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The Pauli–Villars regularization scheme is applied to a calculation of the dressed-electron state and its

anomalous magnetic moment in light-front-quantized QED in Feynman gauge. The regularization is

provided by heavy, negative-metric fields added to the Lagrangian. The light-front QED Hamiltonian then

leads to a well-defined eigenvalue problem for the dressed-electron state expressed as a Fock-state

expansion. The Fock-state wave functions satisfy coupled integral equations that come from this

eigenproblem. A finite system of equations is obtained by truncation to no more than two photons and

no positrons; this extends earlier work that was limited to dressing by a single photon. Numerical

techniques are applied to solve the coupled system and compute the anomalous moment, for which we

obtain agreement with experiment, within numerical errors, but observe a small systematic discrepancy

that should be due to the absence of electron-positron loops and of three-photon self-energy effects. We

also discuss the prospects for application of the method to quantum chromodynamics.
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I. INTRODUCTION

A. Motivation

High-energy scattering experiments have shown conclu-
sively that the strong nuclear force is well described by
quantum chromodynamics (QCD), with scattering observ-
ables computed perturbatively. At longer distance scales,
where the properties of hadrons themselves are deter-
mined, the effective couplings are strong and nonlinear,
making the derivation of hadronic properties from QCD a
difficult task.

Nonperturbative calculations are always difficult, but for
a strongly coupled theory such as QCD, they are worse. For
a weakly coupled theory, one can set aside much of the
interaction for perturbative treatment and solve only a
small core problem nonperturbatively. For QED, this core
problem is the Coulomb problem; when combined with
high-order perturbation theory, amazingly accurate results
can be obtained for bound states of the theory [1]. In a
strongly coupled theory one cannot make this separation so
easily.

In the work presented here, the purpose is to explore a
nonperturbative method that can be used to solve for the
bound states of quantum field theories. Although the bound
states of QCD are of particular interest, the method is not
yet mature enough for application to QCD. Instead, we will
continue with the program developed in the earlier work of
Brodsky, McCartor, and Hiller [2–8], and more recently
continued by us [9–11], and explore the method within
QED. This provides an analysis of a gauge theory, which is
a critical step toward solving a non-Abelian gauge theory,
such as QCD.

B. Fock-state expansions and Pauli–Villars
regularization

We will use Fock states as the basis for the expansion of
eigenstates. Each bound state is an eigenstate of the field-
theoretic Hamiltonian, and projections of this eigenpro-
blem onto individual Fock states yields coupled equations
for the Fock-state wave functions. We truncate the expan-
sion to have a calculation of finite size.
The solution of such equations, in general, requires

numerical techniques. The equations are converted to a
matrix eigenvalue problem by some discretization of the
integrals [12] or by a function expansion for the wave
functions [13]. The matrix is usually large and not diago-
nalizable by standard techniques; instead, one or some of
the eigenvalues and eigenvectors are extracted by the
iterative Lanczos process [14,15]. The eigenvector of the
matrix yields the wave functions, and from these can be
calculated the properties of the eigenstate, by considering
expectation values of physical observables.
Although this may seem straightforward, the integrals of

the integral equations are not finite and must be regulated
in someway. We use Pauli–Villars (PV) regularization [16]
for these ultraviolet divergences. The basic idea is to sub-
tract from each integral a contribution of the same form but
of a PV particle with a much larger mass. This subtraction
will cancel the leading large-momentum behavior of the
integrand, making the integral less singular. To make an
integral finite, more than one subtraction may be necessary,
due to subleading divergences. To arrange the subtractions,
we assign the PV particles a negative metric. The masses of
these PV particles are then the regulators of the redefined
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theory, and ideally one would take the limit of infinite PV
masses at the end of the calculation.

Ordinarily, this method of regularization, being auto-
matically relativistically covariant, preserves the original
symmetries of the theory. However, it may happen that the
negative-metric PV particles over-subtract, in the sense
that some symmetry is broken by a finite amount. In such
a case, a counterterm is needed, or a positive-metric PV
particle can be added to restore the symmetry. We have
shown in [9] that a positive-metric PV photon does restore
the correct chiral limit.

It is interesting to note that the introduction of negative-
metric partners has recently been used to define extensions
of the Standard Model that solve the hierarchy problem
[17]. The additional fields provide cancellations that re-
duce the ultraviolet divergence of the bare Higgs mass to
only logarithmic. This slowly varying dependence allows
the remaining cancellations to occur without excessive fine
tuning.

A serious complication in the use of Fock-state expan-
sions and coupled equations is the presence of vacuum
contributions to the eigenstate. The lack of particle-number
conservation in quantum field theory means that, in gen-
eral, even the vacuum can have contributions from non-
empty Fock states with zero momentum and zero charge.
The basis for a massive eigenstate will include such vac-
uum Fock states in products with nonvacuum Fock states,
since the vacuum contributions do not change the momen-
tum or charge. These vacuum contributions destroy the
interpretation of the wave functions. In order to have
well-defined Fock-state expansions and a simple vacuum,
we use the light-cone coordinates of Dirac [18,19]. Light-
cone coordinates also have the advantage of separating the
internal and external momenta of a system. The Fock-state
wave functions depend only on the internal momenta. The
state can then be boosted to any frame without necessitat-
ing the recalculation of the wave functions.

C. Numerical methods and Fock-space truncation

The standard approach to numerical solution of the
eigenvalue problem is the method originally suggested by
Pauli and Brodsky [12], discrete light-cone quantization
(DLCQ). Periodic boundary conditions are applied in a
light-cone box of finite size, and the light-cone momenta
are resolved to a discrete grid. Because this method can be
formulated at the second-quantized level, it provides for
the systematic inclusion of higher Fock sectors. DLCQ has
been particularly successful for two-dimensional theories,
including QCD [20] and supersymmetric Yang–Mills the-
ory [21]. There was also a very early attempt by Hollenberg
et al. [22] to solve four-dimensional QCD.

Unfortunately, the kernels of the QED integral operators
require a very fine DLCQ grid if the contributions from
heavy PV particles are to be accurately represented. To
keep the discrete matrix eigenvalue problem small enough,

we use instead the discretization developed for the analo-
gous problem in Yukawa theory [8], suitably adjusted for
the singularities encountered in QED.
An explicit truncation in particle number, the light-cone

equivalent of the Tamm–Dancoff approximation [23], can
be made. This truncation has significant consequences for
the renormalization of the theory [24,25], in particular, the
uncanceled divergences discussed below. It also impacts
comparisons to Feynman perturbation theory [26], where
the truncation eliminates some of the time-ordered graphs
that are required to construct a complete Feynman graph.
Fortunately, numerical tests in Yukawa theory [4,8] indi-
cate that these difficulties can be overcome. The tests show
a rapid convergence with respect to particle number.
To carry out our calculation in QED, three problems

must be solved, as discussed in [7]. We need to respect
gauge invariance, interpret new singularities from energy
denominators, and handle uncanceled divergences.
Although PV regularization normally preserves gauge in-
variance, the flavor-changing interactions chosen for the
PV couplings, where emission or absorption of a photon
can change the flavor of the fermion, do break the invari-
ance at finite mass values for the PV fields; we assume that
an exact solution exists and has all symmetries and that a
close approximation can safely break symmetries. The new
singularities occur because the bare mass of the electron is
less than the physical mass and energy denominators can
be zero; a principal-value prescription is used. These zeros
have the appearance of a threshold but do not correspond to
any available decay. The uncanceled divergences are
handled (as in the case of Yukawa theory [8]), with the
PV masses kept finite and the finite-PV-mass error bal-
anced against the truncation error.
For small PVmasses, too much of the negatively normed

states are included in the eigenstate. For large PV masses,
there are truncation errors; the exact eigenstate has large
projections onto excluded Fock sectors. To see the effect of
truncation, consider the form of the coupling dependence
for the anomalous magnetic moment, which is

a1g
2½þa2g

4 ln�PV þ � � ��
1þ b1g

2 þ b2g
2 ln�PV þ � � � ; (1.1)

where �PV is a PV mass scale. The contents of the square
brackets are absent in the case of truncation. When the
large-�PV limit is taken, this expression becomes zero
when there is truncation and a nonzero, finite number
when there is not. In perturbation theory, the order-g2

terms in the denominator are kept only if the order-g4

terms are kept in the numerator, and a finite result is again
obtained in the large-�PV limit. However, the truncated
nonperturbative calculation includes the order-g2 terms in
the denominator but not the compensating order-g4 terms
in the numerator. The associated error is minimized by
keeping �PV as small as possible, but if too small, the
errors associated with keeping the unphysical PV Fock
states in the basis will be too large. A compromise is to
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be found for a range of intermediate values of �PV for
which physical quantities are independent of �PV. For
QED, we see this in the behavior of the anomalous moment
of the electron, as a function of the PV masses.

For Yukawa theory, the usefulness of truncating Fock
space was checked in a DLCQ calculation that included
many Fock sectors. The full DLCQ result was compared
with results for truncations to a few Fock sectors for weak
to moderate coupling strengths and found to agree quite
well [4]. We can see in Table 1 of [4] that probabilities for
higher Fock states decrease rapidly. This was also checked
at stronger coupling by comparing the two-boson and one-
boson truncations [8]. Figure 14 of [8] shows that contri-
butions to structure functions from the three-particle sector
are much smaller than those from the two-particle sector.

For QED, there has been no explicit demonstration that
truncation in Fock space is a good approximation; the two-
photon truncation considered here gives the first evidence.
The usefulness of truncation is expected for general rea-
sons, but a physical argument comes from comparing
perturbation theory with the Fock-space expansion. Low-
order truncations in particle number correspond to doing
perturbation theory in � to low order, plus keeping partial
contributions for all orders in �. As long as the theory is
regulated so that the contributions are finite, the contribu-
tions of higher Fock states are expected to be small because
they are higher order in �. Of course, due to limitations on
numerical accuracy, we do not expect to be able to compute
the anomalous moment as accurately as high-order pertur-
bative calculations [1,27].

D. Applications of the method

The PV regularization method has been considered for
QED and applied to a one-photon truncation of the dressed
electron state [7,9–11]. In Feynman gauge, one PVelectron
and one PV photon were sufficient if the PVelectron mass
is taken to infinity; otherwise, a second PV photon is
needed to restore the chiral limit [9]. This choice of regu-
larization has the convenient feature of not only cancelling
the instantaneous fermion interactions but also making the
fermion constraint equation explicitly solvable.

The cancellation of the instantaneous fermion interac-
tions occurs because the individual contributions are inde-
pendent of the fermion mass and have opposite signs. The
instantaneous contributions usually provide important in-
frared cancellations, making their absence a possible cause
for concern, but these infrared cancellations are instead
provided by PV contributions. The absence of the instan-
taneous terms is important for the numerical calculation,
because these terms can greatly increase the computational
load, and is significant compensation for the addition of the
PV fields to the basis.

Ordinarily, in the light-cone quantization of QED
[28], light-cone gauge (Aþ ¼ 0) must be chosen to

make the fermion constraint equation solvable; in
Feynman gauge, with one PV electron and one or two PV
photons, the Aþ terms cancel from the constraint equa-
tion. Light-cone gauge was considered in [7], but the
naive choice of three PV electrons for regularization was
found insufficient; an additional photon and higher
derivative counterterms were also needed. The one-photon
truncation yielded an anomalous moment within 14%
of the Schwinger term [29]. For the two-photon trun-
cation considered here, the value for the anomalous
moment should be close to the value obtained perturba-
tively when the Sommerfield–Petermann term [30] is in-
cluded. However, numerical errors will make this tiny
correction undetectable, and we will focus on obtaining
better agreement with the leading Schwinger term of
�=2�.
An extension to a two-boson truncation is interesting as

a precursor to work on QCD. Unlike the one-boson trun-
cation, where QED and QCD are effectively indistinguish-
able, the two-boson truncation allows three and four-gluon
vertices to enter the calculation. A nonperturbative calcu-
lation, with these nonlinearities included, could capture
much of the low-energy physics of QCD, perhaps even
confinement.
The approach depends critically on making a Tamm–

Dancoff truncation to a finite number of constituents. For
QCD this is thought to be reasonable because the constitu-
ent quark model was so successful [31]. Wilson and col-
laborators [25,32] even argued that a light-cone Hamil-
tonian approach can provide an explanation for the quark
model’s success. The recent successes of the AdS/CFT
correspondence [33] in representing the light hadron spec-
trum of QCD also indicates the effectiveness of a trunca-
tion; this description of hadrons is equivalent to keeping
only the lowest valence light-cone Fock state.
At the very least, the success of the constituent quark

model shows that there exists an effective description of
the bound states of QCD in terms of a few degrees of
freedom. It is likely that the constituent quarks of the
quark model correspond to effective fields, the quarks of
QCD dressed by gluons and quark-antiquark pairs. From
the exact solutions obtained using PV regularization in
the unphysical equal-mass limit [5], it is known that
simple Fock states in light-cone quantization correspond
to very complicated states in equal-time quantization, and
this structure may aid in providing some correspondence
to the constituent quarks. However, the truncation of the
QCD Fock space may need to be large enough to include
states that provide the dressing of the current quarks, and
perhaps a sufficiently relaxed truncation is impractical.
As an alternative, the light-front PV method could be
applied to an effective QCD Lagrangian in terms of the
effective fields. Some work on developing a description of
light-front QCD in terms of effective fields has been done
by Głazek et al. [34].
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E. Other methods

A directly related light-front Hamiltonian approach is
that of sector-dependent renormalization [24], where bare
masses and couplings are allowed to depend on the Fock
sector. This alternative treatment was used by Hiller and
Brodsky [35] and more recently by Karmanov, Mathiot,
and Smirnov [36]. In principle, this approach is roughly
equivalent to the approach used here; however, the authors
of [36] neglect the limitations on the PV masses that come
from having a finite, real bare coupling, as discussed in
[11,35], and do not make the projections necessary to have
finite expectation values for particle numbers.

Our method is complementary to lattice gauge theory
[37], which has been studied for much longer than non-
perturbative light-front methods and has already achieved
impressive successes in solving QCD. However, it is for-
mulated in Euclidean spacetime and has particular diffi-
culty with quantities such as timelike and spacelike form
factors, that depend on the signature of the Minkowski
metric. In contrast, in a Hamiltonian approach with the
original Minkowski metric, a form factor is readily calcu-
lated as a convolution of wave functions.

A related method is that of the transverse lattice [38],
where light-cone methods are used for the longitudinal
direction and lattice methods for the transverse. It is, how-
ever, a Hamiltonian approach which results in wave func-
tions. Applications have been to large-N gauge theories
and mostly limited to consideration of meson and glueball
structure.

Another approach is that of Dyson–Schwinger equations
[39], which are coupled equations for the n-point Euclid-
ean Green’s functions of a theory, including the propaga-
tors for the fundamental fields. Bound states of n constit-
uents appear as poles in the n-particle propagator. Solution

of the infinite system requires truncation and a model for
the highest n-point function. Again, as in the lattice ap-
proach, there is the limitation to a Euclidean formulation.

F. Outline

The content of the remainder of the paper is as follows.
The structure of the light-front Hamiltonian and the Fock-
state expansion of the eigenstate are presented in Sec. II,
where these are used to obtain coupled integral equations
for the wave functions. Expressions for the normalization
and anomalous magnetic moment are also given.
Section III contains the discussion of the solution of the
coupled equations, with results for the anomalous moment
presented in Sec. IV. A summary of the work is given in
Sec. V. Details of the numerics are left to Appendices.

II. THE DRESSED-ELECTRON EIGENSTATE

A. Helicity basis

For calculations with more than one photon in the Fock
space, an helicity basis is convenient. The dependence of
the vertex functions on azimuthal angle then becomes
simple. This will allow us to take advantage of cylindrical
symmetry in the integral equations, such that the azimuthal
angle dependence can be handled analytically. There is
then no need to discretize the angle in making the numeri-
cal approximation. To introduce the helicity basis, we
define the following annihilation operators for the photon
fields1

al� ¼ 1ffiffiffi
2

p ðal0 � al3Þ; alð�Þ ¼ 1ffiffiffi
2

p ðal1 � ial2Þ: (2.1)

The Hamiltonian can then be rearranged to the form

P � ¼ X
i;s

Z
dp

m2
i þ p2

?
pþ ð�1Þibyi;sðpÞbi;sðpÞ þ

X
l;�

Z
dk

�2
l þ k2?
kþ

ð�1Þl½�ayl�ðkÞal;��ðkÞ þ aylð�ÞðkÞalð�ÞðkÞ�

þ X
i;j;l;s;�

Z
dpdq

ffiffiffiffiffi
�l

p fbyi;sðpÞbj;sðqÞ½V�
ij;2sðp; qÞayl�ðq� pÞ þ Vð�Þ

ij;2sðp; qÞaylð�Þðq� pÞ� þ byi;sðpÞbj;�sðqÞ

� ½U�
ij;�2sðp; qÞayl�ðq� pÞ þUð�Þ

ij;�2sa
y
lð�Þðq� pÞ� þ H:c:g; (2.2)

and the vertex functions become

Vþ
ij�ðp; qÞ ¼

effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�3ðqþ � pþÞp ; V�

ij�ðp; qÞ ¼
effiffiffiffiffiffiffiffiffi
8�3

p ðp1 � ip2Þðq1 � iq2Þ þmimj

pþqþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ � pþp ;

Vð�Þ
ij�ðp; qÞ ¼

effiffiffiffiffiffiffiffiffi
8�3

p q1 � iq2

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ � pþp ; Vð�Þ

ij�ðp; qÞ ¼
effiffiffiffiffiffiffiffiffi
8�3

p p1 � ip2

pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ � pþp ; Uþ

ij�ðp; qÞ ¼ 0;

U�
ij�ðp; qÞ ¼ � effiffiffiffiffiffiffiffiffi

8�3
p mjðp1 � ip2Þ �miðq1 � iq2Þ

pþqþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ � pþp ; Uð�Þ

ij�ðp; qÞ ¼ 0; Uð�Þ
ij�ðp; qÞ ¼ � effiffiffiffiffiffiffiffiffi

8�3
p miq

þ �mjp
þ

pþqþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ � pþp :

(2.3)

1For details of Feynman-gauge QED on the light front, particularly the notation, see the discussion in [7,9]. For a discussion of the
residual gauge freedom and the projection onto the physical subspace, see [9].
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The al� operators are null, in the sense that
½al�ðkÞ; ayl0�ðk0Þ� ¼ 0; however, we do have
½al�ðkÞ; ayl0�ðk0Þ� ¼ ��ll0�ðk� k0Þ.

We will study the state of the electron as an eigenstate of
this light-cone Hamiltonian. In general, the electron is
dressed by photons and electron-positron pairs; however,
we limit the calculation to photons and truncate the number
of photons to two, at most. The eigenstate is then expanded
in terms of Fock states. In order that the Fock expansion be
an eigenstate of the light-cone Hamiltonian, the Fock-state
wave functions must satisfy coupled integral equations.
The wave functions are also constrained by normalization
of the state. The anomalous magnetic moment is then
calculated from a spin-flip matrix element. In the remain-
der of this section, we collect the fundamental expressions
for the Fock-state expansion, the coupled equations for the
wave functions, the normalization of the wave functions,
and the anomalous moment.

B. Fock-state expansion

It is convenient to work in a Fock basis where Pþ and
~P? are diagonal and the total transverse momentum ~P? is
zero. We expand the eigenfunction for the dressed-fermion
state with total Jz ¼ � 1

2 in such a Fock basis as

jc�ðPÞi ¼ X
i

zib
y
i�ðPÞj0i þ

X
ijs�

Z
dkC��

ijs ðkÞbyisðP� kÞ

� ayj�ðkÞj0i þ
X

ijks��

Z
dk1dk2C

���
ijks ðk1; k2Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �jk���

p byisðP� k1 � k2Þayj�ðk1Þ

� ayk�ðk2Þj0i; (2.4)

where we have truncated the expansion to include at most
two photons. The zi are the amplitudes for the bare electron
states, with i ¼ 0 for the physical electron and i ¼ 1 for

the PVelectron. The C
��
ijs are the two-body wave functions

for Fock states with an electron of flavor i and spin com-
ponent s and a photon of flavor j ¼ 0, 1 or 2 and field
component �, expressed as functions of the photon mo-
mentum. The upper index of� refers to the Jz value of� 1

2

for the eigenstate. Similarly, the C���
ijks are the three-body

wave functions for the states with one electron and two
photons, with flavors j and k and field components � and
�.

Careful interpretation of the eigenstate is required to
obtain physically meaningful answers. In particular, there
needs to be a physical state with positive norm. We apply
the same approach as was used in Yukawa theory [6]. A
projection onto the physical subspace is accomplished by
expressing Fock states in terms of positively normed cre-

ation operators ay0�, a
y
2�, and b

y
0s and the null combinations

ay� ¼ P
i

ffiffiffiffiffi
�i

p
ayi� and bys ¼ by0s þ by1s. The b

y
s particles are

annihilated by the generalized electromagnetic current
�c��c ; thus, bys creates unphysical contributions to be
dropped, and, by analogy, we also drop contributions cre-
ated by ay�. The projected dressed-fermion state is

jc�ðPÞiphys ¼
X
i

ð�1Þiziby0�ðPÞj0iþ
X
s�

Z
dk
X1
i¼0

X
j¼0;2

ffiffiffiffiffi
�j

q

� Xj=2þ1

k¼j=2

ð�1Þiþkffiffiffiffiffi
�k

p C��
iks ðkÞby0sðP� kÞayj�ðkÞj0i

þX
s��

Z
dk1dk2

X1
i¼0

X
j;k¼0;2

ffiffiffiffiffiffiffiffiffiffi
�j�k

q Xj=2þ1

l¼j=2

Xk=2þ1

m¼k=2

�ð�1Þiþlþmffiffiffiffiffiffiffiffiffiffiffi
�l�m

p C���
ilms ðk1; k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�lm���

p by0sðP� k1� k2Þ

�ayj�ðk1Þayk�ðk2Þj0i: (2.5)

This projection is to be used to compute the anomalous
moment.
Before using these states, it is important to consider the

renormalization of the external coupling to the charge
[9,40]. We exclude fermion-antifermion states, and, there-
fore, there is no vacuum polarization. Thus, if the vertex
and wave function renormalizations cancel, there will be
no renormalization of the external coupling. As shown in
[9], this is what happens, but only for the plus component
of the current. Our calculations of the anomalous moment
are therefore based on matrix elements of the plus compo-
nent and do not require additional renormalization.

C. Coupled integral equations

The bare amplitudes zi and wave functions C��
ijs and

C���
ijks that define the eigenstate must satisfy the coupled

system of equations that results from the field-theoretic
mass-squared eigenvalue problem

P�jc�ðPÞi ¼ M2

Pþ jc�ðPÞi: (2.6)

We work in a frame where the total transverse momentum
is zero and require that this state be an eigenstate of P�
with eigenvalue M2=Pþ. The form of P� is given in
Eq. (2.2). The wave functions then satisfy the following
coupled integral equations:

½M2 �m2
i �zi ¼

Z
dq

X
j;l;�

ffiffiffiffiffi
�l

p ð�1Þjþl	�

� Pþ½V��
ji�ðP� q; PÞC��

jl�ðqÞ
þU

��
ji�ðP� q; PÞC��

jl�ðqÞ�; (2.7)
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�
M2 �m2

i þ q2?
ð1� yÞ ��2

l þ q2?
y

�
C��
ils ðqÞ ¼ ffiffiffiffiffi

�l

p X
j

ð�1ÞjzjPþ½�s;�1=2V
�
ijsðP� q; PÞ þ �s;�1=2U

�
ij;�sðP� q; PÞ�

þX
ab�

ð�1Þaþb	�
Z

dq0
2

ffiffiffiffiffiffi
�b

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �bl�

��
p ½V��

aisðP� q0 � q; P� q0ÞC���
abls ðq0; qÞ

þU��
aisðP� q0 � q; P� q0ÞC���

abl;�sðq0; qÞ�; (2.8)

�
M2 �m2

i þ ð ~q1? þ ~q2?Þ2
ð1� y1 � y2Þ ��2

j þ q21?
y1

��2
l þ q22?
y2

�
C
���
ijls ðq

1
; q

2
Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �jl�

��
p

2

X
a

ð�1Þaf
ffiffiffiffiffi
�j

q
½V�

iasðP� q
1
� q

2
; P� q

2
ÞC��

als ðq2Þ þU�
ia;�sðP� q

1
� q

2
; P� q

2
ÞC��

al;�sðq2Þ�

þ ffiffiffiffiffi
�l

p ½V�
iasðP� q

1
� q

2
; P� q

1
ÞC��

ajs ðq1Þ þU�
ia;�sðP� q

1
� q

2
; P� q

1
ÞC��

aj;�sðq1Þ�g: (2.9)

A diagrammatic representation is given in Fig. 1. The first
of these equations couples the bare amplitudes zi to the
two-body wave functions, C��

ijs . The second couples the
C��
ijs to the zi and to the three-body wave functions, C

���
ijks .

The third is truncated, with no four-body terms, and simply
couples C���

ijks to C��
ijs algebraically. From the structure of

the equations, one can show that the two-body wave func-
tions for the Jz ¼ �1=2 eigenstate are related to the Jz ¼
þ1=2 wave functions by

C��
ijþ ¼ �C�þ�

ij� ; C��
ij� ¼ C�þ�

ijþ : (2.10)

This will be useful in computing the spin-flip matrix ele-
ment needed for the anomalous moment.

D. Normalization and anomalous moment

The projected Fock expansion (2.5) is normalized ac-
cording to

hc 
0 ðP0Þjc 
ðPÞiphys ¼ �ðP0 � PÞ�
0
: (2.11)

In terms of the wave functions, this becomes

1 ¼
��������X

i

ð�1Þizi
��������2þX

s�

Z
dk	�

X
j¼0;2

�j

��������X
1

i¼0

Xj=2þ1

k¼j=2

ð�1Þiþkffiffiffiffiffi
�k

p C�þ
iks ðkÞ

��������2

þ X
s��

Z
dk1dk2

X
j;k¼0;2

�j�k

��������X
1

i¼0

Xj=2þ1

l¼j=2

Xk=2þ1

m¼k=2

ð�1Þiþlþmffiffiffiffiffiffiffiffiffiffiffi
�l�m

p
ffiffiffi
2

p
C
���
ilms ðk1; k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �lm���

p ��������2

: (2.12)

Using the coupled equations, we can express all the wave
functions C

��
ijs and C

���
ijks and the amplitude z1 through the

bare-electron amplitude z0. The normalization condition
then determines z0. For the two-photon truncation, where
the wave functions are computed numerically, the integrals
for the normalization must also be done numerically, using
quadrature schemes discussed in Appendix A.

The anomalous moment ae can be computed from the
spin-flip matrix element of the electromagnetic current Jþ
[41]

�
�
Qx � iQy

2M

�
F2ðQ2Þ ¼ � 1

2

�
c�ðPþQÞ

��������J
þð0Þ
Pþ

�
��������c�ðPÞ

�
phys

; (2.13)

where Q is the momentum of the absorbed photon, F2 is
the Pauli form factor, and we work in a frame where Qþ is
zero. At zero momentum transfer, we have ae ¼ F2ð0Þ and

ae ¼ me

X
s�

Z
dk	�

X
j¼0;2

�j

�X1
i0¼0

Xj=2þ1

k0¼j=2

ð�1Þi0þk0ffiffiffiffiffiffi
�k0

p C�þ
i0k0sðkÞ

��

� y

�
@

@kx
þ i

@

@ky

��X1
i¼0

Xj=2þ1

k¼j=2

ð�1Þiþkffiffiffiffiffi
�k

p C
��
iks ðkÞ

�

þme

X
s��

Z
dk1dk2

X
j;k¼0;2

�j�k

�X1
i0¼0

Xj=2þ1

l0¼j=2

Xk=2þ1

m0¼k=2

� ð�1Þi0þl0þm0ffiffiffiffiffiffiffiffiffiffiffiffiffi
�l0�m0

p
ffiffiffi
2

p
C��þ
i0l0m0sðk1; k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �l0m0���

p ��

�X
a

�
ya

�
@

@kax
þ i

@

@kay

���X1
i¼0

Xj=2þ1

l¼j=2

Xk=2þ1

m¼k=2

� ð�1Þiþlþmffiffiffiffiffiffiffiffiffiffiffi
�l�m

p
ffiffiffi
2

p
C
���
ilms ðk1; k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �lm���

p �
: (2.14)

In general, these integrals must also be computed
numerically.
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The terms that depend on the three-body wave functions

C���
ilms are higher order in � than the leading two-body

terms. This is because (2.9) determines C���
ilms as being of

order
ffiffiffiffi
�

p
or e times the two-body wave functions, the

vertex functions being proportional to the coupling, e.
Given the numerical errors in the leading terms, these
three-body contributions are not significant and are not
evaluated. The important three-body contributions come
from the couplings of the three-body wave functions that
will enter the calculation of the two-body wave functions.

III. SOLUTION OF THE EQUATIONS

A. Integral equations for two-body wave functions

The first and third equations of the coupled system, (2.7)
and (2.9), can be solved for the bare-electron amplitudes
and one-electron/two-photon wave functions, respectively,
in terms of the one-electron/one-photon wave functions.
From (2.7), we have

zi ¼ 1

M2 �m2
i

Z
dq

X
j;l;�

ffiffiffiffiffi
�l

p ð�1Þjþl	�½PþV��
ji�ðP� q; PÞ

� C��
jl�ðqÞ þ PþU��

ji�ðP� q; PÞC��
jl�ðqÞ�; (3.1)

and from (2.9) we have

C���
ijls ðq

1
; q

2
Þ ¼ 1

M2 � m2
iþð ~q1?þ ~q2?Þ2
ð1�y1�y2Þ � �2

jþq2
1?

y1
� �2

l
þq2

2?
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �jl�

��
p

2

X
a

ð�1Þaf
ffiffiffiffiffi
�j

q
½V�

iasðP� q
1
� q

2
; P� q

2
ÞC��

als ðq2Þ

þU�
ia;�sðP� q

1
� q

2
; P� q

2
ÞC��

al;�sðq2Þ� þ
ffiffiffiffiffi
�l

p ½V�
iasðP� q

1
� q

2
; P� q

1
ÞC��

ajs ðq1Þ
þU�

ia;�sðP� q
1
� q

2
; P� q

1
ÞC��

aj;�sðq1Þ�g: (3.2)

Substitution of these solutions into the second integral equation, Eq. (2.8), yields a reduced integral eigenvalue problem in
the one-electron/one-photon sector.

To isolate the dependence on the azimuthal angles, we use q1i � iq2i ¼ qi?e�i�i and qþi ¼ yiP
þ, and write the vertex

functions (2.3) as

Vþ
ia�ðP� q

1
� q

2
; P� q

2
Þ ¼ 1

ðPþÞ1=2
effiffiffiffiffiffiffiffiffiffiffiffiffi

8�3y2
p ;

V�
ia�ðP� q

1
� q

2
; P� q

2
Þ ¼ 1

ðPþÞ5=2
effiffiffiffiffiffiffiffiffiffiffiffiffi

8�3y2
p ðq1?e�ið�1��2Þ þ q2?Þq2? þmima

ð1� y2Þð1� y1 � y2Þ ;

Vð�Þ
ia�ðP� q

1
� q

2
; P� q

2
Þ ¼ � e�i�2

ðPþÞ3=2
effiffiffiffiffiffiffiffiffiffiffiffiffi

8�3y2
p q2?

1� y2
;

Vð�Þ
ia�ðP� q

1
� q

2
; P� q

2
Þ ¼ � e�i�2

ðPþÞ3=2
effiffiffiffiffiffiffiffiffiffiffiffiffi

8�3y2
p q1?e�ið�1��2Þ þ q2?

1� y1 � y2
; Uþ

ia�ðP� q
1
� q

2
; P� q

2
Þ ¼ 0;

U�
ia�ðP� q

1
� q

2
; P� q

2
Þ ¼ � e�i�2

ðPþÞ5=2
effiffiffiffiffiffiffiffiffiffiffiffiffi

8�3y2
p maðq1?e�ið�1��2Þ þ q2?Þ �miq2?

ð1� y2Þð1� y1 � y2Þ ;

Uð�Þ
ia�ðP� q

1
� q

2
; P� q

2
Þ ¼ 0; Uð�Þ

ia�ðP� q
1
� q

2
; P� q

2
Þ ¼ � 1

ðPþÞ3=2
effiffiffiffiffiffiffiffiffiffiffiffiffi

8�3y2
p mið1� y2Þ �mað1� y1 � y2Þ

ð1� y2Þð1� y1 � y2Þ :

(3.3)

FIG. 1. Diagrammatic representation of the coupled equations
(2.7), (2.8), and (2.9) of the text. The filled circles and ovals
represent wave functions for Fock states; the solid lines represent
fermions; and the dashed lines represent photons. The crosses on
lines represent the light-cone kinetic energy contributions, which
are summed over all particles in the Fock state.
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The angular dependence of the wave functions is deter-
mined by the sum of Jz contributions for each Fock state.
For example, in the case of CðþÞþ

ij� , the photon is created by
ayjðþÞ ¼ 1ffiffi

2
p ðayj1 � iayj2Þ, which contributes Jz ¼ �1 to the

state, and the constituent electron contributes Jz ¼ � 1
2 ;

therefore, to have a total Jz ofþ 1
2 , the wave function must

contribute Jz ¼ 2, which corresponds to a factor of e2i�.
For the full set of Jz ¼ þ 1

2 wave functions, we find

Cþþ
ijþðqÞ ¼

ffiffiffiffiffiffiffi
Pþp

Cþþ
ijþðy; q?Þ;

C�þ
ijþðqÞ ¼

1

Pþ3=2
C�þ
ijþðy; q?Þ;

Cð�Þþ
ijþ ðqÞ ¼ e�i�ffiffiffiffiffiffiffi

Pþp Cð�Þþ
ijþ ðy; q?Þ;

(3.4)

Cþþ
ij�ðqÞ ¼

ffiffiffiffiffiffiffi
Pþp

ei�Cþþ
ij�ðy; q?Þ;

C�þ
ij�ðqÞ ¼

ei�

Pþ3=2
C�þ
ij�ðy; q?Þ;

CðþÞþ
ij� ðqÞ ¼ e2i�ffiffiffiffiffiffiffi

Pþp CðþÞþ
ij� ðy; q?Þ;

Cð�Þþ
ij� ðqÞ ¼ 1ffiffiffiffiffiffiffi

Pþp Cð�Þþ
ij� ðy; q?Þ:

(3.5)

The wave functions have different dependence on longitu-
dinal momenta, resulting in different powers of Pþ, which
have been explicitly factored out; they cancel against other
Pþ factors in the final integral equations.

The energy denominator of the three-body wave func-
tion can be written as

M2 �m2
i þ ð ~q1? þ ~q2?Þ2
ð1� y1 � y2Þ ��2

j þ q21?
y1

��2
l þ q22?
y2

¼ M2 �m2
i þ q21? þ q22? þ 2q1?q2? cosð�1 ��2Þ

ð1� y1 � y2Þ

��2
j þ q21?
y1

��2
l þ q22?
y2

: (3.6)

The light-cone volume element dq0 becomes
1
2P

þdy0d�0dq02?. All the angular dependence can then be

gathered into integrals of the form

In ¼
Z 2�

0

d�0

2�

einð���0Þ

Dajbðq1?; q2?ÞþFðq1?; q2?Þcosð���0Þ ;

(3.7)

with jnj ¼ 0, 1, 2, 3 and Dajb and F defined as

Dajbðq?; q0?Þ ¼
m2

a þ q2? þ q02?
1� y� y0

þ�2
j þ q2?
y

þ�2
b þ q02?
y0

�M2;

Fðq?; q0?Þ ¼
2q?q0?

1� y� y0
: (3.8)

The integral equations for the two-body wave functions
then take the form

�
M2 �m2

i þ q2?
1� y

��2
j þ q2?
y

�
C
��
ijs ðy; q?Þ

¼ �

2�

X
i0

Iiji0 ðy; q?Þ
1� y

C��
i0js ðy; q?Þ þ

�

2�

X
i0j0s0�

	�
Z 1

0
dy0dq02?

� J
ð0Þ��
ijs;i0j0s0 ðy; q?; y0; q0?ÞC��

i0j0s0 ðy0; q0?Þ

þ �

2�

X
i0j0s0�

	�
Z 1�y

0
dy0dq02?J

ð2Þ��
ijs;i0j0s0 ðy; q?; y0; q0?Þ

� C��
i0j0s0 ðy0; q0?Þ: (3.9)

There is a total of 48 coupled equations, with i ¼ 0, 1; j ¼
0, 1, 2; s ¼ � 1

2 ; and � ¼ �, (� ). A diagrammatic

representation is given in Fig. 2.
The first term on the right-hand side of (3.9) is the self-

energy contribution [11]:

Iili0 ðy; q?Þ ¼
X
a;b

ð�1Þi0þaþb�b

Z 1

0

dx

x

d2k?
�

�
mimi0 � 2

miþmi0
1�x ma þ m2

aþk2?
ð1�xÞ2

�l � m2
aþk2?
1�x � �2

b
þk2?
x

; (3.10)

with

�l � �2
l þ ð1� yÞM2 ��2

l þ q2?
y

: (3.11)

The kernels Jð0Þ and Jð2Þ in the second and third terms
correspond to interactions with zero or two photons in
intermediate states. The zero-photon kernel factorizes as

FIG. 2. Diagrammatic representation of Eq. (3.9) of the text.
The conventions for the diagrams are the same as in Fig. 1.
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J
ð0Þ��
ijs;i0j0s0 ðy; q?; y0; q0?Þ ¼

X
a

V
ð0Þ�
ijas ðy; q?Þ

ð�1Þa
M2 �m2

a

� Vð0Þ��
i0j0as0 ðy0; q0?Þ; (3.12)

with

Vð0Þþ
ijaþ ¼

ffiffiffiffiffi
�j

q 1ffiffiffi
y

p ; Vð0Þ�
ijaþ ¼

ffiffiffiffiffi
�j

q mima

ð1� yÞ ffiffiffi
y

p ;

Vð0ÞðþÞ
ijaþ ¼ 0; Vð0Þð�Þ

ijaþ ¼
ffiffiffiffiffi
�j

q q?
ð1� yÞ ffiffiffi

y
p ;

(3.13)

and

Vð0Þþ
ija� ¼ 0; Vð0Þ�

ija� ¼
ffiffiffiffiffi
�j

q maq?
ð1� yÞ ffiffiffi

y
p ; Vð0ÞðþÞ

ija� ¼ 0;

Vð0Þð�Þ
ija� ¼

ffiffiffiffiffi
�j

q mað1� yÞ �mi

ð1� yÞ ffiffiffi
y

p : (3.14)

The two-photon kernels are considerably more involved,
large in number, and not particularly illuminating; details
will not be given here but can be found in [10]. The
associated angular integrals In are given in detail in
Appendix B.

B. Fermion flavor mixing

The presence of the flavor-changing self-energies, the
Iili0 with i � i0, leads naturally to a fermion flavor mixing
of the two-body wave functions [11]. The integral equa-
tions for these functions have the structure

A0jC
��
0js � BjC

��
1js ¼ � �

2�
J��
0js ;

BjC
��
0js þ A1jC

��
1js ¼ � �

2�
J��
1js ;

(3.15)

where Aij and Bj are defined by

Aij ¼
m2

i þ q2?
1� y

þ�2
j þ q2?
y

þ �

2�

Iiji
1� y

�M2 (3.16)

and

Bj ¼ �

2�

I1j0
1� y

¼ � �

2�

I0j1
1� y

; (3.17)

and J
��
ijs is given by

J
��
ijs ¼ X

i0j0s0�
	�
Z 1

0
dy0dq02?J

ð0Þ��
ijs;i0j0s0 ðy;q?;y0;q0?ÞC��

i0j0s0 ðy0;q0?Þ

þ X
i0j0s0�

	�
Z 1�y

0
dy0dq02?J

ð2Þ��
ijs;i0j0s0 ðy;q?;y0;q0?Þ

�C��
i0j0s0 ðy0;q0?Þ: (3.18)

The wave functions that diagonalize the left-hand side of
(3.15), and mix the physical (i ¼ 0) and PV (i ¼ 1) fer-
mion flavors, are

~f
��
ijs ¼ AijC

��
ijs þ ð�1ÞiBjC

��
1�i;js: (3.19)

In terms of these functions, the eigenvalue problem (3.15)
can be written as

J
��
ijs ½~f� ¼ � 2�

�
~f
��
ijs : (3.20)

Here J��
ijs , the contribution of the zero-photon and two-

photon kernels, is implicitly a functional of these new wave
functions. The factors of � that appear in Aij and Bj are

assigned the physical value and not treated as eigenvalues.
The original wave functions are recovered as

C��
ijs ¼ A1�i;js

~f
��
ijs þ ð�1ÞiBj

~f
��
1�i;js

A0jA1j þ B2
j

: (3.21)

Self-energy contributions appear in the denominators of
the wave functions.
To express the eigenvalue problem explicitly in terms of

the ~f
��
ijs , we first write the definition (3.18) of J

��
ijs in a

simpler form

J
��
ijs ¼

Z
dy0dq02?

X
i0j0s0�

ð�1Þi0þj0	�J
��
ijs;i0j0s0 ðy; q?; y0; q0?Þ

� C��
i0j0s0 ðy0; q0?Þ; (3.22)

where J
��
ijs;i0j0s0 ¼ J

ð0Þ��
ijs;i0j0s0 þ J

ð2Þ��
ijs;i0j0s0 . Substitution of (3.21)

then yields, in matrix form,

J��
0js

J
��
1js

0
@

1
A ¼

Z
dy0dq02?

X
j0s0�

ð�1Þj0	�
J��
0js;0j0s0 J��

0js;1j0s0

J
��
1js;0j0s0 J

��
1js;1j0s0

0
@

1
A

� A1j0 Bj0

Bj0 �A0j0

 ! ~f��0j0s0
~f��1j0s0

0
@

1
A: (3.23)

The sum over � can also be written in matrix form for the
helicity components � ¼ �, (� ) by the introduction of

� ¼
0 �1 0 0
�1 0 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA; (3.24)

so that X
�

	�J�� ~f�� ¼ X
�;�

J�����
~f��: (3.25)

Finally, we define

j0;�� ¼ ð�1Þj0���
A1j0 Bj0

Bj0 �A0j0

� �
(3.26)

as a tensor product of simpler matrices. The eigenvalue
problem then becomes
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Z
dy0dq02?

X
i0j0s0��i00

J
��
ijs;i0j0s0 ðy; q?; y0; q0?Þj0;��;i0i00 ~f

��
i00j0s0

¼ � 2�

�
~f��
ijs : (3.27)

This yields � as a function ofm0 and the PV masses. We
then findm0 such that, for chosen values of the PV masses,
� takes the standard physical value e2=4�. The eigenpro-

blem solution also yields the functions ~f��
ijs which deter-

mine the wave functions C��
ijs . From these wave functions

we can compute physical quantities as expectation values
with respect to the projection (2.5) of the eigenstate onto
the physical subspace.

C. Numerical solution

The eigenvalue problem (3.27) is solved numerically.
Here we discuss the method used. Additional details about
quadratures can be found in Appendix A and convergence
properties are discussed in Appendix C.

The integral equations (3.27) for the wave functions of
the electron are converted to a matrix eigenvalue problem
by a discrete approximation to the integrals, as discussed in
Appendix A. These approximations involve variable trans-
formations and Gauss–Legendre quadrature; the transfor-
mations are done to minimize the number of quadrature
points required, in order to keep the matrix problem from
becoming too large, and to reduce the infinite transverse
momentum range to a finite interval. The resolution of the
numerical approximation is measured by two parameters,
K and N?, that control the number of quadrature points in
the longitudinal and transverse directions.

The integrals for the normalization and anomalous mo-
ment, (2.12) and (2.14) respectively, are also done numeri-
cally, but are summed over different quadrature points.
These points take into account the different shape of the
integrand that comes from the square of the wave func-
tions. The values of the wave functions at these other points
are found by cubic-spline interpolation [42] in the trans-
verse direction. Regions of integration near the line of
poles associated with the energy denominator require spe-
cial treatment, if the poles exist, through quadrature for-
mulas that take the poles into account explicitly.

The renormalization requires finding the value of the
bare mass that corresponds to the physical value of the
coupling. This defines a nonlinear equation for the bare
mass, which is solved with use of the Müller algorithm
[42]. Finding the poles in the two-body wave function also
requires solution of nonlinear equations, and again the
Müller algorithm is used.

The calculation of the anomalous moment requires com-
putation of a transverse derivative of the wave functions.
Because the quadrature points used for integration are not
uniformly spaced, they are not convenient for estimating
the derivative directly. Instead, the wave functions are first

approximated by cubic splines; the derivatives are then
obtained from the splines.
To solve the eigenvalue problem, we treat the two-

photon contributions explicitly, but still nonperturbatively,
as corrections to the one-photon truncation with self-
energy, solved in [11]. We do this by considering the
coupled system

ðM2 �m2
aÞza=z0 ¼

ffiffiffiffi
�

2

r X
i0j0s0��i00

Z
dy0dq02?V

ð0Þ��
i0j0as0

� j0;��;i0i00 ~f
��
i00j0s0=z0; (3.28)

~f
��
ijs =z0 ¼ �

ffiffiffiffiffiffiffiffiffi
�

2�2

r X
a

ð�1ÞaVð0Þ�
ijas za=z0 �

�

2�

�
Z

dy0dq02?
X

i0j0s0��i00
J
ð2Þ��
ijs;i0j0s0j0;��;i0i00 ~f

��
i00j0s0=z0;

(3.29)

which can be obtained from (3.1) and (3.27), with use of the

factorization (3.12) for Jð0Þ and the connection (3.21) be-
tween the original and flavor-mixed two-body wave
functions.
The solution is found by iteration. When the index a in

(3.28) is equal to zero, we obtain an equation for m0,

m0¼þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�

ffiffiffiffi
�

2

r X
i0j0s0��i00

Z
dy0dq02?V

ð0Þ��
i0j00s0j0;��;i0i00 ~f

��
i00j0s0=z0

vuut ;

(3.30)

and when a is equal to 1, we obtain an equation for z1,

z1=z0 ¼ 1

M2 �m2
1

�
ffiffiffiffi
�

2

r X
i0j0s0��i00

Z
dy0dq02?V

ð0Þ��
i0j01s0j0;��;i0i00

~f��
i00j0s0=z0:

(3.31)

These provide the updates of m0 and z1=z0, and (3.29) is
solved by Jacobi iteration [42] of the linear system that
comes from the discretization of the rearrangement

~f��
ijs =z0 þ

�

2�

Z
dy0dq02?

X
i0j0s0��i00

Jð2Þ��
ijs;i0j0s0j0;��;i0i00 ~f

��
i00j0s0=z0

¼ �
ffiffiffiffiffiffiffiffiffi
�

2�2

r X
a

ð�1ÞaVð0Þ�
ijas za=z0: (3.32)

Only a few Jacobi iterations are performed per update of
m0 and z1=z0; further inner iteration is unnecessary, due to
the subsequent changes in m0 and z1=z0. The outer iter-
ations of the full system of equations is terminated when
the changes in m0, z1=z0, and the two-body wave function
are all of order 10�6 or less. The bare amplitude z0 is
obtained at the end by normalization. The coupling � is
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held fixed at the physical value; hence, this iterative
method yields not only the two-body wave functions and
one-body amplitudes but also the bare mass, m0.

The eigenvalue problem must first be solved forM ¼ 0,
with the coupling strength parameter �2 adjusted to yield
m0 ¼ 0. This determines the value of �2 that restores the
chiral limit nonperturbatively. The eigenvalue problem can
then be solved for M ¼ me, the physical mass of the
electron, and the anomalous moment calculated.

The number of wave-function updates in the Jacobi
iteration is small enough that the matrix representing the
discretization of the integral equations can be computed at
each iteration without making the calculation time too
large. Thus, the matrix need not be stored, which allows
much higher resolutions. We find that reasonable results
are not obtained until the longitudinal resolution K is at
least 50 and that there is still considerable sensitivity to the
longitudinal resolution. There is much less sensitivity to
the transverse resolution, for which N? ¼ 20 is found
sufficient.

IV. RESULTS

Our results for particular values of longitudinal resolu-
tion K are plotted in Fig. 3. Several different values are
considered for the PV photon mass �1, with �2 fixed as

ffiffiffi
2

p
�1 and the PV electron mass m1 set to 2� 104me. The

results are sensitive to K even for these higher resolutions,
with greater sensitivity for the larger �1 values. In fact,
beyond �1 ’ 300me, convergence is difficult to obtain for
any value of K.
The choice of value for �2 was studied in [9]. There is

no particular sensitivity to the choice, provided �2 is
greater than �1 and much less than m1. If �2 is less than
�1, the assignment of negative and positive metrics of the
two PV photons must be reversed. If �2 is too close to m1,
observables can have a strong dependence on the PV
masses.
We extrapolate the results for the anomalous moment

with linear fits in 1=K. The estimated 5% error in the
individual values, discussed in Appendix C, does not jus-
tify a higher order fit. Given the nature of the fits, we
estimate an error of 10% in the extrapolated values.
The results of the extrapolations are plotted in Fig. 4.

Each value is close to the Schwinger result and indepen-
dent of �1, to within numerical error. However, there is
clearly a systematic tendency to be below the Schwinger
result by approximately 10% as the PV photon mass �1 is
increased. We expect that this discrepancy is caused by the
absence of two potentially important contributions, the
electron-positron loop and the three-photon self-energy.
The loop contributes in perturbation theory at the same
order in � as the one-electron/two-photon Fock states
considered here and corresponds to the addition of two-

1/K
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FIG. 3. Dependence on longitudinal resolution K of the
anomalous moment ae of the electron in units of the
Schwinger term (�=2�) for the two-photon truncation. The
PV masses are m1 ¼ 2� 104me, �1 ¼ 100me to 330me, and
�2 ¼

ffiffiffi
2

p
�1. The transverse resolution isN? ¼ 20. The lines are

linear fits. The errors in the individual points are estimated to be
5%.
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FIG. 4. The anomalous moment of the electron in units of the
Schwinger term (�=2�) plotted versus the PV photon mass, �1,
with the second PV photon mass, �2, set to

ffiffiffi
2

p
�1 and the PV

electron mass m1 equal to 2 � 104me. The solid squares are the
result of the full two-photon truncation with the correct, non-
perturbative chiral constraint. The open squares come from use
of a perturbative, one-loop constraint. Results for the one-photon
truncation [9] (solid line) and the one-photon truncation with the
two-photon self-energy contribution [11] (filled circles) are
included for comparison. The resolutions used for the two-
photon results are K ¼ 50 to 150, combined with extrapolation
to K ¼ 1, and N? ¼ 20.
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electron/one-positron Fock states to our truncation. The
self-energy contribution is higher order in � but earlier
calculations [11] have shown that the two-photon self-
energy is an important correction to the one-photon trun-
cation. This can be seen in Fig. 4, where we reproduce
these results for comparison.

Figure 4 also includes results obtained for the two-
photon truncation when only the one-loop chiral constraint
is satisfied. Without the full nonperturbative constraint, the
results are very sensitive to the PV photon mass �1. This
behavior repeats the pattern observed in [9] for a one-
photon truncation without the corresponding one-loop con-
straint. The resulting �1 dependence is illustrated in Fig. 2
of [9]. Thus, a successful calculation requires that the
symmetry of the chiral limit be maintained.

V. SUMMARY

The results of the calculation are shown in Fig. 4 and
compared with three other calculations: the one-photon
truncation [9], the one-photon case with the two-photon
self-energy contribution [11], and the two-photon trunca-
tion with only the one-loop chiral constraint. The two-
photon results with the correct chiral constraint are con-
sistent with the Schwinger result, and therefore with ex-
periment, to within the estimated numerical error of 10%.
The systematic deviation below the Schwinger result is
expected to be due to the absence of the two-electron/one-
positron Fock sector and the three-photon self-energy con-
tributions. As is well known from perturbation theory,
cancellations exist between different types of contribu-
tions, such as between photon loops and electron-positron
loops, and, therefore, it is not surprising for the present
two-photon calculation, which does not also include
electron-positron loops, to have a somewhat worse result
than the one-photon calculation with just the two-photon
self-energy contribution.

Inclusion of an electron-positron pair in the basis is also
important for the understanding of current covariance and
of nonperturbative renormalization of the charge and pho-
ton mass. Future work along these lines will be to include
these additional contributions. Of course, the calculation of
the anomalous moment is not the important objective;
instead, we are interested in testing on QED a nonpertur-
bative method that could be applicable to QCD, to see how
the various truncations affect the result and to be able to
compare with perturbation theory, as a check.

Further tests of the method within QED could include
application to the calculation of a true bound state, posi-
tronium [43]. Just as for the anomalous moment calcula-
tion, the positronium results will not be competitive with
high-order perturbation theory. The numerical errors are
large compared to the tiny perturbative corrections in such
a weakly coupled theory. This in turn suggests another
interesting test that could be done, a calculation of the
anomalous moment when � is much larger that its natural

value, yet small enough for perturbation theory to still
provide a check.
In a strongly coupled theory, such as QCD, the method

may be more quantitative. For QCD, the PV-regulated
formulation by Paston et al. [44] could be a starting point.
The analog of the dressed-electron problem does not exist,
of course, and the minimum truncation that would include
non-Abelian effects would be to include at least two glu-
ons. The smallest calculation would then be in the glueball
sector. In the meson sector, the minimum truncation would
be a quark-antiquark pair plus two gluons, which as a four-
body problem would require discretization techniques be-
yond what are discussed here, since the coupled integral
equations for the wave functions cannot be analytically
reduced to a single Fock sector. Instead, one would dis-
cretize the coupled integral equations directly, in analogy
with the original method of DLCQ [19], and diagonalize a
very large but very sparse matrix. As an intermediate step,
one can select a less ambitious yet very interesting chal-
lenge of modeling the meson sector with effective inter-
actions, particularly with an interaction to break chiral
symmetry [45].
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APPENDIX A: DISCRETIZATIONS AND
QUADRATURES

The integral equations involve integration over the lon-
gitudinal momentum fraction and the square of the trans-
verse momentum. The normalization, anomalous moment,
and self-energy contributions also require integrals of this
form. In each case there can be a line of poles q2pole in the

integrand, from the denominators of wave functions in
(3.21), for a range of values of the longitudinal momentum
fraction y. The location of the line is determined by the
energy denominator that appears in each integrand. For
simple poles, the transverse momentum integral is defined
as the principal value. For those values of longitudinal
momentum y for which the pole exists, the q2? integration

is subdivided into two parts, one from zero to 2q2pole and the

other from there to infinity. If the pole does not exist,
transverse integration is not subdivided. When self-energy
effects are included, the location of the pole, if it still exists,
must be found by solving a nonlinear equation numerically.
We do this with the Müller algorithm [42].
For the interval that contains a simple pole, the integral

is approximated by an open Newton–Cotes formula that
uses a few equally-spaced points placed symmetrically
about the pole at q2i ¼ ð2i� 1Þq2pole=N with i ¼ 1; . . . ; N

and N even. This particular Newton–Cotes formula uses a
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rectangular approximation to the integrand, with the height
equal to the integrand value at the midpoint of an interval
of width 2q2pole=N. An integral is then approximated by

Z 2q2
pole

0
dq2?fðq2?Þ ’

2q2pole
N

XN
i¼1

fðq2i Þ: (A1)

The equally spaced points provide an approximation to the
principal value.

This form avoids use of q2? ¼ 0 as a quadrature point.

Such a choice is important for evaluating terms with two-
photon kernels, where there is another pole associated with
the three-particle energy denominator. By keeping q2? non-

zero, this pole can be handled analytically as a principal
value in the angular integration, as discussed in
Appendix B.

For the infinite intervals, q2? is mapped to a new variable

v by the transformation [8]

q2? ¼ a2
1� ðb2=a2Þv
ðb2=a2Þv�1 � 1

; (A2)

with v in the range 0 to 1. (If the pole exists, this trans-
formation is shifted by 2q2pole.) The PV contributions make

the integrals finite; therefore, no transverse cutoff is
needed. Only the positive Gauss–Legendre quadrature
points of an even order 2N? are used for v between �1
and 1, so that v ¼ 0, and therefore q0? ¼ 0 (or 2q2pole), is

never a quadrature point. The points in the negative half of
the range, which would be used for representing q2? 2
½�1; 0�, are discarded. One could map q2? 2 ½0;1� to

½�1; 1� and not discard any part of the Gauss–Legendre
range; however, the quadrature would then place points
focused on some finite q2? value, rather than on the natural

integrand peak at q2? ¼ 0. The total number of quadrature

points in the transverse direction is N? þ N, with N ¼ 0
when there is no pole and N? typically of order 20.

This transformation was used in [8] and was selected to
obtain an exact result for the integral

R½1=ða2 þ q2Þ �
1=ðb2 þ q2Þ�dq2. In the present work, the scales a2 and
b2 are chosen to be the smallest and largest scales in the
problem, i.e. a2 ¼ jq2polej and b2 ¼ m2

1yþ�2
1ð1� yÞ �

M2yð1� yÞ. Here q2pole is the location of the root of the

nonlinear equation for the pole. If q2pole is negative, a pole

does not exist; however, jq2polej is still a natural scale for the
integrand.

For the normalization and anomalous moment integrals,
the transverse quadrature scheme is based on a different
transformation

q2? ¼ a2
v

1� v
; (A3)

where, again, if the pole exists, the transformation is
shifted by 2q2pole. Cubic-spline interpolation [42] is then

used to compute the values of the wave functions at the new

quadrature points. This transformation is selected to yield
an exact result for the integral of 1=ða2 þ q2Þ2, which is the
form of the dominant contribution to the normalization and
anomalous moment.
The longitudinal integration is subdivided into three

parts when the line of poles is present. Two parts are
symmetrically placed about the logarithmic singularity at
ypole that arises where the line of poles reaches q2? ¼ 0.

When self-energy effects are not included in the energy
denominator, this occurs at ypole ¼ 1�m2

0=M
2; when self-

energy effects are present, the location must be found by
solving a nonlinear equation. The third part of the integra-
tion covers the remainder of the unit interval. Specifically,
these intervals are ½0; ypole�, ½ypole; 2ypole�, and ½2ypole; 1�.
This structure is designed to maintain a left-right symmetry
around the logarithmic singularity, because in the normal-
ization and anomalous moment integrals (which use the
same longitudinal quadrature points) the singularity be-
comes a simple pole defined by a principal-value prescrip-
tion. The left-right symmetry then assures the necessary
cancellations from opposite sides of the pole. When no
pole is present, the longitudinal integration is not
subdivided.
The intervals are each mapped linearly to ~y 2 ½0; 1� and

then altered by the transformations [8]

~yðtÞ ¼ t3ð1þ dtÞ=½1þ d� ð3þ 4dÞt
þ ð3þ 6dÞt2 � 4dt3 þ 2dt4� (A4)

and

tðuÞ ¼ ðuþ 1Þ=2: (A5)

The new variable u ranges between�1 and 1, and standard
Gauss–Legendre quadrature is applied. The transformation
from ~y to t is constructed to concentrate many points near
the end-points of each interval, where integrands are rap-
idly varying. The parameter d is chosen such that ~y ’
0:01t3 for small t. The transformation was found empiri-
cally [8], beginning with a transformation constructed to
compute the integral

R
1
0½lnðyþ 	0Þ � lnðyþ 	1Þ�dy ex-

actly, with 	0 and 	1 small. The symmetry with respect
to the replacements t ! ð1� tÞ and ~y ! ð1� ~yÞ is not
necessary but is the simplest choice for restricting the
coefficients in the denominator of (A4).
The need for a concentration of longitudinal quadrature

points near 0 and 1 is particularly true for the integral �J,
defined in (C2). Although this integral can be done analyti-
cally for the case of the one-photon truncation discussed in
[9], the integral is only implicit in the integral equations for
the two-body wave functions discussed in Sec. III and must
therefore be well represented by any discretization of the
integral equations. After the transverse integration is per-
formed, the integrand is sharply peaked near y ¼ 0 and
y ¼ 1, at distances of order m0=m1 	 10�10 from these
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endpoints, and needs to be sampled on both sides of the
peaks.

The number of points in each of the three intervals is
denoted by K, which becomes the measure of the resolu-
tion analogous to the harmonic resolution of DLCQ [12].
Thus the total number of quadrature points in the longitu-
dinal direction is 3K, with K typically of order 50 or
higher.

For those longitudinal integrals with an upper limit less
than 1, the integrand is transformed as above and given a
value of zero for the points beyond the original integration
range.

For the normalization and anomalous moment integrals,
the pole in the transverse integral (when it exists) is a
double pole, defined by the limit [7]

Z
dydq2?

fðy; q2?Þ
½m2yþ�2

0ð1� yÞ �M2yð1� yÞ þ q2?�2

� lim
	!0

1

2
	
Z

dy
Z

dq2?fðy; k2?Þ

�
�

1

½m2yþ�2
0ð1� yÞ �M2yð1� yÞ þ q2? � 	�

� 1

½m2yþ�2
0ð1� yÞ �M2yð1� yÞ þ q2? þ 	�

�
:

(A6)

The simple poles that remain are prescribed as principal
values. Of course, the limit must be taken after the integral
is performed.

This limiting process is taken into account numerically
by using a quadrature formula that is specific to this
double-pole form. On the interval ½0; 2q2pole�, the quadra-

ture points are chosen to be the same as those used for the
integral equations, which are q2i ¼ ð2i� 1Þq2pole=N with

i ¼ 1; . . . ; N, as given above. The interval is divided into

N=2 subintervals ½4mN q2pole;
4ðmþ1Þ

N q2pole�, with m ¼
0; 1; . . . ; ðN � 2Þ=2, each containing two of the quadrature
points. The quadrature formula for such a subinterval is
taken to be

Z ðð4ðmþ1ÞÞ=NÞq2
pole

ðð4mÞ=NÞq2
pole

dq2?
fðq2?Þ

ðq2? � q2poleÞ2

’ w2mþ1f

�ð4mþ 1Þ
N

q2pole

�
þ w2mþ2f

�ð4mþ 3Þ
N

q2pole

�
;

(A7)

where the integral on the left is defined by the limit formula
in (A6) when the pole is in the subinterval. The weights wi

are chosen to make the formula exact for f ¼ 1 and f ¼
q2? on each individual q2? subinterval. For these numerator

functions, the limit in (A6) can be taken explicitly. The
weights are then found to be wN=2 ¼ wN=2þ1 ¼
�N=2q2pole, for the quadrature points on either side of the

pole. For all other points, the weights are given by

w2mþ1 ¼ � N

2q2pole

�
ln

��������4mþ 4� N

4m� N

��������
þ 4ðN � 4m� 3Þ

ð4m� NÞð4mþ 4� NÞ
�
;

w2mþ2 ¼ N

2q2pole

�
ln

��������4mþ 4� N

4m� N

��������
þ 4ðN � 4m� 1Þ

ð4m� NÞð4mþ 4� NÞ
�
: (A8)

The integral from 0 to 2q2pole is obtained by summing over

the individual subintervals.
For the self-energy contribution (3.10), which is ex-

pressed in terms of the integrals �I0, �I1, and �J ¼ M2 �I0 given
in (C1) and (C2), the transverse integral is done analyti-
cally. Only the longitudinal integral is done numerically,
by the scheme discussed above with resolution K ¼ 30.

APPENDIX B: ANGULAR INTEGRALS

Calculation of the two-photon kernels requires the in-
tegrals

I n ¼
Z 2�

0

d�

2�

e�in�

Dþ F cos�
; (B1)

first defined in Eq. (3.7), with D and F given in (3.8). Here
the original integration variable �0 has been shifted by the
independent angle �, and the prime then dropped for
simplicity of notation in this Appendix. The factor F is
always positive, but D can be negative. If the bare fermion
mass m0 is less than the physical mass me, we can have
jDj< F; in this case, In is defined by a principal value, as
in the one-photon sector. If either photon has zero trans-
verse momentum, F will be zero, and any pole due to a
zero in D will not involve the angular integration. The
numerical quadrature is chosen to never use grid points
where a photon transverse momentum is zero, so that the
principal-value prescription can always be invoked for the
angular integral, where it is easily handled analytically.
The imaginary part of In is zero. This follows from the

even parity of the denominator and the odd parity of sinn�.
As a consequence, I�n ¼ In, and we evaluate (B1) for
only nonnegative n.
The real part is nonzero and most easily calculated from

combinations of the related integrals

�I n ¼
Z 2�

0

d�

2�

cosn�

Dþ F cos�
: (B2)

Of course, for n ¼ 0 and 1, the two integrals are identical.
For n ¼ 2 and 3 we have cos2� ¼ 2cos2�� 1 and
cos3� ¼ 4cos3�� 3 cos�. Therefore, the integral com-
binations are
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I 0¼ �I0; I1¼ �I1; I2¼2 �I2� �I0; I3¼4 �I3�3 �I1:

(B3)

Larger values of n do not appear in the two-photon kernels.

The integrals �In are connected by a simple recursion for
n > 0:

�I n ¼
Z 2�

0

d�

2�

cosn�1�

F

ðDþ F cos��DÞ
Dþ F cos�

¼ 1

F

Z 2�

0

d�

2�
cosn�1��D

F
�In�1: (B4)

The first term is zero when n is even. For n ¼ 1, it is 1=F,
and for n ¼ 3, this term is 1=2F. The only other integral

that must be evaluated directly is �I0 ¼ I0.
The determination of I0, with or without the presence of

poles, is conveniently done by contour integration around
the unit circle in terms of a complex variable z ¼ ei�. We
then have

I 0 ¼ 1

i�F

I dz

z2 þ 2 D
F zþ 1

¼ 1

i�F

I dz

ðz� zþÞðz� z�Þ :
(B5)

There are simple poles at

z� ¼ �D

F
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

F2
� 1

s
¼ �D

F
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

F2

s

¼ �e�icos�1ðD=FÞ (B6)

When D is greater than F, one pole, zþ, is inside the
contour and the other outside, as illustrated in Fig. 5.
Evaluation of 2�i times the residue yields

I 0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � F2

p for D> F: (B7)

Similarly, when D is less than �F, the pole at z� is inside
the contour, and we have

I 0 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � F2

p for D<�F: (B8)

When jDj is less than F, the poles move to the contour, and
the integral is defined by the principal value. This is
evaluated by distorting the contour to include semicircles
of radius 	 around each pole, as shown in Fig. 5, and
subtracting the contributions from the semicircles after
taking the 	 ! 0 limit. The choice of inward semicircles
makes the integral around the closed contour simply zero.
For the semicircle around z�, we have z ¼ z� þ 	ei� and a
contribution, as 	 goes to zero, of

2

iF

Z 	iei�d�

	ei�ð	ei� � 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2=F2

p Þ
! �R

d�

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2=F2

p :

(B9)

Thus the contributions from the two semicircles are of

opposite sign and cancel, so that the net result is also
zero. Therefore, we have

I 0 ¼
8><
>:

1ffiffiffiffiffiffiffiffiffiffiffiffi
D2�F2

p ; D > F

0; jDj< F
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

D2�F2
p ; D <�F:

(B10)

The case where D equals F represents an integrable singu-
larity for the transverse momentum integrations and can be
ignored. When F is zero, we have simply

I n ¼
Z 2�

0

d�

2�D
e�in� ¼ 1

D
�n0: (B11)

When F=D is small, the expressions for the integrals In

are best evaluated from expansions in powers of F=D, to
avoid round-off errors due to cancellations between large
contributions. The expansions used are

I0’ 1

128D

�
128þ64

�
F

D

�
2þ48

�
F

D

�
4þ40

�
F

D

�
6þ35

�
F

D

�
8
�
;

I1’� 1

128D

�
F

D

��
64þ48

�
F

D

�
2þ40

�
F

D

�
4þ35

�
F

D

�
6
�
;

I2’ 1

128D

�
F

D

�
2
�
32þ32

�
F

D

�
2þ30

�
F

D

�
4
�
;

I3’� 1

128D

�
F

D

�
3
�
16þ20

�
F

D

�
2
�
: (B12)

APPENDIX C: NUMERICAL CONVERGENCE

The primary constraint on numerical accuracy is the
error in the estimation of the integrals in the integral
equations for the wave functions and in the expressions
for the normalization and the anomalous moment. This
accuracy is determined by the choice of quadrature
scheme, discussed in Appendix A, and the resolution,

FIG. 5. Integration contour for evaluation of I0. The locations
of the poles at z� depend upon the magnitude and sign of D=F.
The semicircles are used when jDj=F < 1 and the poles are on
the contour.
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controlled by the longitudinal parameter K and transverse
parameter N?. The other numerical parts of the calculation
are iterated to what is effectively exact convergence, with
remaining uncertainties much smaller than the errors in the
numerical quadratures.

For the one-photon truncation, discussed in [7,9], all the
integrals can be done analytically. This makes the one-
photon problem a convenient first test for numerical con-
vergence. The key integrals are �I0, �I1, and �J, defined as

�I nðM2Þ ¼
Z dydk2?

16�2

X
jl

ð�1Þjþl�l

M2 � m2
jþk2?
1�y � �2

l
þk2?
y

mn
j

yð1� yÞn ;

(C1)

�JðM2Þ ¼
Z dydk2?

16�2

X
jl

ð�1Þjþl�l

M2 � m2
jþk2?
1�y � �2

l
þk2?
y

m2
j þ k2?

yð1� yÞ2 :

(C2)

Tables I and II and Figs. 6 and 7 summarize results for
numerical calculation of these integrals. They show that �I0
and �I1 are well approximated for a wide range of resolu-
tions, but �J is particularly sensitive to the longitudinal
resolution K and requires that both K and N? be on the
order of 20 or larger. At these resolutions, �J is approxi-
mated with an accuracy of about 4%, and this then be-

comes a minimal estimate of the accuracy of any of the
results.
As expected, the results for the one-photon truncation, if

computed numerically, converge to better than 1% at the
same resolution, ofK ¼ 20 andN? ¼ 20, as can be seen in
Tables III and IV and Figs. 8 and 9. However, the results
with the self-energy contribution, shown in the same tables
and figures, require K ’ 25 before nearing convergence.
Although the exact answer is not known in this case, K ¼
20 is clearly insufficient, but K 
 25 yields a reasonable
result with an error on the order of 1%.
The two-photon truncation incorporates numerical ap-

proximations to the integrals �I0, �I1, and �J through the

action of the zero-photon kernel Jð0Þ, in Eq. (3.9), and
approximations to the self-energy contribution, also in
Eq. (3.9). Thus, the minimum resolution for the two-photon

TABLE II. Same as Table I, but for the dependence on trans-
verse resolution N?. The longitudinal resolution is K ¼ 30.

N? �I0ðm2
eÞ �I1ðm2

eÞ=me
�Jðm2

eÞ=m2
e

10 �6:2646 �10:7324 �2:9845
15 �6:2645 �10:7327 �7:5428
20 �6:2645 �10:7327 �6:9137
25 �6:2645 �10:7328 �6:6961
30 �6:2645 �10:7328 �6:5712
35 �6:2645 �10:7328 �6:4922
40 �6:2645 �10:7328 �6:4401
exact �6:2645 �10:7328 �6:2645

TABLE I. Dependence on longitudinal resolution K of the
integrals �I0, �I1, and �J, defined in (C1) and (C2) of the text and
computed according to the quadrature scheme described in
Appendix A. The bare-electron mass is m0 ¼ 0:98me. The PV
masses are m1 ¼ 2 � 104me, �1 ¼ 200me, and �2 ¼

ffiffiffi
2

p
�1. The

transverse resolution is N? ¼ 40.

K �I0ðm2
eÞ �I1ðm2

eÞ=me
�Jðm2

eÞ=m2
e

5 �7:113 �13:530 �11 606:0
10 �6:2586 �10:6182 932.3

15 �6:2641 �10:7354 �26:487
20 �6:2645 �10:7327 �6:7126
25 �6:2645 �10:7328 �6:3982
30 �6:2645 �10:7328 �6:4401
exact �6:2645 �10:7328 �6:2645
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FIG. 6. Dependence on longitudinal resolution K of the inte-
grals I0, I1, and J, defined in (C1) and (C2) of the text and
computed according to the quadrature scheme described in
Appendix A. The values plotted are ratios to the exact values,
listed in Table I. The bare-electron mass is m0 ¼ 0:98me. The
PV masses are m1 ¼ 2� 104me, �1 ¼ 200me, and �2 ¼ffiffiffi
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p
�1. The transverse resolution is N? ¼ 40.
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FIG. 7. Same as Fig. 6, but for the dependence on transverse
resolution N?. The longitudinal resolution is K ¼ 30. For these
resolutions, the values for �I0 and �I1 are nearly exact, and the
plotted points for the ratios to the exact values are at the same
places; only J shows variation.
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calculation would appear to be approximately K ¼ 25 and
N? ¼ 20; however, we find that K must be at least 50. We
extrapolate from the one-photon and self-energy calcula-
tions to estimate an error of 5%–10% for the two-photon
truncation.
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