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We analyze the spectral moments of the V � A two-point correlation function. Using all known short-

distance constraints and the most recent experimental data from tau decays, we determine the lowest

spectral moments, trying to assess the uncertainties associated with the so-called violations of quark-

hadron duality. We have generated a large number of acceptable spectral functions, satisfying all

conditions, and have used them to extract the wanted hadronic parameters through a careful statistical

analysis. We obtain accurate values for the �PT couplings L10 and C87, and a realistic determination of the

dimension six and eight contributions in the operator product expansion, O6 ¼ ð�5:4þ3:6
�1:6Þ � 10�3 GeV6

and O8 ¼ ð�8:9þ12:6
�7:4 Þ � 10�3 GeV8, showing that the duality-violation effects have been underestimated

in previous literature.
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I. INTRODUCTION

QCD sum rules (QCDSRs) [1,2] have been widely used
during the last 30 years to study many important aspects of
QCD. They constitute a very useful tool, enabling us with a
powerful connection between QCD parameters and physi-
cal observables.

The basic assumption behind the QCDSR techniques is
that the quark and hadron degrees of freedom provide two
dual descriptions of the same strong interaction dynamics.
This quark-hadron duality is a consequence of the assumed
confinement of QCD. In more technical terms, a QCDSR is
a dispersion relation relating the value of a given two-point
correlation function at some Euclidean value ofQ2 with an
integral over the corresponding spectral function in the
Minkowskian domain. Quark-hadron duality allows us to
calculate this Minkowskian integral in terms of hadrons,
using the available experimental data. Ideally, the resulting
QCDSR is an exact mathematical relation arising from
analyticity and confinement (duality). In practice, however,
a series of approximations need unavoidably to be adopted
in its specific numerical implementation. In the Euclidean
region the correlator is approximated by its short-distance
operator product expansion (OPE) [3], truncated to a given
finite order. In the Minkowskian region, since experimental
data is only available at low energies, the integral over the
physical spectral function is usually cut at a certain finite
invariant-mass s0; from s0 up to 1, one then adopts the
short-distance information provided by the OPE.

The uncertainties associated with all these approxima-
tions are usually known as violations of quark-hadron
duality. They are difficult to estimate, because of our
inability to make reliable QCD calculations at low and
intermediate energies. The normal way to assess the theo-
retical uncertainties of QCDSRs consists in estimating the
OPE truncation error and testing the stability of the results

with variations of s0. However, this method is too naive and
can underestimate the effects not included in the OPE, i.e.
the difference between the physical correlator and its OPE
approximation.
Violations of QCD quark-hadron duality [4] have been

relatively poorly studied and often disregarded. Its impor-
tance in finite energy sum rules (FESRs) has attracted some
attention recently [5–8], owing to the phenomenological
need for higher accuracies. To estimate the size of these
effects is of course of maximal importance, if we want to
master the strong interaction at all energies and be able to
perform precision QCD calculations. This importance ex-
tends to all particle physics when one realizes that those
calculations are often necessary to disentangle new physics
from the standard model. Moreover, duality violations will
also be present in new-physics scenarios characterized by a
strongly interacting dynamics. A better knowledge of dual-
ity violations in QCD would help to understand their role
in more exotic theories.
In the following, we present a detailed analysis of the

possible numerical impact of duality violations in the
description of the two-point correlation function of a left-
and a right-handed vector currents. This is a very good
laboratory to test the problem because this correlator is an
order parameter of chiral-symmetry breaking: in the mass-
less quark limit it vanishes to all orders in perturbation
theory; its operator product expansion only contains
power-suppressed contributions, starting with dimension
six. In the absence of any theory of duality violations, we
will use a generic, but theoretically motivated, model [4,9]
to assess the phenomenological relevance of these effects.
The theoretical ingredients of our analysis are presented

in the next section. Section III contains a detailed discus-
sion of the behavior of the physical spectral function at
high energies. Using the most recent experimental data, we
generate a large number of ‘‘acceptable’’ spectral functions
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which satisfy all known QCD constraints. Our numerical
results, obtained through a careful statistical analysis of the
whole set of possible spectral functions, are given in
Sec. IV. Section V summarizes our findings.

II. THEORETICAL FRAMEWORK

The basic objects of the theoretical analysis are the two-
point correlation functions of the vector and axial-vector
quark currents J �

ijðxÞ, defined as follows:

���
ij;J ðqÞ � i

Z
d4xeiqxh0jTðJ �

ijðxÞJ �
ijð0ÞyÞj0i

¼ ð�g��q2 þ q�q�Þ�ð1Þ
ij;J ðq2Þ

þ q�q��ð0Þ
ij;J ðq2Þ: (1)

Although our analysis can be applied to any correlation
function, we will only study here the nonstrange correla-
tors and therefore J �

ijðxÞ will denote the Cabibbo-allowed
vector or axial-vector currents, V�

udðxÞ ¼ �u��d and A�
ud ¼

�u���5d. Moreover, we will concentrate on the J ¼ 0þ 1
part of the V � A difference, that is nothing but the corre-
lation function of the left- and right-handed currents,
L�
udðxÞ � V�

udðxÞ � A�
udðxÞ and R�

udðxÞ � V�
udðxÞ þ A�

udðxÞ,
that is

�ðsÞ � �ð0þ1Þ
ud;V ðsÞ ��ð0þ1Þ

ud;A ðsÞ � 2f2�
s�m2

�

þ ��ðsÞ; (2)

where we have made explicit the contribution of the pion
pole to the longitudinal axial-vector two-point function.
We will work in the isospin limit, mu ¼ md, where

�ð0Þ
ud;Vðq2Þ ¼ 0.

The correlator ��ðsÞ is analytic in the entire complex s
plane, except for a cut on the positive real axis which starts
at the threshold sth ¼ 4m2

�. Applying Cauchy’s theorem in
the circuit in Fig. 1 to the function wðsÞ�ðsÞ, one gets the
exact relation:

Z s0

sth

dswðsÞ�ðsÞ þ 1

2�i

I
jsj¼s0

dswðsÞ�ðsÞ

¼ 2f2�wðm2
�Þ þ Ress¼0½wðsÞ�ðsÞ�; (3)

where �ðsÞ � 1
� Im ��ðsÞ, wðsÞ is a general analytic weight

function except maybe at the origin where it can have
poles, and Ress¼0½FðsÞ� is the residue of FðsÞ at s ¼ 0.
Integrals of the chiral spectral function �ðsÞ times wðsÞ
from threshold sth up to s0 are usually called spectral chiral
moments MwðsÞðs0Þ; when s0 ! 1 we will denote them

MwðsÞ for brevity.
In order to evaluate the contour integral of (3), one

approximates �ðsÞ with its OPE expression

�OPEðsÞ ¼ X
k¼3

C2kð�ÞhO2kið�Þ
ð�sÞk � X

k¼3

O2k

ð�sÞk ; (4)

where hO2kið�Þ are vacuum expectation values of operators
with dimension d ¼ 2k; their associated Wilson coeffi-
cients C2kð�Þ contain logarithmic dependences with �s.
Notice that both are �-dependent quantities, but this de-
pendence cancels in their productO2k. The use of the OPE
introduces a systematic error in the relation (3), which is
expected to be dominated by the region close to the posi-
tive real axis where the OPE approximation does not apply
(except at s0 ¼ 1 [10]).
Let us rewrite Eq. (3) in the form:

Z s0

sth

dswðsÞ�ðsÞ þ 1

2�i

I
jsj¼s0

dswðsÞ�OPEðsÞ

þ DV½wðsÞ; s0�
¼ 2f2�wðm2

�Þ þ Ress¼0½wðsÞ�ðsÞ�; (5)

where

DV ½wðsÞ; s0� � 1

2�i

I
jsj¼s0

dswðsÞð�ðsÞ ��OPEðsÞÞ
(6)

parametrizes the violation of quark-hadron duality that we
are interested in. Notice that DV½wðsÞ; s0� depends on the
weight function wðsÞ and on the circuit radius s0. The
relation (5) contains all the elements of a standard sum
rule. The first term is the hadronic part, that in our case is
nothing but an integral of the V � A nonstrange spectral
function that has been measured in � decays (for s < m2

�)
[11–15], while the second term is the OPE contribution to
the contour integral at jsj ¼ s0. The second line contains
the pion-pole contribution and the residue at the origin for
negative power weight functions, 1=sn, which is calculable
with chiral perturbation theory (�PT) [16].
Sum rules of this type have been applied countless times

in the last 30 years in order to extract theoretical parame-
ters like quark masses [17,18], the strong coupling constant
[19], QCD condensates [13,20–30] or �PT couplings

s0sth
Re q2

Im q2

FIG. 1 (color online). Analytic structure of ��ðsÞ.

GONZÁLEZ-ALONSO, PICH, AND PRADES PHYSICAL REVIEW D 81, 074007 (2010)

074007-2



[20,21,30–32]. Or, used in the other way around, to make
predictions of hadronic observables.

In the chiral limit (mu ¼ md ¼ 0) the correlator �ðsÞ
vanishes identically to all orders in perturbation theory and
therefore its OPE contains only power-suppressed contri-
butions from dimension d ¼ 2k operators, starting at d ¼
6, as we have already indicated in (4). The nonzero up and
down quark masses induce tiny corrections with dimen-
sions two and four, which are negligible at high values of s.
This makes this correlator a very interesting object in the
study of nonperturbative QCD.

In order to analyze duality-violation (DV) effects in
different sum rules, we will use the weights wðsÞ ¼ sn,
with n ¼ �2, �1, 2, 3, that generate the following four
FESRs1:

M�2ðs0Þ �
Z s0

sth

ds
1

s2
�ðsÞ ¼ 16Ceff

87 � DV½1=s2; s0�; (7)

M�1ðs0Þ �
Z s0

sth

ds
1

s
�ðsÞ ¼ �8Leff

10 � DV½1=s; s0�; (8)

M2ðs0Þ �
Z s0

sth

dss2�ðsÞ ¼ 2f2�m
4
� þO6 � DV½s2; s0�;

(9)

M3ðs0Þ �
Z s0

sth

dss3�ðsÞ ¼ 2f2�m
6
� �O8 � DV½s3; s0�;

(10)

where Leff
10 � � 1

8
��ð0Þ and Ceff

87 � 1
16

��0ð0Þ are quantities

that can be written in terms of low-energy �PT constants
[31], whileO6;8 are defined in Eq. (4). These four sum rules

have been used in the past [13,20–32] to extract the values
of either the �PT couplings L10 and C87, or the vacuum
expectation values of the dimension six and eight operators
appearing in the OPE. In those works the DV effects were
just inferred from the s0-stability (if not just neglected),
that as we will see can be a misleading method. Here we
want to analyze the effect of DVon these four observables
using a different approach that will be introduced in the
following sections.

For the computation of the hadronic integral representa-
tion of the moments Mnðs0Þ we will use the 2005 ALEPH
data on semileptonic � decays [11], shown in Fig. 2, which
provide the most recent and precise measurement of the
V � A spectral function �ðsÞ.

A. Theoretically-known spectral moments

In the four sum rules introduced in the previous section,
we use the experimental data to extract theoretical infor-
mation, namely, the value of the corresponding parameters
or, equivalently, the value of the spectral moments for s0 !
1, Mn. There exist a few additional sum rules where we
know theoretically the value of the spectral moments when
s0 ! 1. These sum rules will play a special role in our
analysis because they give us very valuable information on
the spectral function �ðsÞ for s � s0. The three sum rules
that we will use are

M0 ¼
Z 1

sth

ds�ðsÞ ¼ 2f2�; (11)

M1 ¼
Z 1

sth

dss�ðsÞ ¼ 2f2�m
2
�; (12)

Z 1

sth

dss log

�
s

�2

�
�ðsÞjmq¼0 ¼ ðm2

�0 �m2
�þÞEM 8�

3	
f20:

(13)

The relations (11) and (12) are the well-known first and
second Weinberg sum rules (WSRs) [34], while the third
identity is the pion sum rule (�SR) giving the electromag-
netic pion mass splitting in the chiral limit [35]. In the
second WSR there are contributions of the form
Oðm2

q	Ss0Þ [36], where s0 is the upper limit of the integral,

but they are negligible for the values of s0 that we are
considering.

B. Duality violation

To get vanishing DV in sum rules like (5) and (7)–(10)
one could consider working with an infinite Cauchy radius
s0, but this is clearly not an option because the spectral
function �ðsÞ is only known up to smax ¼ m2

�. We can
predict the value of �ðsÞ at high-enough energies using
perturbative QCD, but there is an intermediate region
above smax where perturbation theory is still not reliable.
Therefore we have to deal with this DVunavoidably, and it

0.5 1 1.5 2 2.5 3
s GeV2

-0.05

0.05

0.1

s

FIG. 2. Nonstrange V � A spectral function �ðsÞ ¼
1
� Im�ð0þ1Þ

ud;V�AðsÞ measured from hadronic � decays by ALEPH

[11].

1Here we neglect the logarithmic corrections to the Wilson
coefficients in the OPE. The error associated to this approxima-
tion is expected to be smaller than the other errors involved in the
analysis, as was found, e.g. in Refs. [24,33].
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is important to keep in mind that at s0 � 3 GeV2 it can
represent a sizable contribution to the sum rules, as the
WSRs show clearly (see e.g. Fig. 1 in Ref. [22]).

Since the solution to QCD is not known yet, DV is
almost by definition a noncalculable quantity and that is
the reason why it has been taken to be negligible very
often. But in order to make precise and reliable predictions
one must worry about the size of this effect. As it is
commonly done, we have defined the DV in Eq. (6) as
the uncertainty associated with the use of the OPE. The
usual strategy to estimate the size of the DV has been to
look at the stability of the spectral moments with variations
of s0. This stability can be improved adopting the so-called
‘‘pinched weights’’ [24], polynomial weight functions with
a zero at s ¼ s0 which suppresses the contribution to the
integral (6) from the region close to the positive real axis.
As we will see, the stability with s0 obtained with these
weights can be misleading in some situations.

Taking into account that DV½wðsÞ; s0� vanishes for s0 !
1, one can easily rewrite Eq. (5) in the form [5–7,9]

DV ½wðsÞ; s0� ¼
Z 1

s0

dswðsÞ�ðsÞ; (14)

expressing the DVeffect as an hadronic integral that can be
analyzed phenomenologically.

We know from QCD that the spectral function �ðsÞ has
to vanish at high values of s and, consequently, we expect
the region right above s0 to be the most relevant in (14).
This makes the pinched weights an interesting tool to
minimize the DV. However, in (14) we can see something
that is hidden in (6), namely, that one has to worry also
about the possible enhancement of the contribution from
the high-energy part of the integral (s � s0) produced by
the pinched weights. And thus, we see that the use of these
weights can worsen the situation. Another direct conse-
quence from (14), unless accidental cancellations occur, is
that by weighting less the high-energy part of the spectral
integral one can get smaller DV. In particular, for our
spectral moments Mnðs0Þ, one expects the DV effects to
increase with increasing values of n. Thus, the size of the
DV will be smaller in the determination of Leff

10 than in the

determination of the chiral moment M2.
To quantify the DV uncertainties of a given sum rule we

must then estimate the possible behavior of the spectral
function beyond s0. The DV is an estimate of the freedom
in the behavior of the spectral function above s0, once all
the theoretical and phenomenological knowledge on that
spectral function and on its moments has been taken into
account. For instance, QCD tells us that �ðsÞ must go
quickly enough to zero when s ! 1. This is valuable
information, but one can still imagine infinite possible
shapes for the spectral function and, therefore, the limits
imposed on DV effects are poor and not good enough for
most phenomenological analyses.

Some theoretically motivated models for the DV were
advocated in Ref. [4]. We will adopt a simple parametri-
zation of the spectral function at high energies, based in the
resonance model proposed in [4] and similar to the one
used in Refs. [7,9]. Following the discussion above, we add
more physical constraints to the behavior of �ðsÞ and
require that it satisfies the WSRs and the �SR [6]. Our
goal is to generate a bunch of physically acceptable spec-
tral functions and translate this information into DV limits.
Similar work has been done in [7,9] to estimate the DV

uncertainties associated with the determination of 	s from
hadronic � decay data. An important difference of our
present study with those works is that they make separate
analyses for the vector and axial-vector channels, without
imposing the constraints from the WSRs and �SR. In fact,
one can easily check that those sum rules are not satisfied
for the vast majority of the generated spectral functions
used in [7,9] (as can be seen in Fig. 2 of Ref. [8]). So the
results found there cannot be applied to the V � A channel
that we want to study here.

III. ACCEPTABLE V �A SPECTRAL FUNCTIONS

A. Spectral-function parametrization

We split the integral of the spectral function �ðsÞ in two
parts. For the low-energy part of the integral wewill use the
ALEPH data, whereas in the rest of the integration range
we will work under the assumption that the spectral func-
tion is well described by the following parametrization:

�ðs � szÞ ¼ 
e��s sinð�ðs� szÞÞ; (15)

that has 
, �, �, and sz as free parameters. From the
ALEPH data we know that the V � A spectral function
�ðsÞ has a second zero around 2 GeV2 (see Fig. 2), which
is represented in our parametrization through the sz pa-
rameter. We will take this zero as the separation point
between the use of the data and the use of the model.
At high values of s this parametrization appears natu-

rally in the equidistant resonance-based model with finite
widths introduced in [4]. It has also been used for the
vector and axial-vector correlators in Ref. [9], based on
the expected exponential falloff associated with the intrin-
sic error of an asymptotic expansion; the sine function
reflects the periodicity of the daughter trajectories in the
spectrum of the Regge theory.
In the region 2:0 GeV2 � s � 3:3 GeV2 the proposed

parametrization is compatible with the ALEPH data; the
corresponding �2 fit gives the result2

�2
minð
; �; �; szÞ ¼ �2ð1:00; 1:05; 0:40; 2:03Þ ¼ 4:4

	 d:o:f: ¼ 43: (16)

In fact the compatibility appears to be too good, in the

2Hereafter, unless otherwise stated, we include all correlations
among the points.
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sense that the minimum �2 is much smaller than the
number of degrees of freedom (d.o.f.): 43 ¼ 45 points—
2 parameters. This low value of �2

min was also found in

Refs. [9,37].

B. Imposing constraints

As we have already said, the WSRs and the �SR in (11)
–(13) are an important source of information on �ðsÞ, for s
values beyond the range of the � data. In the literature, the
use of this information has been mostly limited to define
the so-called ‘‘duality points,’’ values of s0 for which the
WSRs are satisfied, i.e. DV½sn; s0� ¼ 0 (n ¼ 0, 1). These
duality points are frequently used to evaluate the other
FESRs, but this introduces an unknown systematic error
and several ambiguities, like which duality point is the best
option.

We will fully use that information by imposing that the
spectral function �ðsÞ, given by the latest ALEPH data
below sz � 2 GeV2 and Eq. (15) for s > sz, fulfils the
two WSRs and the �SR within uncertainties. This require-
ment constrains the regions in the parameter space of
model (15) that are compatible with both QCD and the
data. We will find all possible tuples3 ð
; �; �; szÞ which
are compatible with such constraints by fitting the model.
In this way, we analyze how much freedom is left for the
shape of the spectral function after imposing all we know
on �ðsÞ from data plus QCD. We will also require the
compatibility between models and data in the region4

1:7 GeV2 � s � 3:15 GeV2.
The four imposed conditions can be written quantita-

tively in the following form5:

Z sz

0
�ðsÞALEPHdsþ

Z 1

sz

�ðs;
; �; �; szÞds

¼ 2f2� ¼ ð17:1
 0:4Þ � 10�3 GeV2; (17)

Z sz

0
�ðsÞALEPHsdsþ

Z 1

sz

�ðs;
; �; �; szÞsds

¼ 2f2�m
2
� ¼ ð0:3
 0:8Þ � 10�3 GeV4; (18)

Z sz

0
�ðsÞALEPHs log

�
s

1 GeV2

�
ds

þ
Z 1

sz

�ðs;
; �; �; szÞs log
�

s

1 GeV2

�
ds

¼ ðm2
�0 �m2

�þÞEM 8�

3	
f20

¼ �ð10:9
 1:5Þ � 10�3 GeV4; (19)

�2ð
; �; �; szÞ<�2
crit ¼ d:o:f: ¼ 54: (20)

C. Selection process of acceptable models

After defining the minimal conditions that a tuple has to
satisfy in order to be accepted, we perform a scanning over
the 4-dimensional parameter space, looking for physically
acceptable tuples. We emphasize the importance of taking
properly into account the data correlations. For instance, if
one analyzes the compatibility of a null spectral function
with the ALEPH data in the region (2, 3.15) GeV2, the
resulting minimum �2 is very sensitive to these correla-
tions:

�2ð0:0; �; �; szÞ=d:o:f: ¼ 0:99 ðcorrelations includedÞ;
(21)

�2ð0:0; �; �; szÞ=d:o:f: ¼ 4:58 ðcorrelations includedÞ:
(22)

To perform the parameter-space scanning process, we
adopt the following procedure. First, we define a rectan-
gular region such that it contains the four-dimensional
ellipsoid defined by �2ð
; �; �; szÞ ¼ d:o:f:, and we create
a lattice with 204 ¼ 16� 104 points, that is, 16� 104

tuples (or functions). We find that 1789 of them satisfy
our set of minimal conditions; i.e., 1789 of them represent
possible shapes of the physical spectral function beyond
2 GeV2. Figure 3 shows the statistical distribution of the
parameters of our model after the selection process. In
Fig. 4 we show the distribution of the quantity
�2ð
; �;�; szÞ for those tuples that have passed the selec-
tion process. We find that all accepted tuples generate
values of �2 larger than 10.0, i.e., tuples following the
central values of the experimental points do not pass the
selection process; neither do the tuples that go above the
central values. Thus, our model indicates clearly that the
third bump of the spectral function should be smaller than
what the ALEPH data suggest (see Fig. 2). The size of this
third bump is an important issue that future high-quality �
decay data could clarify. For illustrative purposes, Fig. 5

3We will talk about ‘‘tuple’’ referring to a set of values
ð
; �; �; szÞ.

4Although we are assuming that the model describes correctly
the spectral function beyond sz � 2 GeV2, we impose the com-
patibility with the data from 1:7 GeV2 to ensure the continuity of
the spectral function in the matching region between the data and
the model.

5The quoted errors in Eqs. (17) and (18) are just data errors,
whereas in (19) the main uncertainty comes from the fact that
quark masses do not vanish in nature and we are using real data
(not chiral-limit data). We estimate this uncertainty taking for the
pion decay constant the value f0 ¼ 87
 5 MeV, that covers a
range that includes the physical value and the different estimates
of the chiral-limit value [38]. We also include a small uncertainty
coming from the residual scale dependence of the logarithm,
which is proportional to the second WSR. We consider ��
1 GeV a good choice of scale because higher values would
suppress the high-energy part of the integral (the information
that we want to use), while smaller values would generate larger
�-data errors in (19), losing also information about the high-
energy region.
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shows one of the hundreds of functions that satisfy our set
of conditions.

IV. NUMERICAL RESULTS

For each one of the hundreds of functions that have
passed our selection process, we can calculate the associ-
ated values of Ceff

87 , L
eff
10 , O6, and O8, simply carrying out

the integrals of Eqs. (7)–(10) with s0 ! 1. The results of
this analysis are summarized in Fig. 6, which shows the
statistical distribution of the calculated parameters. From
these distributions, one gets the final numbers:

Ceff
87 ¼ ð8:167þ0:007

�0:002 
 0:12Þ � 10�3 GeV�2

¼ ð8:17
 0:12Þ � 10�3 GeV�2; (23)

10 20 30 40 50
2

20

40

60

80

100

120

140
tuples

FIG. 4 (color online). Distribution of �2ð
; �;�; szÞ values for
acceptable tuples.

2 4 6 8 s GeV2

0.05

0.10

0.15
s

2 3 4 5 6 7 8 9 s GeV2

0.03
0.02
0.01

0.01
0.02
0.03
0.04

s

FIG. 5 (color online). Spectral function �ðsÞ generated with ð
; �;�; szÞ ¼ ð0:24; 1:23; 2:82; 2:03Þ, together with the experimental
ALEPH data [11]. �2 ¼ 38:7 for this tuple.
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FIG. 3 (color online). Statistical distribution of acceptable models in the parameter space 
 (upper-left), � (upper-right), � (lower-
left), and sz (lower-right).
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Leff
10 ¼ ð�6:46þ0:03

�0:01 
 0:07Þ � 10�3

¼ ð�6:46þ0:08
�0:07Þ � 10�3; (24)

O 6 ¼ ð�5:4þ3:4
�1:0 
 1:2Þ � 10�3 GeV6

¼ ð�5:4þ3:6
�1:6Þ � 10�3 GeV6; (25)

O 8 ¼ ð�8:9þ12:4
�7:1 
 2:1Þ � 10�3 GeV8

¼ ð�8:9þ12:6
�7:4 Þ � 10�3 GeV8; (26)

where the first error is that associated to the high-energy
region (integral from sz to infinity), that we compute from
the dispersion of the histograms of Fig. 6, and the second
error is that associated to the low-energy region (integral
from zero to sz), that we compute in a standard way from
the ALEPH data. This results correspond to the 68%
probability region (one sigma). Since the first error is not
Gaussian we show also now the 95% probability results
(95% of the acceptable spectral functions give a result
within the quoted interval):

Ceff
87 ¼ ð8:167þ0:011

�0:007 
 0:24Þ � 10�3 GeV�2

¼ ð8:17
 0:24Þ � 10�3 GeV�2; (27)

Leff
10 ¼ ð�6:46þ0:04

�0:03 
 0:14Þ � 10�3

¼ ð�6:46þ0:15
�0:14Þ � 10�3; (28)

O 6 ¼ ð�5:4þ4:2�2:7 
 2:4Þ � 10�3 GeV6

¼ ð�5:4þ4:8
�3:6Þ � 10�3 GeV6; (29)

O 8 ¼ ð�8:9þ16:9
�15:1 
 4:2Þ � 10�3 GeV8

¼ ð�8:9þ17:4
�15:7Þ � 10�3 GeV8: (30)

Our calculations have been done with a very simple, but
physically motivated, parametrization of DV [4,9]. Most
likely this parametrization does not represent the actual
shape of the V � A spectral function, but it accounts for the
possible freedom of the function �ðsÞ beyond 2 GeV2 and
its consequences on the observables. Our statistical analy-
sis translates the present ignorance on the high-energy
behavior of �ðsÞ into a clear quantitative assessment on
the uncertainties of the phenomenologically extracted
parameters.
As expected, the DV effects have very little impact on

the values of Ceff
87 and Leff

10 , because the corresponding

FESRs (7) and (8) are dominated by the low-energy region
where the available data sits. Our results are in excellent
agreement with the most recent determination of these
parameters, using the same ALEPH � data, performed in
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FIG. 6 (color online). Statistical distribution of values of Ceff
87 (upper-left), Leff

10 (upper-right), O6 (lower-left), and O8 (lower-right)
for acceptable models.
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Ref. [31]: Ceff
87 ¼ ð8:18
 0:14Þ � 10�3 GeV�2 and Leff

10 ¼
�ð6:48
 0:06Þ � 10�3.

The situation is not so good for the momentsM2 andM3

(or equivalently O6 and O8), which are sensitive to the
high-energy behavior of the spectral function. The present
ALEPH data, together with the constraints from the WSRs
and the �SR, are not good enough to determine the sign of
O8; the DV uncertainties turn out to be too large in this
case. Our results are slightly better for O6, where there is
no doubt in the sign, but again the effects of DV imply
larger uncertainties than what was estimated in previous
works. Our results are compared in Fig. 7 with previous
determinations of O6 and O8. One recognizes in the figure
the existence of two groups of results that disagree between
them. For O6 there is a small tension between a bigger or
smaller value, whereas in the case of O8 the disagreement
affects to the sign and is more sizeable. In some cases the
discrepancy appears to be related with a two-fold ambigu-
ity in the adopted choice of duality points. Our analysis
indicates that the DV error was grossly underestimated in
most of the previous works based on FESRs (7)–(10). Only
Refs. [22,28] quote uncertainties similar to ours, although
our error bands are slightly shifted in such a way that the
tension with the other estimates is reduced.

V. SUMMARY

The phenomenological requirement for increasing pre-
cisions in the determinations of hadronic parameters makes
it necessary to assess the size of small effects which
previously could be considered negligible. In particular, a
substantial improvement of QCDSR results, needed to
determine many hadronic observables both in the standard
model and in models beyond it, could only be possible with
a better control of DV.

Violations of quark-hadron duality are difficult to esti-
mate because those effects are unknown by definition.
They originate in the uncertainties associated with the
use of the OPE to approximate the exact physical correla-
tor. As defined in Eq. (6), DVeffects correspond to an OPE
approximation performed in the complex plane, outside the
Minkowskian region, which deteriorates in the vicinity of
the real axis. Using analyticity, the size of DV can be
related with an integral of the hadronic spectral function
from s0 up to 1, given in Eq. (14), which allows us to
perform a phenomenological analysis.
We have studied the possible role of DV in the two-point

correlation function �ðsÞ. This V � A nonstrange correla-
tor is very well suited for this analysis because: (i) it is a
purely nonperturbative quantity in the chiral-limit,
(ii) there are well-known theoretical constraints, and (iii)
there exist good available data from � decays. Moreover,
different moments of its spectral function provide hadronic
parameters of high phenomenological relevance.
We have assumed a generic, but theoretically motivated,

behavior of the spectral function at high energies, where
data are not available, with four free parameters. This
allows us to study how much freedom in �ðsÞ could be
tolerated, beyond the requirement that all known QCD
constraints are satisfied. Performing a numerical scanning
over the four-dimensional parameter space, we have gen-
erated a large number of acceptable spectral functions,
satisfying all conditions, and have used them to extract
the wanted hadronic parameters through a careful statisti-
cal analysis. The dispersion of the numerical results pro-
vides then a good quantitative assessment of the actual
uncertainties.
We have determined four hadronic parameters of special

interest: Ceff
87 , L

eff
10 , O6, and O8. Our final numerical results
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FIG. 7 (color online). Comparison of our results for O6 (left) and O8 (right) with previous determinations [11–13,20,22,24,27–
30,40–42] (we show for every method the most recent determination). The (blue) filled band shows our results at 65% C.L., while the
95% probability regions are indicated by the dotted lines.
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are given in Eqs. (23)–(26) for the one sigma results and
(27)–(30) for the 95% probability results. The parameters
Ceff
87 and Leff

10 are in excellent agreement with the most

recent determination using FESRs and the same ALEPH
data [31]. The vacuum condensateO6 is an important input
for the calculation of the CP-violating kaon parameter "0K;
it dominates the �I ¼ 3=2 contribution to "0K [22,23]. The
determination of this contribution is an important goal of
lattice QCD calculations and independent information is
required to test the reliability of those results. We will
study the consequences of our results for "0K in a forth-
coming publication [39].

Our analysis indicates that the DV error was grossly
underestimated in most of the previous QCDSR determi-
nations of O6 and O8 based on the FESRs (7)–(10). The
present V � A nonstrange tau data between 2 GeV2 and
3 GeV2 [11] is not good enough to constrain the spectral
function with the needed accuracy. Good data in that

energy region with much smaller experimental uncertain-
ties is clearly required. Future high-statistics �-decay data
samples could allow a substantial improvement of our
results, helping to clarify the actual high-energy behavior
of the V � A spectral function.
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[7] O. Catà, M. Golterman, and S. Peris, Phys. Rev. D 77,

093006 (2008).
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