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We derive a factorization theorem that describes an energetic hadron h fragmenting from a jet produced

by a parton i, where the jet invariant mass is measured. The analysis yields a ‘‘fragmenting jet function’’

Gh
i ðs; zÞ that depends on the jet invariant mass s, and on the energy fraction z of the fragmentation hadron.

We show that Gh
i can be computed in terms of perturbatively calculable coefficients, J ijðs; z=xÞ,

integrated against standard nonperturbative fragmentation functions, Dh
j ðxÞ. We also show thatP

h

R
dzGh

i ðs; zÞ is given by the standard inclusive jet function JiðsÞ which is perturbatively calculable

in QCD. We use soft collinear effective theory and for simplicity carry out our derivation for a process

with a single jet, �B ! Xh‘ ��, with invariant mass m2
Xh � �2

QCD. Our analysis yields a simple replacement

rule that allows any factorization theorem depending on an inclusive jet function Ji to be converted to a

semi-inclusive process with a fragmenting hadron h. We apply this rule to derive factorization theorems

for �B ! XK� which is the fragmentation to a Kaon in b ! s�, and for eþe� ! ðdijetsÞ þ h with

measured hemisphere dijet invariant masses.

DOI: 10.1103/PhysRevD.81.074009 PACS numbers: 13.87.�a

I. INTRODUCTION

Factorization theorems are crucial for applying QCD to
hard scattering processes involving energetic hadrons or
identified jets. In single inclusive hadron production, an
initial energetic parton i ¼ fu; d; g; �u; . . .g produces an en-
ergetic hadron h and accompanying hadrons X.
Factorization theorems for these fragmentation processes
have been derived at leading power for high-energy
eþe� ! Xh,

d� ¼ X
i

d�̂i �Dh
i ; (1)

as well as lepton-nucleon deeply inelastic scattering,
e�p ! e�Xh,

d� ¼ X
ij

d�̂ij �Dh
i � fj=p: (2)

For a factorization review see Ref. [1]. In Eqs. (1) and (2)
the cross sections are convolutions of perturbatively cal-
culable hard scattering cross sections, d�̂, with nonpertur-
bative but universal fragmentation functions Dh

i ðzÞ, and
parton distributions fj=pð�Þ. The fragmentation functions

Dh
i ðzÞ encode information on how a parton i turns into the

observed hadron h with a fraction z of the initial parton
large momentum. Fragmentation functions are also often
used for processes where a complete proof of factorization
is still missing, such as high-energy hadron-hadron colli-
sion, H1H2 ! hX.

Another interesting class of hard scattering processes are
those with identified jets. Examples include dijet produc-
tion eþe� ! XJ1XJ2Xs where XJ1;2 are two jets of hadrons,

and Xs denotes soft radiation between the jets. If we

measure an inclusive event shape variable such as thrust,
or hemisphere invariant masses, then the cross section for
this dijet process has the leading order factorization theo-
rem [2–5]

d� ¼ H2jetJ � J � S2jet: (3)

Here the J ¼ JðsÞ are inclusive jet functions depending on
a jet invariant mass variable s, S2jet is a soft function which

gets convoluted with the Js as denoted by �, and H2jet is a

multiplicative hard coefficient. Another example of this
type is the �B ! Xu‘ ��‘ decay in a region of phase space
where Xu is jetlike (�QCD � m2

Xu
� m2

B). Here the lead-

ing order factorization theorem for the decay rate is [6,7]

d� ¼ HJ � S; (4)

with a hard function H for the underlying b ! u‘ ��‘ pro-
cess, the same inclusive jet function J as in the previous
example, and a ‘‘shape function’’ S which is the parton
distribution for a b-quark in the B-meson in the heavy
quark limit.
In this paper we will analyze processes which combine

the above two cases, namely, both the fragmentation of a
hard parton i into h and the measurement of a jet invariant
mass. Since this probes fragmentation at a more differen-
tial level, we expect it can teach us interesting things about
the jet dynamics involved in producing h, and shed light on
the relative roles of perturbative partonic short-distance
effects and nonperturbative hadronization. We derive fac-
torization theorems that depend on a new ‘‘fragmenting jet
function’’ Gh

i ðs; zÞ. This function depends on s, the jet
invariant mass variable, and on z, the ratio of the large
lightlike momenta of the fragmentation hadron and parton.
Two interesting formulas involvingGh

i will be derived. The
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first formula states that

Jiðs;�Þ ¼ 1

2

X
h

Z dz

ð2�Þ3 G
h
i ðs; z; �Þ; (5)

so that the inclusive jet-function can be decomposed into a
sum of terms, Gh

i , for fragmentation to a hadron h with
m2

h � m2
X. This formula also leads to a replacement rule

for factorization theorems, where we can take any process
involving an inclusive jet function, and replace Ji ! Gh

i to
obtain the corresponding process with a fragmenting jet.

The second formula states that to leading order in
�2

QCD=s � 1 we have

G h
i ðs; z; �Þ ¼ X

j

Z dx

x
J ij

�
s;
z

x
; �

�
Dh

j ðx;�Þ; (6)

so that the fragmenting jet function can be expressed in
terms of perturbatively calculable coefficients J ij, to-

gether with the standard unpolarized fragmentation func-

tions Dh
j ðx;�Þ renormalized in the MS scheme.

To introduce the concept of Gh
i and study its properties,

we will specialize to a process with a single jet recoiling
against leptons, namely �B ! Xh‘ ��‘. Using soft collinear
effective theory (SCET) [7–10] we derive leading-order
factorization formulas for �B ! Xh‘ ��‘ decay rates, in the
region of phase space characterized by �2

QCD � m2
Xh �

m2
B where the hadronic final state is jetlike, and where the

energetic hadron h fragments from the jet. This b ! u‘ ��‘

process has the virtue of having a single jet whose invariant
mass can be measured in a straightforward manner with
available B-factory data. Despite our focus on �B ! Xh‘ ��‘

the results obtained can be immediately generalized to
fragmentation in other processes where a jet invariant
mass measurement is made. Two examples will be
described.

The paper is organized as follows. In Sec. II we review
the standard definition of the quark fragmentation function
Dh

qðzÞ and highlight features that are relevant for later parts
of our analysis. Section III is devoted to the process �B !
Xh‘ ��‘, including a discussion of kinematics in Sec. III A.
Results for relevant differential decay rates in terms of
components of an appropriate hadronic tensor are given
in Sec. III B. Section IV contains the derivation of the
SCET factorization formulas for �B ! Xh‘ ��‘, and the
definition of the ‘‘fragmenting jet function’’ Gh

i . In
Sec. V we discuss the relations shown above in Eqs. (5) and
(6). Conclusions, outlook, and the generalization to other
processes are given in Sec. VII.

II. THE FRAGMENTATION FUNCTION DðzÞ
Defining n� ¼ ð1; 0; 0; 1Þ and �n� ¼ ð1; 0; 0;�1Þ, the

light-cone components of a generic four-vector a� are
denoted by aþ ¼ n � a and a� ¼ �n � a where n2 ¼ �n2 ¼
0 and n � �n ¼ 2. With a�? we indicate the components of

a� orthogonal to the plane spanned by n� and �n�. For
energetic collinear particles we will follow the convention
where the large momentum is p� and the small momentum
is pþ.
Let us consider a quark q with momentum k� fragment-

ing to an observed hadron h with momentum p�. In a

frame where ~k? ¼ 0, the hadron has p�
h � zk� and pþ

h ¼
ð ~p?2

h þm2
hÞ=p�

h . The standard unpolarized fragmentation

function Dh
i ðzÞ is defined as the integral over p?

h of the

‘‘probability distribution’’ that the parton i decays into the
hadron h with momentum p�

h [11,12], see also [13–16].

With the gauge choice �n � A ¼ 0, the unrenormalized
quark fragmentation function has the following operator
definition [11]:

Dh
qðzÞ ¼ 1

z

Z
d2p?

h

Z dxþd2x?
2ð2�Þ3 eik

�xþ=2 1

4Nc

� Tr
X
X

h0j �6nc ðxþ; 0; x?ÞjXhihXhj �c ð0Þj0ijp?
Xh
¼0;

(7)

where c is the quark field quantized on x� ¼ 0, Nc ¼ 3 is
the number of colors, and the trace is taken over color and
Dirac indices. In Eq. (7) the state jXhi ¼ jXhðphÞi has a
hadron h with momentum ph ¼ ðp�

h ; ~p
?
h Þ, and an average

over polarizations of h is assumed. Boost invariance along
the non- ? direction implies thatDh

q can only be a function

of z ¼ k�=p�
h and not k� or p�

h individually.

Performing a rotation and a boost to a frame where

~p?
h ¼ 0 with p�

h left unchanged, ~k? becomes � ~p?
h =z,

and Eq. (7) can be written in a gauge-invariant form as [11]

Dh
qðzÞ ¼ z

Z dxþ

4�
eik

�xþ=2 1

4Nc

Tr
X
X

h0j �6n�ðxþ; 0; 0?ÞjXhi

� hXhj ��ð0Þj0ijp?
h
¼0; (8)

where the field �ðxþÞ ¼ �ðxþ; 0; 0?Þ contains an anti
path-ordered Wilson line of gluon fields, in a �3 representa-
tion

�ðxþÞ � c ðxþÞ
�
�P exp

�
ig

Z þ1

xþ
ds �n � ATðs �nÞ

��
: (9)

We note that the form of Eq. (8) is not altered if we perform
a Lorentz transformation to a frame where ~p?

h equals an

arbitrary fixed reference value ~pref
? . In this case ~k? ¼

ð ~pref
? � ~p?

h Þ=z and ~pref
? does not play any role due to the

integrals over p?
h and x? in Eq. (7).

Our knowledge of the fragmentation functions is an-
chored to the use of factorization theorems to describe
measurements of single-inclusive high-energy processes.
Constraints are obtained by using perturbative results for
the partonic hard collision as input. For example, writing
out the complete form of Eq. (1) for single-inclusive eþe�
annihilation into a specific hadron h at center-of-mass

MASSIMILIANO PROCURA AND IAIN W. STEWART PHYSICAL REVIEW D 81, 074009 (2010)

074009-2



energy Ecm, we have

1

�0

d�h

dz
ðeþe� ! hXÞ ¼ X

i

Z 1

z

dx

x
CiðEcm; x; �Þ

�Dh
i ðz=x;�Þ; (10)

where �0 is the tree-level cross section for eþe� !
hadrons, � is the renormalization scale in the MS scheme,
and Ci is the coefficient for the short-distance partonic
process producing the parton i. In Eq. (10) the sum in-
cludes the contributions from the different parton types,
i ¼ u; �u; d; g . . . and the Ci’s are calculable in perturbation
theory, so measurements of d�h=dz constrain Dh

i .
Model parameters for fragmentation functions have

been extracted by fitting to cross section data for single
charged hadron inclusive eþe� annihilation, including
high statistics measurements at CERN-LEP and SLAC
[17–20]. More recently, these data have been combined
with semi-inclusive lepton-nucleon deeply inelastic and
pp cross sections from HERMES and RHIC experiments,
respectively, to perform a global analysis of pion, kaon,
and (anti-)proton fragmentation based on the factorized
expressions for the relevant cross sections, with partonic
input at next-to-leading order in QCD perturbation theory
[21,22], see also [23]. These analyses confirm the universal
nature of the fragmentation function, and, for the �þ,
constrain the fragmentation model for the dominant
D�

u ðzÞ with uncertainties at the 10% level for z * 0:5
[20]. There is less sensitivity to gluon fragmentation func-
tions, and, correspondingly, these have larger uncertainties.

Factorization theorems like the one in Eq. (10) have
been proven to all orders in �s at leading order in
�QCD=Ecm for processes in which all Lorentz invariants

like E2
cm ¼ ðpeþ þ pe�Þ2 are large and comparable, except

for particle masses [1]. The original proofs are based on the
study of the analytic structure of Feynman diagrams and on
a power-counting method to find the strength of infrared
singularities in massless perturbation theory. Factorization
is possible because only a limited set of regions in the
space of loop and final state momenta contribute to leading
power, namely, the so-called leading regions which are
hard, collinear, and soft. For processes involving fragmen-
tation, the leading regions contain a jet subdiagram that
describes the jet in which the hadron h is observed [1], see
also [11,24–26]. Accordingly, the fragmentation function
that can be constrained by applying factorization at leading
power, corresponds to Eq. (7) only because the sum over X
is dominated by jetlike configurations for the jXhi states.
Therefore, it is interesting to explore whether more can be
learned about the fragmentation process when additional
measurements are made on the accompanying jet.

Here we consider what amounts to the simplest addi-
tional measurement, namely, that of the jet-invariant mass
m2

Xh ¼ ðpX þ phÞ2. Rather than using classic techniques

we exploit the powerful computational framework of
SCET.

III. FRAGMENTATION FROM AN IDENTIFIED
JET IN �B ! Xh‘ ��

Consider the weak transition b ! u‘ ��‘ measured with
inclusive decays �B ! Xu‘ ��‘. The phase space region
where Xu is jetlike plays an important role, because the
experimental cuts which remove b ! c background most
often restrict the final state to this region. Experimentally
there is exquisite control over this process, e.g. in a large
sample of events the neutrino momentum has been recon-
structed by determining the recoil momentum of the �B, and
the spectrum is available for the jet-invariant mass m2

Xu

[27–29]. There has also been an extensive amount of
theoretical work on this process based on the factorization
theorem shown in Eq. (4) [2,7,30–38]. From our perspec-
tive the nice thing about �B ! Xu‘ ��‘ is that it involves only
a single jet, and hence provides the simplest possible
framework to extend the factorization analysis involving
jet functions to the fragmentation process we are interested
in, where Xu ! ðXhÞu. Here h is a light-hadron fragment-
ing from a u-quark, with mh � mB. Without any loss of
generality, we shall refer to h as a pion � for the following
few sections, though we will return to the general notation
h at the end.

A. Kinematics

In the �B rest frame, the inclusive process �B ! Xu‘ ��‘

can be completely described by three variables, often taken
as the hadronic invariant mass m2

Xu
, the square of the total

leptonic momentum q2 (with q� ¼ p
�
‘ þ p

�
�� ), and the

charged lepton energy E‘. In the jetlike region a more
convenient set of variables is pþ

Xu
, p�

Xu
, and E‘ where q�

is aligned with the�ẑ-axis, and hence the jet-axis is along
þẑ with p�

Xu
¼ EXu

	 j ~pXu
j.

With an identified hadron in the final state, �B ! X�‘ ��‘,
there are three additional kinematic variables correspond-
ing e.g. to the three independent components of ~p�. The
orientation of the spatial axes will still be chosen such that

p
?�
X� ¼ 0, as shown in Fig. 1. In this frame the perpendicu-

lar component of the total lepton momentum vanishes,

FIG. 1. Kinematic configuration for a pion fragmenting from a
jet Xu ! X�.
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q
�
? ¼ 0, and p

�
B ¼ mBv

� with v� ¼ ðn� þ �n�Þ=2. The
six independent kinematic variables that we will use to
characterize this semi-inclusive process are: pþ

X�, p
�
X�, E‘,

p�
� , p

þ
� , �‘, where �‘ denotes the azimuthal angle of the

lepton with respect to the z-axis and p�
� ¼ E� 	 pz

�. By
definition we have pþ

X� 
 p�
X�, E� ¼ ðpþ

� þ p�
� Þ=2 and

pþ
� ¼ ð ~p?2

� þm2
�Þ=p�

� . In this section we carry out a
complete analysis of the kinematics, determining the phase
space limits for the six kinematic variables without impos-
ing any added restrictions or assumptions. (Later in Sec. IV
we will specialize to the case of a fragmentation pion
collinear in the ~n direction with pþ

� 
 p�
� .) Note that

m2
X� ¼ p�

X�p
þ
X� so for our process the measurement of

the jet-invariant mass is a measurement of the invariant
mass of all final state hadronic particles. Lepton masses
will be neglected throughout, but the hadron mass m2

� will
be kept for all calculations involving kinematics.

For three of our six variables we can treat jX�i as a
combined state jXui, and hence fpþ

X�; p
�
X�; E‘g have the

same limits as in the inclusive case, and are given by1

m� 
 p�
X� 
 mB;

m2
�

p�
X�


 pþ
X� 
 p�

X�;

mB � p�
X�

2

 E‘ 
 mB � pþ

X�

2
:

(11)

In order to determine the limits for the remaining vari-
ables, let us first consider a frame where ~pX� ¼ 0, so that it
is as if we have Xu ! X� decay in the Xu rest frame. We
denote the quantities evaluated in this frame by a ‘‘�’’.
Since

E�
� ¼ m2

X� þm2
� � p2

X

2mX�

; (12)

the constraint p2
X � 0 implies

m� 
 E�
� 
 m2

X� þm2
�

2mX�

: (13)

Furthermore, in this Xu rest frame there are no restrictions
on the azimuthal angle ��

� of the pion with respect to the
z-axis, nor of that of the charged lepton ��

‘, i.e. 0 
 ��
�,

��
‘ 
 2�. The polar angle of the pion is also uncon-

strained:

0 
 	�� 
 �: (14)

Since pþ�
� þ p��

� ¼ 2E�
�, from Eq. (13)

pþ�
� 
 mX� þ m2

�

mX�

� p��
� : (15)

Furthermore, since j ~p?�
� j2 � 0,

pþ�
� � m2

�

p��
�

: (16)

For the maximum p��
� ¼ p��

X� ¼ mX�, these limits force
p�þ
� ¼ m2

�=mX� and the pion travels along the ẑ axis.
(Interchanging p�þ

� $ p��
� gives the case where the pion

travels along �ẑ.) For p��
� ¼ p�þ

� ¼ ðmX� þ
m2

�=mX�Þ=2, we have a pion traveling purely in the ?
-plane with maximal energy. Note that Eqs. (15) and (16)
imply other limits such as pþ�

� 
 j ~p?�
� j2max=p

��
� , as well as

pþ�
� 
 pþ�

X� ¼ mX�, and

pþ�
� ¼ E�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
� �m2

�

q
cos	�� (17)

for all cos	��. This holds true for both cases pþ�
� 
 p��

� and
pþ�
� � p��

� , which correspond, respectively, to 0 

cos	�� 
 1 and �1 
 cos	�� 
 0.
Let us now perform a boost along the z-axis with veloc-

ity ~vX� ¼ vX�êz to the framewhere the B-meson decays at
rest, which requires

vX� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X� �m2

X�

q
EX�

¼ p�
X� � pþ

X�

p�
X� þ pþ

X�

(18)

where 0 
 vX� < 1. Boosting Eqs. (15) and (16) yields the
final result for the p	

� phase space boundaries:

m2
�

pþ
X�


 p�
� 
 p�

X�;

m2
�

p�
�


 pþ
� 
 pþ

X�

�
1� p�

�

p�
X�

�
þ m2

�

p�
X�

:

(19)

Equivalently, for the opposite order of integration,

m2
�

p�
X�


 pþ
� 
 pþ

X�;

m2
�

pþ
�


 p�
� 
 p�

X�

�
1� pþ

�

pþ
X�

�
þ m2

�

pþ
X�

:

(20)

Finally,��
‘ ¼ �‘ since the boost is along the z-axis. Hence

0 
 �‘ 
 2�: (21)

B. Differential decay rates

In this section we derive the fully differential decay rate
for �B ! X�‘ �� employing only the Lorentz and discrete
symmetries of QCD, without dynamical considerations.
We work in the �B rest frame, and it is convenient to start
by using the six independent variables: q2, E‘, E ��, p�

x,
p�

y, p�
z. For the fully differential decay rate we have

d6�

dq2dE‘dE ��dp�
xdp�

ydp�
z
¼ �2

ð2�Þ6
A

2E�ð2�Þ3
� 	ð4E‘E �� � q2Þ; (22)

where d3p�=½2E�ð2�Þ3 is the phase space for the pion,

1Table 2 in Ref. [34] lists these limits for �B ! Xu‘ �� for the six
possible orders of integration.
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E� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
� þm2

�

p
, and

A � X
X

X
l:s:

h �BjHy
W jX�‘ ��ihX�‘ ��jHW j �Bi

2mB

ð2�Þ4

� 
4ðpB � pX� � p‘ � p ��Þ
¼ 16�G2

FjVubj2L��W��: (23)

For the B-states we use the relativistic normalization
h �Bð ~pÞj �Bð ~qÞi ¼ 2EBð2�Þ3
3ð ~p� ~qÞ. In Eq. (23) the effec-
tive weak Hamiltonian is

HW ¼ 4GFffiffiffi
2

p Vubð �u��PLbÞð�l��PL�lÞ; (24)

where PL ¼ ð1� �5Þ=2, and factoring the leptonic and
hadronic parts of the matrix element gives the leptonic
tensor L��, and the hadronic tensorW��. L

�� is computed

without electroweak radiative corrections, so L�� ¼
Tr½p6 ‘�

�PLp6 ���
�PL. The hadronic tensor in the B rest-

frame in full QCD is

W�� ¼ 1

2mB

X
X

ð2�Þ3
4ðpB � pX� � qÞ

� h �BjJuy� ð0ÞjX�ihX�jJu�ð0Þj �Bi
¼ 1

4�mB

Z
d4xe�iq�xX

X

h �BjJuy� ðxÞjX�i

� hX�jJu�ð0Þj �Bi; (25)

with the flavor changing weak current Ju� ¼ �u��PLb. We

haveW�� ¼ W��ðp�
�; v�; q�Þ and we will treat this tensor

to all orders in �s. It can be decomposed using Lorentz
invariance, parity, time reversal, and hermiticity into a sum
of scalar functions, so

L�� ¼ 2ðp�
‘ p

�
�� þp�

‘ p
�
�� � g��p‘ �p �� � i����p‘p ���Þ;

W�� ¼�g��W1 þ v�v�W2 � i�����v
�q�W3 þ q�q�W4

þ ðv�q� þv�q�ÞW5 þ ðv�p�� þv�p��ÞW6

� i�����p
�
�q�W7 � i�����v

�p�
�W8

þp��p��W9 þ ðp��q� þp��q�ÞW10; (26)

with the convention �0123 ¼ 1. The scalar functions Wi

depend on the four independent Lorentz invariants q2, v �
q, v � p�, and p� � q, or four equivalent variables from our
desired set,

Wi ¼ Wiðpþ
X�; p

�
X�; p

þ
� ; p

�
� Þ: (27)

To derive Eq. (27) recall that the leptonic variable q�

equals mBv
� � p

�
X�, and can be traded for p

�
X�. Also

recall that m2
X� ¼ p�

X�p
þ
X�. Since the Wi do not depend

on �‘ or E‘ we can (if desired) integrate over these
variables without further information about the functional
form of the Wi. In Eq. (26) the Wi¼1–5 are analogs of the
tensor coefficients that can appear in the inclusive �B !

Xu‘ �� decay, but here they induce a more differential decay
rate because of the identified pion. The Wi¼6–10 have
tensor prefactors involving p� and have no analog in the
inclusive decay.
Contracting leptonic and hadronic tensors we find

L��W�� ¼ 2q2W1 þ ð4E‘E �� � q2ÞW2 þ 2q2ðE‘ �E ��ÞW3

þ ð4E‘p �� �p� þ 4E ��pl �p� � 2E�q
2ÞW6

þ 2q2ðpl �p� �p �� �p�ÞW7

þ 4ðE‘p �� �p� �E ��pl �p�ÞW8

þ ð4pl �p�p �� �p� �m2
�q

2ÞW9; (28)

where W4;5;10 have dropped out since our leptons are

massless. In terms of this contraction the fully differential
decay rate is

d6�

dq2dE‘dE ��dp
x
�dp

y
�dpz

�

¼ G2
FjVubj2
32�6

L��W
��

2E�

; (29)

where the limits on the kinematic variables are left
implicit.
We now want to express Eq. (29) in terms of the coor-

dinates from the previous section: fp�
X�; p

þ
X�; E‘; p

�
� ;

pþ
� ;�‘g. The relations

q2 ¼ ðmB � p�
X�ÞðmB � pþ

X�Þ;
E �� ¼ mB � E‘ � ðp�

X� þ pþ
X�Þ=2;

(30)

suffice to convert theW1;2;3 terms. For the remainingWi we

need expressions for p‘ � p�, p �� � p� and E�. Recall that
~pX� ¼ � ~q ¼ �ð ~pl þ ~p ��Þ is on theþẑ-axis, so the leptons
are back-to-back in the ? -plane which is transverse to ẑ.
We perform a rotation about the z-axis to bring ~p� into the
y-z plane with py

� � 0. Then in spherical coordinates
~p� ¼ ðpx

�; p
y
�; pz

�Þ ¼ j ~p�jð0; sin	�; cos	�Þ, ~p‘ ¼
E‘ðsin	‘ cos�‘; sin	‘ sin�‘; cos	‘Þ, and ~p �� ¼
E ��ð� sin	 �� cos�‘;� sin	 �� sin�‘; cos	‘Þ, so
p‘ �p�¼E‘E��E‘j ~p�jðcos	‘cos	�þsin	� sin	‘ sin�‘Þ;
p �� �p�¼E ��E��E ��j ~p�jðcos	 ��cos	��sin	� sin	 �� sin�‘Þ;

E�¼1

2
ðp�

� þpþ
� Þ: (31)

Using these expressions the two dot products can be writ-
ten in terms of the desired variables. First note that

j ~p�j cos	� ¼ 1
2ðp�

� � pþ
� Þ;

j ~p�j sin	� ¼ ðj ~p�j2 � j ~p�j2cos2	�Þ1=2
¼ ðp�

�p
þ
� �m2

�Þ1=2:
(32)

Furthermore, since ~p‘ � ~p �� ¼ E‘E �� � q2=2, we have ~p‘ �
~q ¼ �E‘j ~qj cos	‘ ¼ ~p2

‘ þ ~p‘ � ~p �� ¼ E2
‘ þ E‘E �� � q2=2,

which, with j ~qj ¼ j ~pX�j ¼ ½E2
X� �m2

X�1=2 ¼ðp�
X� � pþ

X�Þ=2, implies E‘ cos	‘ ¼ ð2E2
‘ þ 2E‘E �� �

q2Þ=ðpþ
X� � p�

X�Þ. Hence
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E‘cos	‘¼ðmB�p�
X�ÞðmB�pþ

X�Þ�E‘ð2mB�p�
X��pþ

X�Þ
ðp�

X��pþ
X�Þ

;

E �� cos	 ��¼1

2
ðpþ

X��p�
X�Þ�E‘cos	‘: (33)

Finally, it is useful to note that the equality of the magni-
tude of the lepton transverse momenta implies E‘ sin	‘ ¼
E �� sin	 ��.

Together the results in Eqs. (32) and (33) allow us to
express L��W�� in terms of the six variables

fE‘; p
	
X�; p

	
� ;�‘g. The only remaining ingredient needed

to transform the decay rate to these variables is the
Jacobian, which is easily derived by noting that

d3p�

2E�

¼ 1

4
dpþ

�dp
�
�d�� ¼ 1

4
dpþ

�dp
�
�d�‘: (34)

For the last equality we used the fact that the pion azimu-
thal angle becomes equivalent to the lepton azimuthal

angle, d�� ! d�‘, when we rotate the pion momentum
into the y-z plane. Although it would be interesting to
consider measurements of �‘, for our purposes we will
integrate over�‘ 2 ½0; 2�. Since theW7;8;9 prefactors are

linear in p‘ � p� or p �� � p� they have contributions that are
either independent of �‘ or linear in sin�‘, and the latter
terms drop out. In W6 the terms linear in sin�‘ do not
contribute and a quadratic term averages toR
2�
0 d�‘sin

2ð�‘Þ ¼ �. All together this gives

d5�

dpþ
X�dp

�
X�dp

�
�dp

þ
�dE‘

¼ G2
FjVubj2
128�5

ð �K1W1 þ �K2W2

þ �K3W3 þ �K6W6 þ �K7W7

þ �K8W8 þ �K9W9Þ; (35)

multiplied by 	½ðp�
X� þ 2E‘ �mBÞðmB � pþ

X� � 2E‘Þ
which gives the limits for the E‘ integration, and

�K1 ¼ 2ðp�
X� � pþ

X�ÞðmB � p�
X�ÞðmB � pþ

X�Þ; �K2 ¼ �ðp�
X� � pþ

X�ÞðmB � p�
X� � 2E‘ÞðmB � pþ

X� � 2E‘Þ;
�K3 ¼ ðp�

X� � pþ
X�ÞðmB � p�

X�ÞðmB � pþ
X�Þð4E‘ � 2mB þ p�

X� þ pþ
X�Þ;

�K6 ¼ �2ðmB � 2E‘ � p�
X�ÞðmB � 2E‘ � pþ

X�Þ½mBðp�
� � pþ

� Þ þ pþ
�p

�
X� � p�

�p
þ
X�;

�K7 ¼ ðmB � p�
X�ÞðmB � pþ

X�Þð4E‘ � 2mB þ p�
X� þ pþ

X�Þ½mBðp�
� � pþ

� Þ þ pþ
�p

�
X� � p�

�p
þ
X�;

�K8 ¼ ðp�
� � pþ

� ÞðmB � p�
X�ÞðmB � pþ

X�Þð2mB � 4E‘ � p�
X� � pþ

X�Þ;
�K9 ¼ 1

p�
X� � pþ

X�

½fðp�
� � pþ

� ÞðmB � p�
X�ÞðmB � pþ

X�Þ � 2E‘½mBðp�
� � pþ

� Þ þ pþ
�p

�
X� � p�

�p
þ
X�g

� fm2
Bðpþ

� � p�
� Þ þ 2mBðp�

�p
þ
X� � pþ

�p
�
X�Þ þ pþ

�p
�2
X� � p�

�p
þ2
X� þ 2E‘½mBðp�

� � pþ
� Þ þ pþ

�p
�
X� � p�

�p
þ
X�g

þ 2ðmB � p�
X�ÞðmB � pþ

X�ÞðmB � p�
X� � 2E‘ÞðmB � pþ

X� � 2E‘Þðpþ
�p

�
� �m2

�Þ
� 2m2

�ðp�
X� � pþ

X�ÞðmB � p�
X�ÞðmB � pþ

X�Þ; (36)

where the limits on the hadronic variables are displayed in
Eqs. (11) and (19). The �Ki are useful for considering rates
where the pion is observed along with a measurement of
the charged lepton energy.

Integrating Eq. (35) over the lepton energy E‘, theW3;7;8

terms drop out leaving

d4�

dpþ
X�dp

�
X�dp

�
�dp

þ
�

¼ G2
FjVubj2
128�5

ðK1W1 þ K2W2

þ K6W6 þ K9W9Þ; (37)

where

K1 ¼ ðmB �p�
X�ÞðmB �pþ

X�Þðp�
X� �pþ

X�Þ2;
K2 ¼ 1

12ðp�
X� �pþ

X�Þ4;
K6 ¼ 1

6ðp�
X� �pþ

X�Þ3½mBðp�
� �pþ

� Þ þpþ
�p

�
X� �p�

�p
þ
X�;

K9 ¼ 1
12ðp�

X� �pþ
X�Þ2f½pþ

� ðmB �p�
X�Þ þp�

� ðmB �pþ
X�Þ2

� 4m2
�ðmB �p�

X�ÞðmB �pþ
X�Þg: (38)

No further integrations can be performed in Eq. (37)
without first determining the hadronic structure functions
Wiðpþ

X�; p
�
X�; p

þ
� ; p

�
� Þ.

IV. FACTORIZATION WITH A PION
FRAGMENTING FROM A JET

Using SCET, we derive a leading order factorization
theorem for the hadronic structure functions Wi appearing
in the differential decay rates in Sec. III B.
We focus on the region of phase space with endpoint

jetlike kinematics where pþ
X� � p�

X�, and with an ener-
getic pion produced by fragmentation with pþ

� � p�
� . It is

assumed that suitable phase-space cuts are applied to sub-
tract the b ! c background, which phenomenologically is
responsible for the importance of this kinematic endpoint
region. This issue is explored in a separate publication
[39]. With pþ

� 
 p�
� the boundaries for pþ

� and p�
� in

Eq. (19) become:
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m2
�

pþ
X�


 p�
� 
 p�

X�;

m2
�

p�
�


 pþ
� 
 min

�
p�
� ; p

þ
X�

�
1� p�

�

p�
X�

�
þ m2

�

p�
X�

�
;

(39)

or, reversing the order as in Eq. (20),

m2
�

p�
X�


 pþ
� 
 pþ

X�;

max

�
m2

�

pþ
�

; pþ
�

�

 p�

� 
 p�
X�

�
1� pþ

�

pþ
X�

�
þ m2

�

pþ
X�

: (40)

For jetlike final hadronic states, the relevant power
counting is EX��mb, m2

b�m2
X*mb�QCD, and p�

� �
mb. If we decompose the momentum of the remainder of
the collinear jet after the emission of the pion as p�

X ¼
ðpþ

X ;p
�
X ;p

?
X Þ, then it scales as p�

X �ð�QCD;mb;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
Þ¼mbð�2;1;�Þ where ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCD=mb

q
is the

SCET expansion parameter (which can be defined as �2 ¼
m2

X�=m
2
B for our process). The total hadronic momentum

p
�
X� is also collinear and scales the same way as p

�
X . We

will start by considering the ðX�Þ system as a combined
collinear jet, to be factored from the hard dynamics at the
scalemb, and the soft dynamics responsible for the binding
of quarks in the B meson. This part of the computation can
be carried out in SCETI with collinear and ultrasoft (usoft)
degrees of freedom. The energetic pion fragments from the
jet and has a collinear scaling p�

� � ð�2
QCD=mb;mb;�QCDÞ

with much smaller invariant mass p2
� � m2

X�. The facto-
rization for this second fragmentation step can be carried
out by a SCETI to SCETII matching computation [40].

We shall now consider Eq. (25) at leading order in SCET
to derive factorized expressions for the scalar structure
functions Wi in the fragmentation region. We work in a
frame where q? ¼ 0, which will induce a vanishing ?
-label momentum for the light quark field in the partonic
subprocess and the X� system. Since the X� system is
collinear, it is convenient to decompose momenta as p� ¼
p�
l þ p�

r where we have label momenta p�
l � �0, p?

l � �,
and residual momenta p�

r � �2. In SCET the pion phase
space integral can be written as

Z d3p�

2E�

Wð ~p�Þ ¼
Z dp�

�d
2p?

�

2p�
�

Wðp�
� ; p

?
� Þ

¼ X
p�
�l

X
p?
�l

Z dp�
�rd

2p?
�r

2p�
�l

Wðp�
�l; p

?
�lÞ:

(41)

The same holds for the variables p�
X and p?

X . Thus for all
theW ¼ Wi, we can treat p

�
X�, p

?
X�, p

�
� , and p

?
� as discrete

label momenta. At the end these variables are restored to
continuous variables using Eq. (41) and the analogs for
phase space integrations over the X� variables.

Matching the heavy-to-light QCD current onto SCET
operators at a scale of order mb, at leading order one
obtains [9]

J�uðxÞ ¼ eiP �x�imbv�x
X3
j¼1

X
!

Cjð!ÞJ�ð0Þuj ð!Þ: (42)

Here P� ¼ n� �P=2þ P�
? where �P and P? are theOð�0Þ

and Oð�Þ label momentum operators [10]. The leading
order SCET current becomes

J�uj
ð0Þð!Þ ¼ ��n;!�

�
jH v: (43)

In this expression, ��n;! � ð ��nWnÞ
!; �P y , where �n is the

n-collinear light u-quark field. The collinear Wilson line is
defined as [10]

Wn ¼ X
perms

exp

�
� g

�P
�n � AnðxÞ

�
(44)

with collinear gluons An. Also H v � Yyhv, where hv is
the ultrasoft heavy quark effective theory field, and YðxÞ ¼
P expðigR0

�1 dsn � Ausðnsþ xÞÞ is a Wilson line built out

of ultrasoft gauge fields, which results from decoupling the
ultrasoft gluons from the leading-order collinear
Lagrangian [7]. For the leading-order Dirac structures we
use the basis [41,42]

��
1 ¼ PR�

�; ��
2 ¼ PRv

�; ��
3 ¼ PR

n�

n � v ; (45)

where PR ¼ ð1þ �5Þ=2. Expressions of the one-loop
Wilson coefficients Cj can be found in Ref. [7] and the

two-loop coefficients were obtained recently by several
groups in Refs. [43–46].
For our derivation of the leading-order factorization

formula in SCETI we follow the steps in Ref. [34], except
that we will write out the dependence on P? explicitly.
When the current in Eq. (42) is inserted in Eq. (25) we have
the phase

Z
d4xe�iq�xeiP �x�imbv�x ¼ 
 �P ; �n�p
P?;0

Z
d4xe�ir�x;

(46)

where �n � p ¼ mb � q� and we used the fact that q? ¼ 0.
Equation (46) leaves discrete 
’s that fix the label mo-
menta, and a d4x integration that only involves the residual
momentum r� ¼ �n�rþ=2 with rþ ¼ mb � qþ � �2.
Using the normalization convention in heavy quark effec-

tive theory, h �Bvð ~k0Þj �Bvð ~kÞi ¼ 2v0ð2�Þ3
3ð ~k� ~k0Þ, the
leading order expression for Eq. (25) in SCET becomes
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Wð0Þ
�� ¼ 1

4�

Z
d4xe�ir�x X3

j;j0¼1

X
!;!0

Cj0 ð!0ÞCjð!Þ

� 
!0; �n�p
X
X

h �Bvj½ �H v
��j0��n;!0;0?ðxÞjX�i

� hX�j½ ��n;!�j�H vð0Þj �Bvi; (47)

where �n;!0;0? � 
!; �P
0;P?ðWy
n �nÞ. Here ��j0;� ¼

�0�
y
j0��0 and �n � p ¼ p� is the large momentum of the

energetic quark producing the jet. Grouping ultrasoft and
collinear fields by a Fierz transformation, we have

½ �H v
��j0��n;!0;0?ðxÞ½ ��n;!�j�H vð0Þ

¼ ð�1Þ
�

�H vðxÞ ��j0�
n6
2
�j�H vð0Þ

�

�
�
��n;!ð0Þ

�6n
4Nc

�n;!0;0?ðxÞ
�
þ . . . ; (48)

where one should keep in mind that the h �Bvj � � � j �Bvi states
will surround the H v bilinear, and the h0j � � � jX�i�
hX�j � � � j0i states split the �n;! field bilinear into two

parts. The ellipses in Eq. (48) denote Dirac and color
structures that vanish either because they involve an octet
matrix Ta between the color singlet j �Bvi states, or by
parity, or because the only available vector for the
h �Bvj � � � j �Bvi matrix element is v�, and v

�
? ¼ 0. The

form of the collinear product of matrix elements is pictured
in Fig. 2, and the most general allowed parametrization is

1

4Nc

Tr
X
X

�6nh0j�n;!0;0?ðxÞjX�ihX�j ��n;!ð0Þj0i

¼ 2
!;!0
ðxþÞ
2ðx?Þ!
Z dkþ

2�
e�ikþx�=2

� �G�
u

�
kþ!;

p�
�

!
; pþ

�p
�
�

�
; (49)

where the trace is over color and Dirac indices and Eq. (47)
implies that ! ¼ �n � p. The first 
-function in Eq. (49)
stems from label momentum conservation and the remain-
ing ones from the fact that the leading collinear Lagrangian

contains only the n � @ derivative. The arguments of �G�
u are

constrained by RPI-III invariance [47], which requires
products of plus-momenta and minus-momenta, or ratios
of minus- (or plus-) momenta. (For our case RPI-III is
equivalent to invariance under boosts along the ẑ jet

axis.) The arguments of �G�
u are also constrained by plus-

momentum conservation. The light-cone variable kþ is the
plus-momentum of the up-quark initiating the X� produc-
tion, and at the interaction vertex is related to the residual
(soft) plus-momentum ‘þ of the b-quark in the B-meson
by kþ ¼ ‘þ � rþ, as shown in Fig. 2.2 The large label

partonic momentum �n � p also is fixed in terms of kine-
matic variables:

�n � p ¼ mb � �n � q ¼ mb �mB þ �n � pX�

¼ �n � pX� � ��þO
��2

QCD

mb

�
: (50)

Since �� ¼ Oð�QCDÞ, the ratio p�
�=p

�
X� is identified to

leading order with p�
�=! ¼ p�

�=p
� � z, the fragmenta-

tion variable in Eq. (7).

Since pþ
�p

�
� ¼ m2

� þ ~p?2
� , �G�

u depends on j ~p?
� j, which

is nonvanishing with our choice of coordinates (the pion
has ~p?

� and the ? -momentum of X is � ~p?
� ). In general it

is the relative? -momentum between �, X, and the B that
can not be transformed to zero. Later we will integrate over
jp?

� j or equivalently pþ
� , and study

G �
u ðkþ!; z;�Þ � !

Z
dpþ

�
�G�
u ðkþ!; z; pþ

�p
�
� ;�Þ; (51)

which occurs in

1

4Nc

Tr
Z

dpþ
�

X
X

�6nh0j�n;!0;0?ðxÞjX�ihX�j ��n;!ð0Þj0i

¼ 2
!;!0
ðxþÞ
2ðx?Þ
Z dkþ

2�
e�ikþx�=2G�

u

�
kþ!;

p�
�

!

�
:

(52)

The fragmenting jet function �G�
u defined in Eq. (49)

describes the properties of a final state that is collimated
in the ~n-direction and consists of a up-quark initiated jet
from which a pion fragments. Unlike the standard unpo-
larized parton fragmentation function D�

i ðzÞ,
�G�
u ðs; z; pþ

�p
�
� Þ carries information about the invariant

mass s of the fragmenting jet and the direction of the
fragmenting pion through pþ

�p
�
� . The matrix elements in

Eqs. (49) and (52) are similar to the collinear matrix
element defining the jet function JðsÞ that appears in �B !
Xu‘ �� and �B ! Xs�. The jet function can be written as [4]

1

4Nc

Tr
X
Xu

h0j �6n�nðxÞjXuihXuj ��n;!;0?ð0Þj0i

¼ 
ðxþÞ
2ðx?Þ!
Z

dkþe�ikþx�=2Juð!kþÞ: (53)

JuðsÞ depends on the product s ¼ kþp�
Xu
, which is analo-

gous to the first argument in �G�
u .

FIG. 2. Sketch of the hadronic fragmentation process for �B !
X�‘ ��.

2Strictly speaking the result kþ ¼ ‘þ � rþ also encodes the
presence of Wilson lines in defining these momenta, which
ensure gauge invariance.
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The sum in Eq. (53) extends over states with invariant
mass up to m2

Xu
�mb�QCD, which are complete in the

endpoint region. Hence one can write J as the imaginary
part (or discontinuity) of a time-ordered product:

Juðkþ!Þ ¼ � 1

�!
Im

Z
d4xeik�xi

� h0jT ��n;!;0?ð0Þ
�6n

4Nc

�nðxÞj0i; (54)

which is perturbatively calculable with

JuðsÞ ¼ 
ðsÞ þOð�sÞ: (55)

On the other hand, �G�
u involves a pion state, and therefore

contains both perturbative and nonperturbative parts. A
simple discontinuity formula like Eq. (54) does not exist

for �G�
u with the states fjX�ig.

Combining Eqs. (47) and (49) the hadronic tensor at
leading order becomes

W�� ¼ 1

4�

Z
dx�e�irþx�=2

X3
j;j0¼1

Cj0 ðmb; p
�
X�ÞCjðmb; p

�
X�Þ

� Tr

�
Pv

2
��ð0Þ
j0�

6n
2
�ð0Þ
j�

�
p�
X�

Z dkþ

2�
e�ikþx�=2

� �G�
u

�
kþp�

X�;
p�
�

p�
X�

; pþ
�p

�
�

�

� h �Bvj �hvð~xÞYð~x; 0Þhvð0Þj �Bvi �
�
1þO

��2
QCD

m2
X�

��
;

(56)

where

Pv ¼ 1þv6
2

; Yðx; yÞ ¼ YðxÞYyðyÞ; ~x� ¼ �n � xn�=2:
(57)

The matrix element of the bilocal operator in Eq. (56)
defines the leading-order shape function [48,49]

fðlþÞ ¼ 1

2

Z dx�

4�
e�ix�lþ=2h �Bvj �hvð~xÞYð~x; 0Þhvð0Þj �Bvi

¼ 1

2
h �Bvj �hv
ðlþ � in �DÞhvj �Bvi; (58)

with lþ ¼ rþ þ kþ for Eq. (56). In the limit mb ! 1, the

support of f is ð�1; ��. The shape function accounts for
nonperturbative soft dynamics in the B-meson. Defining
projectors P

��
i such that Wi ¼ W��P

��
i , we obtain the

leading power result

Wð0Þ
i ¼ hi

�
p�
X�

Z ���rþ

0
dkþ �G�

u

�
kþp�

X�;
p�
�

p�
X�

; pþ
�p

�
� ;�

�

� fðkþ þ rþ; �Þ; (59)

where we show explicitly the dependence on �, the renor-

malization scale. Here hi ¼ hiðmb; p
�
X�; p

þ
X�;�Þwhere the

dependence on pþ
X� is entirely from contractions in the

tensors, while that on mb, p
�
X�, � comes also from loops.

In terms of the Wilson coefficients,

hi ¼
X3

j;j0¼1

Cj0 ðmb; p
�
X�;�ÞCjðmb; p

�
X�;�Þ

� Tr

�
Pv

2
��ð0Þ
j0�

n6
2
�ð0Þ
j�

�
P
��
i : (60)

The projectors P
��
i relevant for the differential decay rates

in Eqs. (35) and (37) have the following structure:

P��
i ¼ Aig

�� þ Biv
�v� þ Ciq

�q� þDiðv�q� þ v�q�Þ
þ Eip

�
�p�

� þ Fiðv�p�
� þ v�p�

�Þ
þGiðp�

�q� þ p�
�q

�Þ þHii�
����v�q�

þ Iii�
����p�

�q� þ Lii�
����v�p

�
�; (61)

where the coefficients Ai . . .Li are functions of p
þ
X�, p

�
X�,

pþ
� , p

�
� , and mB that are straightforward to determine by

inverting the result for W�� in Eq. (26).

In terms of hadronic variables, Eq. (59) becomes

Wð0Þ
i ¼ hi

�
p�
X�

Z pþ
X�

0
dkþ �G�

u

�
kþp�

X�;
p�
�

p�
X�

; pþ
�p

�
� ;�

�

� fðkþ þ ��� pþ
X�;�Þ

¼ hi
�
p�
X�

Z pþ
X�

0
dkþ �G�

u

�
kþp�

X�;
p�
�

p�
X�

; pþ
�p

�
� ;�

�

� Sðpþ
X� � kþ; �Þ

¼ hi
�
p�
X�

Z pþ
X�

0
dk0þ �G�

u

�
p�
X�ðpþ

X� � k0þÞ;
p�
�

p�
X�

; pþ
�p

�
� ;�

�
Sðk0þ; �Þ (62)

where SðpÞ � fð ��� pÞ has support for p � 0. The con-
volution variable k0þ � pþ

X� � kþ represents the plus-
momentum of the light-degrees of freedom (soft gluons,
quarks, and antiquarks) in the B-meson, and p�

X�ðpþ
X� �

k0þÞ is the invariant mass of collinear particles in the
u-quark jet including the fragmentation pion.
Evaluating the traces in Eq. (60), we derive from

Eq. (35) the following factorization formula for the end-
point fivefold differential decay rate:

d5�

dpþ
X�dp

�
X�dp

�
�dp

þ
�dE‘

¼ 3�0
�HðmB; p

�
X�; p

þ
X�; E‘; �Þp�

X�

Z pþ
X�

0
dk0þ

� �G�
u

�
p�
X�ðpþ

X� � k0þÞ; p
�
�

p�
X�

; pþ
�p

�
� ;�

�
Sðk0þ; �Þ;

(63)
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with �0 � G2
FjVubj2=ð1536�6Þ and

�HðmB; p
�
X�; p

þ
X�; E‘; �Þ ¼ 4ðmB � p�

X� � 2E‘Þ
�
ðmB � pþ

X�Þð2E‘ � 2mB þ p�
X� þ pþ

X�ÞC2
1 þ ð2E‘ �mB þ pþ

X�Þ

�
�
ðmB � pþ

X�ÞC1C2 þ ðp�
X� � pþ

X�Þ
C2
2

4
þ 2

ðmB � pþ
X�Þ2

p�
X� � pþ

X�

C1C3 þ ðmB � pþ
X�ÞC2C3

þ ðmB � pþ
X�Þ2

p�
X� � pþ

X�

C2
3

��
: (64)

The pþ
X�- and E‘-dependence in this expression comes solely from contraction of the leptonic and hadronic tensors. The

renormalized Wilson coefficients which encode hard loop corrections are functions Ci ¼ Ciðmb; p
�
X�;�Þ.

For the decay rate in Eq. (37) which integrates over the lepton energy we obtain:

d4�

dpþ
X�dp

�
X�dp

�
�dp

þ
�

¼ �0HðmB; p
�
X�; p

þ
X�;�Þp�

X�

Z pþ
X�

0
dk0þ �G�

u

�
p�
X�ðpþ

X� � k0þÞ; p
�
�

p�
X�

; pþ
�p

�
� ;�

�
Sðk0þ; �Þ; (65)

where

HðmB; p
�
X�; p

þ
X�;�Þ ¼ ðp�

X� � pþ
X�Þ2

�
ðmB � pþ

X�Þð3mB � 2p�
X� � pþ

X�ÞC2
1 þ ðmB � pþ

X�Þðp�
X� � pþ

X�ÞC1C2

þ ðp�
X� � pþ

X�Þ2
C2
2

4
þ 2ðmB � pþ

X�Þ2C1C3 þ ðmB � pþ
X�Þðp�

X� � pþ
X�ÞC2C3 þ ðmB � pþ

X�Þ2C2
3

�
:

(66)

The functions �H and H encode contributions from hard
scales, and from the kinematic contraction of tensor coef-
ficients. In the phase space region where pþ

X� ��QCD, at
leading order in the SCET power counting,

HðmB; p
�
X�; p

þ
X�;�Þ ¼ Hðmb; p

�; 0; �Þ: (67)

The same considerations apply to the function
HðmB; p

�
X�; p

þ
X�; E‘; �Þ in Eq. (63). Most often it is useful

to treat the pþ
X� dependence from the tensor contractions

exactly, without expanding pþ
X� � p�

X�, since at lowest
order in the perturbative corrections this allows [37] the
endpoint jetlike factorization theorem to agree with results
derived in the more inclusive situation where m2

Xu
�m2

b.
For the purpose of comparison with phenomenology, it

is appropriate to derive the expression of the decay rate
which is doubly differential in the jet invariant mass and in
the fraction z of large momentum components. Let us first
integrate Eq. (65) over pþ

� . At leading order we can set
m� ¼ 0, since m2

� ¼ Oð�4Þ. Therefore, in the chiral limit,
pþ
� � 0 from Eq. (39). Since the pion fragments from the

jet, the maximum value of pþ
� is pþ

X� � k0þ. Hence we can
write

d3�

dpþ
X�dp

�
X�dp

�
�

¼ �0HðmB; p
�
X�; p

þ
X�;�Þ

Z pþ
X�

0
dkþ

� G�
u ðkþp�

X�; z; �ÞSðpþ
X� � kþ; �Þ

(68)

where G�
u is defined in Eq. (51). By integrating further:

d2�

dm2
X�dz

¼
Z mX�

m2
X�=mB

dpþ
X�

m2
X�

ðpþ
X�Þ2

� d3�

dpþ
X�dp

�
X�dp

�
�

��������p�
�¼zp�

X�

��������p�
X�¼m2

X�=p
þ
X�

; (69)

where we indicate the two changes of variable explicitly.
The integration boundaries are derived from Eq. (11).
In Sec. VI we will illustrate how to extract from this

doubly differential decay rate information about the stan-
dard parton fragmentation function D�

u .

V. PROPERTIES OF G

A. Relations with the inclusive jet function, Jðs;�Þ
If we sum over all possible hadrons h in the Xu ! Xh

fragmentation process, then the fragmenting jet function
can be related to the inclusive jet function Juðs;�Þwhich is
completely calculable in QCD perturbation theory.
Consider the equality

X
h2H u

Z
dp�

h

Z
dpþ

h

d4�

dpþ
Xhdp

�
Xhdp

�
h dp

þ
h

¼ d2�

dpþ
Xu
dp�

Xu

;

(70)

where the sum with h 2 H u is over all final states with an
identified h hadron fragmenting from the u-quark jet. The
differential decay rate on the right-hand side involves the
hadronic light-cone variables in the process �B ! Xu‘ ��.
The sum takes pþ

Xh ! pþ
Xu

and comparing our Eq. (68)

with the leading-order factorization theorem for inclusive
�B ! Xu‘ �� (see e.g. [38])
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d2�

dpþ
Xu
dp�

Xu

¼ 16�3�0HðmB; p
�
Xu
; pþ

Xu
Þp�

Xu

Z pþ
Xu

0
dk0þ

� Juðp�
Xu
ðpþ

Xu
� k0þÞ; �ÞSðk0þ; �Þ; (71)

we obtain:X
h2H u

Z
dzGh

j ðkþp�
Xh; z;�Þ ¼ 2ð2�Þ3Jjðkþp�

Xu
;�Þ; (72)

for j ¼ u, where Ju is the leading-order quark jet function.
As the notation indicates, Eq. (72) holds for other partons
j ¼ fg; d; �u; . . .g as well. This relation between the frag-
menting jet function Gh

j and the jet function is not surpris-

ing since the set of states fjXhih2H u
g is complete. The

factor 2ð2�Þ3 is related to how we normalized Gh
q and

incorporated the phase-space for h.

B. Relations with the standard fragmentation function
Dh

q ðx;�Þ
In the SCET notation, Eq. (7) can be written in terms of

the collinear q-quark field

Dh
q

�
p�
h

!
;�

�
¼ �!

Z
dpþ

h

1

4Nc

Tr
X
X

�6n

� h0j½
!; �P
0;P?�nð0ÞjXhihXhj ��nð0Þj0i;
(73)

since jp?
h jdjp?

h j ¼ ðp�
h =2Þdpþ

h at a fixed value of p�
h .

Here � is the MS renormalization scale. According to
Eq. (52), the integral of Gh

q over its first argument can be

written asZ dkþ

2�
e�ikþx�=2Gh

q

�
kþ!;

p�
h

!
;�

�

¼ 1

2

Z
dpþ

h

Z
dxþ

Z
d2x?

1

4Nc

� Tr
X
X

�6nh0j½
!; �P
0;P?�nðxÞjXhihXhj ��nð0Þj0i: (74)

If we perform an operator product expansion on the right-
hand side of this equation we match onto a low energy
matrix element that gives the fragmentation function in
Eq. (73). Thus, Gh

j is given by the convolution of a pertur-

batively calculable J ij and the standard parton fragmen-

tation function. The result includes mixing between parton
types:

Gh
i ðs; z; �Þ ¼ X

j

Z 1

z

dx

x
J ij

�
s;
z

x
; �

�
Dh

j ðx;�Þ

�
�
1þO

��2
QCD

s

��
; (75)

where i; j ¼ fu; d; g; �u; . . .g. In Ref. [50] the concept of a
quark ‘‘beam function’’ is discussed. It turns out that a
quark beam function is the analog of Gh

q, but with parton

distributions in place of fragmentation functions (and an
incoming proton in place of an outgoing pion). The deri-
vation of the factorization theorem in Eq. (75) can be
carried out in a manner analogous to the matching of the
gluon beam function onto a gluon parton distribution, as
derived in Ref. [51]. For the factorization theorem for the
fragmenting jet function in Eq. (75), the Wilson coefficient
J ij describes the formation of a final state jet with invari-

ant mass s within which the nonperturbative, long-distance
fragmentation process takes place.
At tree level Eq. (75) is easily verified. Using a free

q-quark of momentum p in place of h in the final state in
Eq. (74) (and denoting the label parts of p� by p�

‘ , p
?
‘ and

the residual parts by p�
r , and defining z ¼ p�=!), the

partonic G is

Gtree
q ðkþ!; zÞ ¼

Z dpþ
r

4

Z
dx�dxþd2x?eik

þx�=2 1

4Nc

Tr½ �6n
!;p�
‘

0;p?

‘
h0j�nðxÞjqðpÞihqðpÞj ��nð0Þj0i

¼ X
p?
‘

Z d2p?
r

4�p�
‘

Z
dx�dxþd2x?ei½ðk

þ�p2
‘?=p

�
‘
Þx�=2�p�

r x
þ=2�p?

r �x?
!;p�
‘

0;p?

‘
p�
‘

¼ X
p?
‘

Z d2p?
r

4�
4ð2�Þ4
ðkþ � p2

‘?=p
�
‘ Þ
ðp�

r Þ
2ðp?
r Þ
!;p�

‘

0;p?

‘

¼ 2ð2�Þ3
ðkþÞ
ð!� p�Þ
¼ 2ð2�Þ3
ðkþ!Þ
ð1� zÞ: (76)

In the second to last step we recombined the residuals and
labels into the continuous p�, via 
!;p�

‘

ðp�

r Þ ¼ 
ð!�
p�Þ. The quark fragmentation function isDtree

q ðzÞ ¼ 
ð1�
zÞ. Since theWilson coefficientsJ ij are independent of the
choice of states, the tree-level coefficient function can be
identified as

J tree
qq ðkþ!; z=x;�Þ ¼ 2ð2�Þ3
ðkþ!Þ
ð1� z=xÞ; (77)

which satisfies Eq. (75). The one-loop calculation of J ij

will be presented in a future publication [52].
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VI. D�
u ðzÞ FROM A DOUBLY DIFFERENTIAL

DECAY RATE

As a further consequence of our factorization formulas,
we explore a strategy to extract from measurements of
suitable differential B-decay rates the standard pion frag-
mentation function D�

u ðzÞ for values of z that are not too
small, such as z * 0:5. Ultimately we anticipate that frag-
menting jet functions will be useful for many other pro-
cesses (including hadron-hadron collisions) for which a
factorization theorem like Eq. (65) can be derived involv-
ing Gh

i . The phenomenology of B-decays is particularly
instructive to this purpose since it allows to concentrate on
single jet production avoiding the kinematical complica-
tions of more involved scattering processes.

For comparison with phenomenology, we are interested
in the doubly differential decay rate in Eq. (69). We aim at
writing a factorization formula of the type:

d2�cut

dm2
X�dz

¼�0

X
j¼u; �u;d;g...

Z 1

z

dx

x
Ĥuj

�
mb;m

2
X�;

z

x
;�

�
D�

j ðx;�Þ

(78)

where Ĥuj is calculable in perturbation theory and the cut

refers to a suitable interval in pþ
X� over which we integrate.

We shall argue that in the ‘‘shape function OPE’’ regime
[32,33] (p�

X� � pþ
X� � �QCD) it is possible to write a

factorization formula involving D�
u , which does not spec-

ify the invariant mass of the final-state jet.
According to the discussion in Ref. [38], the shape

function can be written as a convolution when integrated
over a large enough interval ½0;� such that perturbation
theory is applicable at the scale �:

Sð!Þ ¼
Z 1

0
d!0C0ð!�!0ÞFð!0Þ; (79)

where C0 is the b-quark matrix element of the shape
function operator calculated in perturbation theory and F
is a nonperturbative function that can be determined by
comparison with data. F falls off exponentially for large!0
and all its moments exist without a cutoff.

Combining Eqs. (68), (69), and (75), the integration over
pþ
X� leads to

d2�cut

dm2
X�dz

¼ �0

X
j¼u; �u;d;g...

Z 1

z

dx

x
D�

j ðx;�Þ

�
Z mX�

m2
X�=mB

dpþ
X�

m2
X�

ðpþ
X�Þ2

H

�
mB;

m2
X�

pþ
X�

; pþ
X�;�

�

�
Z pþ

X�

0
dkþJ uj

�
kþ

m2
X�

pþ
X�

;
z

x
;�

�

�
Z 1

0
d!0C0ðpþ

X� � kþ �!0; �ÞFð!0Þ (80)

if pþmax
X� � �QCD. Let us now perform a Taylor expansion

of the perturbative kernel C0 around !0 ¼ 0:

C0ðpþ
X� � kþ �!0Þ ¼ C0ðpþ

X� � kþÞ �!0C0
0ðpþ

X� � kþÞ
þ . . . (81)

Since [38]

Z 1

0
d!0Fð!0Þ ¼ 1 and

Z 1

0
d!0!0nFð!0Þ ¼ Oð�n

QCDÞ; (82)

the kþ-convolution integral in Eq. (80) can be written as

Z pþ
X�

0
dkþJ uj

�
kþ

m2
X�

pþ
X�

;
z

x
;�

�
C0ðpþ

X� � kþ; �Þ þ . . .

(83)

where the dots indicate terms suppressed by increasing
powers of �QCD=p

þ
X� in the phase-space region where

the jet becomes less collimated and increases its invariant
mass (pþ

X� � �QCD). Hence, for pþmin
X� � �QCD and

pþmax
X� � p�

X�, at leading order in the
�QCD=p

þ
X�-expansion,

d2�cut

dm2
X�dz

¼ �0

X
j¼u; �u;d;g...

Z 1

z

dx

x
D�

j ðx; �Þ
Z mX�

m2
X�=mB

dpþ
X�

� m2
X�

ðpþ
X�Þ2

H

�
mB;

m2
X�

pþ
X�

; pþ
X�;�

�Z pþ
X�

0
dkþ

� J uj

�
kþ

m2
X�

pþ
X�

;
z

x
;�

�
C0ðpþ

X� � kþ; �Þ: (84)

By identifying

Ĥuj

�
mB;m

2
X�;

z

x
;�

�
,

Z mX�

m2
X�=mB

dpþ
X�

m2
X�

ðpþ
X�Þ2

�H

�
mB;

m2
X�

pþ
X�

; pþ
X�;�

�Z pþ
X�

0
dkþ

� J uj

�
kþ

m2
X�

pþ
X�

;
z

x
;�

�

� C0ðpþ
X� � kþ; �Þ; (85)

we see that Eq. (78) is satisfied at leading order in SCET.

Note that to obtain the complete inclusive Ĥuj there are

additional hard corrections from processes beyond those
treated in the jetlike region, so Eq. (85) does not give the

complete expression for Ĥuj. Following the same steps,

one can also test the consistency with the factorized ex-
pression

d3�cut

dm2
X�dzdE‘

¼ 3�0

Z 1

z

dx

x
Ĥuj

�
mb;m

2
X�;E‘;

z

x
;�

�
D�

j ðx;�Þ;
(86)

where �HðmB; p
�
X� ¼ m2

X�=p
þ
X�; p

þ
X�; E‘; �Þ in Eq. (64)

replaces H in Eq. (85).
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VII. CONCLUSIONS

Using soft collinear effective theory, we have derived
leading-order factorization formulas for differential decay
rates in the process �B ! Xh‘ �� where h is a light, energetic
hadron fragmenting from a measured u-quark jet. We
obtained results for differential decay rates with various
kinematic variables, for example

d3�

dpþ
Xhdp

�
Xhdp

�
h

¼�0HðmB;p
�
Xh;p

þ
Xh;�Þ

Z pþ
Xh

0
dkþ

�Gh
uðkþp�

X�;z;�ÞSðpþ
X��kþ;�Þ; (87)

where �0 is a constant prefactor, H encodes contributions
from hard scales, z ¼ p�

h =p
�
Xh and S is the leading-order

shape function. Gh
i is the novel leading-order fragmenting

jet function: at variance with the standard parton fragmen-
tation functionDh

i ðzÞ, it incorporates information about the
invariant mass of the jet from which the detected hadron
fragments.

We have also shown that it is possible to extract Dh
i ðzÞ

from a suitable �B ! Xh‘ �� differential decay rate, for
values of z that are not too small, like z * 0:5.

Moreover, our analysis implies that to obtain a factori-
zation theorem for a semi-inclusive process where the
hadron h fragments from a jet, it is sufficient to take the
factorization theorem for the corresponding inclusive case
and make the replacement

J jðkþ!Þ ! 1

2ð2�Þ3 G
h
j ðkþ!; zÞdz; (88)

where Jj is the inclusive jet function for parton j and the

additional phase-space variable is z ¼ p�
h =p

�
Xh, the mo-

mentum fraction of the hadron relative to the total large
momentum of the Xh system. This replacement rule is
consistent with integration over the phase space for h.
Applying Eq. (88) to the factorization theorem given sche-
matically in Eq. (4) we derive the following factorization
formula for the doubly differential decay rate in the process
�B ! XK�:

d2�

dE�dz
¼ �0smb

ð2�Þ3 Hsðpþ
XK;�Þ

Z pþ
XK

0
dkþGK

s ðkþmb; z;�Þ

� Sðpþ
XK � kþ; �Þ

¼ �0smb

ð2�Þ3 Hsðpþ
XK;�ÞX

j

Z pþ
XK

0
dkþ

Z 1

z

dx

x

� J sj

�
kþmb;

z

x
;�

�
DK

j ðx;�ÞSðpþ
XK � kþ; �Þ;

(89)

with pþ
XK ¼ mB � 2E�, and the �0s and Hs are defined in

Eq. (5) and Eq. (A1) of Ref. [38]. The soft function S is the
same one as in endpoint �B ! Xs�. The jet Wilson coef-
ficients J sj are process independent and calculable in

perturbation theory. At tree level:

J tree
ss ðkþ!; z=x;�Þ ¼ 2ð2�Þ3
ðkþ!Þ
ð1� z=xÞ: (90)

Analogously, for the process eþe� ! ðdijetsÞ þ h we
apply Eq. (88) to the factorization theorem for eþe� !
ðdijetsÞ in Eq. (3) to obtain the factorized differential cross
section

d3�

dM2d �M2dz
¼ �0

2ð2�Þ3 H2jetðQ;�Þ
Z þ1

�1
dlþdl�½Gh

qðM2 �Qlþ; z; �ÞJ �nð �M2 �Ql�; �Þ
þ JnðM2 �Qlþ; �ÞGh

�qð �M2 �Ql�; z; �ÞS2jetðlþ; l�; �Þ
¼ �0

2ð2�Þ3 H2jetðQ;�Þ �X
j

Z þ1

�1
dlþdl�

Z 1

z

dx

x

�
J qj

�
M2 �Qlþ;

z

x
;�

�
J �nð �M2 �Ql�; �Þ

þ JnðM2 �Qlþ; �ÞJ �qj
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��
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j ðx;�ÞS2jetðlþ; l�; �Þ; (91)

where �0 is the tree level total cross section which acts as a
normalization factor, Q is the center-of-mass energy, M2

and �M2 are hemisphere invariant masses for the two hemi-
spheres perpendicular to the dijet thrust axis. Since here we
assume that it is not known whether the hadron h frag-
mented from the quark or antiquark initiated jet, we have a
sum over both possibilities in the factorization theorem.
For the definitions of �0,H2jet, and S2jet see Ref. [4] whose
notation we have followed.

The factorization formulas derived with our analysis
should allow improved constraints on parton fragmentation
functions to light hadrons, by allowing improved control
over the fragmentation environment with the invariant
mass measurement, as well as opening up avenues for
fragmentation functions to be measured in new processes,

such as B-decays. We also expect that further study based
on the definition of the fragmenting jet function, will
contribute to a better understanding of the relative roles
of perturbative partonic short-distance effects and nonper-
turbative hadronization in shaping jet properties and
features.
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