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We develop an approach to investigate the nonperturbative dynamics of quantum field theories, in

which specific vacuum field fluctuations are treated as the low-energy dynamical degrees of freedom,

while all other vacuum field configurations are explicitly integrated out from the path integral. We show

how to compute the effective interaction between the vacuum field degrees of freedom both perturbatively

(using stochastic perturbation theory) and fully nonperturbatively (using lattice field theory simulations).

The present approach holds to all orders in the couplings and does not rely on the semiclassical

approximation.
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I. INTRODUCTION

Lattice field theory represents the only available ab
initio framework, which allows us to compute matrix
elements of a large class of quantum field theories, in a
fully nonperturbative way. In particular, due to the con-
tinuous advance in the development of new machines and
new algorithms, lattice calculations for QCD are now
beginning to explore the chiral regime and are already
producing accurate results for a large class of observables.

On the other hand, lattice simulations do not directly
explain the qualitative physical mechanisms which are
responsible for the nonperturbative phenomena. It is there-
fore important to continue developing alternative ap-
proaches, which can provide physical pictures and direct
insights into the qualitative mechanisms.

In the specific context of QCD, a large effort has been
made in the last decades, in order to identify relevant low-
energy vacuum gauge field configurations, which are re-
sponsible for hadron structure, by driving the breaking of
chiral symmetry and producing color confinement. For
example, instantons have been shown to play an important
role in the breaking of chiral symmetry [1] and instanton
models [2] have been successfully used to predict physical
properties of light hadrons (see e.g. [3,4] and references
therein). Similarly, vacuum fields made from monopoles
[5], center-vortices [6], merons [7], and, recently, regular
gauge instantons [8] have been shown to generate an area
law for the Wilson loop, hence to produce color
confinement.

Once a set of important low-energy vacuum field con-
figurations has been identified, it is natural to address the
question of whether it is possible to build an effective
theory, based on such degrees of freedom. In practice,
this corresponds to deriving an expression for the original
generating functional, in which the functional integral is
restricted to the configurations of the selected family of
low-energy vacuum fields, while all other field configura-

tions are integrated out and give raise to an effective
interaction.
In the present paper, we take a step in such a direction.

The main idea is to use lattice simulations to generate a
statistically representative ensemble of field configura-
tions. Such configurations are then projected onto the
functional manifold formed by chosen the family of vac-
uum field configurations. This procedure is conceptually
analog to the technique adopted in statistical mechanics to
evaluate the free energy, as a function of a set of (order)
parameters. The result is a new exact expression of the
original path integral, given in terms of an integral over the
collective coordinates of the low-energy vacuum field
manifold.
In order to introduce the formalism and illustrate how

the approach works, in this first work we consider the
simple case of a one-dimensional quantum-mechanical
particle, interacting with a double-well potential. The
choice of such a toy model is motivated by two facts. On
the one hand, the relevant nonperturbative vacuum field
configurations for this system are well known: they are the
instantons and anti-instantons, which describe the tunnel-
ing between the two classical vacua. On the other hand, the
simplicity of the model allows us to perform detailed
numerical simulations and test our method.
The paper is organized as follows. In Sec. II, we intro-

duce our framework for a generic quantum-mechanical
system. From Sec. III, we focus on the specific case of
the double-well problem. In particular, in Secs. IV and V,
we perform perturbative and nonperturbative calculations
of the instanton–anti-instanton effective interaction. In
Sec. VI we discuss the results of the numerical implemen-
tation of this method.
Then, we shall use path integral Monte Carlo simula-

tions to generate an unbiased ensemble of equilibrium field
configurations and develop a technique to project such
configurations onto the vacuum field manifold. It is im-
portant to stress the fact that this method does not rely on
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saddle point arguments. In the last part of the paper,
Sec. VII, we discuss how such a framework is extended
to gauge theories, in particular, to pure-gauge QCD.

II. EFFECTIVE INTERACTION FORTHEVACUUM
FIELD CONFIGURATIONS

For the sake of simplicity, in this first work we introduce
our formalism for a system consisting of a quantum-
mechanical particle, interacting with an external potential.
In Sec. VII, we show that the same method is applicable
also to gauge theories.

After performing the Wick rotation to imaginary time,
the path integral for the system described by the interaction
UðxÞ and corresponding to the boundary conditions

x½�T=2� ¼ xi; x½T=2� ¼ xf; (1)

is given by

Z½xf; xijT� ¼ hxfje�HTjxii ¼
Z x½T=2�¼xf

x½�T=2�¼xi

Dxe�ðS½x�Þ=@;

(2)

where

S½x� ¼
Z T=2

�T=2
dt

�
m

_x2ðtÞ
2

þUðxÞ
�

(3)

is the usual Euclidean action.
Let us consider a generic family of vacuum field con-

figurations (i.e. of paths) ~xðt;�Þ, which depend on a finite
set of parameters � ¼ ð�1; . . . ; �kÞ and satisfy the bound-
ary conditions (1). The paths ~xðt;�Þ form a differentiable
manifold M, parametrized by the curvilinear coordinates
�1; . . . ; �k.

For every given choice of the parameters � it is possible
to decompose a generic path xðtÞ contributing to the path
integral (2) as a sum of a field configuration ~xðt;�Þ, be-
longing to the manifold M, and of a residual field yðtÞ:

xðtÞ � ~xðt;�Þ þ yðtÞ: (4)

We shall refer to the field yðtÞ as to the ‘‘fluctuation field.’’
However, in the following we shall never require that the
vacuum field ~xðt;�Þ satisfies the Euclidean classical equa-
tion of motion (EoM). Hence, both ~xðt;�Þ and yðtÞ repre-
sent, in general, quantum vacuum fluctuations.

Let us now derive a particular representation of the path
integral (2) in terms of a set of ordinary integrals over the
parameters �1; . . . ; �k and a functional integral over the
fluctuation field, yð�Þ. Since the new representation of the
path integral contains k additional integrals over
d�1; . . . ; d�k, we need to impose k constraints. We choose
to enforce the k orthogonality conditions

ðyðtÞ � g�i
ðt; ��ÞÞ �

Z T=2

�T=2
dtyðtÞg�i

ðt; ��Þ ¼ 0;

i ¼ 1; . . . ; k;

(5)

where the functions gi��ðtÞ are defined as

g�i
ðt; ��Þ ¼ @

@�i

~xðt;�Þj�¼ ��: (6)

In order to clarify the meaning of the condition (5) we
observe that the functions fg�i

ðt; ��Þgi¼1;...;k identify the k

directions tangent to the manifold M of vacuum fields, in
the point of curvilinear coordinates �� ¼ ð ��1; . . . ; ��kÞ—see
Fig. 1. We consider only choices of manifold and �� such
that the vectors (6) define a system of coordinates on the
manifold. The coordinates ð�1; . . . ;�kÞ of a point ~xðt;�Þ
are defined as

�1½~xðt;�Þ� ¼ ð~xðt;�Þ � g�1
ðt; ��ÞÞ; (7)

. . . ;

�k½~xðt;�Þ� ¼ ð~xðt;�Þ � g�k
ðt; ��ÞÞ: (8)

Configurations which lie in a functional neighborhood of
the manifold can be projected onto the same system of
coordinates. The components of such paths xðtÞ are

�1½xðtÞ� ¼ ðxðtÞ � g�1
ðt; ��ÞÞ ¼

Z T=2

�T=2
dtxiðtÞg�1

ðt; ��Þ;
(9)

. . . ;

�k½xðtÞ� ¼ ðxðtÞ � g�k
ðt; ��ÞÞ ¼

Z T=2

�T=2
dtxiðtÞg�k

ðt; ��Þ:
(10)

Hence, the condition (5) imposes that fluctuation fields yðtÞ
should have vanishing coordinates on the system of coor-
dinates defined by the vector fg�i

ðt; ��Þgi¼1;...;k.

FIG. 1 (color online). Pictorical representation of the projec-
tion of the path xðtÞ onto the vacuum field manifold. A path xðtÞ
is represented by a point in this picture. The constraints (5) imply
that the fluctuation field yðtÞ is perpendicular to the plane tangent
to the manifold in the point of the curvilinear abscissas � ¼ ��.
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Let us now apply a standard technique to implement the
k constraints (5) inside the path integral (2) [9,10]. We
introduce a Faddeev-Popov unity:

1 ¼
Z

dk�
Z

Dy

�Y
i

�ðkÞðyðtÞ � g�i
ðt; ��Þ

�

� �½~xðt;�Þ þ yðtÞ � xðtÞ��½x�; (11)

which serves as a definition of the functional �½x�. Note
that the integration on yðtÞ in (11) can be trivially per-
formed and one obtains

��1½x� ¼
Z

dk�0Y
i

�ðkÞððxðtÞ � ~xðt;�0ÞÞ � g�i
ðt; ��ÞÞ:

(12)

In particular, we are interested in the value of �½x� at the
point xðtÞ ¼ ~xðt;�Þ þ yðtÞ. If we insert (11) in the original
path integral (2), we obtain, after integration over x,

ZðT;xi;xfÞ¼
Z Yk

l¼1

d�l

Z yðT=2Þ¼0

yð�T=2Þ¼0
Dy

�Y
i

�ðkÞðyðtÞ�g�i
ðt; ��Þ

�

��½~xðt;�ÞþyðtÞ�e�ðS½~xðt;�ÞþyðtÞ�Þ=@; (13)

where the dependence the initial and final points xi and xf
enters implicitly, through the vacuum field ~xðt;�Þ.

The path integral (103) can be formally rewritten as

ZðT; xi; xfÞ ¼
Z Yk

l¼1

d�le
�ð1=@ÞFð�1;...;�kÞ; (14)

where Fð�Þ is defined as

Fð�Þ ¼ �@ log
Z yðT=2Þ¼0

yð�T=2Þ¼0
Dy

�Y
i

�ðkÞðyðtÞ � g�i
ðt; ��ÞÞ

�

��½~xðt;�Þ þ yðtÞ�e�ð1=@ÞS½~xðt;�ÞþyðtÞ�: (15)

Some comments on what we have done so far are in
order. First of all we stress that ZðT; xi; xfÞ can be inter-

preted as the partition function of a system with a finite
number of degrees of freedom �1; . . . ; �k. The term
Fð�1; . . . ; �kÞ is the analog of the (free) energy in statistical
physics an will be referred to as the effective interaction.

Let us now address the problem of how to compute
Fð�1; . . . ; �kÞ, using lattice simulations. Let
fx1ðtÞ; . . . ; xNconf

ðtÞg be a statistically representative en-

semble of Nconf paths (i.e. obtained by means of lattice
simulations). The coordinates ð�1; . . . ;�kÞ of each of such
paths are specified by the Eqs. (9) and (10). Using the
definition (4) and the orthogonality conditions (5) we
obtain a set of k nonlinear equations for the �1; . . . ; �k

variables:

�1½xðtÞ� ¼ ðxðtÞ � g�1
ðt; ��ÞÞ ¼ ð~xðt;�Þ � g�1

ðt; ��ÞÞ
� �1ð�Þ; (16)

. . . ;

�k½xðtÞ� ¼ ðxðtÞ � g�k
ðt; ��ÞÞ ¼ ð~xðt;�Þ � g�k

ðt; ��ÞÞ
� �kð�Þ: (17)

Note that, while the coordinates �1; . . . ;�k on the left-
hand side depend on the path xðtÞ, the functions
�1ð�Þ; . . . ;�kð�Þ on the right-hand side depend only on
the set of collective coordinates ð�1; . . . ; �kÞ and are de-
termined by the choice of the background field manifold
and of the parameter ��. Hence, by solving numerically
such a system of equations, a value for the curvilinear
coordinates can be assigned to each configuration.
Repeating this procedure for the entire ensemble of lattice
configurations x1ðtÞ; . . . ; xNconf

ðtÞ one determines the proba-

bility density P ð�1; . . . ; �kÞ, which relates directly to the
effective interaction

Fð�1; . . . ; �kÞ ¼ �@ logP ð�1; . . . ; �kÞ: (18)

The effective theory defined by the partition function
(14) allows us to perform approximate calculations of the

vacuum expectation value of arbitrary operators ÔðtÞ,

hÔðtÞi ¼
R
DxO½xðtÞ�e�ð1=@ÞS½x�R

Dxe�ð1=@ÞS½x� : (19)

In fact, if the vacuum manifold contains the physically
important vacuum configurations, then O½xðtÞ� ’
O½~xðt;�Þ� and

hÔðtÞi ’
RQ

k
l¼1 d�lO½~xð�1; . . . ; �kÞ�e�ð1=@ÞFð�1;...;�kÞRQ

k
l¼1 d�le

�ð1=@ÞFð�1;...;�kÞ :

(20)

We note that, while the partition function (14) is inde-
pendent on the choice of ��—which specifies the system of
coordinates on the manifold—the effective interaction
Fð�Þ and vacuum expectation values of operators may in
principle depend on such a parameter. However, such a
dependence is generated only by the projection of paths
which contain very large fluctuations, i.e. lie far from the
vacuummanifold. To see this, let us consider the projection
of a configuration xðtÞ which lies very close to a point on
the vacuum manifold ~xðt;�0Þ, i.e.

kxðtÞ � ~xðt;�0Þk ’ 0; (21)

for some �0. Then, the projection equations (16) and (17)
read

ðxðtÞ � g�1
ðt; ��ÞÞ ’ ð~xðt;�0Þ � g�1

ðt; ��ÞÞ
¼ ð~xðt;�Þ � g�1

ðt; ��ÞÞ; (22)

. . . ;
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ðxðtÞ � g�k
ðt; ��ÞÞ ’ ð~xðt;�0Þ � g�k

ðt; ��ÞÞ
¼ ð~xðt;�Þ � g�k

ðt; ��ÞÞ: (23)

A solution of such set of equations is trivially �0 ¼ �, for
any choice of the projection point ��. If the vacuum field
manifold captures the physically important configurations,

the vacuum expectation values of operators ÔðtÞ will be
dominated by the configurations in the functional vicinity
of the manifold. In the limit in which the relevant configu-
rations are only those very close to the manifold, the
system of equations (16) and (17) have a unique solution
and the expressions (19) become independent on the choice
of the coordinate system on the manifold, i.e. of the pa-
rameter ��. Clearly, this condition can be verified by com-
paring the results obtained projecting onto different points
of the manifold.

In the next sections, we shall illustrate how this method
is implemented in practice, in the specific case of the one-
dimensional quantum double-well problem.

III. APPLICATION TO THE QUANTUM-
MECHANICAL DOUBLE-WELL PROBLEM

The discussion made so far has been completely general:
Eqs. (14) and (15) hold for an arbitrary choice of the
potential UðxÞ, of the vacuum field manifold M and of
the boundary conditions xi and xf. As an illustrative ex-

ample, let us now restrict our attention to the specific
system defined by the potential

UðxÞ ¼ m�ðx2 � �2Þ2; (24)

where m is the mass of the particle. We consider the path
integral with periodic boundary conditions [see Eq. (1)]

xi ¼ xf ¼ �� ðor equivalently xi ¼ xf ¼ þ�Þ:
(25)

In this specific system, a choice of the effective degrees of
freedom is suggested semiclassical arguments. We choose
the vacuum field manifold to be the one generated by the
superposition of N instantons and N anti-instantons.
Obviously, the choice of the optimal number of pseudo-
particles depends on the time interval T. If the barrier is
sufficiently high, one can fix N from the semiclassical 1

tunneling rate [11]

2N ’ �T; (26)

where � is the one-instanton measure

� ’ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þ3=2�2

�@

s
: (27)

The curvilinear coordinates �1 ¼ t1, �2 ¼
t̂1; . . . ; �2N�1 ¼ tN , �2N ¼ t̂N represent the collective co-
ordinates of each instanton or anti-instanton, i.e. their
positions in the imaginary time axis. In particular, we adopt
the so-called ‘‘sum ansatz,’’ which consists in simply add-
ing up the instanton and anti-instanton fields:

~x S2N ðt; t1; . . . t̂NÞ � ��þ XN
k¼1

½x̂Iðt� tkÞ þ x̂Îðt� t̂kÞ�;

(28)

where we have labeled with t1; . . . ; tN (t̂1; . . . ; t̂N) the cen-
ters of the instantons (anti-instantons). The path integral,
rewritten as in Eq. (14) reads

Z½T;��;��� ¼
Z

dt1;
Z

dt̂1 . . .
Z

dtN

�
Z

dt̂Ne
�ð1=@ÞFðt1;t̂1;...;tN ;t̂NÞ: (29)

We note that there are only two choices of such collec-
tive coordinates for which the field configuration (28)
becomes an exact solution of the Euclidean EoM:
(1) When all nearest neighbor instanton–anti-instantons

pairs are infinitely separated from each other, i.e.

jti � t̂ij ! 1; jtiþ1 � t̂ij ! 1:

(2) When all nearest neighbor instanton–anti-instantons
pairs are infinitely close to each other, i.e.

ti ¼ t̂i:

In the former case, one obtains a dilute instanton gas
configuration. In the latter case, all pairs annihilate and
the field reduces a trivial classical vacuum, i.e. xðtÞ ¼ ��.
For any other choice of the collective coordinates
t1; . . . ; t̂N , the field configuration (28) is not an extremum
of the action.
The relative statistical weight of each configuration in

the path integral (2) is provided by the exponential factor
appearing in Eq. (29), which plays the role of the free
energy in the statistical mechanical analogy. Hence, the
function Fðt1; . . . ; t̂NÞ expresses the statistical and dynami-
cal correlations between the pseudoparticles, induced by
all other field configurations in the path integral. For
example, in the high barrier limit in which the semiclassi-
cal dilute instanton gas approximation is justified, one has

e�ð1=@ÞFðt1;...;t̂NÞ ’ �ðt̂1 � t1Þ�ðt2 � t̂1Þ . . . �ðt̂N � tNÞ�2N:

(30)

As the height of the barrier is adiabatically reduced, the
dilute instanton gas approximation becomes worse and
worse and eventually breaks down. In this regime, the
vacuum fields behave as an interacting liquid and the
effective interaction Fðt1; . . . ; t̂NÞ deviates from the expres-

1In QCD, where a strict semiclassical analysis cannot be
consistently applied, the number of pseudoparticles may be
estimated form phenomenology or lattice simulations.
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sion (30) and can be written as

Fðt̂1; . . . ; t̂NÞ ’
XN
i¼1

FIA
2 ðt̂i � tiÞ þ FAI

2 ðtiþ1 � t̂iÞ; (31)

where FIA
2 (FAI

2 ) expresses the two-body instanton–anti-
instanton (anti-instanton–instanton) correlations.2 For very
low barriers, the average instanton distance becomes
smaller than the instanton size, and the pseudoparticles
‘‘melt.’’ Clearly, in such a regime, instantons and anti-
instanton fields no longer represent a good choice of low-
energy vacuum degrees of freedom. In the remaining of
this work, we shall consider systems for which the dilute
liquid regime is appropriate.

In order to compute FIA
2 ðt̂i � tiÞ and FAI

2 ðtiþ1 � t̂iÞ it is
convenient to integrate out from (29) all instanton degrees
of freedom, except those of a single pair of pseudopar-
ticles. To this end, we rewrite the path integral as

Z½T;��;��� ¼ 1

2

�Z
dt1

Z
dt̂1

�Z
dt2dt̂2 . . .dt̂Ne

�ð1=@ÞF
�

þ
Z

dt̂1
Z

dt2

�Z
dt1dt̂2dt3 . . .

� dt̂Ne
�ð1=@ÞF

��
(32)

¼ 1

2

Z
dt1

Z
dt2½gIA2 ðt2 � t1Þ þ gAI2 ðt2 � t1Þ�: (33)

The first term corresponds to the case in which the pseu-
doparticle of coordinate t1 is an instanton, while the second
of coordinate t2 is an anti-instanton and gIA2 ðt2 � t1Þ is the
corresponding pair-correlation function. Conversely, the
second term corresponds to the case in which the pseudo-
particle at t1 is an anti-instanton and that at t2 is an
instanton. In the dilute liquid regime, the functions

gIAðAIÞðt2 � t1Þ relate directly to FIAðAIÞ
2 ðt2 � t1Þ by

e�ð1=@ÞFIAðAIÞ
2

ðt2�t1Þ / gIAðAIÞ2 ðt2 � t1Þ; (34)

where the proportionality factor is controlled by the
density.

In order to extract the instanton–anti-instanton pair-
correlation function gIA2 we consider the path integral
with boundary condition xf ¼ xi ¼ �� and parametrize

a generic configuration xðtÞ using the sum ansatz for an
instanton–anti-instanton pair, Eq. (28):

xðtÞ ¼ ~xIAS2 ðt; t1; t2Þ þ yðtÞ (35)

¼ ��f1� tanh½ ffiffiffiffiffiffi
2�

p
�ðt� t1Þ� þ tanh½ ffiffiffiffiffiffi

2�
p

�ðt� t2Þ�g
þ yðtÞ; (36)

where yðtÞ is a configuration of boundary conditions
yð�T=2Þ ¼ 0, and t1 and t2 are the coordinates of the
two pseudoparticles, in the Euclidean time axis.
Conversely, in order to evaluate gAI2 , one should consider
the path integral with boundary conditions xf ¼ xi ¼ �

and adopt a vacuum manifold based on the anti-instanton–
instanton pair:

xðtÞ ¼ ~xAIS2 ðt; t1; t2Þ þ yðtÞ (37)

¼ �f1� tanh½ ffiffiffiffiffiffi
2�

p
�ðt� t1Þ� þ tanh½ ffiffiffiffiffiffi

2�
p

�ðt� t2Þ�g
þ yðtÞ: (38)

Since the two calculations are identical, in the following
we shall focus on determining gIA2 and the IA suffix will be
implicitly assumed.
It is convenient to introduce the relative variables

	 ¼ 1

2
ðt1 þ t2Þ; 
 ¼ t2 � t1:

Notice that variable 	 is the ‘‘center of mass’’ of the pair,
while 
 represents the ‘‘relative distance’’ between the
instanton and anti-instanton. Notice also that Eq. (33)
implies

F2ðt1; t2Þ ¼ F2ðt2 � t1Þ � F2ð
Þ; (39)

that is to say we expect the effective interaction to be
independent from the center of mass of the pair. This is a
consequence of the time-translational invariance of the
vacuum.
We recall that the multi-instanton field configuration and

the fluctuation field have to fulfill the orthogonality con-
ditions (5), which is enforced in a specific point � ¼ �� of
the manifold. The basis vector of the tangent space of the
manifold defined by the sum ansatz (28) are, for an arbi-
trary point � ¼ ð�t1; �t2Þ

gt1ðt; �t1; �t2Þ ¼ @t1 ~xS2ðt; t1; t2Þjt1¼�t1;t2¼�t2

¼ � ffiffiffiffiffiffi
2�

p
�2sech2½ ffiffiffiffiffiffi

2�
p

�ðt� �t1Þ�; (40)

gt2ðt; �t1; �t2Þ ¼ @t2 ~xS2ðt; t1; t2Þjt1¼�t1;t2¼�t2

¼ ffiffiffiffiffiffi
2�

p
�2sech2½ ffiffiffiffiffiffi

2�
p

�ðt� �t2Þ�: (41)

Equivalently, in terms of the 	 and 
 coordinates, the
basis vectors of the tangent space in the generic point � ¼
ð
; 	Þ read

g	ðt; �	; �
Þ ¼ @	~xS2

�
t;	� 1

2

; 	þ 1

2



���������	¼ �	;
¼ �


¼ ffiffiffiffiffiffi
2�

p
�2

�
sech2

� ffiffiffiffiffiffi
2�

p
�

�
t� �	�

�


2

��

� sech2
� ffiffiffiffiffiffi

2�
p

�

�
t� �	þ

�


2

���
; (42)

2Equation (31) can be generalized to include higher-order (e.g.
three-body, four-body, etc. . .) correlations.

QUANTUM INTERACTIONS BETWEEN NONPERTURBATIVE . . . PHYSICAL REVIEW D 81, 074019 (2010)

074019-5



g
ðt; �	; �
Þ ¼ @
~xS2

�
t;	� 1

2

; 	þ 1

2



���������	¼ �	;
¼ �


¼
ffiffiffiffi
�

2

r
�2

�
sech2

� ffiffiffiffiffiffi
2�

p
�

�
t� �	�

�


2

��

þ sech2
� ffiffiffiffiffiffi

2�
p

�

�
t� �	þ

�


2

���
: (43)

Hence, without loss of generality, in the following we shall
consider

xðt;	; 
Þ :¼ ��

�
1� tanh

� ffiffiffiffiffiffi
2�

p
�

�
t� 	þ 


2

��

þ tanh

� ffiffiffiffiffiffi
2�

p
�

�
t� 	� 


2

���
þ yðtÞ (44)

with the conditions

ðyðtÞ � g	ðt; �	; �
ÞÞ ¼ 0; (45)

ðyðtÞ � g
ðt; �	; �
ÞÞ ¼ 0: (46)

Although our ultimate goal is to evaluate FIA
2 ð
Þ and

FIA
2 ð
Þ in a fully nonperturbative way, it is instructive to

discuss first a perturbative analysis, which yields informa-
tion about the contribution to the quantum effective inter-
actions in the short instanton–anti-instanton distance limit.
Such a calculation is presented in the next section, while
the fully nonperturbative calculation is reported in Sec. V.

IV. PERTURBATIVE CALCULATION

Perturbation theory deals with small quantum fluctua-
tions around a classical vacuum. In particular, a calculation
of FIA

2 ð
Þ and FIA
2 ð
Þ at small 
 requires to assign to each

point in the vicinity of the trivial vacuum

~x S2 � �� (47)

a point on the intanton–anti-instanton functional manifold.
Since quantum fluctuations can be arbitrarily small, the
orthogonality conditions (45) and (46) have to be imposed
at a point which is arbitrarily close to the same classical
vacuum. In principle, the most natural choice would be
impose the orthogonality conditions at the classical vac-
uum. However, problems arise due to the fact that it is not
possible to define the tangent space in such a point, since

g	ðt; �	; 0Þ � 0; (48)

for all �	. To overcome this difficulty, in the following we
use the stochastic quantization formalism to construct a
rigorous approach in which the tangent space which is
defined at a point which is arbitrarily close to classical
point, but does not coincide with it.

Let us begin by briefly reviewing the Pairsi and Wu
quantization technique [12]. The starting point is to allow
the field configuration xðtÞ to depend on an additional
parameter, the so-called stochastic ’’time’’ �. The dynam-

ics of the field in such an additional dimension is postu-
lated to obey a Langevin equation:

x0ðt; �Þ � d

d�
xðt; �Þ ¼ �k

�S½x�
�xðt; �Þ þ

ffiffiffi
@

p
�ðt; �Þ; (49)

where k is an arbitrary diffusion coefficient and �ðt; �Þ is a
Gaussian distributed stochastic field

P½�� / exp

�
� 1

4k

Z 1

�1
dt

Z 1

0
d��2ðt; �Þ

�
(50)

which obeys the fluctuation-dissipation relationship

h�ðt; �Þ�ðt0; �0Þi ¼
Z

D��ðt; �Þ�ðt0; �0ÞP½��
¼ 2k�ðt0 � tÞ�ð�0 � �Þ: (51)

For any value of the stochastic time �, the probability for
the field to assume a given configuration xðt; �Þ is described
by a (functional) probability distribution P ½x�ð�Þ, which is
a solution of the Fokker-Planck equation associated to the
Langevin equation (49):

d

d�
P ½x� ¼ k

�2

�x2
P½x� þ k

�

�x

�
P ½x��S½x�

�x

�
: (52)

A general property of the Fokker-Planck equation is that
its solutions converge to the static, ‘‘Boltzmann’’ weight,
in the long time limit:

P ½x� !ð�!1Þ 1R
DxðtÞ expf� 1

@
S½xðtÞ�g exp

�
� 1

@
S½xðtÞ�

�
;

(53)

regardless of the initial condition, xðt; � ¼ 0Þ, and of the
value of the diffusion coefficient k. Hence, the Langevin
equation (49) generates configurations which, at equilib-
rium, are distributed according to the statistical weight
appearing in the Euclidean quantum path integral. Such
configurations can be used to compute quantum-
mechanical Green’s functions.
In stochastic perturbation theory, a generic path xðt; �Þ

obeying Langevin equation (49) with boundary conditions

(1) is written as a power series in " ¼ ffiffiffi
@

p
:

xðt; �Þ ¼ X1
i¼i

"ixiðt; �Þ; (54)

x0ðt; �Þ is the classical content of the path, while all other
terms represent quantum corrections. In the double-well
problem, the classical solution with boundary conditions
(25) is x0ðt; �Þ ¼ ��.
By inserting the expansion (54) into the Langevin equa-

tion (49) and matching the left-hand side (LHS) and right-
hand side (RHS), order by order in ", one generates a tower
of coupled stochastic differential equations for the compo-
nents xiðt; �Þ, which appear in Eq. (54):
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Oð"0Þ: x00ðt; �Þ ¼ kmð@2t � 4�½x20ðt; �Þ � �2�Þx0ðt; �Þ;
(55)

Oð"1Þ: x01ðt; �Þ ¼ kmð@2t � 4�½3x20ðt; �Þ � �2�Þx1ðt; �Þ
þ �ðt; �Þ; (56)

Oð"2Þ: x02ðt; �Þ ¼ km½ð@2t � 4�½3x20ðt; �Þ � �2�Þx2ðt; �Þ
� 12�x0ðt; �Þx21ðt; �Þ�; (57)

Oð"3Þ: x03ðt; �Þ ¼ km½ð@2t � 4�½3x20ðt; �Þ � �2�Þx3ðt; �Þ
� 4�x31ðt; �Þ
� 24�x0ðt; �Þx1ðt; �Þx2ðt; �Þ�; (58)

. . .

In practice, the perturbative expansion is truncated and
one solves a finite set of stochastic differential equations,
starting from a given initial condition. For example, trun-
cating the expansion to order "2 and choosing the initial
condition

x0ðt; � ¼ 0Þ ¼ ��; (59)

xiðt; � ¼ 0Þ ¼ 0; ði ¼ 1; 2; . . .Þ; (60)

which corresponds to the classical vacuum state, we find

x0ðt; �Þ ¼ ��; (61)

x1ðt; �Þ ¼
Z 1

�1
d!

2�
e�i!t

Z 1

0
d�0�½�� �0�

� e�kmð8��2þ!2Þð���0Þ ~�ð!; �0Þ; (62)

x2ðt; �Þ ¼ 12��km
Z 1

�1
d!

2�
e�i!t

Z 1

0
d�0�½�� �0�

� e�kmð8��2þ!2Þð���0Þ Z 1

�1
dt0ei!t0x21ðt0; �0Þ: (63)

The corresponding perturbative solution is

xðt; �Þ ¼ x0ðt; �Þ þ "x1ðt; �Þ þ "2x2ðt; �Þ: (64)

It is important to stress that only the asymptotic equilib-
rium solution xðt; � ¼ 1Þ enters in the evaluation of physi-
cal observables. Such equilibrium solutions are
independent on the choice of the initial condition of the
perturbative stochastic equations (55)–(58).

Let us now show how the stochastic perturbation theory
technique can be used to gain information about the FIA

2 ð
Þ
and FAI

2 ð
Þ distributions.
To this end, we begin by decomposing the field as in

Eq. (4),

xðtÞ � ~xS2ðt;	; 
Þ þ yðtÞ: (65)

Next we need to promote the manifold field ~xðt;	; 
Þ and

fluctuation field yðtÞ to dynamical variables, under the
stochastic time evolution. There is some freedom associ-
ated to the definition of such a stochastic dynamics. For
example, a possible choice may be one in which the �
dependence enters entirely through the fluctuation field
yðt; �Þ, while the smooth vacuum field ~xS2 is assumed to

be static, under stochastic evolution, i.e. ~xS2ðt; �Þ ¼ ~xS2ðtÞ.
Instead, a crucial point of the present approach is to make a
different choice and allow both the fluctuation field and the
smooth vacuum field to vary with the stochastic time �.
This is done in practice by promoting the curvilinear
coordinates 
 and 	 to dynamical stochastic degrees of
freedom [13], i.e. 
 ! 
ð�Þ and 	 ! 	ð�Þ. Consequently,
at a generic stochastic instant �, the quantum field xðt; �Þ
reads

xðt; �Þ ¼ ~xS2ðt;	ð�Þ; 
ð�ÞÞ þ yðt; �Þ: (66)

Let us now construct a perturbative solution of the
Langevin equation (49), based on the decomposition
(66). We recall that the multi-instanton field is not a
classical solution of the EoM, except in the points where

 ¼ 0. As a consequence, quantum corrections will appear
not only in the fluctuation field, but also in the background
field. To account for this fact, we expand yðt; �Þ, 	ð�Þ, and

ð�Þ as power series in " ¼ ffiffiffi

@
p

:

yðt; �Þ ¼ X1
i¼1

"iyiðt; �Þ; (67)

	ð�Þ ¼ X1
i¼0

"i	ið�Þ; (68)


ð�Þ ¼ X1
i¼0

"i
ið�Þ: (69)

Let us now define the tangent space in a generic point �
; �	
of the manifold. It is possible to show that the orthogonal-
ity conditions (45) and (46) hold order by order in pertur-
bation theory and at any stochastic time i.e.:

ðyiðt; �Þ � g	ðt; �	; �
ÞÞ ¼ 0; (70)

ðyiðt; �Þ � g
ðt; �	; �
ÞÞ ¼ 0; 8i;8�: (71)

From Eqs. (54) and (67)–(69) it is immediate to obtain
an expression for each of the xiðt; �Þ components in
Eq. (54):

xiðt; �Þ � 1

i!

@i

@"i

�
x̂S2

�
t;
X1
n¼0

"n	n;
X1
m¼0

"m
m

�

þX1
l¼1

"lylðt; �Þ
���������"¼0

: (72)

For example, the first orders are
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x0ðt; �Þ ¼ ~xS2

�
t;	0 � 
0ð�Þ

2
; 	0 þ 
0ð�Þ

2

�
; (73)

x1ðt; �Þ ¼ 	1ð�Þg	ðt;	0; 
0ð�ÞÞ þ 
1ð�Þg
ðt;	0; 
0ð�ÞÞ
þ y1ðt; �Þ; (74)

x2ðt; �Þ ¼ 	2ð�Þg	ðt;	0; 
0ð�ÞÞ þ 
2ð�Þg
ðt;	0; 
0ð�ÞÞ

� 1

2

�
	2
1ð�Þ þ


2
1ð�Þ
4

�
_g	ðt; 	0; 
0ð�ÞÞ

� 	1ð�Þ
1ð�Þ _g
ðt; 	0; 
0ð�ÞÞ þ y2ðt; �Þ; (75)

. . . ;

where we have used the fact that 	0 is independent on �.
The terms on the LHS of Eqs. (73)–(75) coincide with the
perturbative solution results (61)–(63). On the other hand,
the terms on the RHS represent the decomposition of the
same functions in terms of the low-energy vacuum field
configurations and of the corresponding fluctuation fields.

In order to make contact with the effective interaction,
we need to introduce the tangent space which enters the
projection equations (70) and (71). At this point, we face
the above mentioned problem that the tangent space at the

classical vacuum �� is not defined. To overcome this
problem, we let the tangent space vary with the stochastic
time in such a way that the point �
, �	 asymptotically
approaches the classical vacuum, but does not coincide
with it at any finite �. In practice, we promote �
 to a
stochastic variable and we impose

�
ð�Þ !�!1
0: (76)

In particular, we choose �
ð�Þ � 
0ð�Þ, since 
0ð� ! 1Þ !
0.
Using such a decomposition, we are now in a condition

to analytically compute arbitrary moments of the equilib-
rium distribution for 	 and 
, i.e. h
ki and h	ki.
By projecting and inverting Eqs. (74) and (75), we

obtain the following expression for the collectives coordi-
nates up to Oð@Þ:

	1ð�Þ ¼
ðx1ðt; �Þ � g	ðt;	0; 
0ð�ÞÞÞ

ðg	ðt;	0; 
0ð�Þ � g	ðt;	0; 
0ð�ÞÞ ; (77)


1ð�Þ ¼
ðx1ðt; �Þ � g
ðt;	0; 
0ð�ÞÞÞ

ðg
ðt;	0; 
0ð�Þ � g
ðt;	0; 
0ð�ÞÞ ; (78)

	2ð�Þ ¼
ðx2ðt; �Þ � g	ðt;	0; 
0ð�ÞÞÞ þ 	1ð�Þ
1ð�Þð _g
ðt;	0; 
0ð�ÞÞ � g	ðt;	0; 
0ð�ÞÞÞ

ðg	ðt;	0; 
0ð�ÞÞ � g	ðt;	0; 
0ð�ÞÞÞ ; (79)


2ð�Þ ¼
ðx2ðt; �Þ � g
ðt;	0; 
0ð�ÞÞÞ þ 1

2 ð	2
1ð�Þ þ 1

2

2
1ð�ÞÞð _g	ðt;	0; 
0ð�ÞÞ � g
ðt;	0; 
0ð�ÞÞÞ

ðg
ðt;	0; 
0ð�Þ � g
ðt;	0; 
0ð�ÞÞ ; (80)

. . . (81)

Using the fluctuation-dissipation relationships (51), and the fact that 
0ð�Þ is independent from �ðt; �Þ we find
h	1ð�Þi ¼ 0; (82)

h	2ð�Þi ¼ 0; (83)

h
1ð�Þi ¼ 0; (84)

h
2ð�Þi ¼
hx2ðt; �Þið1 � g
ðt;	0; 
0ð�ÞÞÞ þ 1

2 ðh	2
1ð�Þi þ 1

2 h
2
1ð�ÞiÞð _g	ðt;	0; 
0ð�ÞÞ � g
ðt;	0; 
0ð�ÞÞÞ

ðg
ðt;	0; 
0ð�Þ � g
ðt;	0; 
0ð�ÞÞ
# � ! 1
¼ 9

32

1

m��4
: (85)

Hence, we have obtained a closed analytical expression for
the first moments:

h	i ¼ h	0 þ "	1 þ "2	2i ¼ 	0 þOð@2Þ; (86)

h
i ¼ h
0 þ "
1 þ "2
2i ¼ 9

32

@

m��4
þOð@2Þ: (87)

Now, in order to compute the second moments, we observe
that the general expression up to order Oð"2Þ is

	2ð�Þ ¼ 	2
0ð�Þ þ 2"	0	1ð�Þ þ "2½2	0	2ð�Þ þ 	2

1ð�Þ�
þ . . . ; (88)
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2ð�Þ ¼ 
2
0ð�Þ þ 2"
0ð�Þ
1ð�Þ þ "2½2
0ð�Þ
2ð�Þ

þ 
2
1ð�Þ� þ . . . (89)

which immediately gives

h	2i ¼ 1; (90)

h
2i ¼ @h
2
1i ¼

9

32

@

m��4

�
�2 � 9

3
ffiffiffiffiffiffi
2�

p
�

�
: (91)

Some comments on these results are in order. The dis-
tribution of the instanton–anti-instanton distance 
 is not
symmetric around the origin, since h
i � 0. Such a sym-
metry breaking comes from fluctuations which explore the
nonharmonic region of the potential function UðxÞ. Since
the potential on the left of the equilibrium configuration
raises more steeply than that on the right, quantum paths in
the direction of the barrier are statistically favored. The
divergence h	2i ¼ 1 emerges because the distribution of
collective coordinates is independent on 	, as consequence
of the time-translational invariance of the system. In the
language of stochastic quantization, this implies that the
center of mass of the instanton–anti-instanton pair per-
forms Brownian motion in stochastic time and h	2i / �,
according to the Einstein relationship. We also stress the
fact that there is no contribution to the effective interaction,
at the classical level: F2ð
Þ is an entirely quantum effect.

We emphasize once again that in this calculation we
have never requested that the multi-instanton configura-
tions should be approximate solutions of the classical
EoM. The only request is that the configuration corre-
sponding to the classical vacuum must belong to the mani-
fold parametrized by the set of relevant low-energy degrees
of freedom �i. To our knowledge, this represents the first
perturbative analysis of the dynamics of short-distance
instanton–anti-instanton fluctuations.

V. NONPERTURBATIVE CALCULATION

Let us now take the main step of the present work and
perform a fully nonperturbative calculation of F2ð
Þ which
describes the correlations between consecutive tunneling
events.

Let fx1ðt; � ¼ 1Þ; . . . ; xlðt; � ¼ 1Þg be an ensemble of l
equilibrium field configurations, which were obtained non-
perturbatively, for example, by integrating numerically
directly the Langevin equation (49), or by means of a
lattice Monte Carlo simulation. The pair-correlation func-
tion gIA2 ð
Þ can be extracted by projecting the set of equi-
librium configurations onto the low-energy vacuum field
manifold spanned by an instanton–anti-instanton pair. To
this end, we define the functionals of the field configuration
xðt; �Þ,

�	½x�� :¼ ðxðt; �Þ; g	ðt; �	; �
ÞÞ; (92)

�
½x�� :¼ ðxðt; �Þ; g
ðt; �	; �
ÞÞ; (93)

which represents the projection of an arbitrary field con-
figuration onto the tangent space, at the point ð �	; �
Þ. We
also introduce the functions of the collective coordinate 	
and 
,

�	ð	; 
Þ :¼ ð~xS2ðt;	; 
Þ; g	ðt; �	; �
ÞÞ; (94)

�
ð	; 
Þ :¼ ð~xS2ðt;	; 
Þ; g
ðt; �	; �
ÞÞ; (95)

which represents the projection of a generic point of the
instanton–anti-instanton field manifold onto the same tan-
gent space. In the specific case of the double-well potential
one has

�	ð	; 
Þ ¼ �

��
	� 


2

�
�

�
�	þ

�


2

��
� �

��
	þ 


2

�

�
�
�	þ

�


2

��
þ �

��
	þ 


2

�
�

�
�	�

�


2

��

� �

��
	� 


2

�
�

�
�	�

�


2

��
; (96)

�
ð	; 
Þ ¼ �2�2 þ 1

2
�

��
	� 


2

�
�

�
�	þ

�


2

��

� 1

2
�

��
	þ 


2

�
�

�
�	þ

�


2

��
� 1

2
�

��
	� 


2

�

�
�
�	þ

�


2

��
þ 1

2
�

��
	þ 


2

�
�

�
�	þ

�


2

��
;

(97)

where

�½X� ¼ 2�2f ffiffiffiffiffiffi
2�

p
�Xsinh�2½ ffiffiffiffiffiffi

2�
p

�X� � coth½ ffiffiffiffiffiffi
2�

p
�X�g:

(98)

By setting Eqs. (92) and (93) to be equal to �	 and�
,

respectively, we obtain a complete system of equations for
the variables 	 and 
.

�	½x�� � �	½	ð�Þ; 
ð�Þ�; �
½x�� � �
½	ð�Þ; 
ð�Þ�:
(99)

Such a system has a unique solution for any choice of the
projection point ð �	; �
Þ, with �
 � 0.
Hence, it is possible to assign a value of 	 and 
 to every

nonperturbatively generated configuration xðt; �Þ.
Repeating such a projection for the entire ensemble of

equilibrium configurations, one obtains an histogram
which by construction is proportional to the pair-
correlation function gIA2 ð
Þ. The effective potential F2ð
Þ
is immediately extracted from

FIA
2 ð
Þ ¼ �@ log½gIA2 ð
Þ� þ const: (100)

Clearly, the calculation of FAI
2 ð
Þ would be completely

analog. In practice, such a calculation is not necessary,
since the function FAI

2 ð
Þ can be inferred directly by sym-
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metry arguments:

FAI
2 ð
Þ ¼ FIA

2 ð�
Þ: (101)

Once the effective interaction has been determined, one
can evaluate the instanton density of the liquid by mini-
mizing the free energy of the ensemble. In the next section,
we present the results of some numerical investigations, in
order to illustrate the method and assess the accuracy of the
determination of the instanton–anti-instanton interaction.

VI. NUMERICAL STUDIES

In order to show that our method yields the correct
result, let us first consider a model for which the effective
interaction can be evaluated analytically. The two-body
part of the effective interaction for a dilute instanton gas
can be easily computed from Eq. (30) by integrating out all
the collective coordinates, except for those of a single
instanton–anti-instanton pair. The result is

e�ð1=@ÞFIA
2
ð
Þ ¼ const� e�ð�T�1Þ logðT�
Þ: (102)

This result holds for high barriers and distances 
 much
larger than the instanton size. Notice that, in the thermody-
namic limit—N, T ! 1, and N=T ¼ � fixed—the effec-
tive interaction FIA

2 ð
Þ should scale linearly, with a slope
controlled by the instanton rate �.

We now address the question if our projection technique
is able to reconstruct the effective interaction in Eq. (102).
To this end, we have generated an ensemble of 1000 dilute
gas configurations, by randomly sampling the positions of
instantons and anti-instantons, in a box of size T ¼ 200 for
a well with � ¼ 7, m ¼ 1, � ¼ 1. In Fig. 2, we compare
the expected theoretical curve (dashed line) with the result
of our numerical calculation (points). We see that, as soon
as the distance 
 becomes larger than few instanton sizes—
which is 0.26 in this units—the numerical results agree
with the expected curve. A linear fit of the data for 
 > 1
yields a slope of 0:32� 0:01, in excellent agreement with
the exact theoretical result, which is 0.31. Hence, we con-
clude that our projection method is indeed able to quanti-
tively reconstruct the structure of the exact distribution
used to generate the ensemble of configurations.

Let us now discuss for completeness the structure of the
effective interaction, for our original quantum double-well
system. At this level, we no longer consider the semiclas-
sical dilute gas model. Instead, we account for quantum
fluctuations to all orders. As the barrier becomes higher
and higher, performing a sampling of multiple barrier-
crossing paths contributing to the functional integral with
dynamical algorithms such as molecular dynamics of
Monte Carlo becomes highly inefficient,3 and computa-
tionally expensive. To cope with this problem, we have

evaluated the instanton–anti-instanton interactions using
the importance sampling approach described in the
Appendix.
Figure 3 shows the results of such a nonperturbative

calculation for a well with � ¼ 1 (low barrier) and � ¼
7 (high barrier). Some comments on these results are in
order. First of all we note that the minimum of the effective
interaction FIA

2 ð
Þ is located at positive values of 
, in
qualitative agreement with our perturbative calculation.
The range of 
 in which the effective interaction FIA

2 ð
Þ
is not flat corresponds to close, largely overlapping
instanton–anti-instanton pair configurations. When the dis-
tance becomes of the order of twice the instanton size, the
effective interaction starts to raise and eventually reaches
the dilute gas limit. On the other hand, for low barriers, the
instanton density is large and the attraction and repulsion
generated by FIA

2 ð
Þ become important. In such a regime,

the vacuum behaves like a one-dimensional liquid, rather
than as an ideal gas. We note that this is precisely the
physical picture underlying the instanton liquid model of
the vacuum [14].

VII. APPLICATION TO GAUGE THEORIES

The application to QCD is beyond the goals of this
paper. However, in this last section, we show that at least
the gauge ambiguity does not poses further conceptual
problems. Here we consider the case only pure-gauge
QCD. Again, the aim is to describe the full theory in terms
of a finite number of effective degrees of freedom � ¼
f�1; . . . ; �kg parametrizing a manifold of vacuum field
configurations.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

Calculated
Expected theoretical result (dilute gas limit) 

Dilute instanton gas 

FIG. 2 (color online). Nonperturbative calculation of the ef-
fective interaction F2ð
Þ for a dilute instanton gas with � ¼ 7,
m ¼ 1, � ¼ 1 in a volume T ¼ 200. The points are the results
obtained from projecting 1000 configurations, while the dashed
line is the expected theoretical results for 
 much larger than the
instanton size (which is 0.26, in these units).

3This difficulty is not present in QCD, where it has been shown
that typical lattice configurations contain indeed many instantons
and anti-instantons.
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This task can be carried out by following the same steps
described in Sec. II: as a first step, one defines the effective
interaction Fð�Þ by rewriting the path integral

Z ¼
Z

DA
e
�ð1=4Þ

R
d4xG


�
a G


�
a ; (103)

in terms of an ordinary integral over the �1; . . . ; �k varia-
bles. The second step consists in implementing the projec-
tion technique in order to calculate Fð�Þ. In principle,
problems may arise due to the fact that, although the
generating functional is obviously gauge invariant, the
effective interaction Fð�Þ is not. The main point of this
section is to show that the presence of a gauge symmetry
does not spoil the applicability of our method.

Let ~A
ðx; f�igÞ be the family of vacuum field configu-

rations spanned by the set of collective coordinates f�ig
and consider, e.g., a Landau gauge. A generic gauge field
configuration can be decomposed as

A
ðxÞ � ~A
ðx;�Þ þ B
ðxÞ; (104)

where B
ðxÞ represents the fluctuation field. In analogy

with the quantum-mechanical problem discussed in the
previous section, the fluctuation field is defined by impos-
ing a set of k orthogonality conditions

ðBðxÞ � g�i
ðx; ��ÞÞ � Trc

�Z
d4xB
ðxÞg�i;
ðx; ��Þ

�
¼ 0;

i ¼ 1; . . . ; k; (105)

g�i;
ðx; ��Þ ¼
@

@�i

~A
ðx;�Þj�¼ ��: (106)

In the path integral formalism, such orthogonality condi-
tions can be implemented by introducing a Fadeev-Popov
representation of the unity. After some formal manipula-
tion (see e.g. [9]) one arrives to the expression

Z ¼
Z Yk

l¼1

d�le
�Fð�1;...;�kÞ; (107)

where Fð�Þ is a gauge dependent function defined as

Fð�Þ ¼ � log

�Z
DB�ð@
B
Þ

�Y
i

�ðB � g�i
ð ��ÞÞ

�

��½ ~Aðx; �Þ þ BðxÞ�e�S½ ~Aðx;�ÞþBðxÞ�
�
; (108)

while, in the Landau Gauge, the Jacobian factor � is
defined as

��1½A
ðxÞ� ¼
Z Yk

l¼1

d�l

Z
DU��ð@
A�


 Þ

�
�Y

i

�½ðA�

 ðxÞ � ~A
ðx; �ÞÞ � g�i

ð ��Þ�
�
:

(109)

In the last equation, U�ðxÞ denotes a generic gauge trans-
formation and A�


 is result of gauge transforming A


according to U�. It is important to emphasize that the
gauge dependence of the effective interaction Fð�Þ does
not spoil the gauge invariance of the path integral. On the
other hand, the choice of the gauge enters through a delta
function in the definition of the effective interaction equa-
tion (108) and in the structure of the Jacobian factor �,
defined in Eq. (109).
We now sketch an algorithm for computing

Fð�1; . . . ; �kÞ, using lattice gauge simulations. Again, the
idea is to use the projection technique based on the or-
thogonality conditions Eq. (105). Lattice simulations can
be used to generate a statistically representative ensemble
of Nconf gauge-fixed fields fAg


;1ðxÞ; . . . ; Ag

;Nconf

ðxÞg
[15,16]. Equation (104) and the orthogonality conditions
in Eq. (105) enable us to build a set of k nonlinear equa-

0 2 4 6

0

10

20

0 1 2 3

0

10

20

FIG. 3 (color online). Nonperturbative calculation of the effective interaction Fð
Þ for � ¼ 1 (left panel) and � ¼ 7.
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tions for the �1; . . . ; �k variables

�g
1½Ag


ðxÞ� ¼ ðAg � gg�1
ð ��ÞÞ � ð ~Agð�Þ � gg�1

ð ��ÞÞ � �g
1ð�Þ;

. . . ;

�g
k½Ag


ðxÞ� ¼ ðAg � gg�k
ð ��ÞÞ � ð ~Agð�Þ � gg�k

ð ��ÞÞ � �g
kð�Þ:
(110)

By solving numerically such a system of Eqs., a value for
the curvilinear coordinates can be assigned to each
configuration.

In principle, the system of equations (110) is not man-
ifestly gauge invariant. In fact, there is in general no
guarantee that the orthogonality condition defined in a
specific gauge,

ðBg � gg�i
ð ��ÞÞ ¼ 0; i ¼ 1; . . . ; k; (111)

is satisfied also in any other gauges. We now show that, in
spite of this fact, Eq. (110) holds irrespectively of the
gauge chosen. To see this, let us assume that such an
equation is satisfied in one particular gauge and analyze
how the different terms entering the equation change under

a generic gauge transformationUg0 ðxÞ. Obviously, all fields
transform according to

Ag

ðxÞg0 ! Ag0


ðxÞ ¼ Ug0 ðxÞA
ðxÞUg0;yðxÞ
� i

g
½@
Ug0 ðxÞ�Ug0;yðxÞ: (112)

On the other hand, the basis vector defined on the tangent
space transform according to

gg�i;
ðx; ��Þg0 ! gg
0

�i;
ðx; ��Þ ¼
@

@�i

~Ag0

ðx;�Þj�¼ ��

¼ Ug0 ðxÞg�i;
ðx; ��ÞUg0;yðxÞ:(113)
These equations, together with Eq. (105) imply that

ðBg0 � gg0�i
ð ��ÞÞ ¼ � i

g
ðUg0;yðxÞ½@
Ug0 ðxÞ� � gg�i;
ðx; ��ÞÞ

� 0: (114)

However, using the relations in Eq. (112) it is immediate to
show that the functional�g

i ½Ag

ðxÞ� and the function�g

i ½��
transform as

�g
i ½Ag


ðxÞ�!g
0
�g0

i ½Ag0

ðxÞ� ¼ �g

i ½Ag

ðxÞ� � i

g
ðUg0;yðxÞ

� ½@
Ug0 ðxÞ� � gg�i;
ðx; ��ÞÞ;
(115)

�g
i ½��!

g0
�g0

i ½�� ¼ �g
i ½�� �

i

g
ðUg0;yðxÞ½@
Ug0 ðxÞ�

� gg�i;
ðx; ��ÞÞ; (116)

which implies

�g0
i ½Ag0


ðxÞ� ¼ �g0
i ½�� 8g0: (117)

Hence, we have shown that, if the system of equations
(110) is satisfied in one gauge, it holds also in any other
gauge. As result, the projection procedure is well defined,
even for gauge theories.

VIII. CONCLUSIONS

In this paper, we have presented an approach which
allows us to express quantum-mechanical path integrals
in terms of few ordinary integrals over a set of low-energy
variables, which parametrize the manifold of the relevant
vacuum field configurations. We have developed a rigorous
technique to extract the effective interaction, a simple
quantum-mechanical problem, in which the low-energy
degrees of freedom are multi-instanton configurations.
We have assessed the accuracy of our method by cor-

rectly reconstructing the effective interaction used to gen-
erate an ensemble of synthetic configurations. We have
also performed both perturbative and nonperturbative cal-
culation of the quantum effective interaction of an
instanton–anti-instanton pair. In both cases, we have found
that the effect of quantum fluctuations is to shift the
location of the minimum of the effective interaction
FIA
2 ð
Þ to the right.
We stress the fact that, although the present discussion

has focused on an instanton liquid picture of the vacuum,
our projection method does not rely at all on the semiclas-
sical approximation. The semiclassical approximation has
been used only as a guidance to find good vacuum effective
degrees of freedom, for our toy model. Hence, the method
can in principle be generalized to build effective theories
for the vacuum, based on different types of field configu-
rations. This observation may become important in QCD,
where fields other than singular gauge instantons are
needed, in order to account for confinement.
If the vacuum fields selected are the ones driving the

system’s nonperturbative dynamics, then one expects that
the contribution coming to the fluctuations around them to
the field operators appearing in the Green’s functions will
be small. In this case, the calculations of observables in the
effective theory can be performed very efficiently, because
they involve only few ordinary integrals over the set of
curvilinear coordinates. Most importantly, once a specific
choice of the vacuum manifold has been identified, the
corresponding effective theory yields parameter-free pre-
dictions. Hence, the present framework can be used to
assess the importance of different families of vacuum
fields, by directly comparing the results of the correspond-
ing effective theory with the experimental data.
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APPENDIX: ALGORITHM USED IN THE
EVALUATION OF FIA

2 ð�Þ
We are interested in computing numerically the integral

gIA2 ð
Þ ¼N
Z

Dy exp

�
�
Z

dtL
�
~xS2

�
t;	� 1

2

;	þ 1

2



�

þ yðtÞ
��
�ðy � g	ð �	; �
ÞÞ�ðy � g
ð �	; �
ÞÞ

� ½ðg	ð	;
Þ � g	ð �	; �
ÞÞðg
ð	;
Þ � g
ð �	; �
ÞÞ
� ðg	ð	;
Þ � g
ð �	; �
ÞÞðg
ð	;
Þ � g	ð �	; �
ÞÞ�;

(A1)

where the term inside the square brackets is the explicit
representation of the Jacobian factor �½y�.

The metastability of the double-well system makes it
rather computationally challenging to generate a statisti-
cally significative ensemble of field configurations, using
algorithms based on Metropolis or by Langevin dynamics.
The main problem is that, for such a metastable system,
ergodicity is reached only in an exponentially large com-
putational time.

The problem has no easy solution within a dynamical
Monte Carlo approach. However, because of the low di-
mensionality of our system, simpler importance sampling
technique are available and efficient.4 Since the system is
time translationally invariant, without loss of generality we
can set 	 ¼ 0, �	 ¼ 0—i.e. we can remove completely the
dependence from the center of mass—and set �
 ¼ 0. Then,
the resulting expression for the pair-correlation function
can be rewritten as

gIA2 ð
Þ ¼ N
Z

Dy�ðyðtÞ � g
ðt; 0ÞÞ�½y�P̂½yðtÞ�

� e�S½~xS2 ðt;�ð1=2Þ
;1=2
ÞþyðtÞ�

P̂½yðtÞ� ; (A2)

where P̂½yðtÞ� is a probability distribution to be defined
below. We stress that now the integral can be restricted to
the small region in which the projection function is not
exponentially small. The discretized version of Eq. (A2) is

gIA2 ð
Þ ¼ N
Z YN

k¼1

dyðtkÞ�
�XN
k¼1

yðtkÞg
ðtk; 0Þ
�
�½y�P̂½y�

� e�Slat½~xS2 ðtk;�ð1=2Þ
;1=2
Þþy�

P̂½y� ; (A3)

where N is the number of points in the lattice and Slat is the
discretised version of S.

For P̂½y� we choose

P̂½y� / exp

�
� 1

8m�t

XN
k¼0

ðyðtkþ1Þ � yðtkÞÞ2
�

(A4)

with the constraint yðt0Þ ¼ yðtNþ1Þ ¼ 0. We eliminate the
delta function by setting the last coordinate yðtNÞ equal to

yðtNÞ ¼ � XN�1

i¼1

yðtiÞg
ðtiÞ=g
ðtNÞ: (A5)

Notice that, in this way, the orthogonality condition is
satisfied configuration by configurations. The statistical
weight of resulting each paths was evaluated from

wið
Þ ¼ expð�Slat½~xsðtk; 
Þ þ yi�Þ
P̂½yi�

: (A6)

Up to an overall multiplicative factor, gIAðxÞ can be ex-
tracted from

gIA2 ð
Þ ¼ const�X
i

wið
Þ: (A7)

By taking the logarithm, one obtains FIA
2 ð
Þ, up to an

overall additive constant.
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