H | OFCSI) ()l = & (

2 \3m B,
ag (MAO)

+Z 8129F In
7 3mgBo a(py)

CF ( 8 h,a“'(MAO)
4Nc 3m2Q,30 ag(pn)

4 s
i Z . lna‘ (:U’AO)
T 3Nemp By ag(pn)

(Hy|ORCSM) () Hy) =

In pNRQCD, the S-wave color-octet matrix elements for
P-wave heavy quarkonium decays are also estimated
through operator evolution equation [27,28]. And the rela-
tions between their results and ours are discussed in our
previous work [29], which shows that the two methods are
consistent with each other.

V. NUMERICAL RESULT AND DISCUSSION
A.3D, decay into LH
For heavy-quark spin-symmetry, the long-distance ma-
trix elements of D-wave four-fermion operators are equal

to each other for different J, and relate to the second
derivative of wave functions at the origin:

15|R"(0)|?
% = (H|OCDH,) = (H,|OC DY) Hy)
= (H;|0CD) | Hy) = Hymb, (48)

The matrix elements of the P-wave octet operators and the
S-wave singlet as well as octet operators in the correspond-
ing J' states could be estimated through the resolution of
operator evolution equations, Eq. (47). When wu,, and
are separated widely enough, the evaluation terms will be

(Hp|ORCPEN (up N H ) + (H | ORCSEN () H ),

(Hp|ORCPEN (N H ) + (HplORCSI ) () H ).

8C;
3m2Q,80

as(/-LAo)

o ) (HNOCDNH, ),

In

(47a)

2
) (HOFCDI)IH,)

(47b)

2
) (HOFCD)H,)

(47¢)

[

much more important than the boundary terms labeled with
Ma,- Here we set wy = mgv, where v? = 0.3 for char-
monium and v2 = 0.1 for bottomonium, since the NRQCD
perturbative calculations could only hold down to scale of
order mpv:

8CF A (/J‘AO)

(Hp|ORCPENY () Hpy=Cy ot Hpm

3B ayuy) M

(49a)

R (3 L8] _CrBp s(AN2,,
(H OO ) H = 2 (5 Y b,
(49b)

R(3gl1] _Cr (8 apa)\2,,

(H 10 ) H ) = (= B
(49c¢)

We also assume p, = u, for the factorization scale w, in
NRQCD also acts as the renormalization scale in operator
renormalization. In the end, we come to the overall ex-
pressions for the LH decay widths of *D, (J =1, 2, 3)
states to NLO in «;, at leading order of v?:
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p\ | @57+ ay(88.5 — 433N) + a,(10.08) — 1.32Ny) Insh) Ing:
I‘(3D1—>LH)=( 5.0 <0167+1n )+
2mQ BO
1.3202(1.57TN; — 0.278a,(N; — 21.4)(N; + 0.093) + 1.0N;a, By In52)In? &
+ > 2 ")HD, (50a)
Bs
wy , (187 + a (814 — L9SNy) + a,(1.198 — 1.32N) Ing}-) Ing
I‘(3D2—>LH)=< 0.59a (162+ln )+
2mQ BO
1.32a2(1.57N; — 0.278a,(N; — 21.4)(N; + 0.093) + LON;a, By In;2-)In? &
+ | | . ' ), (50b)
Bo
p\ | (745 + a,(30.8 = 2.55N)) + a,(4.745) — 1.32Ny) Insh) Ing
I'CDy— LH) = ( 2.37a (0 645 + In ) +
2mQ BO
1.32a3(1.57N; — 0.278a,(N; = 21.4)(Ny + 0.093) + LON;a, By Inyls)ln’ &
+ 7 )HD, (50¢)
0

where @, = a (uy,).

1. D-wave charmonium ¥ (1°D,) LH decay
Making a choice of m. = 1.5 GeV, Agcp = 390 MeV,
Hp = lgf’lel 0.786 X 1073 GeV [30], and N, = 3 for
charmonia, we obtain at u = 2m,.:

I'(¢(13°D;) — LH) = (435,50, 172) keV
for J = (1,2, 3). S

When p = m, and the other parameters are fixed, the
results turn to be

(¢ (1°D,;) — LH) = (683, 42, 223) keV
for J = (1,2, 3). (52)
And the u dependence of the decay widths at O(a?) is
shown in Fig. 10.
In the potential model, ¢ (13D,) can only decay to 3g at
a? order. The infrared divergences are regularized by €,

the binding energy of the bound states. Accurate to €,

order, potential model results [3] are

I'cGCD, — LH) = (160, 12, 68) keV, for J = (1,2,3).
(53)

If we reset their parameters the same as ours with a;

a,(2m,), M = 2m, = 3.0 GeV, |R)|> = 0.015 GeV’, the

potential model predlctlons become

I'c(CD, — LH) = (240, 18, 102) keV, for J = (1,2, 3).
(54)

It could be found that in the c¢ system the NRQCD
predictions are about 2 ~ 3 times larger than potential
model results. In leading logarithm approximations [4],
the ratios of the LH decay widths for J =1, 2, 3 are
I'CD,):I'CD,):T(D;) =%:1:4. Including the non-

negligible corrections to the leading logarithmic terms
[3], the ratios turn to be: 40:3:17. And the relative ratios
predicted by NRQCD at o = 2m,. = 3.0 GeV and p =
m. = 1.5 GeV are 43:5:17 and 34:2:11, respectively.
Much work has been done to predict the mass spectrum
of y(1°D ,); some of the numerical results are collected in
Refs. [31,32], and some theoretical work reviews may be
found in Ref. [33] and references therein. All the predic-
tions indicated that the masses of #(13D,) are all larger
than the threshold of DD (about 3730 MeV), and the center
of gravity of 1D states calculated in the Cornell potential
[34] is 3815 MeV [35]. For its decay to open charm to be
kinematically allowed, (1°D,) should not be a narrow
state. It is believed that ¢(3770) is primarily a 1D, state
with a small admixture of the 23S | state [36,37], and the
latest experimental average of its width is I'((3770)) =
27.3 = 1.0 MeV [38]. But there is a long-standing puzzle

1.0
0.8
N
[0}
2 06 3
T D,
—
A
}
=ﬁ
N 044
R
—~
3
D
0.2 . ) 3
3
D2
0.0 T T T T T T T T T T T T T T T T
1.0 12 14 16 18 20 22 24 26
wm,

FIG. 10. Renormalization scale dependence of the decay
widths of charmonium states 1>D ; to LH at a’ order.
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in its non-DD decay that the (3770) decay is not satu-
rated by the DD decay [39]. A detailed discussion about
this problem could be found in our previous paper [40], and
in this paper we will briefly review it in Sec. V B.

The remaining J = 2 and J = 3 states are both expected
to be narrow with different reasons. ¢ (13D,) is presumed
to lie between the DD and DD* thresholds [41] and is
forbidden by parity to decay into two pseudoscalar D
mesons. While narrowness of 1//(13D3) in contrast is due
to suppression by the DD F-wave angular momentum
barrier [31,41]. The principal decay modes of #(1°D,)
are radiative transition (¢(13D,) — v x.1, ¥ x2), hadronic
transition (¢ (1°D,) — J/ ), and LH decay. To
(13D;), these decay modes are also considerable since
(¢ (1°D5) — DD) is predicted to be only about 0.8 MeV
[42], when its mass is 3868 MeV. And the decay widths
predicted by the C* model [41,42] including the influence
of open-charm channels are T(#(13°D,) — yyx.) =
212 keV, T(#(1°D,) — yx.) = (45,286) keV, for J =
(2,3) and I'(¢(1°D;) — DD) = 0.82 MeV at My3p,) =
3831 MeV and m,3p) = 3868 MeV. They also esti-

mated T'(y(1°D,;) — J/ymm) = 68 = 15 keV. Using
the numerical values in Eq. (51), we then roughly predict
that the branching ratios for the LH decay of ¢/(1°D,) are

Br((13D,) — LH) = 13.3%, 13.3%, for J = (2,3).

(35

2. D-wave bottomonium Y (n>D,) LH decay

Unlike charmonium, Y(n?D;) (for n = 1, 2) are pre-
dicted to lie below the BB flavor threshold, and expected to
be quite narrow, where #n is the level number. Some pre-
dictions of Y(1°D,) and Y(23D,) masses are reviewed in
Ref. [43]. Taking mj, = 4.6 GeV, Agcp = 340 MeV,

Ny =4, Hp =SB0 — 0401 x 10 GeV for 1D
F= Dl_Swmg_' € or
112
states, and Hp, = % =0.750 X 10~* GeV for 2D
b

states [30], at u = 2my,, we find
F(Y(13DJ) — LH) = (6.91,0.75,2.75) keV

for J = (1,2, 3), (56a)
['(Y(2°D,;) — LH) = (12.9, 1.40, 5.14) keV
for J = (1,2, 3). (56b)

When p = m,;, and the other parameters are unchanged,
our predictions turn to be

I'(Y(1*D,) — LH) = (7.99, 0.60, 2.85) keV

for J = (1,2,3), (57a)
F(Y(23DJ) — LH) = (14.9, 1.21, 5.33) keV
for J = (1,2, 3). (57b)

The w dependence curves of Y(1°D;) and Y(2°D,) LH

PHYSICAL REVIEW D 81, 074032 (2010)

decay widths are similar, so only the n = 1 results are
shown at O(a}) in Fig. 11 as an illustration.

In the potential model, Bélanger and Moxhay [4] found,
for J=(1,2,3), the leading logarithmic results are
[(Y(1’°D,) — ggg) = (2.2,0.26, 1.1) keV, and a good ap-
proximation to the exact phase space integration given by
Bergstrom and Ernstrom [3] brings a factor of 2 ~ 3 en-
hancement, and their results are T'(Y(1°D,) — ggg) =
(6.3,0.51,2.7) keV, for J=(1,2,3). If we normalize
them using our inputs at u = 2m,, and setting M = 2m,,,
potential model estimations are then

[(Y(13D,) — LH) = (5.4,0.51,2.3) keV
for J = (1,2, 3), (58)

which, to some extent, are in agreement with our NRQCD
numerical predictions with w = 2m;,. In the Y (1D) case, it
can be easily found out that the potential model results are
dominated by the logarithmic terms. And numerically, the
NRQCD results are mainly from the P-wave color-octet
subprocess contributions. If we relate the logarithmic term

In(1/€) in Egs. (20-22) of Ref. [3] to the evolution term
f(&\i’)) in this paper by setting B"Ta In(1/€) = 1n02((’:“\°)),
we find the logarithmic terms as well as the 77> terms in the
potential model results can be exactly reproduced within
the NRQCD approach. This then provides an alternative
as(:uA )
a.&(/-LAO)
estimation. Using the inputs (r) = 2.5 GeV~! given in
Ref. [3], mj, = 4.6 GeV, a; = 0.18, and N; = 4, we get
ln%u‘\\o)) = (.58, which is consistent with the value we
obtained by choosing wp = 2my;, and p,, = m,v,,.

In Ref. [44], the branching ratios of some decay modes
of Y(1°D,) are summarized in Table IX, where

[(Y(1°D,) — e*e™) was calculated in Ref. [45] and

In

way to relate the value of In to the potential model

8 -\
S 6
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—
T
—
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io4
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L
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0 T T T T T T T T
10 12 14 16 18 20 22 24 28
wm,
FIG. 11. Renormalization or factorization scale dependence of

I'(Y(1°D,) — LH) at a3 order. The solid, dotted, and dashed
lines are for Y(1°D;), Y(13D,), and Y(13D3), respectively.
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[(Y(13D,) — ar7r) was obtained by Moxhay [46]. Since
the LH decay widths of Y(1°D,) are now calculated in the
framework of NRQCD, we update the theoretical predic-
tions for these ratios in Table IV, where the numerical
results in Eq. (56a) are taken as estimations for LH decay
widths of Y(1°D;). In 2004, the CLEO Collaboration
observed Y(1D) in the four-photon cascade process Y —
YX(2P),  xp(2P)— yY(1D),  Y(1D) — yx,(1P),
x»(1P) — yY(1S), followed by Y(1S) — [*]~, and the
branching ratio is B(yyyyl*l7 )yqp) =25+ 0505
1073 [47]. The signals are interpreted as predominantly
coming from the production of Y(1°D,). Small contribu-
tions of Y(1°D,) and Y(13D;) can not be ruled out. In the
near future, with more accumulated data, all the spin-triplet
Y(1°D,) states may be identified. Unfortunately, the
D-wave bottomonium LH decays could not provide a
good probe to find out whether NRQCD is prior to the
potential model to describe the bottomonium system, for
the difference between the two theoretical predictions is
small, unless a very precise measurement is made.

For the n = 2 states, no experimental evidence has been
observed until now. To make a theoretical comparison for
['(Y(2°D,) — LH), the numerical potential model predic-
tions are needed.

B. LH decay of ¢(3770)

Recently, BES reported [48—50] that the branching ratio
of the non-DD decay of /(3770) is about 15%. While the
corresponding data of CLEO [51] imply zero. The total
width T'(4(3770)) is 23.0 = 2.7 MeV [52],* and the had-
ronic and El radiative transitions contribute about only
350400 keV and 1.5-1.8% to the decay width and the
branching ratio of non-DD decay mode, respectively. To
clarify this puzzle, the annihilation decay of ¥(3770), i.e.
(3770) — LH, is considered in our previous paper [40],
where (3770) is taken as a D-wave dominated state with
a small admixture of the 2§ state. We found when the
annihilation decay is included, I'(¢(3770) — non-DD) is
1.15 ~ 1.20 MeV, corresponding to branching ratio of
about 5%.

In the above sections, the short-distance coefficients and
long-distance matrix elements of ¢ (1°D,) have been given
in detail. Now, we show how to get the S-D mixing term.
The typical Feynman diagram for interference between the
color-singlet 3S, and 3D, is shown in Fig. 12. The inter-
ference between other Fock states of S-wave and D-wave
are suppressed by a; or v%. For example, the interference
between two P-wave octet states is of relative v> order.
And the S-wave singlet interference is of relative a? order,
since there are at least two additional gluons in the S-wave

Fock state of 3D[ll]. In full QCD, the square of the D-wave
amplitude is logarithm divergent in phase space integra-

“In this subsection, we still cite PDGO06 data, to be in con-
sistent with our analysis in Ref. [40]
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TABLE IV. Summary of the partial widths and branching
ratios (B) for spin-triplet bb D-wave states, where I'(Y(1°D,) —
LH) are predicted by us in Eq. (56a), and the decay widths of the
other modes are the same as those in Table IX of Ref. [44].

Level Final state ~ Width (keV) B(%)
Y(1°D,) y+ xs(13P) 214 53.1
v+ )(b(13P1) 11.3 28.1
y + xp(13P,) 0.58 1.44
LH 6.91 17.2
Y 0.07 0.17
ete” 0.0015 0.0037
all 40.3 100
Y(1°D,) y + xp,(13P) 22.0 77.1
¥ + x,(1°P,) 5.7 20.0
LH 0.75 2.63
Y 0.07 0.25
all 28.5 100
Y(13Ds) y+ x,(’P) 243 89.6
LH 2.75 10.1
Y 0.07 0.26
all 27.1 100
(000000
005000} 35}

FIG. 12. QCD Feynman Diagram for the S-D mixing term.

tion, and that of S-wave amplitude is finite, therefore, the
combination of them will be finite. Then the short-distance
part in Eq. (59) could be calculated in 4 dimension:

2mA Q0N — (0N = 5 [Re[ 3 1700

— LOF (00 — L1 |ao.
(59)

Taking into account the corresponding long-distance part,
we then obtain the final expression for the mixing term in
Ref. [40]:

5a3(—240 + 717%) Ry5(0)
324m? N

1
X 1/S_WR/;D(O).

VI. SUMMARY

In this paper, in the framework of NRQCD we study the
light hadron (LH) decays of the spin-triplet (S = 1)
D-wave heavy quarkonia. For completeness, the short-

(I*D,[LHXLH|23S,) =

(60)
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distance coefficients of all Fock states in the 3D =12,
3) quarkonia including D-wave color-singlet, P-wave
color-octet, and S-wave color-singlet and color-octet are
calculated perturbatively at ) order. The infrared diver-
gences in D-wave singlet states are absorbed by the
P-wave color-octet matrix elements. The operator evolu-
tion equations of the four-fermion operators are also de-
rived and are used to estimate the numerical values of the
long-distance matrix elements. We find that for the cc
system, the LH decay widths of (1°D,) predicted by
NRQCD is about 2 ~ 3 times larger than the phenomeno-
logical potential model results, while for the bb system the

PHYSICAL REVIEW D 81, 074032 (2010)

two theoretical estimations of I'(Y(13D,) — LH) are in
coincidence with each other.
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