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At a 14 TeV proton-proton collider, the Large Hadron Collider (LHC), we show that top quark pair

production is dominated at low invariant mass by the fusion of two like-helicity gluons, producing top

quark pairs in the left-left or right-right helicity configurations. Whereas, at higher invariant mass the

production is dominated by the fusion of unlike-helicity gluons, producing top quark pairs in the up-down

or down-up off-diagonal configurations, identical to top quark pair production via quark-antiquark

annihilation. We study in detail the low invariant mass region, and show that the spin correlations can

be easily observed in this region by looking at the distribution of the difference in the azimuthal angles,

��, of the dileptons decay products of the top quarks in the laboratory frame. Because of the large cross

section for top pair production at the LHC, even with a cut requiring that the invariant mass of the top

quark pair be less than 400 GeV, the approximate yield would be 104 dilepton ðe; �Þ events per fb�1 before

detector efficiencies are applied. Therefore, there is ample statistics to form the �� distribution of the

dilepton events, even with the invariant mass restriction. We also discuss possibilities for observing these

spin correlations in the lepton plus jets channel.
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I. INTRODUCTION

Since the discovery of the top quark with a mass be-
tween 150 and 200 GeV1 by the CDF and D0 experiments
at Fermilab in 1995, numerous authors, see [2–10], have
asked the question ‘‘Can the spin correlations in top quark
pair production be observed?’’ This is a valid question
since the top quark lifetime in the standard model is very
short compared to the spin decorrelation time for such a
heavy quark. In particular, �T �GFm

3
t � �2

QCD=mt

where �T is the total width of the top quark, mt is mass
of top quark, GF is the Fermi constant and �QCD is the

QCD scale, thus the top quark decays before QCD inter-
actions have the opportunity to appreciably affect its spin.
The angular distribution of the top quark decay products in
t ! Wþ þ b followed by Wþ ! lþ þ � or �dþ u are
correlated with the top spin axis as follows:

1

�T

d�

d cos�i

¼ ð1þ �i cos�iÞ=2

�i ¼

8>><
>>:
þ1:0 lþ or �d-quark

�0:31 �� or u� quark

�0:41 b-quark

(1)

where �i is the angle between the i-th decay product and
the top quark spin axis in the top quark rest frame. Clearly,

the charged lepton or d-quark coming from the decay of
the W-boson are the most correlated with the top quark
spin axis. For the antitop, the signs of the �i coefficients
are flipped. Thus, if the spins of the top are correlated in top
quark pair production and the decay products of the tops
are correlated with the spins then the decay products of the
two top quarks are correlated. Since there is no net polar-
ization of the top quarks, at least to leading order, the
correlation between the i-th decay product of the top and
�{-th decay product of the antitop can be expressed by

1

�T

d2�

d cos�id cos ���{

¼ 1

4
ð1þ Ct�t�i ���{ cos�i cos ���{Þ: (2)

with

Ct�t � �"" þ �## � �"# � �#"
�"" þ �## þ �"# þ �#"

: (3)

�"=#"=# is the production cross section for top quark pairs

where the top quark has spin up or down with respect to the
top spin axis and the antitop has spin up or down with
respect to the antitop spin axis. Clearly, the right choice for
the spin axes of the top quark pair is important since a poor
choice of spin axes can lead to a small value for the
correlation parameter, Ct�t and hence to small correlations
between the decay products of the top and the antitop. For
some processes, e.g. q �q ! t�t, there exist spin axis choices
such that the correlation parameter, Ct�t, is maximal.
However, even with these optimal choices, to observe the
correlations one has to measure the angles �i and ���{

between the decay products and the spin axes in the rest
frame of the top and antitop quarks, respectively. To do this
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1The current Tevatron-averaged, best-fit value for the top

quark mass is 173:1� 1:3 GeV, see Ref. [1].
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one has to reconstruct the top and the antitop rest frames;
this is very challenging at a hadron collider. An obvious
question is ‘‘Are there variables that carry the signature of
the spin correlations which can be measured in the labo-
ratory frame?’’ For q �q ! t�t no such variables have been
found that show a significant difference between full spin
correlations and no spin correlations.

It has been known for some time that the spin correla-
tions at the LHC are described very well by the helicity
basis at low top-antitop invariant mass, whereas at higher
invariant mass, counter to one’s naı̈ve expectation, the spin
correlations are degraded in the helicity basis. In this paper
we explain this phenomenon by showing that at low in-
variant mass top quark pair production is dominated by
like-helicity gluons, producing top quark pairs in the left-
left or right-right helicity configuration, independent of the
invariant mass. Whereas, at higher invariant mass top
quark pair production is dominated by unlike-helicity glu-
ons, producing top quark pairs in the up-down or down-up
off-diagonal configuration, identical to that of top quark
pair production via quark-antiquark annihilation. At ultra-
high invariant masses, the up-down and down-up off-
diagonal configurations become the familiar left-right or
right-left helicity configurations; however, at the LHC only
a small fraction of the total number of produced top pair
events are in this ultrahigh invariant mass region. The fact
that the contributions from like and unlike-helicity gluons
impart different spin correlations to the top quark pairs
makes gg ! t�t, which dominates top quark pair produc-
tion at the LHC, a much richer process for analysis than the
dominant Tevatron mechanism q �q ! t�t.

We study the low invariant mass region in detail. In this
region, the like-helicity gluons dominate the production.
We show that the spin correlations can be easily observed
in this region by looking at the distribution of the differ-
ence in the azimuthal angles, ��, of the dilepton decay
products of the top quarks. For top quark pairs with an
invariant mass � 400 GeV, the spin correlations give a
40% enhancement of this distribution at small angles
(�� � 0) and a 40% suppression of this distribution at
large angles (�� � �) compared to if there were no
correlations between the production and decay of the top
quarks. About 20% (� 200 pb) of the total next-to-leading
order top-antitop quark production cross section passes this
invariant mass cut so even in the dilepton channel there are
large numbers of events available to measure this distribu-
tion: about 104 events per fb�1 before detector efficiencies
are applied.

The outline of this paper is as follows: in Sec. II we
review what is known about the spin correlations for q �q !
t�t before taking a closer look at the spin correlations for
gg ! t�t in Sec. III. Section IV addresses the question of
how the top quark pair events at the LHC populate the
scattering angle versus invariant mass plane. In Sec. V we
add the decays of the top quarks. In Sec. VI we address the

issue of which angular distributions are sensitive to the
presence or absence of angular correlations among the t�t
decay products. We show that at low invariant mass the
difference in the azimuthal angle of the charged leptons
carries the signature of spin correlations in the laboratory
frame. We also discuss possibilities for observing these
spin correlations in the lepton plus jets channel. We sum-
marize our conclusions in Sec. VII. Last, we include an
Appendix which outlines the highly efficient method used
in this paper for calculating the spin amplitudes. It can be
applied to any 2 ! 2 process with arbitrary spins of the
final state particles.

II. REVIEW OF q �q ! t �t

A. Spin amplitudes in an arbitrary basis

For a massive particle with momentum, t, and spin
vector, st, the following relationships are satisfied

t2 ¼ m2
t ; s2t ¼ �1; and t � st ¼ 0: (4)

The spin vector st is most conveniently defined in the rest
frame of the massive particle; in this frame it only can have
spatial components. Thus, for top-antitop quark pair pro-
duction via quark-antiquark annihilation or gluon-gluon
fusion, we define the spin vector st in the rest frame of
the top quark. Since CP is conserved at tree level for this
process, we restrict the spin vector to be in the scattering
plane. It is convenient to measure the direction of spin
vector st with respect to the antitop quark or recoil direc-
tion. Thus we define the unit vector st such that its direction
is at an angle �, measured clockwise with respect to the
antitop quark direction (see Fig. 1).
For the antitop quark we proceed in a similar fashion in

defining s�t. Here, instead of using the same angle � to
specify the direction of the spin vector with respect to the
recoil direction, we use a different angle �0. This allows for
the independent manipulation of the antitop and top quark

t
g g

t
(recoil direction)

ŝ ξ

Top quark rest frame

g
g

t

t

θ

zero momentum frame

FIG. 1. Spin vector for top quark pair production. The direc-
tion of the top quark spin vector st is given by the angle � in this
frame, measured in the clockwise direction from the recoil
direction. The inset illustrates the situation in the ZMF, where
the top and antitop are produced back-to-back and the scattering
angle 	 from the incoming beam direction.
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spins at intermediate steps. However, in the end, we will set
�0 ¼ �: then, in the zero momentum frame (ZMF), the spin
vectors of the top and antitop quark are back-to-back as
expected from the symmetry arguments.

It is particularly convenient to use the following combi-
nations of t and st as follows:

t1 � ðtþmtstÞ=2; and t2 � ðt�mtstÞ=2: (5)

These satisfy

t21 ¼ t22 ¼ 0; t ¼ t1 þ t2; and 2t1 � t2 ¼ m2
t : (6)

(�t1 and �t2 are defined similarly for the antitop quark.) Since
t1 and t2 are lightlike vectors, the full power of the spinor
helicity method can be used in evaluating the amplitudes as
discussed in Ref. [11], resulting in many simplifications.
For example, the Dirac spinor for a massive fermion with
spin up can be written as, see [12]

U"ðtÞ ¼ 1þ 
5

2
Uðt1Þ þ ei�

1� 
5

2
Uðt2Þ: (7)

This factorization into chiral components, with one de-
pending only on t1 and other only t2 (apart from the phase

factor ei� � �Uðt2Þ 1þ
5

2 Uðt1Þ=mt), is particularly useful.

For our purposes in this paper we need only two such
spinors: a �U" spinor for the top quark, and a V" spinor for
the antitop quark. These are given in spinor helicity nota-
tion by

�U"ðtÞ ¼ ht1 þ j þ ht1 þ jt2�i
mt

ht2 � j ¼ 1

mt

ht1 þ jðtþmtÞ

V"ð�tÞ ¼ j�t1�i � j�t2þi h�t2 þ j�t1�i
mt

¼ ðmt � �tÞj�t1�i 1

mt

:

(8)

The full set of spinors for massive fermions may be found
in Ref. [2]. In this paper we will show that once you have
the amplitudes for gg ! t" �t" in terms of the spin angles �
and �0, you can obtain all of the other spin combinations
for the top and antitop by simple algebraic manipulations.

B. Review of the spin structure of q �q ! t �t

The spinor structure of the matrix element for qR �qL ! t�t
can easily be shown to be of the form

�UðtÞfjqþih �qþ j þ j �q�ihq� jgVð�tÞ (9)

by using the Fierz identities on the current-current struc-
ture of the matrix element given by the standard Feynman
rules. This can be used to recover the well-known tree-level
matrix element squared for qR �qL ! t�t (see Ref. [5]):

jAðqR �qL!t" �t" and t# �t#Þj2¼jAðqL �qR!t" �t" and t# �t#Þj2
�ð
�1sin	cos��cos	sin�Þ2

jAðqR �qL!t" �t#or t# �t"Þj2¼jAðqL �qR!t# �t"or t" �t#Þj2
�ð
�1sin	sin�þcos	cos�	1Þ2:

(10)

Here the same spin angle, �, has been used for both the top
and antitop quarks. From this general result it is clear that
there is a basis, defined by

tan� ¼ 
�1 tan	; (11)

which sets the "" þ ## component to identically zero for all
�, leaving only the "# þ #" component. This basis was first
identified by Parke and Shadmi in Ref. [5] and has been
called the off-diagonal basis. It interpolates between the
beamline basis ( cos� ¼ cos	) at threshold, and the helic-
ity basis ( cos� ¼ �1) in the ultrarelativistic limit. In the
off-diagonal basis, Eq. (10) becomes

jAðqR �qL ! t" �t" and t# �t#Þj2 ¼ jAðqL �qR ! t" �t" and t# �t#Þj2
¼ 0

jAðqR �qL ! t" �t# or t# �t"Þj2 ¼ jAðqL �qR ! t# �t" or t" �t#Þj2

� ð1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2sin2	

q
Þ2; (12)

whereas the helicity basis is obtained by setting cos� ¼
�1; in this basis

jAðqR �qL! tR �tR and tL �tLÞj2¼jAðqL �qR! tR �tR and tL �tLÞj2
�
�2sin2	

jAðqR �qL! tR �tL or tL �tRÞj2¼jAðqL �qR! tL �tR or tR �tLÞj2
�ð1�cos	Þ2: (13)

Clearly, for 
 � 1, the helicity basis and the off-diagonal
basis become identical. As we will see in the next section,
the spin correlations for unlike-helicity gluons producing
top quark pairs are identical to those in quark-antiquark
annihilation.

III. A CLOSER LOOK AT gg ! t �t

The tree-level matrix element for gg ! t�t can be fac-
torized into two terms: one depending on the color factors
and t and u-channel propagators and the other depending
on the spin of the gluons and top quarks, as follows

Aðg1g2 ! t�tÞ¼ ig2s

�½Ta1Ta2
�{i
ð2t �p1Þ þ½Ta2Ta1
�{i

ð2t �p2Þ
�
Mðg1g2 ! t�tÞ:

(14)

The reduced matrix element Mðg1g2 ! t�tÞ is symmetric
under the interchange of the two gluon momenta but
depends on the helicity of the gluons and the spin of the
top and antitop quarks.
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The square of the color-propogator factor, summed over
the gluon and top quark colors, is given by

X
color

��������½Ta1Ta2
�{i
ð2t � p1Þ þ ½Ta2Ta1
�{i

ð2t � p2Þ
��������

2

¼ 4

3

4ðt � p1Þ2 þ 4ðt � p2Þ2 � ðt � p1Þðt � p2Þ
ðt � p1Þ2ðt � p2Þ2

: (15)

When evaluated in the ZMF, this sum reduces to the form

X
color

��������½T
a1Ta2
�{i

ð2t � p1Þ þ ½Ta2Ta1
�{i
ð2t � p2Þ

��������
2¼ Yð�; c	Þ


4m4
t

; (16)

with

Y ð�; c	Þ ¼ 4

3

7þ 9�2c2	
ð1� �2c2	Þ2

: (17)

In these expressions � is the ZMF speed of the top quarks
and c	 is the cosine of the ZMF scattering angle 	.

The reduced matrix element for on-mass-shell top
quarks, Mðg1g2 ! t�tÞ, is simply given by

MðgRgL! t�tÞ¼2hp2þjtjp1þi
2p1 �p2

� �UðtÞfjp1þihp2þjþjp2�ihp1�jgVð�tÞ
(18)

for unlike-helicity gluons and by

MðgRgR ! t�tÞ ¼ 2mt

hp1 � jp2þi
hp1 þ jp2�i

�UðtÞ
LVð�tÞ

where 
L;R � 1

2
ð1	 
5Þ

(19)

for like-helicity gluons. Note the similarity in the spinor
structure for gRgL ! t�t and qR �qL ! t�t. Also, the spinor
structure for gRgR ! t�t is particularly simple, �UðtÞ
LVð�tÞ;
it contains no s-channel pole. In a later section of this
paper, we use these two expressions to give a simple
analytic expression for gg ! t�t including the decay of
the two top quarks. However, in the next section we will
evaluate these expressions using the spinors for polarized
top quarks given in Eq. (8).

A. Unlike-helicity gluons

For unlike-helicity gluons the reduced matrix element
MðgRgL ! t" �t"Þ is given by

MðgRgL ! t" �t"Þ ¼ 2hp2 þ jtjp1þi
mtð2p1 � p2Þ

� fht1 þ jt2jp1þihp2 þ j�t1�i
� ht1 þ jp2�ihp1 � j�t2j�t1�ig; (20)

which, when evaluated in the ZMF using the spin vectors
described in the previous section, becomes

MðgRgL ! t" �t"Þ � � sin	fð1� cos	Þ sinð�=2Þ cosð�0=2Þ
� ð1þ cos	Þ cosð�=2Þ sinð�0=2Þ
þ 
�1 sin	½cosð�=2Þ cosð�0=2Þ
� sinð�=2Þ sinð�0=2Þ
g: (21)

Here the coefficients in front of the products of the
�-dependent trigonometric functions are the appropriate
helicity amplitudes whereas the products of the
�-dependent trigonometric functions themselves are prod-
ucts of Wigner d-functions (see Appendix A). The relative
signs between the various components of these expressions
are important and care must be taken to make sure they are
correct.
Using a different spin angle for the t and �t allows for

manipulation of the spin of the top independent of the
antitop and vice versa. Thus, all of the spin amplitudes
for gRgL ! t�t can be simply obtained from gRgL ! t" �t" as
follows:

jM#"ð�;�0Þj¼ jM""ð���;�0Þj¼
��������
�

d

d�=2

�
M""ð�;�0Þ

�������� (22)

jM"#ð�;�0Þj¼ jM""ð�;�0 ��Þj¼
��������
�

d

d�0=2

�
M""ð�;�0Þ

�������� (23)

jM##ð�; �0Þj ¼ jM""ð�� �; �0 � �Þj

¼
��������
�

d

d�=2

��
d

d�0=2

�
M""ð�; �0Þ

��������: (24)

Flipping the spin of a particle is accomplished by one of
two equivalent methods:
(i) Addition or subtraction of � from the spin angle �.
(ii) Differentiation of the amplitude with respect to �=2.

A detailed discussion with examples of how to use these
techniques for arbitrary spins is given in Appendix A.
At this stage we can make the spin axes of the top quark

pair back-to-back in the ZMF by setting �0 ¼ �. Thus, for

⇒⇒
q

q

t

⇒

t
⇒

(a) β → 0

⇒⇒
q

q

t

⇒

t

⇐

(b) β → 1

⇐

⇒
FIG. 2. The spin configurations for the process qR �qL ! t�t are
best described by the off-diagonal basis which interpolates
between the beam line basis at low � to helicity at very high
� as given by Eq. (12). (a) is the limit � ! 0 where the top
quark spins are aligned in the same direction as the incoming
quark spins whereas (b) is the limit � ! 1 where the helicity
state tR �tL dominates for scattering angles less than 90 degrees.
The relative probability of tR �tL to tL �tR is given by ð1þ
cos	Þ2:ð1� cos	Þ2.
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unlike-helicity gluons we obtain

jAðgRgL! t" �t" and t# �t#Þj2¼Yð�;	Þ�2sin2	

�ð
�1 sin	cos��cos	sin�Þ2;
(25)

jAðgRgL!t" �t#ort# �t"Þj2¼Yð�;	Þ�2sin2	

�ð
�1sin	sin�þcos	cos�	1Þ2;
(26)

and

jAðgLgR ! t" �t" and t# �t#Þj2
¼ jAðgRgL ! t" �t" and t# �t#Þj2; (27)

jAðgLgR ! t# �t" or t" �t#Þj2 ¼ jAðgRgL ! t" �t# or t# �t"Þj2;
(28)

withX
all

jAðgRgL ! t�tÞj2 ¼ X
all

jAðgLgR ! t�tÞj2

¼ 2Yð�; 	Þ�2sin2	ð2� �2sin2	Þ:
(29)

As in q �q ! t�t, a great simplification occurs for the off-
diagonal basis [5], tan� ¼ 
�1 tan	, where

jAðgLgR ! t" �t" and t# �t#Þj2
¼ jAðgRgL ! t" �t" and t# �t#Þj2 ¼ 0: (30)

The off-diagonal basis is the basis that interpolates from
the beamline basis at threshold to the helicity bases at
ultrarelativistic energies for the q �q ! t�t process. Thus,
for unlike-helicity gluons we have a very similar situation
to that of q �q ! t�t: the only nonzero amplitudes are given
by

jAðgRgL ! t" �t# or t# �t"Þj2 ¼ jAðgLgR ! t# �t" or t" �t#Þj2
¼ Yð�; 	Þ�2sin2	

� ð1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2sin2	

q
Þ2; (31)

as illustrated in Fig. 3.

B. Like-helicity gluons

For like-helicity gluons the reduced matrix element
MðgRgR ! t" �t"Þ is simply given by the following combi-

nation of spinor products

MðgRgR ! t" �t"Þ ¼ 2mt

hp1 � jp2þi
hp1 þ jp2�i ht1 þ j�t1�i; (32)

which when evaluated in the ZMF using the spin vectors
described in the previous section is just

MðgRgR ! t" �t"Þ � 
�1fð1� �Þ cosð�=2Þ cosð�0=2Þ
þ ð1þ �Þ sinð�=2Þ sinð�0=2Þg: (33)

Treating these expressions in a manner similar to the
unlike-helicity case discussed in the previous section we
obtain

jAðgRgR ! t" �t" or t# �t#Þj2 ¼Yð�;	Þ
�2ð1	�cos�Þ2;
(34)

jAðgRgR ! t" �t# and t# �t"Þj2 ¼ Yð�; 	Þ
�2�2sin2�: (35)

Similarly, it is easy to show that for left-handed like-
helicity gluons

jAðgLgL ! t# �t# or t" �t"Þj2 ¼ jAðgRgR ! t" �t" or t# �t#Þj2;
(36)

jAðgLgL ! t" �t# and t# �t"Þj2
¼ jAðgRgR ! t" �t# and t# �t"Þj2: (37)

Summing over all of the final spins givesX
all

jAðgRgR ! t�tÞj2 ¼ X
all

jAðgLgL ! t�tÞj2

¼ 2Yð�; 	Þð1� �4Þ; (38)

independent of the spin axis used for the top quarks.
Clearly, a great simplification occurs for like-helicity

gluons if one uses the helicity basis (� ¼ 0 or �) for the
top quarks. In the helicity basis

jAðgLgL ! tR �tL and tL �tRÞj2
¼ jAðgRgR ! tR �tL and tL �tRÞj2 ¼ 0 (39)

for all values of �. Conventional wisdom states that helic-
ity provides a simple description for most processes only at
ultrarelativistic energies. However, as illustrated in Fig. 4,
t�t production from like-helicity gluons is an exception to
this expectation: in this case, the helicity basis provides a
simple description for all �, with the only nonzero ampli-
tudes given by

⇒⇒
g

g

t

⇒

t
⇒

(a) β → 0

⇒⇒
g

g

t

⇒

t

⇐

(b) β → 1

⇐

⇒
FIG. 3. The spin configurations for the process gRgL ! t�t are
best described by the off-diagonal basis, which interpolates
between the beamline basis at low � and the helicity basis at
very high � [see Eq. (31)]. As far as the spins of the top quarks
are concerned, this process, gRgL ! t�t, is identical to top quark
production via quark-antiquark collisions, qR �qL ! t�t, see Fig. 2.
(a) illustrates the limit � ! 0 where the top quark spins are
aligned in the same direction as the incoming gluon spins
whereas (b) illustrates the limit � ! 1 where the helicity state
tR �tL dominates for scattering angles less than 90 degrees. The
relative probability of tR �tL to tL �tR is given by ð1þ cos	Þ2:ð1�
cos	Þ2.
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jAðgRgR ! tR �tR or tL �tLÞj2 ¼ jAðgLgL ! tL �tL or tR �tRj2
¼ Yð�; 	Þ
�2ð1� �Þ2: (40)

Both the like and unlike gluon helicity amplitudes agree
with those found in the appendix of Ref. [13].

C. Combining like- and unlike-helicity gluons

At the LHC we must combine the like-helicity and
unlike-helicity gluon cases since there is noway to polarize
the incoming gluons. By looking at Eqs. (26) and (35), it is
clear that there is no basis which makes the top quark spins
purely "" þ ## OR "# þ #" at the LHC because the constant
term appears in "" þ ## for like-helicity gluons and in
"# þ #" for unlike-helicity gluons.

However, there are regions of the ðcos	;�Þ plane for
which the like-helicity gluon amplitude or the unlike-
helicity amplitude dominates. Along the curve given by

�
 sin	 ¼ 1 or; equivalently; �2 ¼ 1=ð2� cos2	Þ
(41)

the like-helicity and the unlike-helicity contribute equally
to top quark pair production. On this curveX

all

jAðgRgR ! t�tÞj2 ¼ X
all

jAðgLgL ! t�tÞj2

¼ X
all

jAðgRgL ! t�tÞj2

¼ X
all

jAðgLgR ! t�tÞj2:

In the region �
 sin	 < 1 the like-helicity gluon ampli-
tudes dominate the cross section, whereas in the region
�
 sin	 > 1 the unlike-helicity gluon amplitudes domi-
nate the cross section. Thus, it is clear that one should
use the helicity basis when �
 sin	 � 1 and the off-
diagonal basis when �
 sin	 � 1. In the next section we
will optimize the basis choice to maximize the spin corre-
lations in the intermediate region, �
 sin	� 1.

D. Optimizing the choice of spin basis

For unpolarized gluons, the fraction of top quark pair
events at a given point in the ðcos	; �Þ plane that have "" or
## spins is

fð	; �Þ �
P
""þ##

jAðgg ! t�tÞj2
P
all

jAðgg ! t�tÞj2 ¼ 
�2ð1þ �2cos2�Þ þ �2sin2	ð
�1 sin	 cos�� cos	 sin�Þ2
ð1� �4Þ þ �2sin2	ð2� �2sin2	Þ :

It is a straightforward analytic exercise2 to find the extrema of this function with respect to the angle �. The maxima,
fsameð	;�Þ, gives the maximum fraction of "" þ ## whereas the minima, foppoð	;�Þ, gives the minimum fraction of "" þ ##
or, equivalently, the maximum fraction of "# þ #" . These fractions are given by

ffsame;oppogð	; �Þ �

�2 þ 1

2�
2ðsin2	cos2	þ 
�2sin4	þ 
�2Þf1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2
�1 cos	 sin	Þ2

ðsin2	cos2	þ
�2sin4	þ
�2Þ2
q

g
ð1� �4Þ þ �2sin2	ð2� �2sin2	Þ : (42)

Both extrema occur when � satisfies

tan2�fsame;oppog ¼ 2
�1sin3	 cos	

sin2	cos2	� 
�2sin4	� 
�2
; (43)

they are related as follows: �oppo ¼ �same þ �=2. The
contours of fsameð	; �Þ in the ðcos	;�2Þ plane are given
by the solid lines in Fig. 5(a) whereas for foppoð	;�Þ see
Fig. 5(b).

At any given point in the ðcos	; �2Þ plane, the basis
which exhibits the strongest correlations is the one whose
spin fraction has the largest difference from 1

2 . If

jfoppoð	;�Þ � 1=2j is larger than jfsameð	; �Þ � 1=2j then
one should use �oppo; otherwise, �same should be used. The

condition that must be satisfied for both fsameð	; �Þ and
foppoð	;�Þ to have equal difference (but opposite sign)

from 1=2 occurs when

fsameð	; �Þ þ foppoð	; �Þ ¼ 1; or �
 sin	 ¼ 1: (44)

Not surprisingly this is the same curve that also separates
the dominance of the contribution of like-helicity from
unlike-helicity gluons. Thus, when �
 sin	 < 1 the like-
helicity gluons dominate and �same should be used to max-
imize the "" þ ## fraction, whereas if �
 sin	 > 1 the
unlike-helicity gluons dominate and we should use �oppo

⇐⇒g g

t

t

(a) β → 0 ⇐
⇒

⇒
⇐ ⇐⇒g g

t

⇒

t
⇒

(b) β → 1

FIG. 4. The spin configurations for the process gRgR ! t�t are
best described by the helicity basis for all � [see Eq. (40)].
(a) illustrates the limit � ! 0 where the relative probability of
tR �tR to tL �tL is ð1þ �Þ2:ð1� �Þ2 whereas (b) illustrates the limit
� ! 1 where tR �tR completely dominates. For gLgL ! t�t, flip the
spins on both the gluons and the top quarks.

2The numerical solution was studied in Ref. [14].
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to maximize the "# þ #" fraction; this is equivalent to
minimizing the "" þ ## fraction. The long-dashed line in
both parts of Fig. 5 is the curve �
 sin	 ¼ 1; this is the
demarcation curve between maximizing "" þ ## and max-
imizing "# þ #" .

It is worthwhile asking the following two questions:
(i) In the region dominated by like-helicity gluons

(�
 sin	 < 1), how much does the maximum frac-
tion of "" þ ## differ from what the helicity basis
would give in the same region?

(ii) In the region dominated by unlike-helicity gluons
(�
 sin	 > 1), how much does the maximum frac-
tion of "# þ #" differ from what the off-diagonal basis
would give in the same region?

These two questions are also addressed by Fig. 5. In (a) we
have also plotted (short dashes) the fraction of top quark
pairs which are LLþ RR in the helicity basis and in (b) the
fraction that are "# þ #" in the off-diagonal basis. Clearly,
these figures indicate that the helicity basis does almost as
well as the basis which maximizes "" þ ## for �
 sin	 < 1
and that the off-diagonal basis does almost as well as the
basis which maximizes "# þ #" for �
 sin	 > 1.

Now that we understand the production dynamics for top
quark pair production from gluon-gluon fusion we can turn
to the question of what regions in the ðcos	;�2Þ plane do
the top quark pair events occur at the LHC.

IV. PHENOMENOLOGY OF TOP QUARK PAIR
PRODUCTION AT THE LHC

In Fig. 6 we plot the differential cross section

1

�tot

d2�

dðcos	Þd�2
ðgg ! t�tÞ

in the ðcos	;�2Þ plane where �tot is the total cross section.

This figure gives us the relative distribution of top quark
pair events in this plane. A breakdown of the fraction of
events for like- and unlike-helicity gluons broken into the
appropriate regions in �
s	 are given in Table I.
Figure 7 shows the differential cross section with respect

to jCsamej, where

Csame � 2f""þ## � 1 and Coppo � 2f"#þ#" � 1 (45)

are the quantities which control the size of the correlations
for any given spin basis (note that Coppo ¼ �Csame). In this

FIG. 6 (color online). The differential cross section
ð1=�totÞd2�=dðcos	Þd�2 for top quark pair production at the
LHC assuming total beam energy of 14 TeV. The long-dashed
line is �
 sin	 ¼ 1 (or �2 ¼ 1=ð2� cos2	Þ) is the demarcation
line for the differential cross section to be dominated by like-
helicity gluons (below) and unlike-helicity gluons (above).

FIG. 5 (color online). Panels (a) and (b) show, in the ðcos	; �2Þ plane, the maximum fractions of "" þ ## , fsameð	;�Þ, and "# þ #" ,
foppoð	; �Þ, respectively, (solid contours). In both panels the long-dashed line is �
 sin	 ¼ 1 or equivalently �2 ¼ 1=ð2� cos2	Þ
below which the like-helicity gluons dominate and above the unlike-helicity gluons dominate. In (a) the short-dashed lines are the
fractions of LLþ RR top quark pairs in the helicity basis which below �
 sin	 ¼ 1 are close to the maximum fractions for "" þ ## ,
fsameð	; �Þ. Whereas in (b) the short-dashed lines are the fractions of "# þ #" in the Off-Diagonal basis which above �
 sin	 ¼ 1 are
close to the maximum fractions of "# þ #" , foppoð	;�Þ.
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figure we have split up the contributions into two pieces:
one for �
 sin	 < 1 and the other for �
 sin	  1. For
�
 sin	 < 1, we show the contribution in the basis which
maximizes the "" þ ## component as well as the helicity
basis; whereas for �
 sin	  1, we show the contribution
in the basis which maximizes "# þ #" as well as the off-
diagonal basis. This figure clearly shows that there are only
small differences between using the best basis and the
helicity basis for �
 sin	 < 1 and the best basis and the
off-diagonal basis for �
 sin	 > 1.

At the LHC, the total top quark pair production cross
section is�1 nb (at next-to-leading order) giving approxi-
mately 106 t�t per fb�1; therefore, significant cuts can be
made on the data before the statistical uncertainties be-
come comparable to the systematic uncertainties. Thus, we
will concentrate on the low � region for the rest of this
paper since in this region like-helicity gluons dominate the
production cross section and the boost of the top quarks
does not mask the spin correlations.

V. ADDING TOP QUARK DECAYS

From Eqs. (18) and (19), it is easy to add the decays of
the on mass shell top quarks, t ! bþ �eþ � and �t ! �bþ
�þ ��, via the following replacements:

�UðtÞ ! g2w
ð2�e � ��m2

w þ imw�wÞðimt�tÞ
� hb� j�þih �eþ jðtþmtÞ

Vð�tÞ ! ð��tþmtÞj�þih ��þ j �b�i

� g2w
ð2� � ���m2

w þ imw�wÞðimt�tÞ
: (46)

The Fierz identity has been employed in the derivation of
these replacements. Thus, the total matrix element squared
for top quark production and decay via gluon fusion,
summed over the colors of the incoming gluons and out-
going b-quarks, is given by

jAj2RL þ jAj2LR ¼ K
�
2ðp1 � tÞðp2 � tÞ �m2

t ðp1 � p2Þ
ðp1 � p2Þ2

�

� f2ðt � �eÞð�t ��Þ½ðp1 � tÞ2 þ ðp2 � tÞ2

�m2

t ½ðp1 � p2Þððt � �eÞðt ��Þ
þ ð�t � �eÞð�t ��Þ �m2

t ð �e ��ÞÞ
� 2ððp1 � tÞðp1 ��Þðp2 � �eÞ
þ ðp2 � tÞðp1 � �eÞðp2 ��Þ
� ðp1 � tÞðp2 � tÞð �e ��ÞÞ
g (47)

for unlike-helicity gluons, whereas for like-helicity gluons
we have

jAj2RR þ jAj2LL ¼ Km4
t fðt � �eÞðt ��Þ þ ð�t � �eÞð�t ��Þ

�m2
t ð �e ��Þg: (48)

The overall factor K is given by

K ¼ 26g4s
3

g8w
ðmt�tÞ4

�
�
4ðp1 � tÞ2 þ 4ðp2 � tÞ2 � ðp1 � tÞðp2 � tÞ

ðp1 � tÞ2ðp2 � tÞ2
�

� b � �
ð2�e � ��m2

wÞ2 þ ðmw�wÞ2

�
�b � ��

ð2� � ���m2
wÞ2 þ ðmw�wÞ2

: (49)

Appendix B contains the corresponding expressions de-
scribing q �q ! t�t.
Notice the simplicity of the matrix element squared for

like-helicity gluons to top quark pairs. Given this simplic-
ity and the fact that the like-helicity gluon contribution
dominated at smaller values of the invariant mass of the t�t

TABLE I. Fraction of t�t events categorized by the helicities of
the initial state gluons and location in the ðcos	; �2Þ plane at the
LHC with

ffiffiffi
s

p ¼ 14 TeV.

�
s	 < 1 �
s	 > 1 all

gg Like 55% 10% 65%

gg Unlike 20% 15% 35%

Total 75% 25% 100%

FIG. 7 (color online). The differential distributions of jCsamej,
ð1=�TÞd�=djCsamej. The dashed curves are for the optimal basis,
Eq. (43), whereas the solid curves employ the helicity basis
when �
s	 < 1 and the off-diagonal basis when �
s	 > 1. The
mean values of jCsamej for the different bases and regions are
collected in Table II.
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system, it is worth exploring whether or not the full matrix
element enhances the spin correlations in this channel.

The ratio of the correlated to uncorrelated3 matrix ele-
ment squared, S, for like-helicity gluons is given by

S � ðjAj2RR þ jAj2LLÞcorr
ðjAj2RR þ jAj2LLÞuncorr

¼ m2
t fðt � �eÞðt ��Þ þ ð�t � �eÞð�t ��Þ �m2

t ð �e ��Þg
ðt � �eÞð�t ��Þðt � �tÞ

¼
�
1� �2

1þ �2

��ð1þ �2Þ þ ð1� �2Þc �e� � 2�2ct �ec�t�
ð1� �ct �eÞð1� �c�t�Þ

�
;

(50)

where the last line is given in the ZMF in terms of speed of
the tops, �, and the cosine of the angles between t and �e
(ct �e), �t and � (c�t�) and �e and � (c �e�). The range of S is

between (2, 0). At threshold, � ! 0, the maximum of S
occurs when the charged leptons are parallel, c �e� ¼ þ1,

whereas the minimum occurs when the charged leptons are
back-to-back, c �e� ¼ �1, independent of their correlation

with the top-antitop axis.
For nonzero �, the maximum (minimum) still occurs

when the charged leptons are parallel (back-to-back), but
they are now correlated with the top-antitop axis. The fact
that the charged leptons are more likely to have their
momenta being parallel rather than back-to-back is what
is expected for top quark pairs that have spins which are
antialigned, i.e. LL or RR. However, here the enhancement
is even stronger than what one would naı̈vely expect be-
cause the interference between LL and RR strengthens the
correlation between the momenta of the two charged lep-
tons. This argument suggests looking at the �R, �� and
�� distributions of the two charged leptons with a cut on
the invariant mass of the top-antitop system.

VI. CORRELATION-SENSITIVE ANGULAR
DISTRIBUTIONS

A. �� Distribution in dilepton events

In Fig. 8 we have plotted the �� distribution in the
dilepton channel for t�t production incorporating a cut
which restricts the true invariant mass of the t�t pair to
less than 400 GeV. This plot shows results for both the
fully-correlated and the uncorrelated matrix elements in-
cluding both gg ! t�t and q �q ! t�t channels. A clear dis-
tinction between the correlated and uncorrelated decays4 is
seen in this figure: the difference between the two ��
distributions is about 40% at both �� ¼ 0 (enhancement)
and �� ¼ � (suppression). With this cut, 10% of the total
cross section for t�t production survives at leading order.
Unfortunately, the presence of the two neutrinos in the

final state of dilepton events complicates the selection of
events. The available kinematic constraints leave an up to
8-fold ambiguity5 in the reconstruction of the neutrino
momenta from the available observed momenta and ener-
gies. Given the ease of measuring the azimuthal angles of
charged leptons, it is worthwhile to investigate an alter-
native to the true t�t invariant mass cut.
The simplest option one could imagine is to simply take

the (naı̈ve) unweighted average hmt�ti of all of the real
solutions returned by the neutrino reconstruction algo-
rithm. In Fig. 9 we present the results of implementing
just that option: the cut used to generate this figure requires
that hmt�ti be less than 400 GeV. With this cut approxi-
mately 5% of the total cross section for t�t production
survives at leading order. This is smaller than the fraction
passing a 400 GeV cut on the true value of mt�t since only
those events where all the spurious solutions are suffi-
ciently small will survive. On the other hand, the sample
passing this cut will contain a few events where the true
value of mt�t is above 400 GeV, but, because the spurious
solutions produced smaller values, the average was below
400 GeV. Turing to the �� distribution and comparing to
the cut on the true value of mt�t, one sees a rather large
effect on the shape of the distributions. However, this effect
(an enhancement near�� ¼ 0 and a depletion near�� ¼
�) occurs for both the correlated and uncorrelated data
sets. Thus the difference between the two distributions
remains at roughly the 40% level. No effort has been to
optimize this invariant mass cut. Perhaps there are other
variables that will do better than unweighted average hmt�ti,

TABLE II. Mean values of jCsamej using either the optimal or
appropriate choice of off-diagonal or helicity basis for events
with different values of �
s	 at the LHC with

ffiffiffi
s

p ¼ 14 TeV.

Basis �
s	 < 1 �
s	 > 1 all

Optimal basis 0.55 0.59 0.43

Helicity or off-diagonal 0.53 0.57 0.39

3We call the decay of a top or antitop quark into a W-boson
and b-quark uncorrelated if this decay is spherical in the top
quark rest frame and thus independent of the top quark spin. The
W-boson is then assumed to decay in the usual (fully-correlated)
manner. The uncorrelated matrix elements squared are then
given by ðjAj2RR þ jAj2LLÞuncorr ¼ Kðt � �eÞð�t ��Þfm2

t ðt � �tÞg
and ðjAj2RLþjAj2LRÞuncorr¼Kðt � �eÞð�t ��Þf½2ðp1 � tÞðp2 � tÞ�
m2

t ðp1 �p2Þ
½ðp1 � tÞ2þðp2 � tÞ2þm2
t ðp1 �p2Þ
=ðp1 �p2Þ2g.

4The corresponding �� distribution shows almost no differ-
ence between correlated and uncorrelated matrix elements. Thus
all the difference in the �R distributions comes from the ��
distributions.

5The presence of a pair of quadratic constraints in the kine-
matic equations leads to up to 4 solutions for any given pairing of
the b jets with the two charged leptons. Since there are two
possible pairings, as many as 8 different solutions could result.
However, not all of these solutions need be real, and so there are
often fewer than the maximum possible number of solutions.

SPIN CORRELATION EFFECTS IN TOP QUARK PAIR . . . PHYSICAL REVIEW D 81, 074024 (2010)

074024-9



or perhaps 400 GeV is not the optimal cut value.
Nevertheless, what we have here is a proof-in-principle
that these correlations can be measured in an experiment.

B. ZMF cos� distribution for lepton-plus-jets events

Turning to the lepton-plus-jets channel, we have found
that the cosine of the opening angle between the charged

lepton and the d-quark jet as viewed in the zero momentum
frame (ZMF) is sensitive to the presence or absence of
correlations between production and decay [see also the
discussion near Eq. (50)]. For this type of event the kine-
matic constraints provide more equations than unknowns.
Thus, the ZMF may be reconstructed without ambiguity
more than 98% of the time by discarding those solutions
which do not pass some rudimentary quality-control cuts:
the neutrino energy ought to be positive in a correctly
reconstructed event; futhermore, the neutrino and top
quark mass-shell constraints ought to be satisfied to suffi-
cient accuracy.6 Discarding the �2% of events that have
more than one viable reconstruction of the ZMF is an
acceptable option.
For the purposes of generating this distribution, we

define the d-quark jet to be the jet which is spatially the
closest to the b-tagged jet in theW rest frame, as was used
in Ref. [2]. This is equivalent to using the lowest energy jet
in the top quark rest frame as advocated in Ref. [15].
Figure 10 displays the results for this distribution using
only those events that pass the cut mt�t < 400 GeV. For
fully-correlated top decays this distribution is nearly flat,
whereas for spherical decays there is a strong peaking near
cos	 ¼ �1. That is, because of the correlations between
production and decay, the lepton and the d-jet tend to be
significantly less back-to-back in the ZMF than if no such
correlations were present. Approximately 9% of the total
cross section for t�t production survives this cut at leading
order, even at reduced center-of-mass energy.

C. Varying the energy of the LHC

So far we have used 14 TeV for the energy of the LHC.
However, it is now clear that the LHC will not reach this
energy for a number of years so we have investigated what
happens for a reduced center-of-mass energy in this sec-
tion. The results we describe below are summarized in
Fig. 11.
The primary result of a lower center-of-mass energy is a

big reduction in the t�t production cross section because of
the reduced gluon luminosity. Panel (a) in Fig. 11 tracks the
leading order cross section from 7 to 14 TeV center-of-
mass energy. We see that a factor of 2 reduction in

ffiffiffi
s

p
produces a reduction of about a factor of 5 in the t�t
production cross section. Panel (b) illustrates the fact that
the fraction of dilepton and lepton plus jet events surviving
themt�t or hmt�ti cut we advocate does not change very much
as

ffiffiffi
s

p
is varied between 7 and 14 TeV. Finally, in panel (c)

of each figure we compare the quantity A1=2, which is

defined as half of the area between the correlated and

FIG. 9 (color online). The differential distribution of ��,
ð1=�TÞd�=dð��Þ. The solid curve is for the fully-correlated
case whereas the dashed curve assumes that the top quarks decay
spherically in their respective rest frames. A cut restricting the
average reconstructed invariant mass of the t�t pairs to a maxi-
mum of 400 GeV has been applied to these distributions.

FIG. 8 (color online). The differential distribution of ��,
ð1=�TÞd�=dð��Þ. The solid curve is for the fully-correlated
case whereas the dashed curve assumes that the top quarks decay
spherically in their respective rest frames. A cut restricting the
invariant mass of the t�t pairs to a maximum of 400 GeV has been
applied to these distributions.

6Because of jet energy measurement uncertainties, it is not
expected that a correctly reconstructed top quark or neutrino will
be precisely on-mass-shell. The exact definition of ‘‘sufficient
precision’’ is therefore a detector-dependent issue to be deter-
mined by the experimental collaborations.
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uncorrelated predictions for the unit-normalized angular
distributions. This quantity ranges from 0 in the case where
the distribution is completely independent of whether or
not correlations are present up to 1 in the case where the
two distributions (correlated decays or spherical decays)
do not overlap at all. In both channels, there is relatively
little dependence on

ffiffiffi
s

p
for this measure of the difference

between the correlated and spherical cases. Thus, the big-
gest issue related to the observation of these spin correla-
tions at the LHC running at reduced energy comes from the
greatly diminished cross section: the correlations them-
selves remain at roughly the same level. Fortunately,
even a reduction of the number of t�t pairs estimated in
the introduction by a factor of 5 leaves ample statistics to
hope for at least a preliminary observation of these spin
correlation effects, even at reduced center-of-mass energy.

D. NLO Effects

Higher-order QCD effects enhance the total cross sec-
tion especially near threshold. However, previous studies
on eþe� ! t�t demonstrate that such corrections to the spin
correlations are small, see Ref. [16]. One can understand
this physically since the emission of soft gluons from a top
quark cannot flip the spin of the top quark. We have done a
preliminary study of the NLO effects using both MCFM,
[17] and MC@NLO, [18], incorporating a cut which re-
stricts the invariant mass of the t�t pair to be less than
400 GeV. Both these Monte Carlos show that the tree-level

effects discussed earlier in this paper are also present at
NLO.7 We did not check the Monte Carlo of Ref. [19]
which is the most complete NLO Monte Carlo to date, as
there is no publicly available version at this time. A de-
tailed study at NLO where the invariant mass of the t�t pair
is reconstructed from the decay products is beyond the
scope of this work.

VII. SUMMARYAND CONCLUSIONS

In this paper we have shown how to observe spin corre-
lations in top quark pair production at the LHC. To our
surprise, the observation of these correlations is easier at

FIG. 11 (color online). Effects of varying the machine center-
of-mass energy

ffiffiffi
s

p
. (a) Total leading order cross section for

pp ! t�t. These values should be multiplied by the branching
fraction to dileptons (4.6%) or lepton-plus-jets (29%), as appro-
priate. We include only the e and � channels. (b) Fraction of
dilepton and lepton plus events with mt�t < 400 GeV. For dilep-
ton events (crosses) we employ the unweighted average of the up
to 8 solutions for the t�t invariant mass. For leptonþ jets events
(diamonds) the true value of mt�t may be reconstructed and used
in event selection. (c) Half of the area between the appropriate
unit-normalized angular distributions for the fully correlated and
spherical cases. For leptonþ jets events (crosses), we use the
distribution in cos	, where 	 is the angle between the charged
lepton and the d-jet candidate in the zero momentum frame of
the event. For dilepton events (diamonds), we use the azimuthal
opening angle �� between the two charged leptons.

FIG. 10 (color online). The differential distribution of cos	,
ð1=�TÞd�=dðcos	Þ, where 	 is the ZMF angle between the
charged lepton and the d-quark jet (defined to be the jet which
is spatially the closest to the b-tagged jet in theW rest frame; this
is also the jet with the lowest energy in the top quark rest frame).
The solid curve is for the fully-correlated case whereas the
dashed curve assumes that the top quarks decay spherically in
their respective rest frames. A cut restricting the invariant mass
of the t�t pairs to a maximum of 400 GeV has been applied to
these distributions.

7In Fig. 1 of Ref. [18] one can see the size of the correlations
without the invariant mass cut.
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the LHC than at the Tevatron. The reason for this is that at
the LHC the dominant production mechanism for top
quark pairs is gluon-gluon fusion, which at low ŝ is domi-
nated by the fusion of like-helicity pair gluons. The fusion
of like-helicity gluons produces top quark pairs in a LL or
RR helicity configuration. When such top quarks decay,
they produce charged leptons which possess very strong
azimuthal correlations. These correlations can be easily
seen in the laboratory frame once a cut on the invariant
mass of the top quark pair is made. There is no need to
reconstruct the top quark rest frame as is required to see the
correlations of top quark pairs at the Tevatron. The analysis
has been extended to the lepton-plus-jets channel by ‘‘iden-
tifying’’ which jet is the d-quark jet from the W-boson
decay on a statistical basis. Apart from the reduction of the
total cross section, the size of these spin correlations is
approximately independent of the energy of the LHC in the
7 to 14 TeV range. Thus, we expect that these effects could
be observed in early running of the LHC.
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APPENDIX A: UNIVERSAL PROPERTIES OF THE
SPIN AMPLITUDES

In this Appendix we demonstrate the properties of the
spin amplitudes and their relationship to the Wigner
d-functions and the helicity amplitudes. Of particular im-
portance is the fact that spin amplitudes at either end of the
spin chain contain all the information necessary to obtain
all the other spin amplitudes by simple algebraic manipu-
lations. This fact was used extensively earlier in this paper.

1. Wigner d-functions and connection to the spin
amplitudes

The amplitude for production of a single massive parti-
cle with spin j and spin-projection m in the generalized
spin basis described in Sec. II A and illustrated in Fig. 1
may be written as a linear superposition of the matrix
elements of the rotation operator [20]:

A j;mð�Þ � h ~xjjmi� ¼ X
m0
dj
m;m0 ð��ÞHm0 : (A1)

The dj
m;m0 appearing in Eq. (A1) are the Wigner

d-functions, chosen to conform to the conventions of
Rose [21]. In particular, we write �� since our angle � is
measured in the clockwise direction whereas the angle� in
Ref. [21] is counterclockwise. Since

dj
m;m0 ð0Þ ¼ m;m0 ; (A2)

we see that

Hm ¼ Aj;mð0Þ: (A3)

That is, the coefficients Hm are the conventional helicity
amplitudes for the process with a particular choice of
relative phases.
Similarly, the production of a pair of massive particles

(spins j1 and j2, spin projections m1 and m2 along inde-
pendent spin axes oriented at the clockwise angles � and �0
with respect to the recoil direction in the scattering plane)
may be decomposed as

A j1;m1;j2;m2
ð�; �0Þ ¼ X

m

X
m0

dj1m1;mð��Þdj2
m2;m

0 ð��0ÞHm;m0 :

(A4)

The extension to more than two particles in the final state
or to spin axes which point out of the production plane,
involving the introduction of the Wigner D-functions in
place of the (simpler) d-functions, is straightforward, but
beyond the scope of this appendix.

2. � ! � � � rule

Intuitively, we expect that the probability for producing
spin-projection þm along some axis ought to be equal to
that for producing spin-projection �m along minus that
axis:

jAj;mð�� �Þj ¼ jAj;�mð�Þj: (A5)

That is, flipping the z component of the spin and rotation by
�� give the same results up to a phase. This feature of the
spin amplitudes is a consequence of the properties of the
Wigner d-functions appearing in Eqs. (A1) and (A4).

3. Differential relations among the spin amplitudes

Consider a state with total spin j and projection jz ¼ m
in the general spin basis illustrated in Fig. 1. Applying the
rotation operator converts this to a state where the spin axis
is at �þ�� instead [20]:

A j;mð�þ��Þ ¼ ei��JyAj;mð�Þ: (A6)

In the limit �� ! 0 Eq. (A6) may be rewritten as

@

@�
Aj;mð�Þ ¼ 1

2
ðJþ � J�ÞAj;mð�Þ: (A7)

In this expression, we have replaced Jy by the appropriate

linear combination of raising and lowering operators. Thus
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@

@�
Aj;mð�Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ �mðmþ 1Þ

q
Aj;mþ1ð�Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ �mðm� 1Þ

q
Aj;m�1ð�Þ (A8)

4. Starting at top or bottom of spin chain

It is useful to record the explicit results of applying
Eq. (A8) to the ends of the spin chain:

A j;�ðj�1Þð�Þ ¼ 	
ffiffiffi
2

j

s
@

@�
Aj;�jð�Þ: (A9)

A second differentiation allows us to conclude that

A j;�ðj�2Þð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2j� 1Þp

�
jþ 2

@2

@�2

�
Aj;�jð�Þ:

(A10)

This process could be repeated as many times as required.
However, when used in conjunction with the � ! �� �
rule of Eq. (A5), (A9), and (A10) allow the calculation of
all of the amplitudes in the spin chain for spins up to and
including 5

2 , starting from either end of the chain (m ¼
�j). The relative simplicity of the operations involved in
these relations makes for a substantial computational sav-
ings over the calculation of the complete set of amplitudes
by direct means. Of course, once you have all the spin
amplitudes then the helicity amplitudes can be easily ob-
tained, including relative phases, by setting � ¼ 0.

Thus, the spin amplitudes at the top and bottom of the
spin chain contain all the information about a given process
and all other spin amplitudes and helicity amplitudes can
be derived from them. This special property of these spin
amplitudes is simply reflected in the Wigner d-functions,

djj;m for m ¼ f�j; � � � ; jg, which form a set of (2jþ 1)

linearly independent functions [22].

5. Examples

An explicit illustration of the relationships contained in
Eqs. (A9) and (A10) is provided by the gg ! t�t process
considered in this paper. After setting �0 ¼ � (back-to-
back spin axes in the ZMF), we can organize the ampli-
tudes according to the total spin in the final state. In doing
this we need to keep in mind that for this choice of spin
axes, unlike spin t�t pairs have spins that point in the same
spatial direction. Thus

jA1;1ð�Þj ¼ jAðgg ! t" �t#Þj (A11)

and

jA1;�1ð�Þj ¼ jAðgg ! t# �t"Þj: (A12)

The �-dependent linear combination of the "" and ## am-
plitudes must be A1;0; the orthogonal (�-independent)
combination is A0;0:

jA1;0ð�Þj ¼ 1ffiffiffi
2

p jAðgg! t" �t"Þ þAðgg! t# �t#Þj; (A13)

jA0;0ð�Þj ¼ 1ffiffiffi
2

p jAðgg! t" �t"Þ �Aðgg! t# �t#Þj: (A14)

For like-helicity gluons Eqs. (31) and (32) lead to

jA1;1ð�Þj � 
�1j�s�j
jA1;0ð�Þj �

ffiffiffi
2

p

�1j�c�j and jA0;0ð�Þj �

ffiffiffi
2

p

�1:

jA1;�1ð�Þj � 
�1j�s�j (A15)

The three j ¼ 1 amplitudes in (A15) satisfy

jA1;0ð�Þj ¼
��������

ffiffiffi
2

p @

@�
A1;1ð�Þ

�������� (A16)

and

jA1;�1ð�Þj ¼
��������
�
1þ 2

@2

@�2

�
A1;1ð�Þ

�������� (A17)

as implied by Eqs. (A9) and (A10).
A different realization of these relationships is provided

by the unlike-helicity gluons for which Eqs. (22) and (23)
lead to

jA1;1ð�Þj��s	ð1þc	c�þ
�1s	s�Þ
jA1;0ð�Þj�

ffiffiffi
2

p
�s	jc	s��
�1s	c�j and jA0;0ð�Þj¼ 0:

jA1;�1ð�Þj��s	ð1�c	c��
�1s	s�Þ (A18)

This is identical (up to overall factors) to what happens for
the processes q �q ! t�t and similar to what happens for
eþe� ! t�t [5]. The spin amplitudes for eþe� ! Zh
[23,24] also satisfy Eqs. (A16) and (A17).
Finally, we have verified that the processes eþe� !

WþW� and ZZ provide examples of the j ¼ 2 versions
of Eqs. (A9) and (A10). Indeed, the derivative relations
between the spin amplitudes for these processes noted in
Ref. [23] are a direct consequence of Eq. (A9).

APPENDIX B: THE PROCESS q �q ! t �t

For completeness we give here the matrix element
squared for q �q ! t�t with the subsequent decay of the top
quarks. Starting from Eq. (9) and using the substitutions
given in Eq. (46), it is easy to add the decays of the on-
mass-shell top quarks (t ! bþ �eþ � and �t ! �bþ�þ
��). Thus, the total matrix element squared for top quark
production and decay via quark-antiquark annihilation,
summed over the colors of the incoming and outgoing
quarks, is given by 8

8The corresponding uncorrelated matrix elements squared for
q �q ! t�t are given by ðjAj2RL þ jAj2LRÞuncorr ¼ Kq �qðt � �eÞð�t �
�Þ½ðp1 � tÞ2 þ ðp2 � tÞ2 þm2

t ðp1 � p2Þ
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jAj2RL þ jAj2LR ¼Kq �qf2ðt � �eÞð�t ��Þ½ðq � tÞ2 þ ð �q � tÞ2

�m2

t ½ðq � �qÞððt � �eÞðt ��Þ þ ð�t � �eÞð�t ��Þ
�m2

t ð �e ��ÞÞ � 2ððq � tÞðq ��Þð �q � �eÞ
þ ð �q � tÞðq � �eÞð �q ��Þ
� ðq � tÞð �q � tÞð �e ��ÞÞ
g: (B1)

This has the same functional form as the part of Eq. (47) in
the second set of curly brackets. The overall factor Kq �q is

given by

Kq �q ¼ 26g4s
ðq � �qÞ2

g8w
ðmt�tÞ4

b � �
ð2�e � ��m2

wÞ2 þ ðmw�wÞ2

�
�b � ��

ð2� � ���m2
wÞ2 þ ðmw�wÞ2

: (B2)

Equations (B1) and (B2) are the Lorentz-invariant equiv-
alents of Eqs. (4) and (5) of Ref. [6].
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