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In this paper, in the framework of nonrelativistic QCD we study the light hadron (LH) decays of the

spin-triplet (S ¼ 1) D-wave heavy quarkonia. The short-distance coefficients of all Fock states in the 3DJ

(J ¼ 1, 2, 3) quarkonia including the D-wave color singlet, P-wave color octet, and S-wave color singlet

and color octet are calculated perturbatively at �3
s order. The operator evolution equations of the four-

fermion operators are also derived and are used to estimate the numerical values of the long-distance

matrix elements. We find that for the c �c system, the LH decay widths of c ð13DJÞ predicted by

nonrelativistic QCD is about 2� 3 times larger than the phenomenological potential model results,

while for the b �b system the two theoretical estimations of �ð�ð13DJÞ ! LHÞ are in coincidence with each
other. Our predictions for c ð13DJÞ LH decay widths are �ðc ð13DJÞ ! LHÞ ¼ ð435; 50; 172Þ keV for

J ¼ 1, 2, 3; and for �ð13DJÞ, �ð�ð13DJÞ ! LHÞ ¼ ð6:91; 0:75; 2:75Þ keV for J ¼ 1, 2, 3.
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I. INTRODUCTION

The production, decay, and mass spectrum of heavy
quarkonium have been interesting topics since the first
charmonium state J=c was discovered in 1974. Because
of their large mass scales and nonrelativistic nature, heavy
quarkonia are good probes to study and understand quan-
tum chromodynamics (QCD) from both perturbative and
nonperturbative aspects. In fact, one of the earliest appli-
cations of QCD is to calculate the inclusive decay rates of
heavy quarkonia. In early times, it was assumed that such a
decay process can proceed through two steps. First, the
heavy quarkonium transforms into a freeQ �Q pair, which is
a long-distance nonperturbative effect. Then, the heavy-
quark pair annihilates into light hadrons (LH) through
gluons, which can be calculated perturbatively. In the non-
relativistic limit, the long-distance part is related to theQ �Q
Schrödinger wave functions or their derivatives at the
origin. In this picture, the free Q �Q are in color singlet
and have the same quantum numbers JPC as the bound state
heavy quarkonium. This is referred to as the ‘‘color-singlet
model.’’ Explicit calculations at next-to-leading order
(NLO) in �s for S-wave quarkonium decays support the
color-singlet model factorization formula. But it breaks
down in the calculations of P-wave [1,2] and D-wave
[3,4] heavy quarkonium LH decays at �3

s order, where
infrared divergences appear. Phenomenologically, these
infrared divergences are regularized by the binding energy
of Q �Q bound states.

In Ref. [5], Bodwin, Braaten, and Lepage first intro-
duced the color-octet matrix elements to absorb the infra-
red logarithms, then they developed nonrelativistic QCD

(NRQCD) effective field theory [6], based on which the
inclusive decay rate of heavy quarkonium can be given by a
rigorous factorization formula, and calculated in a system-
atic way by double expansion of �s, the coupling constant
of QCD, and v, the typical velocity of heavy quarks in the
heavy quarkonium. In their formula, heavy quarkonium is
treated as a superposition state of jQ �Qi, jQ �Qgi, jQ �Qggi,
and other higher order Fock states, rather than the jQ �Qi
color-singlet state only. The contribution of each Fock state
is organized in powers of v2, and can be written as a
product of the long-distance matrix element and the corre-
sponding short-distance coefficient. Huang and Chao [7]
first got the infrared finite LH decay width of the spin
singlet P-wave state, hc, with QCD radiative corrections
in the framework of NRQCD. The decay widths of �cJ !
LH were calculated to �3

s order in Refs. [8,9]. Complete
and detailed results of color-singlet and octet short-
distance coefficients of S-wave and P-wave spin-triplet
states were given in Ref. [10]. In Refs. [10,11], the authors
also explained why the infrared divergences disappear in
the NRQCD factorization approach.
NRQCD is now a widely accepted effective field theory

for heavy quarkonium. In the framework of NRQCD, lots
of theoretical work has been done to study S- and P-wave
quarkonium decays, and some significant successes have
been achieved (for a review see Ref. [12]). Recently, the
order v7 results of S- and P-wave heavy quarkonium
inclusive hadronic decays were obtained by Brambilla
et al. [13]. However, compared with S- and P-wave heavy
quarkonium, little work has been done onD-wave states in
NRQCD. In this paper, we will calculate the LH decay
widths of spin-triplet D-wave states 3DJ (J ¼ 1, 2, 3).

Here the subprocesses 3S½1;8�1 ! LH and 3P½8�
J ! LH at

leading-order (LO) in v2 are all included, in which the
short-distance coefficients are calculated in a different way
and in agreement with the results in Ref. [10]. As the main
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part of these D-wave quarkonium decays, the infrared safe

short-distance coefficients of 3D½1�
J ! LH are first obtained

in this paper. We use the covariant projection method,
which was first introduced in [14] and generalized in
Refs. [10,15], to do the perturbative calculations. At LO
in v2, the long-distance matrix elements of color-singlet
D-wave four-fermion operators are related to the wave
function’s second derivative at the origin. And the matrix
elements of the S-wave and P-wave octet and of S-wave
singlet four-fermion operators could be studied in lattice
simulations, or determined by fitting experimental data, or
roughly estimated through velocity scaling rules. To give
numerical predictions, here we use operator evolution
equations to estimate the values of the matrix elements.
The rest of our paper is organized as follows: In Sec. II, we
briefly introduce the NRQCD effective field theory and
give the general formulas used in D dimension. In Sec. III,
all the subprocesses will be calculated to �3

s order. And
after matching the full QCD results with the NLO NRQCD
ones, the infrared safe short-distance coefficients as well as
the operator evolution equations are obtained in Sec. IV. In
Sec. V, we will discuss the numerical results and their
phenomenological applications to c �c and b �b systems.

II. GENERAL FORMULAS

The Lagrangian for NRQCD is [6]

L NRQCD ¼ Llight þLheavy þ �L; (1)

whereLlight includes gauge field and light quark parts, and

Lheavy is the nonrelativistic Lagrangian for the heavy

quarks and antiquarks:

L heavy ¼ c y
�
iDt þ D2

2mQ

�
c þ �y

�
iDt � D2

2mQ

�
�; (2)

where c and �y are the Pauli spinor fields that annihilate
heavy quark and antiquark, respectively, and Dt and D are
the time and space components of the gauge-covariant
derivative D�. �L describes the relativistic effects. The
leading-order v2 corrections are the bilinear terms:

�Lbilinear ¼ c1
8m3

Q

½c yðD2Þ2c � �yðD2Þ2��

þ c2
8m2

Q

½c yðD � gE� E � gDÞc

þ �yðD � gE� E � gDÞ��
þ c3

8m2
Q

½c yðiD� gE� gE� iDÞ � �c

þ �yðiD� gE� gE� iDÞ � ���
þ c4

2mQ

½c yðgB � �Þc � �yðgB � �Þ��; (3)

where ci could be obtained by using the Foldy-
Wouthuysen-Tani transformation [16], diagonalizing the
Dirac theory so as to decouple the heavy-quark and anti-
quark degrees of freedom. To reproduce the full QCD
Lagrangian and to describe the annihilation of the heavy-
quark pair, four-fermion local operator terms are also
needed:

�L4-fermion ¼
X
n

fnð��Þ
mdn�4

Q

Onð��Þ; (4)

where Onð��Þ is the local four-fermion operator with the
general form ðc yKi�Þð�yK0

ic Þ, and fnð��Þ is the
Wilson coefficient. In effective theory both operators and
coefficients are dependent on the factorization scale ��,
but their combinations cancel the dependence. With the
help of the optical theorem the inclusive decay rate of a
heavy quarkonium state H could be expressed as

�ðH ! LHÞ ¼ 2 ImhHj�L4-fermionjHi

¼ X
n

2 Imfnð��Þ
mdn�4

Q

hHjOnð��ÞjHi: (5)

In principle, we need infinite terms to give theoretical
predictions, but in practice only a finite number of these
terms are needed to give an order of v2 result, since the
long-distance matrix elements can be ordered in powers of
v2 by applying the velocity scaling rules summarized in
Ref. [6]. And the short-distance coefficients (Wilson co-
efficients), defined in the matching condition below, can be
calculated perturbatively as a perturbation series in QCD
coupling constant �s

A ðQ �Q ! Q �QÞjpert QCD
¼X

n

fnð��Þ
mdn�4

hQ �QjOQ �Q
n ð��ÞjQ �Qijpert NRQCD:

(6)

When quark and antiquark are in a particular angular
momentum state J and color state 1 or 8, the imaginary part
of the left-hand side of Eq. (6) can be calculated with the
covariant projection method [10]:

2 ImAððQ �QÞ½1;8�2Sþ1LJ

! ðQ �QÞ½1;8�2Sþ1LJ

Þjpert QCD

¼ hOð2Sþ1LJÞiQCD
K

�
Z X j �MððQ �QÞ½1;8�2Sþ1LJ

! LHÞj2d�;

(7)

where hOð2Sþ1LJÞiQCD equals to the corresponding

NRQCD four-fermion operator expectation value at tree
level, L is the orbital angular momentum, S is the total spin
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of the heavy-quark pair, and K is the degree of freedom of
the initial state. For spin-triplet states with L ¼ 0, L ¼ 1,

and L ¼ 2, the relations between �MðQ �QÞ½1;8�3LJ

and the full

QCD Feynman amplitude M are

�MððQ �QÞ½1;8�3S1
! LHÞ ¼ �½S�� Tr½C½1;8���M�jq¼0; (8a)

�MððQ �QÞ½8�3PPJ

! LHÞ ¼ �½PJ�
��

d

dq�
Tr½C½8���M�jq¼0; (8b)

�MððQ �QÞ½1�3DDJ

! LHÞ ¼ 1

2
�
½DJ�
���

d2

dq�dq�

� Tr½C½1���M�jq¼0; (8c)

where �s�, �
PJ
��, and �DJ

��� are the polarization tensors for

L ¼ S, P,D states with total angular momentum 1, PJ,DJ,
respectively. For spin-triplet states, the spin projector of the
incoming heavy-quark pair accurate to all orders of v2 is
[15]

�� ¼ � 1

2
ffiffiffi
2

p ðEþmQÞ
�
1

2
P6 þ q6 þmQ

�

� P6 þ 2E

2E
��

�
1

2
P6 � q6 �mQ

�
; (9)

where P� is the four momentum of the heavy meson and
P2 ¼ 4E2, and 2q� is the relative momentum between the

quark and antiquark. The color projectors are C½1� ¼ �i;jffiffiffiffiffi
Nc

p

and C½8� ¼ ffiffiffi
2

p ðTaÞi;j.
In the Fock space, the c ð3DJÞ states are represented by

j3DJi ¼ Oð1ÞjQ �Qð3D½1�
J Þi þOðvÞjQ �Qð3P½8�

J Þi
þOðv2ÞjQ �Qð3S½1;8�J Þi þ . . . : (10)

Here, the probability of P-wave and S-wave states are
suppressed by v2 and v4 relative to the D-wave state,
respectively, but their operators scale as v�2 and v�4

relative to O1ð3DJÞ. The relativistic effect and other Fock
state contributions are suppressed at least by v2. Thus at
leading order in v2 the NRQCD formula for 3DJ decay into
LH is

�ð3DJ ! LHÞ

¼ 2 Imfð3D½1�
J Þ hc ð3DJÞjO1ð3DJÞjc ð3DJÞi

m6
Q

þ X2
J¼0

2 Imfð3P½8�
J Þ hc ð3DJÞjO8ðP3JP

Þjc ð3DJÞi
m4

Q

þ 2 Imfð3S½8�1 Þ hc ð3DJÞjO8ð3S1Þjc ð3DJÞi
m2

Q

þ 2 Imfð3S½1�1 Þ hc ð3DJÞjO1ð3S1Þjc ð3DJÞi
m2

Q

;

(11)

where the four-fermion operators are defined1 as

O1ð3S1Þ ¼
1

2Nc

c y�� � �y�c ; (12a)

O8ð3S1Þ ¼ c y�Ta� � �y�Tac ; (12b)

O8ð3P0Þ ¼
1

3
c y

��i

2
D
$ � �ÞTa��y

��i

2
D
$ � �

�
Tac ; (12c)

O8ð3P1Þ ¼
1

2
c y

��i

2
D
$ � �

�
Ta� � �y

��i

2
D
$ � �

�
Tac ;

(12d)

O8ð3P2Þ ¼
1

2
c y

��i

2
D
$ði�jÞ

�
Ta��y

��i

2
D
$ði�jÞ

�
Tac ;

(12e)

O1ð3D1Þ ¼
3

10Nc

c yKi��yKic ; (12f)

O1ð3D2Þ ¼
1

12Nc

c yKij��yKijc ; (12g)

O1ð3D3Þ ¼
1

18Nc

c yKijk��yKijkc : (12h)

The notations K are Ki ¼ �jSij, Kij ¼ �ikl�lSjk þ
�jkl�lSik, Kijk ¼ �iSjk þ �jSki þ �kSij � 2

5�
lð�jkSil þ

�kiSjl þ �ijSklÞ, where Sij ¼ ð�i
2 Þ2ðD

$iD
$j � 1

3D
$2�ijÞ.

For some processes, we need to calculate the NLO QCD
corrections. To handle the ultraviolet (UV) and infrared
(IR) divergences in the dimensional regularization scheme,
one should extend the projection method into D ¼ 4� 2�
dimensions. The definitions of �matrixes inD dimensions
can be found in quantum field theory books. And the sums

over polarization tensors �½S�� , �½PJ�
�� , and �½DJ�

��� in D dimen-

sion are

1The normalizations of the color-singlet four-fermion opera-
tors agree with those in Ref. [10]

NONRELATIVISTIC QCD PREDICTIONS OF D-WAVE . . . PHYSICAL REVIEW D 81, 074032 (2010)

074032-3



X
Jz

�ð1Þ� �ð1Þ�
�0 ¼���0 ; (13a)

X
Jz

�ð0Þ���
ð0Þ�
�0�0 ¼ 1

D� 1
�����0�0 ; (13b)

X
Jz

�ð1Þ���
ð1Þ�
�0�0 ¼ 1

2
ð���0���0 ����0��0�Þ; (13c)

X
Jz

�ð2Þ���
ð2Þ�
�0�0 ¼ 1

2
ð���0���0 þ���0��0�Þ � 1

D� 1
�����0�0 ; (13d)

X
Jz

�ð1Þ����
ð1Þ�
�0�0�0 ¼ D� 1

2ðD� 2ÞðDþ 1Þ
�
�����0�0���0 þ�����0�0���0 þ�����0�0��0� þ�����0�0���0

� 2

D� 1
ð�����0�0���0 þ�����0�0���0 þ��0�0�����0� þ��0�0�����0�Þ

þ 4

ðD� 1Þ2�����0�0���0

�
; (13e)

X
Jz

�ð2Þ����
ð2Þ�
�0�0�0 ¼ 1

6
ð2���0���0���0 þ 2���0��0����0 ����0���0���0 ����0���0���0 ����0���0���0

����0���0���0 Þ þ 1

6ðD� 2Þ ð�4�����0�0���0 þ 2���0��0�0��� þ 2������0��0�0

þ 2�����0���0�0 þ 2�����0���0�0 ����0��0�0��� ������0���0�0 ����0�����0�0

�������0��0�0 Þ; (13f)X
Jz

�ð3Þ����
ð3Þ�
�0�0�0 ¼ 1

6
ð���0���0���0 þ���0���0���0 þ���0���0���0 þ���0���0���0 þ���0���0���0

þ���0���0���0 Þ � 1

3ðDþ 1Þ ð������0��0�0 þ������0��0�0 þ������0��0�0 þ������0��0�0

þ������0��0�0 þ������0��0�0 þ������0��0�0 þ������0��0�0 þ������0��0�0 Þ: (13g)

And the degrees of freedom areD� 1 for the S-wave state;

1, ðD�1ÞðD�2Þ
2 , ðDþ1ÞðD�2Þ

2 for J ¼ 0, 1, 2 P-wave states; and

D� 1, ðD�3ÞðD�1ÞðDþ1Þ
3 , ðD�2ÞðD�1ÞðDþ3Þ

6 for J ¼ 1, 2, 3
D-wave states. The rather trivial extensions for L ¼ 0
and 1 cases were given in Ref. [10]. Here three principles
are adopted to construct the nontrivial results for the
D-wave case. First, the symmetry of the three indexes
should be kept; second, the inner products between one
tensor and the other two are zero; third, the completeness
condition should be satisfied:X

Jz

�ð1Þ����
ð1Þ�
�0�0�0 þ

X
Jz

�ð2Þ����
ð2Þ�
�0�0�0 þ

X
Jz

�ð3Þ����
ð3Þ�
�0�0�0

¼
�
1

2
ð���0���0 þ���0��0�Þ

� 1

D� 1
�����0�0

�
���0 : (14)

We calculate the degrees of freedom of each 3DJ state with
group theory and get Eq. (13e). Then we derive out
Eq. (13g) with the help of the first two principles. In the end
(13f) = (14) � (13e) � (13g).

To get the NLO NRQCD results, the operator mixing
equation (15) between P-wave and D-wave operators in

momentum space should also be extended into D dimen-
sion for consistency:X

DJ0
CPJ;DJ0 hðQ �QÞ3D

J0
jOð3DJ0 ÞjðQ �QÞ3D

J0
i

¼ hðQ �QÞ3PJ
jOð3PJÞjðQ �QÞ3PJ

i ~q � ~q0; (15)

where CPJ;DJ0 are the generalized Clebsch-Gordan coeffi-

cients:

CPJ;DJ
¼ j����ðDJÞ��ðPJÞ

�� ��ðS¼1Þ
� j2

�ðDJÞ
�0�0�0���

0�0�0ðDJÞ
; (16)

where the repeated indexes mean being summed in D
dimension.
After resolving the above problems, one can do calcu-

lations from both full QCD and NRQCD straightforwardly.

III. FULL QCD CALCULATION

In Sec. II, it has been explained that at leading order of
v2 the LH decays of 3DJ contain the subprocesses of

Q �Q½1;8�
3S

1

, Q �Q½8�
3PJ

(J ¼ 0, 1, 2), and Q �Q½1�
3DJ

(J ¼ 0, 1, 2, 3)

annihilating into gluons or light quarks. When doing the
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calculation with full QCD theory, for simplicity, only the

explicit imaginary part of �A is given here

2 Im �AððQ �QÞ½1;8�2Sþ1LJ

! ðQ �QÞ½1;8�2Sþ1LJ

Þjpert QCD

¼ 1

K

Z X j �MððQ �QÞ½1;8�2Sþ1LJ

! LHÞj2d�:

(17)

In the following subsections, the contributions at �2
s order,

and the corresponding real and virtual corrections will be
given in Secs. III A, III B, and III C respectively. As for the
processes whose tree level diagrams are already at �3

s

order, their results will also be given in Sec. III B.

A. LO results

There are three subprocesses ðQ �QÞ½8�3S1
!q �q, ðQ �QÞ½8�3P0;2

!
gg with nonvanishing imaginary parts at Oð�2

sÞ. The
Feynman diagrams are shown in Fig. 1. And the results
in D dimension are

ð2Im �Að3S½8�1 ÞÞBorn ¼ 1� �

3� 2�

8Nf�
2
s	

2�4��ð2Þ
m2

Q

; (18a)

ð2Im �Að3P½8�
0 ÞÞBorn ¼ 1� �

3� 2�

144BF�
2
s	

2�4��ð2Þ
m4

Q

; (18b)

ð2Im �Að3P½8�
2 ÞÞBorn ¼ 4�2� 13�þ 6

ð3� 2�Þð5� 2�Þ
32BF�

2
s	

2�4��ð2Þ
m4

Q

;

(18c)

where �ð2Þ ¼ 1
8	

�ð1��Þ
�ð2�2�Þ ð 	

m2
Q

Þ� is the two-body phase space

in D dimension.

B. Real corrections

Besides the real corrections (RC), other processes with

three bodies in final states include ðQ �QÞ½1;8�3S
1

!3g,

ðQ �QÞ½8�3P1

!3g, ðQ �QÞ½8�3PJ

!q �qg, and ðQ �QÞ½1�3DJ

!3g. And

the typical Feynman diagrams for q �qg and 3g are shown
in Fig. 2 and 3, respectively.2

We calculate the Feynman amplitudes and do the phase
space integrations both in D dimension, and check the
results with eikonal approximation relations or Altarelli-
Parisi splitting functions when one gluon is soft or two

light partons (gluon or light quark) are collinear. Three

variables xi¼ Ei

mQ
are introduced to describe the

ðQ �QÞ3L½1;8�
J

!k1þk2þk3 process. For energy conservation

x1 þ x2 þ x3 ¼ 2. The three-body phase space in D di-
mension becomes

d�ð3Þ ¼ �ð2Þ
4m2

Q

ð4	Þ2�ð1� �Þ
�
	

m2
Q

�
�½ð1� x1Þð1� x2Þ

� ð1� x3Þ����ð2� x1 � x2 � x3Þdx1dx2dx3:
(19)

In the phase space, the xi ¼ 0 region is the soft region of
particle with momentum ki, and the xi ¼ 1 region is the
collinear region of the other two particles. And the inner
products of those four momenta are P � ki ¼ 2m2

Qxi, ki �
kj ¼ 2m2

Qðxi þ xj � 1Þ.
When L ¼ S and P, the real corrections contributing to

2 Im �Að3L½1;8�
J ÞRC are

2 Im �Að3L½1;8�
J ÞRC ¼ 1

3!ðKc1;c8ÞðKJÞ
�
Z X j �MððQ �QÞ½1;8�3LJ

! gggÞj2d�ð3Þ

þ 1

ðKc1;c8ÞðKJÞ
�
Z X j �MððQ �QÞ½1;8�3LJ

! q �qgÞj2d�ð3Þ;

(20)

FIG. 1. Feynman diagrams for ðQ �QÞ½8�3S
1

! q �q, ðQ �QÞ½8�3P
0;2

!
gg.

FIG. 3. Feynman diagrams for ðQ �QÞ3L½1;8�
J

! 3g. Diagrams
with different positions of ki are neglected. In Feynman gauge
the ghost diagrams should also be contained.

FIG. 2. Feynman diagrams for ðQ �QÞ½8�3LJ

! q �qg.

2In the Feynman gauge the ghost diagrams are also needed,
where a three-gluon or four-gluon vertex will appear.
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where Kc1 ¼ 1, Kc8 ¼ N2
c � 1, and KJ is the polarization

number of angular momentum J state. In theD-wave case,
because of parity conservation, only the 3g process is left.

1. ðQ �QÞ3L½1;8�
J

! ggg

There are 18 diagrams in the Q �Q ! ggg process.
Because of JPC conservation, only class [g1] is needed in
3S½1�1 ! ggg and 3D½1�

J ! ggg processes. In the 3P½8�
J !

ggg processes, the diagrams are those in class [g1], class
[g2] and the corresponding ghost ones in class [G1]. And

all the diagrams should be calculated in the 3S½8�1 ! ggg
case. We now proceed to show how to get the physical
results at a differential cross section level when ghost
diagrams are contained. In the Feynman gauge, when the
three or four gluon vertex appears, the nonphysical (NP)
degrees of freedom are removed by ghost diagrams. Label
the square of the amplitudes of the gluon diagrams in the
Feynman gauge with the subscript NP, and express the

ghost result as

j �MGj2ki;kj ¼
X j �MððQ �QÞ½1;8�3LJ

! gGki
�GkjÞj2; (21)

where Gki and
�Gkj are for ghost and antighost with mo-

mentum ki and kj, respectively. To cancel the NP part of

each gluon, all possibilities of indexes i, j should be
summed over. Then proper physical results at the differen-
tial level are

X j �MððQ �QÞ½1;8�3LJ

! gggÞj2 ¼X j �MNPððQ �QÞ½1;8�3LJ

! gggÞj2

�X
i;j

j �MGj2ki;kj : (22)

Here we omit the details and only give the real correc-
tions below

1

3!ð3� 2�Þ
Z X j �MððQ �QÞ½1�3S

1

! gggÞj2d�ð3Þ ¼ 40�3
sð	2 � 9Þ
81m2

Q

; (23a)

1

3!ðN2
C � 1Þð3� 2�Þ

Z X j �MððQ �QÞ½8�3S
1

! gggÞj2d�ð3Þ ¼ 5ð67	2 � 657Þ�3
s

108m2
Q

; (23b)

1

3!ðN2
C � 1Þ

Z X j �MððQ �QÞ½8�3P
0

! gggÞj2d�ð3Þ ¼ CA�sF�

	

�
1

�2
þ 7

3�
þ 875� 60	2

162

�
ð2 Im �Að3P½8�

0 ÞÞBorn;

(23c)

2

3!ðN2
C � 1Þð3� 2�Þð2� 2�Þ

Z X j �MððQ �QÞ½8�3P
1

! gggÞj2d�ð3Þ ¼ CABFð�138	2 þ 1369Þ�3
s

54m4
Q

; (23d)

2

3!ðN2
C � 1Þð5� 2�Þð2� 2�Þ

Z X j �MððQ �QÞ½8�3P
2

! gggÞj2d�ð3Þ ¼ CA�sF�

	

�
1

�2
þ 7

3�
þ 4679� 438	2

432

�

� ð2 Im �Að3P½8�
2 ÞÞBorn; (23e)

1

3!ð3� 2�Þ
Z X j �MððQ �QÞ½1�3D

1

! gggÞj2d�ð3Þ ¼ 32

3m6
Q

BF�2F�	�
3
s�

4�

�
� 608

135�
þ�7744þ 1605	2

16 200

�
;

(23f)

3

3!ð5� 2�Þð3� 2�Þð1� 2�Þ
Z X j �MððQ �QÞ½1�3D2

! gggÞj2d�ð3Þ ¼ 32

3m6
Q

BF�2F�	�
3
s�

4�

�
� 8

15�
þ�23 024þ 2125	2

1800

�
;

(23g)

6

3!ð7� 2�Þð3� 2�Þð2� 2�Þ
Z X j �MððQ �QÞ½1�3D3

! gggÞj2d�ð3Þ ¼ 32

3m6
Q

BF�2F�	�
3
s�

4�

�
� 32

15�
þ�28 656þ 2645	2

6300

�
;

(23h)

where the ‘‘¼’’ are correct at Oð1Þ, F� ¼ ð	�2

m2
Q

Þ��ð1þ �Þ, CA ¼ 3, and BF ¼ 5=12 are color factors. The expressions ofP j �MððQ �QÞ½1�3DJ

! gggÞj2 are too complicated to be given here.

2. ðQ �QÞ3L½1;8�
J

! q �qg

At Oð�3
sÞ there are four subprocesses: ðQ �QÞ3S½8�

1

! q �qg, which include all the Feynman diagrams in Fig. 2, and

ðQ �QÞ3P½8�
J
! q �qg, in which there are only two diagrams q½2� and q½5�. As in the 3g processes both the Feynman amplitudes
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and the phase space integrals are calculated in D dimension directly and the results are

1

ðN2
c � 1Þð3� 2�Þ

Z X j �MððQ �QÞ½8�3S1
! q �qgÞj2d�ð3Þ ¼ �sF�

	

�
CF

�
1

�2
þ 3

2�
þ 57� 8	2

12

�

þ CA

�
1

2�
þ 11

6

��
ð2 Im �Að3S½8�1 ÞÞBorn; (24a)

1

ðN2
c � 1Þ

Z X j �MððQ �QÞ½8�3P
0

! q �qgÞj2d�ð3Þ ¼
�
Nf

�sF�

	

�
� 1

3�

��
ð2 Im �Að3P½8�

0 ÞÞBorn

� 4

9m2
Q

BF�s

�
3ð2 Im �Að3S½8�1 ÞÞBorn F�

	�
þ 29Nf

3m2
Q

�2
s

�
; (24b)

1

ðN2
c � 1Þ

Z X j �MððQ �QÞ½8�3P
1

! q �qgÞj2d�ð3Þ ¼
�
Nf

�sF�

	

�
� 1

3�

��
ð2 Im �Að3P½8�

1 ÞÞBorn

� 4

9m2
Q

BF�s

�
3ð2 Im �Að3S½8�1 ÞÞBorn F�

	�
þ 8Nf

3m2
Q

�2
s

�
; (24c)

1

ðN2
c � 1Þ

Z X j �MððQ �QÞ½8�3P2

! q �qgÞj2d�ð3Þ ¼
�
Nf

�sF�

	

�
� 1

3�

��
ð2 Im �Að3P½8�

2 ÞÞBorn

� 4

9m2
Q

BF�s

�
3ð2 Im �Að3S½8�1 ÞÞBorn F�

	�
þ 58Nf

15m2
Q

�2
s

�
: (24d)

C. Virtual corrections

The virtual corrections are performed with a renormal-
ized Lagrangian, in which the renormalization constants of
the QCD gauge coupling constant gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4	�s

p
, heavy-

quark mQ, heavy-quark field c Q, light quark field c q, and

gluon field A� are defined as

g0s ¼ Zggs; m0
Q ¼ ZmQ

mQ; c 0
Q ¼

ffiffiffiffiffiffiffiffi
Z2Q

q
c ;

c 0
q ¼

ffiffiffiffiffiffiffiffi
Z2q

q
c ; A0

� ¼ ffiffiffiffiffiffi
Z3

p
A�; (25)

where the superscript 0 labels bare quantities, and Zi ¼
1þ �i. Here a mixing renormalization scheme [17] is
adopted. The quark mass mQ, heavy-quark field c Q, light

quark field c q, and gluon field A� are defined in the on-

shell condition, while gs is in the minimal-subtraction(MS)
scheme. Then in this mixing scheme, these renormalization
constants are

�ZOS
2Q ¼ �CF�sF�

4	

�
1

�UV

þ 2

�IR
þ 3 lnð4Þ þ 4þOð�Þ

�
;

(26a)

�ZOS
2q ¼ �CF�sF�

4	

�
1

�UV

� 1

�IR
þOð�Þ

�
; (26b)

�ZOS
3 ¼ �sF�

4	
ð�0 � CAÞ

�
2

�UV

� 2

�IR
þOð�Þ

�
; (26c)

�ZOS
mQ

¼ � 3CF�sF�

4	

�
1

�UV

þ lnð4Þ þ 4

3
þOð�Þ

�
; (26d)

�ZMS
g ¼ ��0�sF�

4	

�
1

�UV

� ln

�
�2

4m2
Q

�
þOð�Þ

�
; (26e)

where�0 ¼ 11CA

6 � Nf

3 , andNf is the number of light flavor

quarks. The representative virtual correction Feynman dia-
grams for the Born processes in Sec. III A are shown in
Figs. 4 and 5, without external leg correction diagrams in
this scheme. The UV divergences in self-energy and tri-
angle diagrams will be canceled by the counterterm dia-
grams correspondingly. To regularize the Coulomb 1

v poles

in the virtual processes, the loop integrals are done first
before setting the relative momentum q ¼ 0. Also in

ðQ �QÞ½8�3P0;2

! gg processes, we integrate the loop momen-

tum first then compute the first derivative of the Feynman
amplitudes with respect to q�. When q � 0, the momenta
of Q and �Q are PQ ¼ P

2 þ q, P �Q ¼ P
2 � q, where P is the

meson total momentum, and the momenta of the two
massless final state particles are labeled with k1 and k2.
Then the scalar functions of the loop integrals can be
expressed in the Mandelstam variables:

FIG. 4. One-loop Feynman diagram for ðQ �QÞ3P½8�
0;2

! gg.
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s¼ ðPQ þP �QÞ2; t¼ ðPQ � k1Þ2; u¼ ðPQ � k2Þ2;
(27)

where s ¼ 4m2
Q=ð1� v2Þ. We do the calculations diagram

by diagram and summarize the results in the following
form:

2 Im �Að3L½1;8�
J ÞVC ¼ 2 Im �Að3L½1;8�

J ÞBorn �sF�

	

X
k

Dk;

(28)

where Dk for each process are listed in Table I, II, and III.
The contributions of the counter-term diagrams are put
together with the corresponding self-energy and vertex
diagrams to show explicit cancelation of the UV divergen-
ces. The IR divergences left will be canceled by the RC.

D. Summation of real and virtual corrections

Collecting the RC with virtual correction, we obtain the
full QCD results at Oð�3

sÞ:

TABLE II. Virtual corrections to ðQ �QÞ3P½8�
0
! gg.

Diag. Dk

a1þ a2 CF

�IR
þ CFð5þ32 lnð2ÞÞ

9

a3þ a4þ a9 �CA

3�2IR
þ �9�0�CA�18CF

9�IR
þ CFð�44�128 lnð2Þþ3	2Þ

18 þ CAð38þ8 lnð2Þ�	2Þ
36 þ �0 lnð �2

4m2
Q

Þ
a5 CA

2 ð �4
3�2IR

þ 2
9�IR

� 14
27 þ 13

18	
2 þ 14

27 lnð2ÞÞ
a6 0

a7 ðCF � CA

2 Þð 1
�IR

þ 	2

2v � 4
9 þ 1

12	
2 þ 32

9 lnð2ÞÞ
a8 CAð�19

27 þ 70
27 lnð2ÞÞ

TABLE I. Virtual corrections to ðQ �QÞ3S½8�
1
! q �q.

Diag. Dk

b1þ b4þ b6 CA�2CF

2�2IR
þ CA�3CF��0

2�IR
þ CAð9�2	2Þþ4CFð�6þ	2Þ

6 þ �0

2 lnð �2

4m2
Q

Þ
b2þ b3þ b5 ð2CF�CAÞ	2

4v � �0

2�IR
þ CAð7þ2 lnð2ÞÞ�12CF

3 þ �0

2 lnð �2

4m2
Q

Þ
b7 ð2CF � CA

2 Þð	
2

6 � 1
�2IR
Þ

b8 ð2CF � CAÞð 1
�2IR

� 	2

6 Þ
b9 ð56CA � 1

3NfÞ 1
�IR

þ 31
18CA � 5

9Nf

TABLE III. Virtual corrections to ðQ �QÞ3P½8�
2
! gg.

Diag. Dk

a1þ a2 CFð 1
�IR

þ 11
6 þ 29

6 lnð2ÞÞ
a3þ a4þ a9 �3CA

16�2IR
þ �32�0þ15CA�64CF

32�IR
� CFð100þ172 lnð2Þþ3	2Þ

24 þ CAð75þ112 lnð2Þþ18	2Þ
192 þ �0 lnð �2

4m2
Q

Þ
a5 CA

2 ð� 13
8�2IR

� 15
16�IR

� 17
288 þ 37

48	
2 þ 89

18 lnð2ÞÞ
a6 0

a7 ðCF � CA

2 Þð 1
�IR

þ 1
2v	

2 � 5
3 þ 1

8	
2 þ 7

3 lnð2ÞÞ
a8 �CAð59 þ 10

9 lnð2ÞÞ

FIG. 5. One-loop Feynman diagram for ðQ �QÞ3S½8�
1
! q �q.
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ð2 Im �Að3S½1�1 ÞÞjpert QCD ¼ 40�3
sð	2 � 9Þ
81m2

Q

; (29a)

ð2 Im �Að3S½8�1 ÞÞjpert QCD ¼ �2
s

108m2
Q

�
5�sð�657þ 67	2Þ þ Nf

�
36	þ �s

�
36ð2CF � CAÞ	

2

4v
þ 642� 20Nf

� 27	2 þ 72 lnð2Þ þ 36�0 ln
�2

4m2
Q

���
; (29b)

ð2 Im �Að3P½8�
0 ÞÞjpert QCD ¼ 5�2

s

432m4
Q

�
216	þ �s

�
54ð2CF � CAÞ	

2

v
þ 3032þ 21	2 þ 840 lnð2Þ

þ 216�0 ln

�
�2

4m2
Q

���
� 4

9m2
Q

BF�s

�
3ð2 ImAð3S½8�1 ÞÞBorn F�

	�
þ 29Nf

3m2
Q

�2
s

�
; (29c)

ð2 Im �Að3P½8�
1 ÞÞjpert QCD ¼ 5�2

sð1369� 138	2Þ
216m4

Q

� 4

9m2
Q

BF�s

�
3ð2 ImAð3S½8�1 ÞÞBorn F�

	�
þ 8Nf

3m2
Q

�2
s

�
; (29d)

ð2 Im �Að3P½8�
2 ÞÞjpert QCD ¼ �2

s

216m4
Q

�
144	þ �s

�
36ð2CF � CAÞ	

2

v
þ 4187� 258	2 þ 336 lnð2Þ

þ 144�0 ln

�
�2

4m2
Q

���
� 4

9m2
Q

BF�s

�
3ð2 ImAð3S½8�1 ÞÞBorn F�

	�
þ 58Nf

15m2
Q

�2
s

�
; (29e)

ð2 Im �Að3D½1�
1 ÞÞjpert QCD ¼ 32

3m6
Q

BF�2F�	�
3
s�

4�

�
� 608

135�
þ�7744þ 1605	2

16 200

�
; (29f)

ð2 Im �Að3D½1�
2 ÞÞjpert QCD ¼ 32

3m6
Q

BF�2F�	�
3
s�

4�

�
� 8

15�
þ�23 024þ 2125	2

1800

�
; (29g)

ð2 Im �Að3D½1�
3 ÞÞjpert QCD ¼ 32

3m6
Q

BF�2F�	�
3
s�

4�

�
� 32

15�
þ�28 656þ 2645	2

6300

�
: (29h)

There are still infrared divergences and Coulomb singular-
ities in some of the expressions above. As explained in
Ref. [6], the infrared divergence comes from the soft gluon
emission of heavy quarks, and the Coulomb singularity
reflects the behavior of heavy quarks in the potential
region. In next section, both of them will be repeated
precisely when doing the NLO corrections for NRQCD
matrix elements in the corresponding regions.

As mentioned above, the S- and P-wave subprocesses
have been studied by Petrelli et al. [10]. In their paper, the
soft and collinear singularities are separated with the help
of eikonal approximation and Altarelli-Pasrisi splitting
functions, then they calculate the finite part in 4 dimension.
In this paper, we recalculate them in D dimension directly
as a cross check, and get the same results. The D-wave
subprocesses have also been considered in Refs. [3,4] but
they did the calculations in 4 dimension, and regularized
the infrared divergence with the binding energy.

IV. NRQCD RESULTAND OPERATOR
EVOLUTION EQUATIONS

There are three typical energy scales in the heavy quark-
onium system, related to the small parameter v. They are
mQ (the heavy-quark mass), mQv (the typical momentum

of heavy quarks in heavy quarkonium), and mQv
2 (the

binding energy). Then, there are three dynamical regimes
in the NRQCD effective theory, in which either the heavy-
quark or the gluon is on mass shell, and they are

soft regime: A
�
s : k0 � j ~kj �mQv;

�s: T � j ~pj �mQv;

potential regime: A
�
p : k0 �mQv

2; j ~kj �mQv;

�p: T �mQv
2; j ~pj �mQv;

ultrasoft regime: A�
u : k0 � j ~kj �mQv

2; (30)

where k
 and p
 are the momenta of the gluon field and

heavy-quark field, respectively, and T ¼ p0 �mQ ¼
~p2

2mQ
þOðv4Þ. Because there are more than one regimes in

the nonrelativistic system, matching the production and
annihilation of external heavy-quark and antiquark pairs
at certain order in v can not be manifest, though the power
counting rule, velocity scaling rule, of operators in
NRQCD is simple. This problem has been addressed in
several papers [18–25], and the matching prescriptions
based on dimensional regularization in NRQCD were
also clarified. Furthermore, the potential NRQCD
(pNRQCD) effective theory was proposed by introducing
the potential to manage the nonperturbative effect in
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Ref. [26]. The NRQCD Feynman rules for propagators in

the Coulomb gauge [25], are shown in Fig. 6, where �ij
tr ¼

�ij � kikj

jkj2 . At leading order in v2, the interaction term of

the NRQCD Lagrangian, where the antiheavy terms are

neglected, is igsc
yðA0 þ ðA�rþr�AÞ

2mQ
Þc . And it turns to be

igsc
yðA0 þ A�r

mQ
Þc , for r �A ¼ 0 in the Coulomb gauge.

The Feynman rules for vertex can be read directly and are
listed in Fig. 7.3 The Feynman rules for anti-heavy quark
can be gotten by charge-conjugation symmetry.

Since the short-distance coefficients are obtained by
matching full QCD results with NRQCD results, we only
need to calculate the real parts of the matrix elements.
Figure 8 gives the LO Feynman diagram. At NLO in �s,
when the inner gluon line joints two incoming or outgoing
quark lines, a nonvanishing real part only appears in the
potential region. When the inner gluon line connects with
one incoming quark line and one outgoing quark line, the
power counting rules [25] tell us that the soft region will
provide the leading order contribution in v. The external
self-energy diagrams are dropped to be in accordance with
the renormalization scheme in full QCD calculation. Then
we only need to calculate, two class, six NLO Feynman
diagrams shown in Fig. 9.

For convenience, we present the detailed NLO correc-

tions of the P-wave octet matrix elements, hOð3P½8�
J Þi,

which are more representative than the S-wave ones. The

LO result hOð3P½8�
J ÞiBorn is trivial. Using the Feynman rules

for propagators in the soft regime and vertices, the loop
integral of diagram (a) reads

Ia ¼ ig2s
m2

Q

Z dDk

ð2	ÞD
p � p0 � ðp � kÞðp0 � kÞ=k2

k20 � k2 þ i�

� 1

k0 þ i�

1

k0 þ i�
: (31)

After performing the contour integrating of k0 ¼ jkj � i�,

Ia ¼ g2s
2m2

Q

Z dD�1k

ð2	ÞD�1

p � p0 � ðp � kÞðp0 � kÞ=k2

jkj3 ; (32)

which is both infrared and ultraviolet divergent. In the
dimension regularization scheme the result is

Ia ¼ �s

3	m2
Q

�
1

�UV

� 1

�

�
p � p0: (33)

The integrals of (b–d) in Fig. 9 could be calculated in the
same way:

Ib�d ¼ �s

3	m2
Q

�
1

�UV

� 1

�

�
p � p0: (34)

The loop integral of diagram (e) in potential regime could
be written down similarly:

FIG. 8. NRQCD Feynman Diagram for LO matrix elements.

FIG. 9. NRQCD Feynman Diagrams for NLO matrix ele-
ments.

FIG. 7. NRQCD Feynman rules for a heavy-quark gluon ver-
tex.

FIG. 6. NRQCD Feynman rules for heavy-quark and gloun
propagators in different regimes.

3The Feynman rules are the same for the corresponding
interaction terms in different regimes though their power count-
ing may not be.
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Ie ¼ �ig2s
Z dDk

ð2	ÞD
1

k2

1

T þ k0 � ðpþkÞ2
2mQ

þ i�

� 1

T � k0 � ðpþkÞ2
2mQ

þ i�
; (35)

where T ¼ jpj2
2mQ

. When k0 is integrated out:

Ie ¼ g2smQ

Z dD�1k

ð2	ÞD�1

1

k2

1

k2 þ 2p � k� i�
: (36)

This could be done inD dimension directly. Regularize the

Coulomb singularity by introducing v ¼ jpj
mQ

, then at v�1

order we have

Ie ¼ �s	

4v

�
1� i

	

�
1

�
� ln

�m2
Qv

2

	�2

�
� �E

��
: (37)

The integral of diagram (f) has the same real part but with a
plus sign before the virtual part.

The color structures for diagrams (a), (c) and (b), (d) and
(e), (f) are obtained by the color decomposition listed in
the first, second, and third line below, respectively:

ffiffiffi
2

p
TaTb � Tb

ffiffiffi
2

p
Ta ¼ CF

1ffiffiffi
3

p � 1ffiffiffi
3

p þ �2

2Nc

ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc;

ffiffiffi
2

p
TaTb � ffiffiffi

2
p

TaTb ¼ CF

1ffiffiffi
3

p � 1ffiffiffi
3

p

þ N2
c � 2

2Nc

ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc;

Tb
ffiffiffi
2

p
TaTb � ffiffiffi

2
p

Ta ¼
�
CF � 1

2
CA

� ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc: (38)

Combining the integrals with the according color factors
and summing them over, we obtain the NLO NRQCD
corrections for the P-wave octet operator matrix elements,
which are UV divergent and need to be renormalized:

hO0ð3P½8�
J ÞiNLO ¼

��
1þ �s	

2v

�
CF � 1

2
CA

�� ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc

þ 4�s

3	m2
Q

�
1

�UV

� 1

�

��
CF

1ffiffiffi
3

p � 1ffiffiffi
3

p

þ BF

ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc

�
p � p0

�
h �Oð3PJÞiBorn;

(39)

where Oð3P½8�
J Þ ¼ �Oð3PJÞ

ffiffiffi
2

p
Ta � ffiffiffi

2
p

Ta, BF ¼ N2
c�4
4Nc

and

the superscript ‘‘0’’ means the matrix elements of the
bare operators. As expected, at NLO the P-wave octet
operators are mixed with the D-wave singlet and octet
ones, and with the help of Eq. (15), they could be reex-
pressed as

hO0ð3P½8�
J ÞiNLO ¼

�
1þ�s	

2v

�
CF � 1

2
CA

��
hO0ð3P½8�

J ÞiBorn

þ 4�sCJ;J0

3	m2
Q

�
1

�UV

� 1

�

�
ðCFhO0ð3D½1�

J0 ÞiBorn

þBFhO0ð3D½8�
J0 ÞiBornÞ; (40)

where CJ;J0 are defined in Eq. (16) and for J0 ¼ 1, 2, 3,

C0;J0 ¼ ðD�2ÞðDþ1Þ
2ðD�1Þ2 , 0, 0; C1;J0 ¼ ðDþ1Þ

4ðD�1Þ ,
3
4 , 0; C2;J0 ¼

ðD�3Þ2
4ðD�1Þ2 ,

1
4 , 1. The P-wave operators are mixed with the

D-wave operators at NLO in �s. But the NLO NRQCD
corrections of D-wave operators are related to the relativ-
istic corrections of P-wave operators. Then at leading-
order of v2, the renormalization transformations of those

operators in MS scheme are

O0ð3P½8�
J Þ

O0ð3D½1�
J0 Þ

 !
¼ 1 C½1�

JJ0

�
1

�UV
þ ln4	� �E

�
0 1

0
@

1
A

� ORð3P½8�
J Þ

ORð3D½1�
J0 Þ

 !
; (41)

where C½1�
JJ0 ¼ CJ;J0

4�sCF

3	m2
Q

. When the operators are mixed

with each other, the renormalization constants Z’s are not
numbers but matrices. TheD-wave octet operators are also
dropped, for they do not appear in full QCD calculations.
The matrix elements of the renormalized operators

ORð3P½8�
J Þ at NLO are now UV finite, but there are still 1

�

poles in D-wave terms, Eq. (42), and Coulomb singular-
ities, which will absorb the infrared and Coulomb diver-
gences in full theory;

hORð3P½8�
J ÞiNLO ¼

�
1þ �s	

2v

�
CF � 1

2
CA

��
hORð3P½8�

J ÞiBorn

þ 4�sCJ;J0 ð ���
Þ2�

3	m2
Q

�
� 1

�
� ln4	þ �E

�

� ðCFhORð3D½1�
J0 ÞiBorn

þ BFhORð3D½8�
J0 ÞiBornÞ; (42)

where �� is the renormalization scale. The matrix ele-
ments of the S-wave octet operator at NLO could be
computed in the same way:

hORð3S½8�1 ÞiNLO ¼
�
1þ �s	

2v

�
CF � 1

2
CA

��
hORð3S½8�1 ÞiBorn

þ 4�sð ���
Þ2�

3	m2
Q

�
� 1

�
� ln4	þ �E

�

� ðCFhORð3P½1�
J ÞiBorn

þ BFhORð3P½8�
J ÞiBornÞ: (43)
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The matrix elements of the S-wave singlet operator andD-wave singlet operators at NLO do not need to be calculated, for
their LO short-distance coefficients are already at Oð�3

sÞ.
Multiply the matrix elements with the short-distance coefficients, we obtain the NRQCD result at NLO in �s:

ð2 ImAð3S½1�1 ÞÞNRQCD ¼ 2 Imfð3S½1�1 Þ
m2

Q

hOð3S½1�1 ÞiRBorn; (44a)

ð2 ImAð3S½8�1 ÞÞNRQCD ¼ 2 Imfð3S½8�1 Þ
m2

Q

�
1þ �s	

2v

�
CF � 1

2
CA

��
hOð3S½8�1 ÞRBorn; (44b)

ð2 ImAð3P½8�
0 ÞÞNRQCD ¼

�
2 Imfð3P½8�

0 Þ
m4

Q

�
1þ �s	

2v

�
CF � 1

2
CA

��
� 4�sBF

3	m4
Q

2 Imfð3S½8�1 Þ
�

�
4	�2

�2
�

�
�
�ð1þ �Þ

�

� hOð3P½8�
0 ÞiRBorn; (44c)

ð2 ImAð3P½8�
1 ÞÞNRQCD ¼

�
2 Imfð3P½8�

1 Þ
m4

Q

�
1þ �s	

2v

�
CF � 1

2
CA

��
� 4�sBF

3	m4
Q

2 Imfð3S½8�1 Þ
�

�
4	�2

�2
�

�
�
�ð1þ �Þ

�

� hOð3P½8�
1 ÞiRBorn; (44d)

ð2 ImAð3P½8�
2 ÞÞNRQCD ¼

�
2 Imfð3P½8�

2 Þ
m4

Q

�
1þ �s	

2v

�
CF � 1

2
CA

��
� 4�sBF

3	m4
Q

2 Imfð3S½8�1 Þ
�

�
4	�2

�2
�

�
�
�ð1þ �Þ

�

� hOð3P½8�
2 ÞiRBorn; (44e)

ð2 ImAð3D½1�
1 ÞÞNRQCD ¼

�
2 Imfð3D½1�

1 Þ
m6

Q

�X
J

4�sCFCJ;1

3	m6
Q

2 Imfð3P½8�
J Þ

�

�
4	�2

�2
�

�
�
�ð1þ �Þ

�
hOð3D½1�

1 ÞiRBorn; (44f)

ð2 ImAð3D½1�
2 ÞÞNRQCD ¼

�
2 Imfð3D½1�

2 Þ
m6

Q

�X
J

4�sCFCJ;2

3	m6
Q

2 Imfð3P½8�
J Þ

�

�
4	�2

�2
�

�
�
�ð1þ �Þ

�
hOð3D½1�

2 ÞiRBorn; (44g)

ð2 ImAð3D½1�
3 ÞÞNRQCD ¼

�
2 Imfð3D½1�

3 Þ
m6

Q

�X
J

4�sCFCJ;3

3	m6
Q

2 Imfð3P½8�
J Þ

�

�
4	�2

�2
�

�
�
�ð1þ �Þ

�
hOð3D½1�

3 ÞiRBorn: (44h)

Finally, matching the NRQCD results with full QCD results, we get infrared safe short-distance coefficients at Oð�3
sÞ:

2 Imfð3S½1�1 Þ ¼ 40�3
sð	2 � 9Þ
81

; (45a)

2 Imfð3S½8�1 Þ ¼ �2
s

108

�
36Nf	þ �s

�
5ð�657þ 67	2Þ þ Nfð642� 20Nf � 27	2 þ 72 ln2Þ þ 72�0Nf ln

�

2mQ

��
; (45b)

2 Imfð3P½8�
0 Þ ¼ 5�2

s

1296

�
648	þ �s

�
9096� 464Nf þ 63	2 þ 2520 ln2þ 1296�0 ln

�

2mQ

þ 96Nf ln
2mQ

��

��
; (45c)

2 Imfð3P½8�
1 Þ ¼ 5�3

sð4107� 64Nf � 414	2 þ 48Nf ln
2mQ

��
Þ

648
; (45d)

2 Imfð3P½8�
2 Þ ¼ �2

s

648

�
432	þ �s

�
12561� 464Nf � 774	2 þ 1008 ln2þ 864�0 ln

�

2mQ

þ 240Nf ln
2mQ

��

��
; (45e)

2 Imfð3D½1�
1 Þ ¼

ð321	2 � 8032� 29 184 ln ��

2mQ
Þ�3

s

5832
; (45f)

2 Imfð3D½1�
2 Þ ¼

ð425	2 � 4816� 384 ln ��

2mQ
Þ�3

s

648
; (45g)

2 Imfð3D½1�
3 Þ ¼

ð529	2 � 8688� 5376 ln ��

2mQ
Þ�3

s

2268
: (45h)

The P- and D-wave short-distance coefficients are �� dependent, and their �� dependence can be canceled by the
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renormalized operator�� dependence. The�� dependence of the renormalized operators could be derived out by finding
the derivative of both sides of Eq. (41) with respect to ��:

dORð3P½8�
J Þ

d ln��

¼ X
J0

CJ;J08�sCF

3	m2
Q

ORð3D½1�
J0 Þ; (46a)

dORð3S½8�1 Þ
d ln��

¼ X
J

8�sBF

3	m2
Q

ORð3P½8�
J Þ; (46b)

dORð3S½1�1 Þ
d ln��

¼ X
J

1

2NC

8�s

3	m2
Q

ORð3P½8�
J Þ: (46c)

Remember, for bare quantities,
dO0ð3L½1;8�

J Þ
d��

¼ 0. For a phenomenological reason, we also give the �� dependence of
Oð3S½1�1 Þ, though we do not calculate its NLONRQCD corrections. By solving the differential equations, all S- and P-wave
operators’ expectation values in jHJ0 i states are related to that of the D-wave singlet operators:

hHJ0 jORð3P½8�
J Þð��ÞjHJ0 i ¼ hHJ0 jORð3P½8�

J Þð��0
ÞjHJ0 i þ CJ;J0

8CF

3m2
Q�0

ln
�sð��0

Þ
�sð��Þ hHJ0 jORð3D½1�

J0 ÞjHJ0 i; (47a)

hHJ0 jORð3S½8�1 Þð��ÞjHJ0 i ¼ CFBF

2

�
8

3m2
Q�0

ln
�sð��0

Þ
�sð��Þ

�
2hHJ0 jORð3D½1�

J0 ÞjHJ0 i

þX
J

8BF

3m2
Q�0

ln
�sð��0

Þ
�sð��Þ hHJ0 jORð3P½8�

J Þð��0
ÞjHJ0 i þ hHJ0 jORð3S½8�1 Þð��0

ÞjHJ0 i; (47b)

hHJ0 jORð3S½1�1 Þð��ÞjHJ0 i ¼ CF

4NC

�
8

3m2
Q�0

ln
�sð��0

Þ
�sð��Þ

�
2hHJ0 jORð3D½1�

J0 ÞjHJ0 i

þX
J

4

3NCm
2
Q�0

ln
�sð��0

Þ
�sð��Þ hHJ0 jORð3P½8�

J Þð��0
ÞjHJ0 i þ hHJ0 jORð3S½1�1 Þð��0

ÞjHJ0 i: (47c)

In pNRQCD, the S-wave color-octet matrix elements for
P-wave heavy quarkonium decays are also estimated
through operator evolution equation [27,28]. And the rela-
tions between their results and ours are discussed in our
previous work [29], which shows that the two methods are
consistent with each other.

V. NUMERICAL RESULTAND DISCUSSION

A. 3DJ decay into LH

For heavy-quark spin-symmetry, the long-distance ma-
trix elements of D-wave four-fermion operators are equal
to each other for different J, and relate to the second
derivative of wave functions at the origin:

15jR00ð0Þj2
8	

¼ hH1jOð3D½1�
1 ÞjH1i ¼ hH2jOð3D½1�

2 ÞjH2i
¼ hH3jOð3D½1�

3 ÞjH3i ¼ HDm
6
Q: (48)

The matrix elements of the P-wave octet operators and the
S-wave singlet as well as octet operators in the correspond-
ing J0 states could be estimated through the resolution of
operator evolution equations, Eq. (47). When ��0

and ��

are separated widely enough, the evaluation terms will be

much more important than the boundary terms labeled with
��0

. Here we set ��0
¼ mQv, where v2 ¼ 0:3 for char-

monium and v2 ¼ 0:1 for bottomonium, since the NRQCD
perturbative calculations could only hold down to scale of
order mQv:

hHJ0 jORð3P½8�
J Þð��ÞjHJ0 i¼CJ;J0

8CF

3�0

ln
�sð��0

Þ
�sð��ÞHDm

4
Q;

(49a)

hHJ0 jORð3S½8�1 Þð��ÞjHJ0 i¼CFBF

2

�
8

3�0

ln
�sð��0

Þ
�sð��Þ

�
2
HDm

2
Q;

(49b)

hHJ0 jORð3S½1�1 Þð��ÞjHJ0 i¼ CF

4NC

�
8

3�0

ln
�sð��0

Þ
�sð��Þ

�
2
HDm

2
Q:

(49c)

We also assume �� ¼ �, for the factorization scale �� in
NRQCD also acts as the renormalization scale in operator
renormalization. In the end, we come to the overall ex-
pressions for the LH decay widths of 3DJ (J ¼ 1, 2, 3)
states to NLO in �s at leading order of v2:
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�ð3D1 ! LHÞ ¼
�
�5:0�3

s

�
0:167þ ln

�

2mQ

�
þ

�2
sð15:7þ �sð88:5� 4:33NfÞ þ �sð10:0�0 � 1:32NfÞ ln �

2mQ
Þ ln ��s

�s

�0

þ
1:32�2

sð1:57Nf � 0:278�sðNf � 21:4ÞðNf þ 0:093Þ þ 1:0Nf�s�0 ln
�

2mQ
Þln2 ��s

�s

�2
0

�
HD; (50a)

�ð3D2 ! LHÞ ¼
�
�0:59�3

s

�
1:62þ ln

�

2mQ

�
þ

�2
sð1:87þ �sð8:14� 1:95NfÞ þ �sð1:19�0 � 1:32NfÞ ln �

2mQ
Þ ln ��s

�s

�0

þ
1:32�2

sð1:57Nf � 0:278�sðNf � 21:4ÞðNf þ 0:093Þ þ 1:0Nf�s�0 ln
�

2mQ
Þln2 ��s

�s

�2
0

�
HD; (50b)

�ð3D3 ! LHÞ ¼
�
�2:37�3

s

�
0:645þ ln

�

2mQ

�
þ

�2
sð7:45þ �sð30:8� 2:55NfÞ þ �sð4:74�0 � 1:32NfÞ ln �

2mQ
Þ ln ��s

�s

�0

þ
1:32�2

sð1:57Nf � 0:278�sðNf � 21:4ÞðNf þ 0:093Þ þ 1:0Nf�s�0 ln
�

2mQ
Þln2 ��s

�s

�2
0

�
HD; (50c)

where ��s ¼ �sð��0
Þ.

1. D-wave charmonium c ð13DJÞ LH decay

Making a choice of mc ¼ 1:5 GeV, �QCD ¼ 390 MeV,

HD1 ¼ 15jR00
Dj2

8	m6
c
¼ 0:786� 10�3 GeV [30], and Nf ¼ 3 for

charmonia, we obtain at � ¼ 2mc:

�ðc ð13DJÞ ! LHÞ ¼ ð435; 50; 172Þ keV
for J ¼ ð1; 2; 3Þ: (51)

When � ¼ mc and the other parameters are fixed, the
results turn to be

�ðc ð13DJÞ ! LHÞ ¼ ð683; 42; 223Þ keV
for J ¼ ð1; 2; 3Þ: (52)

And the � dependence of the decay widths at Oð�3
sÞ is

shown in Fig. 10.
In the potential model, c ð13DJÞ can only decay to 3g at

�3
s order. The infrared divergences are regularized by �be

the binding energy of the bound states. Accurate to �be
order, potential model results [3] are

�Cð3DJ ! LHÞ ¼ ð160; 12; 68Þ keV; for J ¼ ð1; 2; 3Þ:
(53)

If we reset their parameters the same as ours with �s ¼
�sð2mcÞ, M ¼ 2mc ¼ 3:0 GeV, jR00

Dj2 ¼ 0:015 GeV7, the
potential model predictions become

�Cð3DJ ! LHÞ ¼ ð240; 18; 102Þ keV; for J ¼ ð1; 2; 3Þ:
(54)

It could be found that in the c �c system the NRQCD
predictions are about 2� 3 times larger than potential
model results. In leading logarithm approximations [4],
the ratios of the LH decay widths for J ¼ 1, 2, 3 are
�ð3D1Þ:�ð3D2Þ:�ð3D3Þ ¼ 76

9 :1:4. Including the non-

negligible corrections to the leading logarithmic terms
[3], the ratios turn to be: 40:3:17. And the relative ratios
predicted by NRQCD at � ¼ 2mc ¼ 3:0 GeV and � ¼
mc ¼ 1:5 GeV are 43:5:17 and 34:2:11, respectively.
Much work has been done to predict the mass spectrum

of c ð13DJÞ; some of the numerical results are collected in

Refs. [31,32], and some theoretical work reviews may be
found in Ref. [33] and references therein. All the predic-
tions indicated that the masses of c ð13DJÞ are all larger

than the threshold ofD �D (about 3730MeV), and the center
of gravity of 1D states calculated in the Cornell potential
[34] is 3815 MeV [35]. For its decay to open charm to be
kinematically allowed, c ð13D1Þ should not be a narrow

state. It is believed that c ð3770Þ is primarily a 13D1 state

with a small admixture of the 23S1 state [36,37], and the

latest experimental average of its width is �ðc ð3770ÞÞ ¼
27:3� 1:0 MeV [38]. But there is a long-standing puzzle

FIG. 10. Renormalization scale dependence of the decay
widths of charmonium states 13DJ to LH at �3

s order.
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in its non-D �D decay that the c ð3770Þ decay is not satu-
rated by the D �D decay [39]. A detailed discussion about
this problem could be found in our previous paper [40], and
in this paper we will briefly review it in Sec. VB.

The remaining J ¼ 2 and J ¼ 3 states are both expected
to be narrow with different reasons. c ð13D2Þ is presumed
to lie between the D �D and D �D� thresholds [41] and is
forbidden by parity to decay into two pseudoscalar D
mesons. While narrowness of c ð13D3Þ in contrast is due

to suppression by the D �D F-wave angular momentum
barrier [31,41]. The principal decay modes of c ð13D2Þ
are radiative transition (c ð13D2Þ ! ��c1, ��c2), hadronic
transition (c ð13D2Þ ! J=c		), and LH decay. To
c ð13D3Þ, these decay modes are also considerable since

�ðc ð13D3Þ ! D �DÞ is predicted to be only about 0.8 MeV
[42], when its mass is 3868 MeV. And the decay widths
predicted by the C3 model [41,42] including the influence
of open-charm channels are �ðc ð13D2Þ ! ��c1Þ ¼
212 keV, �ðc ð13DJÞ ! ��c2Þ ¼ ð45; 286Þ keV, for J ¼
ð2; 3Þ and �ðc ð13D3Þ ! D �DÞ ¼ 0:82 MeV at mc ð13D

2
Þ ¼

3831 MeV and mc ð13D
3
Þ ¼ 3868 MeV. They also esti-

mated �ðc ð13DJÞ ! J=c		Þ ¼ 68� 15 keV. Using
the numerical values in Eq. (51), we then roughly predict
that the branching ratios for the LH decay of c ð13DJÞ are
Br ðc ð13DJÞ ! LHÞ ¼ 13:3%; 13:3%; for J ¼ ð2; 3Þ:

(55)

2. D-wave bottomonium �ðn3DJÞ LH decay

Unlike charmonium, �ðn3DJÞ (for n ¼ 1, 2) are pre-
dicted to lie below the B �B flavor threshold, and expected to
be quite narrow, where n is the level number. Some pre-
dictions of �ð13DJÞ and �ð23DJÞ masses are reviewed in
Ref. [43]. Taking mb ¼ 4:6 GeV, �QCD ¼ 340 MeV,

Nf ¼ 4, HD1 ¼ 15jR00
1D
j2

8	m6
b

¼ 0:401� 10�4 GeV for 1D

states, and HD2 ¼ 15jR00
2Dj2

8	m6
b

¼ 0:750� 10�4 GeV for 2D

states [30], at � ¼ 2mb, we find

�ð�ð13DJÞ ! LHÞ ¼ ð6:91; 0:75; 2:75Þ keV
for J ¼ ð1; 2; 3Þ; (56a)

�ð�ð23DJÞ ! LHÞ ¼ ð12:9; 1:40; 5:14Þ keV
for J ¼ ð1; 2; 3Þ: (56b)

When � ¼ mb and the other parameters are unchanged,
our predictions turn to be

�ð�ð13DJÞ ! LHÞ ¼ ð7:99; 0:60; 2:85Þ keV
for J ¼ ð1; 2; 3Þ; (57a)

�ð�ð23DJÞ ! LHÞ ¼ ð14:9; 1:21; 5:33Þ keV
for J ¼ ð1; 2; 3Þ: (57b)

The � dependence curves of �ð13DJÞ and �ð23DJÞ LH

decay widths are similar, so only the n ¼ 1 results are
shown at Oð�3

sÞ in Fig. 11 as an illustration.
In the potential model, Bélanger and Moxhay [4] found,

for J ¼ ð1; 2; 3Þ, the leading logarithmic results are
�ð�ð13DJÞ ! gggÞ ¼ ð2:2; 0:26; 1:1Þ keV, and a good ap-
proximation to the exact phase space integration given by
Bergström and Ernström [3] brings a factor of 2� 3 en-
hancement, and their results are �ð�ð13DJÞ ! gggÞ ¼
ð6:3; 0:51; 2:7Þ keV, for J ¼ ð1; 2; 3Þ. If we normalize
them using our inputs at � ¼ 2mb and setting M ¼ 2mb,
potential model estimations are then

�ð�ð13DJÞ ! LHÞ ¼ ð5:4; 0:51; 2:3Þ keV
for J ¼ ð1; 2; 3Þ; (58)

which, to some extent, are in agreement with our NRQCD
numerical predictions with� ¼ 2mb. In the�ð1DÞ case, it
can be easily found out that the potential model results are
dominated by the logarithmic terms. And numerically, the
NRQCD results are mainly from the P-wave color-octet
subprocess contributions. If we relate the logarithmic term
lnð1=�Þ in Eqs. (20–22) of Ref. [3] to the evolution term

ln
�sð��0

Þ
�sð��Þ in this paper by setting �0�s

	 lnð1=�Þ ¼ ln
�sð��0

Þ
�sð��Þ ,

we find the logarithmic terms as well as the 	2 terms in the
potential model results can be exactly reproduced within
the NRQCD approach. This then provides an alternative

way to relate the value of ln
�sð��0

Þ
�sð��Þ to the potential model

estimation. Using the inputs hri ¼ 2:5 GeV�1 given in
Ref. [3], mb ¼ 4:6 GeV, �s ¼ 0:18, and Nf ¼ 4, we get

ln
�sð��0

Þ
�sð��Þ ¼ 0:58, which is consistent with the value we

obtained by choosing �� ¼ 2mb and ��0
¼ mbvb.

In Ref. [44], the branching ratios of some decay modes
of �ð13DJÞ are summarized in Table IX, where
�ð�ð13D1Þ ! eþe�Þ was calculated in Ref. [45] and

FIG. 11. Renormalization or factorization scale dependence of
�ð�ð13DJÞ ! LHÞ at �3

s order. The solid, dotted, and dashed
lines are for �ð13D1Þ, �ð13D2Þ, and �ð13D3Þ, respectively.
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�ð�ð13DJÞ ! 		Þ was obtained by Moxhay [46]. Since
the LH decay widths of �ð13DJÞ are now calculated in the
framework of NRQCD, we update the theoretical predic-
tions for these ratios in Table IV, where the numerical
results in Eq. (56a) are taken as estimations for LH decay
widths of �ð13DJÞ. In 2004, the CLEO Collaboration
observed �ð1DÞ in the four-photon cascade process � !
��bð2PÞ, �bð2PÞ ! ��ð1DÞ, �ð1DÞ ! ��bð1PÞ,
�bð1PÞ ! ��ð1SÞ, followed by �ð1SÞ ! lþl�, and the
branching ratio is Bð����lþl�Þ�ð1DÞ ¼ 2:5� 0:5� 0:5 �
10�5 [47]. The signals are interpreted as predominantly
coming from the production of �ð13D2Þ. Small contribu-
tions of �ð13D1Þ and �ð13D3Þ can not be ruled out. In the

near future, with more accumulated data, all the spin-triplet
�ð13DJÞ states may be identified. Unfortunately, the
D-wave bottomonium LH decays could not provide a
good probe to find out whether NRQCD is prior to the
potential model to describe the bottomonium system, for
the difference between the two theoretical predictions is
small, unless a very precise measurement is made.

For the n ¼ 2 states, no experimental evidence has been
observed until now. To make a theoretical comparison for
�ð�ð23DJÞ ! LHÞ, the numerical potential model predic-
tions are needed.

B. LH decay of c ð3770Þ
Recently, BES reported [48–50] that the branching ratio

of the non-D �D decay of c ð3770Þ is about 15%. While the
corresponding data of CLEO [51] imply zero. The total
width �ðc ð3770ÞÞ is 23:0� 2:7 MeV [52],4 and the had-
ronic and E1 radiative transitions contribute about only
350–400 keV and 1.5–1.8% to the decay width and the
branching ratio of non-D �D decay mode, respectively. To
clarify this puzzle, the annihilation decay of c ð3770Þ, i.e.
c ð3770Þ ! LH, is considered in our previous paper [40],
where c ð3770Þ is taken as a D-wave dominated state with
a small admixture of the 2S state. We found when the
annihilation decay is included, �ðc ð3770Þ ! non-D �DÞ is
1:15� 1:20 MeV, corresponding to branching ratio of
about 5%.

In the above sections, the short-distance coefficients and
long-distance matrix elements of c ð13D1Þ have been given
in detail. Now, we show how to get the S-D mixing term.
The typical Feynman diagram for interference between the
color-singlet 3S1 and 3D1 is shown in Fig. 12. The inter-
ference between other Fock states of S-wave and D-wave
are suppressed by �s or v

2. For example, the interference
between two P-wave octet states is of relative v2 order.
And the S-wave singlet interference is of relative �2

s order,
since there are at least two additional gluons in the S-wave

Fock state of 3D½1�
1 . In full QCD, the square of the D-wave

amplitude is logarithm divergent in phase space integra-

tion, and that of S-wave amplitude is finite, therefore, the
combination of them will be finite. Then the short-distance
part in Eq. (59) could be calculated in 4 dimension:

2 Im �AððQ �QÞ½1�3D1

! ðQ �QÞ½1�3S1
Þ ¼ 1

3

Z
Re

�X j �MððQ �QÞ½1�3D1

! LHÞ �M�ððQ �QÞ½1�3S
1

! LHÞ
�
d�:

(59)

Taking into account the corresponding long-distance part,
we then obtain the final expression for the mixing term in
Ref. [40]:

h13D1jLHihLHj23S1i ¼
5�3

sð�240þ 71	2Þ
324m4

c

R2Sð0Þffiffiffiffiffiffiffi
4	

p

�
ffiffiffiffiffiffiffi
1

8	

s
R00
1Dð0Þ:

(60)

VI. SUMMARY

In this paper, in the framework of NRQCD we study the
light hadron (LH) decays of the spin-triplet (S ¼ 1)
D-wave heavy quarkonia. For completeness, the short-

FIG. 12. QCD Feynman Diagram for the S-D mixing term.

TABLE IV. Summary of the partial widths and branching
ratios (B) for spin-triplet b �b D-wave states, where �ð�ð13DJÞ !
LHÞ are predicted by us in Eq. (56a), and the decay widths of the
other modes are the same as those in Table IX of Ref. [44].

Level Final state Width (keV) Bð%Þ
�ð13D1Þ �þ �bð13P0Þ 21.4 53.1

�þ �bð13P1Þ 11.3 28.1

�þ �bð13P2Þ 0.58 1.44

LH 6.91 17.2

�		 0.07 0.17

eþe� 0.0015 0.0037

all 40.3 100

�ð13D2Þ �þ �bð13P1Þ 22.0 77.1

�þ �bð13P2Þ 5.7 20.0

LH 0.75 2.63

�		 0.07 0.25

all 28.5 100

�ð13D3Þ �þ �bð13P2Þ 24.3 89.6

LH 2.75 10.1

�		 0.07 0.26

all 27.1 100

4In this subsection, we still cite PDG06 data, to be in con-
sistent with our analysis in Ref. [40]
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distance coefficients of all Fock states in the 3DJ (J ¼ 1, 2,
3) quarkonia including D-wave color-singlet, P-wave
color-octet, and S-wave color-singlet and color-octet are
calculated perturbatively at �3

s order. The infrared diver-
gences in D-wave singlet states are absorbed by the
P-wave color-octet matrix elements. The operator evolu-
tion equations of the four-fermion operators are also de-
rived and are used to estimate the numerical values of the
long-distance matrix elements. We find that for the c �c
system, the LH decay widths of c ð13DJÞ predicted by
NRQCD is about 2� 3 times larger than the phenomeno-
logical potential model results, while for the b �b system the

two theoretical estimations of �ð�ð13DJÞ ! LHÞ are in
coincidence with each other.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China (No 10675003,
No 10721063) and the Ministry of Science and
Technology of China (No 2009CB825200). Zhi-Guo He
is currently supported by the CPAN08-PD14 contract of
the CSD2007-00042 Consolider-Ingenio 2010 program,
and by the FPA2007-66665-C02-01/ project (Spain).

[1] R. Barbieri, R. Gatto, and E. Remiddi, Phys. Lett. 61B,
465 (1976); R. Barbieri, M. Caffo, and E. Remiddi, Nucl.
Phys. B162, 220 (1980).

[2] R. Barbieri, M. Caffo, R. Gatto, and E. Remiddi, Phys.
Lett. 95B, 93 (1980); Nucl. Phys. B192, 61 (1981).

[3] L. Bergstrom and P. Ernstrom, Phys. Lett. B 267, 111
(1991).

[4] G. Belanger and P. Moxhay, Phys. Lett. B 199, 575 (1987).
[5] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D

46, R1914 (1992).
[6] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D

51, 1125 (1995); 55, 5853(E) (1997).
[7] H. w. Huang and K. t. Chao, Phys. Rev. D 54, 3065 (1996);

56, 7472(E) (1997); 60, 079901(E) (1999).
[8] Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D 54,

6850 (1996); 56, 1821(E) (1997).
[9] A. Petrelli, Phys. Lett. B 380, 159 (1996).
[10] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, and M. L.

Mangano, Nucl. Phys. B514, 245 (1998).
[11] Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D 55,

244 (1997).
[12] N. Brambilla et al. (Quarkonium Working Group), arXiv:

hep-ph/0412158.
[13] N. Brambilla, E. Mereghetti, and A. Vairo, J. High Energy

Phys. 08 (2006) 039; Phys. Rev. D 79, 074002 (2009).
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