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Measurements at B factories have provided important constraints on new physics in several rare

processes involving the B meson. New physics, if present in the b quark sector may also affect the top

sector. In an effective Lagrangian approach, we write down operators, where effects in the bottom and the

top sector are related. Assuming the couplings of the operators to be of the same size as the weak coupling

g of the standard model and taking into account constraints on new physics from the bottom sector as well

as top branching ratios, we make predictions for the rare top decays t ! cV, where V ¼ �, Z. We find

branching fractions for these decays within possible reach of the LHC. Predictions are also made for

t ! sW.
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I. INTRODUCTION

The flavor sector of the standard model (SM) is poorly
understood. The origin of masses and mixing and CP
violation in the quark and lepton sector is unknown.
Another mystery is the rare flavor-changing neutral current
(FCNC) processes. FCNC processes in the SM do not arise
at tree level, and are highly suppressed. Many extensions of
the SM naturally have FCNC processes that occur at tree or
loop level. Hence, measurements of FCNC processes can
put strong constraints on new physics (NP) that may be
discovered at present colliders like the Tevatron or the
LHC. In that sense, flavor data can complement the new
physics search at colliders.

Effects from new physics can cause deviations from the
SM predictions. These deviations are expected to be more
pronounced in rare FCNC processes as they are suppressed
in the SM. The B factories have made several measure-
ments of FCNC processes in the bottom sector and have
put strong constraints on new physics. Here, we will be
concerned with constraints on the b ! s� and b ! sZ
transitions. New physics in the former are constrained by
better measurements of the b ! s� rate [1] and a better
understanding of the SM [2] contribution to the process.
The later transition is constrained by Bs mixing, b ! sll
and also possible hints of new physics in decays like B !
K�;�Ks, etc. [3,4].

There are no measurements of FCNC in the top sector.
There are 95% C.L bounds, t ! qð¼ u; cÞ� < 5:9� 10�3

and t ! qð¼ u; cÞZ < 0:037 [5]. In the SM the branching
ratios for the rare FCNC decays t ! cV, where V ¼ g, �,
Z are tiny [6,7]. The small mass of the internal quarks in
the SM loop diagram makes FCNC effects in the top sector
much smaller than FCNC effects in the bottom sector.
Hence, FCNC processes in the top sector are excellent
probes of new physics.

The LHC will be a top factory allowing the possible
detection of FCNC effects in the top sector [8]. One can
hope to measure t ! qð¼ u; cÞZ with branching ratios in
the range 6:1� 10�5–3:1� 10�4, while t ! qð¼ u; cÞ�
can be measured with branching ratios in the range 1:2�
10�5–4:1� 10�5. New physics searches via the top-quark
decays have been extensively analyzed in the literature in
specific models [9]. In this paper, we focus on a model
independent study of the non-SM FCNC effects in the top
sector. In this framework, imposing the constraints on b !
sV, V ¼ �, Z transitions as well as constraints from top
branching ratios measurements, we predict the size of rare
FCNC t ! cV, V ¼ �, Z decays.
In our approach, we write down higher dimension op-

erators, which are invariant under the SM gauge group that
generate the anomalous t ! cV, V ¼ �, Z couplings. As
the left-handed top and the left-handed bottom are in the
same SUð2ÞL doublet the tcV and the bsV couplings
are related. We consider two operators that can generate
the tcV and bsV couplings. One involves the SUð2ÞL gauge
fields and the other the Uð1ÞY gauge field. We choose
the size of the couplings to be the same size as the
SUð2ÞL gauge coupling, g, and the Uð1ÞY gauge coupling
g0. This choice for the size of the anomalous coupling
is motivated by the assumption that the physics that gen-
erates the anomalous couplings are weakly coupled.
Constraints from b ! s� force the couplings between
the two operators to follow the same relation as the one
between the Uð1ÞY and SUð2ÞL gauge couplings in the
SM to a very good approximation. Assuming such a rela-
tion between the two couplings, the b ! s� constraint
is eliminated and all predictions are found to depend on
a single coupling associated with the SUð2ÞL gauge field.
With the size of this coupling of the same order as g, all
low energy constraints are found to be satisfied. The op-
erators also generate a t ! sW vertex and for the anoma-
lous coupling �g, the corrections to the branching ratio
for t ! sW from new physics is found to be consistent
with the top branching fraction measurements. Finally,
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predictions are made for t ! c�, t ! cZ and t ! sW
transitions.

There have been previous attempts [10–12] to make
predictions for rare top processes using constraints from
B decays, specifically b ! s�, in an effective Lagrangian
approach. There are several differences between this work
and the previous work. First, in the previous work the tc�
and tcZ couplings are independent while in our work they
are related as our anomalous couplings are generated by
operators invariant under the SM gauge group. Second, in
the previous work constraints on the anomalous tcZ and
tc� couplings are obtained from FCNC effects in the down
sector generated though loop effects. In our work, for the
considered size of the couplings, we find that loop effects
are sufficiently small to be consistent with experiments and
therefore do not introduce any additional constraints. The
size of the anomalous couplings are fixed from tree pro-
cesses and hence these couplings are quite strongly con-
strained. As indicated above, we also take into account
experimental constraints on top branching fractions.

Finally, a unique feature of the operators in the effective
Lagrangian in our approach is that they are momentum
dependent and therefore contributions to FCNC effects in

the top sector are enhanced typically by a factor � m2
t

m2
b

relative to the ones in the bottom sector. Note that, it has
been speculated in the past that FCNC effects in the top
sector may be enhanced because of its heavy mass. This
has motivated specific ansatz for the FCNC vertices with
enhanced effect in the top sector [13].

In our approach, the anomalous couplings in the bottom
and top sector are related. This is true only for certain
classes of models. However, the connection between the
top and bottom sectors is not generic as far as FCNC effects
are concerned. In the two Higgs doublet model, for in-
stance, FCNC arise in the bottom and the top sector at the
tree or loop level. However, any connection between the
effects in the two sectors are strongly dependent on the
structure of the Yukawa couplings in the up and the down
quark sectors. Within specific models of the Yukawa struc-
tures one can relate FCNC effects in the top and the bottom
sector in new physics models [14–16].

The paper is organized in the following manner: In
Sec. I, we write down the effective Hamiltonian that gen-
erates the t ! cVð¼ �; ZÞ transitions. The vertices for b !
sV, t ! cV as well as b ! cW and t ! sW are written
down. Constraints on these couplings are obtained. In the
next section, Sec. II, we make predictions for the processes
t ! cV, V ¼ �, Z, and t ! sW. In the final section, we
present our conclusions.

II. EFFECTIVE LAGRANGIAN

In this section, we write the effective Lagrangian that
generates to t ! cV, V ¼ �, Z transitions. We write the
effective Hamiltonian as,

L ¼ LSM þX
i

ciOi

�2
; (1)

where Oi are dimension-six operators.
We will concentrate on the following two operators [17]:

OW ¼ i �Qi�
a��D�QjW

a��; OB ¼ i �Qi�
�D�QjB

��;

(2)

where Qi;j are the left-handed quark doublets, i, j are the

generation indices that refer to the second and third fam-
ilies, respectively, and

~D � ¼ ~@� þ igAa
�

�a

2
þ ig0B�

Y

2
:

Hence, we rewrite Eq. (1) as

L ¼ LSM þ aWOW þ aBOB

�2
: (3)

As indicated in the previous section, the operators generate
FCNC vertices with a q2 dependence resulting in new
physics FCNC effects in the top sector that are enhanced
by a factor of ðmt=mbÞ2 compared to new physics effects in
the bottom sector. Such q2 dependent operators were pre-
viously considered in the context of single top production
[18]. One can also write down operators involving the
Higgs field which can generate top FCNC processes [19].
Since, the mechanism of electroweak symmetry breaking
and the Higgs sector of the SM are untested we will not
consider those operators in our analysis. Now, before we go
into the details of the calculations, it is worthwhile to see
how such interactions might arise. Consider the interaction
involving only the second and third family quarks of the
type

L 0 ¼ C3
�Q3

~Q3
~X þ C2

�Q2
~Q2

~X þ H:c; (4)

where we have suppressed any particle indices. The ~X
could be a scalar/pseudoscalar, vector/axial vector etc.

and the ~Q3 could be spin 0 or spin 1
2 objects. Let us now

suppose there is mixing such that in the mass basis,

~Q 2 ! ~Q2 cos�� ~Q3 sin�;

~Q3 ! ~Q2 sin�þ ~Q3 cos�;
(5)

where � is the mixing angle. One can then rewrite, Eq. (4)
as

L 0 ¼ C3
�Q3

~Q3
~X cos�þ C3

�Q3
~Q2

~X sin�

þ C2
�Q2

~Q2
~X cos�� C2

�Q2
~Q3

~X sin�þ H:c: (6)

Now we consider vertex corrections involving an inter-

mediate ~Q3 or ~Q2 and ~X. These corrections will generate
the following vertices:
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�Q 2Q3V � C2C
�
3½fð ~Q2Þ � fð ~Q3Þ� sin� cos�;

�Q3Q3V � jC3j2½fð ~Q3Þcos2�� fð ~Q2Þsin2��;
�Q2Q2V � jC2j2½fð ~Q2Þcos2�� fð ~Q3Þsin2��;

(7)

where V is the W, Z, � and f’s are the loop functions. It is
clear that by proper choice of the parameters one can make
the second operator, �Q3Q3V, small enough without sup-

pressing the first flavor-changing operator. The second
operator can contribute to Z ! �bLbL, where new physics
effects are strongly constrained [5]. This is just a scenario
where the structure in Eq. (2) may be generated. Since we
are adopting a model independent approach, we will not
discuss specific models anymore.
These operators in Eq. (2) lead to the following inter-

actions:

LC ¼ i
aWffiffiffi
2

p
�2

½ �c��ð1� �5Þ@�bWþ�� þ �s��ð1� �5Þ@�tW����;

LtcZ ¼ i
aWc� aBs

2�2
½ �c��ð1� �5Þ@�tZ���;

Ltc� ¼ i
aWsþ aBc

2�2
½ �c��ð1� �5Þ@�tA���;

LbsZ ¼ i
�aWc� aBs

2�2
½�s��ð1� �5Þ@�bZ���;

Lbs� ¼ i
�aWsþ aBc

2�2
½�s��ð1� �5Þ@�bA���;

(8)

where c ¼ cos�W and s ¼ sin�W , with �W being the Weinberg angle.
The Lagrangian above generates momentum dependent vertices. We can combine the processes as tðpÞ ! cðkÞVðqÞ and

bðpÞ ! sðkÞVðqÞ, where V ¼ W, Z, �. For b decays the massive vector bosons have to be off shell. The vertices for various
processes can now be written as

L bcW ¼ �i
aWffiffiffi
2

p
�2

½ �c��ð1� �5Þðq�p� � q � p���ÞbWþ��;

LtsW ¼ �i
aWffiffiffi
2

p
�2

½ �s��ð1� �5Þðq�p� � q � p���ÞbW���;

LtcZ ¼ �i
aWc� aBs

2�2
½ �c��ð1� �5Þðq�p� � q � p���ÞtZ��;

Ltc� ¼ �i
aWsþ aBc

2�2
½ �c��ð1� �5Þðq�p� � q � p���ÞtA��;

LbsZ ¼ �i
�aWc� aBs

2�2
½�s��ð1� �5Þðq�p� � q � p���ÞbZ��;

Lbs� ¼ �i
�aWsþ aBc

2�2
½ �s��ð1� �5Þðq�p� � q � p���ÞbA��:

(9)

We now consider the constraints on the couplings above.
We begin with b ! s�. The SM amplitude for b ! s� is
given by

MSM
b!s� ¼ �VtbV

�
ts

GFffiffiffi
2

p e

8�2

� C7ð�Þ �s	��A
��ðmsLþmbRÞb; (10)

where LðRÞ ¼ ð1� �5Þ. Now we can write the bs� vertex
from Eq. (8) as

MNP
b!s� ¼ ��aWsþ aBc

4�2
�s	��A

��½mbRþmsL�b: (11)

Comparing with the SM expression we have

x ¼
��������
MNP

bs�

MSM
bs�

��������
¼

��������
��aW þ aBc=s

g

��
16�2M2

W

�2

��
1

g2VtbV
�
tsC7ð�Þ

���������:
(12)

With �� 1 TeV, C7ð� ¼ mbÞ ¼ �0:280 [20] and

jVtbV
�
tsj ¼ 0:04, we have x� 214½�aWþaBc=s

g �. In other

words, for x� 1, ½�aWþaBc=s
g � � 0:004. This difference be-

tween aW and aBc=s then arises most likely at the loop
level. It is interesting to speculate how this scenario might
arise in some models of new physics. While we do not
present a concrete model, we refer to Eq. (4) to Eq. (7) for
an understanding of how the relation between aW and aB
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could arise. If the particles ~Q2;3 have the same couplings to

W� and B� as the SM quarks, resulting from some en-

hanced symmetry, then for the generated operators in
Eq. (2) we would expect aW / g and aB / g0, which could
then result in the relation between aW and aB discussed
above.

Note that if aW ¼ g and aB ¼ g0 then the NP contribu-
tion to bs� vanishes. Since, due to the weak coupling
assumption, we expect aW � g and aB � g0 then the NP
contribution to b ! s� are expected to be small due to
cancellation. Hence, to avoid constraints from b ! s� we
will choose

aBc

aWs
¼ 1: (13)

With the above condition, we can now rewrite the vertices
in Eq. (8) as

LC ¼ i
aWffiffiffi
2

p
�2

½þ �c��ð1� �5Þ@�bWþ��

þ �s��ð1� �5Þ@�tW����;

LtcZ ¼ i
aWðc2 � s2Þ

2c�2
½ �c��ð1� �5Þ@�tZ���;

Ltc� ¼ i
aWs

�2
½ �c��ð1� �5Þ@�tA���;

LbsZ ¼ i
�aW
2c�2

½ �s��ð1� �5Þ@�bZ���: (14)

Hence, all interactions depend on the coupling aW . We now
estimate the effects of the anomalous couplings on the
various vertices. To be specific we choose jaW j from
0.5 g to 2 g and consider NP effects in the charged current
processes t ! sW and b ! cW. We start with the t ! sW
vertex, which has the form

L tsW ¼ �s

�
��ðaþ b�5Þ þ ic

	��q
�

mt

þ id
	���5q

�

mt

�
t
��; (15)

with

a ¼ i
aWffiffiffi
2

p
�
M2

W

2�2

�
;

b ¼ �i
aWffiffiffi
2

p
�
M2

W

2�2

�
;

c ¼ i
aWffiffiffi
2

p
��ðmt �msÞmt

2�2

�
;

d ¼ i
aWffiffiffi
2

p
��ðmt þmsÞmt

2�2

�
:

(16)

The SM piece in this case is given by

L SM
tsW ¼ �igffiffiffi

2
p Vts �s½��ð1� �5Þ�t
��; (17)

We can estimate the ratio of the NP to the SM contribution
to t ! sW as

rtsW �
��������
LNP

tsW

LSM
tsW

��������¼
��������

aW
gVts

�
M2

W

2�2

���������	 0:08

��������
aW
g

�������� (18)

for � ¼ 1 TeV and jVtsj ¼ 0:04. In the above, we have
dropped c and d in the NP contribution. We do not expect
their inclusion to change our estimate by much. Hence,
allowing jaW j ¼ 0:5 g–2 g, rtsW can be between 4% to
16%. Allowing the NP contribution to add constructively
to the SM contribution, the branching ratio for t ! sW is

doubled for rtsW ¼ ffiffiffi
2

p � 1, which leads to aW � 5 g. The
estimate made here is rough and a more accurate calcu-
lations of the branching ratio for t ! sW can be found in
the next section. The result of the calculation, combined
with experimental measurements, validates the use of the
assumption jaW j � g.
Let us now turn to b ! cW: The NP contribution to this

charged current i,

L bcW ¼ �c

�
��ðaþ b�5Þ þ ic

	��q
�

mb

þ id
	���5q

�

mb

�
b
��; (19)

with

a ¼ i
aWffiffiffi
2

p
�
q2

2�2

�
;

b ¼ �i
aWffiffiffi
2

p
�
q2

2�2

�
;

c ¼ i
aWffiffiffi
2

p
��ðmb �mcÞmb

2�2

�
;

d ¼ i
aWffiffiffi
2

p
��ðmb þmcÞmb

2�2

�
:

(20)

The SM piece is given by

L SM
bcW ¼ �igffiffiffi

2
p Vcb �c½��ð1� �5Þ�b
��; (21)

We can estimate the ratio of the NP to the SM contribution
to b ! cW as

rbcW �
��������
LNP

bcW

LSM
bcW

��������¼
��������

aW
gVcb

�
q2

2�2

���������: (22)

Using jaW j � g, � ¼ 1 TeV, Vcb ¼ 0:04, we find rbcW &
10�3. Since b ! cW is measured through B decays this NP
correction will be masked by hadronic uncertainties.
We now turn to FCNC vertices and start with the bsZ

vertex. This can be written using Eq. (14) as

MbsZ ¼ �s

�
��ðaþ b�5Þ þ ic

	��q
�

mb

þ id
	��q

�

mb

�
b
��;

(23)
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with

a ¼ �aW
2c

�
q2

2�2

�
;

b ¼ ��aW
2c

�
q2

2�2

�
;

c ¼ �aW
2c

��ðmb �msÞmb

2�2

�
;

d ¼ �aW
2c

��ðmb þmsÞmb

2�2

�
:

(24)

We see that the bsZ couplings are suppressed by � m2
b

�2 �
2:5� 10�5, which is tiny. One can look at this in another
way. As a quick estimate, we can compare the bsZ vertex
above with the size of the bsZ in Ref [3]. The bsZ vertex,
in the notation of Ref [3], is given by

L bsZ ¼ � g

4c
Usb �s½��ð1� �5Þ�b
�� þ H:c:; (25)

where jUsbj � 0:002 is obtained using the measured Bs

mixing. Comparing with Eq. (24), we obtain

aW � gUsb

�2

m2
b

; (26)

which leads to

aW � 80 g (27)

for �� 1 TeV and mb � 5 GeV. We have dropped c and
d in the NP contribution which is reasonable for a quick
guess estimate for aW . The value for aW in Eq. (27) will
result in very large effects in the top sector that are incon-
sistent with experimental constraints. As an example, the
branching ratio for t ! sW will be too large in contra-
diction to experimental results. In our analysis, as indicated
earlier, aW � g and so the effect of the anomalous cou-
plings on the b ! sZ are too small. Hence, the operators in
Eq. (1) cannot generate a bsZ coupling of the right size to
explain the possible hints of new physics in rare B decays
[3]. Stated in another way, any anomalous bsZ vertex of
the correct size must arise from a mechanism that does not
affect the top sector. This happens in models with new
vector-like isosinglet down-type quarks.

We can now proceed to t ! cV, V ¼ �, Z. We can write
the t ! cZ vertex as

MtcZ ¼ �c

�
��ðaþ b�5Þ þ ic

	��q
�

mt

þ id
	���5q

�

mt

�
t
��;

(28)

with

a ¼ aWðc2 � s2Þ
2c

�
M2

Z

2�2

�
;

b ¼ �aWðc2 � s2Þ
2c

�
M2

Z

2�2

�
;

c ¼ aWðc2 � s2Þ
2c

��ðmt �mcÞmt

2�2

�
;

d ¼ aWðc2 � s2Þ
2c

��ðmt þmcÞmt

2�2

�
:

(29)

At this point, one may worry about constraints from meson
mixing on didjZ (di;j are down quarks) vertices generated

by the anomalous couplings above at loop level. We show
below, that the size of the tcZ couplings above is consistent
with constraints from K and Bd;s mixings. Following

Ref [10], we write the tcZ vertex as,

�Leff ¼ � g

2 cos�W

�
�LZ

� �t��

�
1� �5

2

�
c

þ �RZ
� �t��

�
1þ �5

2

�
c

�
þ H:c:; (30)

where �LðRÞ are free parameters determining the strength of

these anomalous couplings. Assuming CP invariance,
�LðRÞ are real. Comparing the above with Eq. (29), and

neglecting the terms c and d, we obtain

�L ¼ aW
g

½c2 � s2�M
2
Z

�2
; �R ¼ 0: (31)

Using � ¼ 1 TeV we find �L � 4� 10�3ðaWg Þ.
In Ref [10], the anomalous coupling �L in Eq. (30) was

constrained by experimental measurements/bounds on the
induced flavor-changing neutral couplings of the light
fermions. This was done in the following manner:
Integrating the heavy top quark out of Leff generates an
effective interaction of the form

~L ¼ g

cos�W
aij �fi�

�

�
1� �5

2

�
fjZ� þ H:c:; (32)

where fi ¼ b, s, d. Evaluating the one-loop diagram for
the vertex correction gives

aij ¼ �L

16�2

m2
t

v2
ðVtiV

�
cj þ VtjV

�
ciÞ ln

�2

m2
t

; (33)

where Vij are the elements of the Cabbibo-Kobayashi-

Maskawa matrix and � is a cutoff for the effective
Lagrangian.
Now imposing constraints on aij derived by studying

several flavor-changing processes, such as KL ! ���, the
KL � KS mass difference, B0

d;s � �B0
d;s mixing, a bound on

�L was obtained as [10]

�L < 5� 10�2; (34)

with � ¼ 1 TeV and mt ¼ 171 GeV. Since the work in
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Ref [10], Bs mixing has been measured. One can estimate
j�Lj, using this new piece of experimental information.
Comparing Eq. (25) with Eq. (33), we can write down

�L ¼ 8�2 v
2

m2
t

1

ln�
2

m2
t

jUsbj: (35)

This gives �L � 9� 10�2, which is consistent with
Eq. (34). Using Eq. (31) and (34), one obtains aW �
10 g. As shown in the next section, this will lead to too
large a branching ratio for t ! sW. Hence aW � g is quite
consistent with experimental constraints from mixing and
rare processes in the down quark sector.

We now move to t ! c�. The matrix element is

M tc� ¼ �c

�
ic
	��q

�

mt

þ id
	��q

�

mt

�5

�
t
��; (36)

with

a ¼ b ¼ 0; c ¼ aWs

��ðmt �mcÞmt

2�2

�
;

d ¼ aWs

��ðmt þmcÞmt

2�2

�
:

(37)

Again, as before the above vertex may generate a bs� term
via loop effects. Following Ref [11], we write

�Leff ¼ 1

�
½��e�t	��cF

��� þ H:c:; (38)

where F�� is the Uemð1Þ field strength tensor; e is the
corresponding coupling constant;

Comparing with Eq. (36) we obtain

�� � aW
g

mt

4�
: (39)

This gives j��j � 4:3� 10�2ðaWg Þ.
The anomalous top-quark couplings �tc� can modify the

coefficients of operators O7 in the SM effective
Hamiltonian for b ! s� [11]. With the value of �� above,

the corrections to b ! s� are consistent with the experi-
mental measurements with aW � g.

III. NUMERICAL ANALYSIS

In this section we provide the branching ratios for t !
cZ, t ! c� and t ! sW. The general form of the ampli-
tude Aðt ! cþ VÞ, where V ¼ � or Z is,

A ¼ �uc

�
a�� þ b���5 þ ic	�� q�

mt

þ id	���5

q�
mt

�
ut


�
�; (40)

where �ut, uc, and 
� are the incoming and outgoing spinors

and the gauge boson polarization vector, respectively. In
terms of the coefficient functions the decay widths are

�ðt! c�Þ ¼ 1

8�
mtðjcj2 þ jdj2Þ;

�ðt! cZÞ ¼ 1

16�mt

�
1�m2

Z

m2
t

��
m2

t

m2
Z

� 1

��
ðm2

t þ 2m2
ZÞðjaj2

þ jbj2Þ � 6m2
ZReða�c� b�dÞ

þm2
Z

�
m2

Z

m2
t

þ 2

�
ðjcj2 þ jdj2Þ

�
: (41)

The same formula can be adapted to the t ! sW pro-
cess. The branching ratios for t ! sW, t ! cZ, and t !
c� processes are defined as

BR tsW ¼ �½t ! sW�
�½mt� ; BRtcZ ¼ �½t ! cZ�

�½mt� ;

BRtc� ¼ �½t ! c��
�½mt� :

(42)

For the top width we use �ðmtÞ 	 �ðt ! bWÞ, which is
given by

�ðt ! bWÞ ¼ GF

8�
ffiffiffi
2

p jVtbj2m3
t

�
1�m2

W

m2
t

�

�
�
1þm2

W

m2
t

� 2
m4

W

m4
t

�
:

(43)

For the charged current pieces we have to include the SM
contributions also. For the b ! cW transition, we have
already shown the NP contribution to be small, and so
we will not consider it any further. For the rare decays t !
cV, V ¼ �, Z, since the SM contributions are tiny, we can
ignore the SM terms.
In the numerical analysis, we used the quark masses

mt ¼ 171:3 GeV, mb ¼ 4:2 GeV [5], and Cabibbo-
Kobayashi-Maskawa matrix elements jVtsj ¼ 0:04 042,
jVtbj ¼ 0:999 146 [21]. We plotted the branching ratios
for t ! c�, and t ! cZ as a function of jaW j for � ¼
1 TeV in Figs. 1(a) and 1(b), respectively. Here, jaW j is
varied between 0.5 g and 2 g. Also, the branching ratio for
t ! sW is plotted as a function of jaW j for � ¼ 1 TeV in
Fig. 2. The NP contributions added constructively and
destructively to the SM contributions are shown in
Figs. 2(a) and 2(b), respectively. We calculated the branch-
ing ratios BRtsW 	 10:3� 10�3 (constructive),
	 3:8� 10�3 (destructive), BRtcZ 	 0:93� 10�4, and
BRtc� 	 2:0� 10�4 at jaW j ¼ g. The branching ratios

for t ! cZ and t ! c� are within the reach of LHC.
Using the maximum BRtsW above, we can compute

rt ¼ �½t ! bW�P
q¼d;s;b

�½t ! Wq� � 0:99: (44)

The experimental measurements give rt ¼ 0:99þ0:09
�0:08 [5],

which compared to rt in Eq. (44) validates the weak
coupling assumption jaW j � g.
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IV. CONCLUSION

In this paper, we considered rare b ! sV, V ¼ �, Z and
t ! cV, V ¼ �, Z decays that arise from the same non-SM
physics, or in other words, the same higher dimensional
operator corrections to the standard model. The existing
constraints from B physics strongly constrain the NP con-
tributions to t ! cZð�Þ. In certain situation, the constraints

from B decays as well as top branching fraction measure-
ments still allow branching ratios for t ! cZð�Þ that may
be accessible at the LHC.
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