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Both in heavy-ion collisions and in magnetars very strong magnetic fields are produced, which has an

influence on the phases of matter involved. In this paper we investigate the effect of strong magnetic fields

(B� 5m2
�=e ¼ 1:7� 1019 G) on the chiral symmetry restoring phase transition using the Nambu–Jona-

Lasinio model. It is observed that the pattern of phase transitions depends on the relative magnitude of the

magnetic field and the instanton interaction strength. We study two specific regimes in the phase diagram,

high chemical potential and zero temperature and vice versa, which are of relevance for neutron stars and

heavy-ion collisions, respectively. In order to shed light on the behavior of the phase transitions, we study

the dependence of the minima of the effective potential on the occupation of Landau levels. We observe a

near degeneracy of multiple minima with differing occupation numbers, of which some become the global

minimum upon changing the magnetic field or the chemical potential. These minima differ considerably

in the amount of chiral symmetry breaking and, in some cases, also of isospin breaking.
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I. INTRODUCTION

Recently it has been noted that very strong magnetic
fields can be produced in heavy-ion collisions [1–3]. It is
estimated that at the Relativistic Heavy Ion Collider mag-
netic fields are created of magnitude 5:3m2

�=e ¼
1:8� 1019 G and at the LHC of 6m2

�=e ¼ 2� 1019 G,
and there are even higher estimates [4]. Also, certain
neutron stars called magnetars exhibit strong magnetic
fields, in the range 1014–1015 G [5,6]. These fields occur
at the surface; probably in the much denser interior, even
higher fields are present. Using the virial theorem it can be
derived that the maximal strength is 1018–1019G [7]. If one
assumes that the star is bound by the strong interaction
instead of by gravitation, this limit can be even higher.

In both neutron stars and in heavy-ion collisions it is
expected that quark matter plays a role. Therefore it is
interesting to study how this form of matter behaves in a
strong magnetic field. Two different regions in the QCD
phase diagram are of relevance here. Heavy-ion collisions
probe the low chemical potential and high temperature
regime; for neutron stars it is the other way around. In
this paper the effect of very strong magnetic fields will be
investigated in both regimes.

Much work has been done on how an external magnetic
field changes nuclear matter; for a review see Ref. [8]. The
behavior of ordinary quark matter has been studied using
the Nambu–Jona-Lasinio (NJL) model (see, for example,
Refs. [9–18]) and recently also in the linear sigma model
coupled to quarks [19]. Most studies investigate the one-
and two-flavor cases, but recently the three-flavor case has
also been investigated [20,21]. At high quark chemical

potential, it is believed that the ground state is a color
superconducting phase. The effects of an external magnetic
field on such a phase are discussed in Refs. [22–28]. Here
color superconductivity will not be considered.
In this paper we study the chiral symmetry restoring

phase transition, which is strongly influenced by an exter-
nal magnetic field. From studies of the NJL model it is
known that a magnetic field enhances the chiral symmetry
breaking [9]; this is related to the phenomenon of magnetic
catalysis of chiral symmetry breaking, introduced in
Refs. [29–31] and further studied for the NJL model in
Refs. [10–16] and for QED in e.g. Refs. [32–36], where
also the generation of an anomalous magnetic moment was
pointed out [35,36]. This enhancement of chiral symmetry
breaking can be understood as follows: the B field anti-
aligns the helicities of the quarks and antiquarks, which are
then more strongly bound by the NJL interaction [9]. The
phenomenon of magnetic catalysis of chiral symmetry
breaking leads to interesting behavior, since it allows for
phases with broken chiral symmetry and nonzero nuclear
density for a range of chemical potentials and magnetic
fields [14,15,17]. In such a phase nonperiodic magnetic
oscillations occur, which means that the constituent quark
masses are strongly dependent on the magnetic field, and
consequently also on other thermodynamic parameters.
In all studies of the influence of magnetic fields on chiral

symmetry breaking up to now, the effects of instantons
have not been studied explicitly, i.e. as a function of
instanton interaction strength. Magnetic fields and instan-
tons can lead to combined effects. In Ref. [3] it is shown
that variations in topological charge, which induce varia-
tions of net chirality, in a strong magnetic field give rise to
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an electrical current. This effect is known as the chiral
magnetic effect and could perhaps be observed in heavy-
ion collisions. Variations of topological charge can, for
instance, be created by instantons.

Here a related study will be performed. We will inves-
tigate the combined effect of instantons and a strong mag-
netic field on quark matter using the NJL model. In this
model instantons induce an extra interaction, the ’t Hooft
determinant interaction, which leads to a mixing between
the different quark flavors. Following the analysis of
Refs. [37,38], the strength of the instanton interaction is
set by the dimensionless parameter c. For c ¼ 0 there is no
contribution and the quarks are fully independent. Because
of the difference in charge of the quarks, the phase tran-
sitions are decoupled. The other extreme case is c ¼ 1=2,
which is actually the most studied case. The quarks are
then fully mixed, the constituent quark masses are equal,
and the phase transitions will always coincide. In Ref. [14]
this case is studied in the chiral limit. It is observed that for
a range of typical value for the coupling constant, phases
with broken chiral symmetry and nonzero nuclear density
arise.

In general, there is a competition between the magnetic
field, which tends to differentiate the constituent quark
masses for different flavors, and the instanton interaction,
which favors equal constituent quark masses. In this work
this competition is studied. Apart from studying the ground
state as a function of the magnetic field and chemical
potential for various characteristic values of c, we also
look at the local minima of the effective potential and the
corresponding occupation of Landau levels. It is found that
in the neighborhood of the chiral phase transition the phase
diagram develops metastable phases, differing in the num-
ber of filled Landau levels. Some of these local minima
become the global one upon increasing the magnetic field
or chemical potential, but not all of them do. These phases
can have rather different values for the constituent quark
masses; in other words, they can display significantly
different amounts of chiral symmetry breaking. Unlike in
the case of c ¼ 1=2 which is isospin symmetric, in these
phases the values of the two constituent quark masses can
be very distinct, which corresponds to large isospin viola-
tion. Furthermore, we find that for a realistic choice of
parameters, the appearance of phases of broken chiral
symmetry and nonzero nuclear density requires a not too
large instanton interaction strength, i.e. c & 0:1.

As mentioned, we also investigate the role of nonzero
temperature at zero chemical potential, which is of rele-
vance for heavy-ion collisions. Without a magnetic field
the chiral symmetry restoring phase transition at finite
temperature is a crossover. For the linear sigma model
coupled to quarks, it has been observed that the magnetic
field turns it into a first order transition [19]. We will see
that this is not the case for the NJL model.

This paper is organized as follows. First we derive the
effective potential of the NJL model in the mean-field

approximation in a magnetic background. Then we discuss
the phase diagram as a function of chemical potential,
concentrating on the phase with nonzero nuclear density
and chiral symmetry breaking. We continue by discussing
the temperature dependence and end with conclusions.

II. EFFECTIVE POTENTIAL OF THE NJL MODEL
WITH A MAGNETIC FIELD

In this section the effective potential of the NJL model in
a strong magnetic background is derived; this analysis is
based on Refs. [18,19]. The effective potential derived in
this way is equal to the one in Refs. [14–16] using the
Fock-Schwinger proper time method.
First, to set our notation, we briefly review the NJL

model introduced in Refs. [39,40]. It is a quark model
with four-point interactions, the gluons are ‘‘integrated
out.’’ In this paper the following form of the NJL model
is used, in the notation of Ref. [38]:

L NJL ¼ �c ði��@� �m���0Þc þL �qq þLdet; (1)

where m ¼ mu ¼ md is the current quark mass and � ¼
�u ¼ �d is the quark chemical potential. Note that in
contrast to Ref. [38], here the current quark masses and
both chemical potentials are taken equal. Furthermore,

L �qq ¼ G1½ð �c �ac Þ2 þ ð �c �ai�5c Þ2� (2)

is the attractive part of the �qq channel of the Fierz-
transformed color current-current interaction [41], and

L det ¼ 8G2 detð �c Rc LÞ þ H:c: (3)

is the ’t Hooft determinant interaction which describes the
effects of instantons [42,43]. Note that this interaction is
flavor mixing. In the literature G1 and G2 are often taken
equal, which means that the low energy spectrum consists
of � and � fields only, but here we will allow them to be
different. We will restrict ourselves to the two-flavor case,
using �a with a ¼ 0; . . . ; 3 as generators of U(2).
The symmetry structure of the NJL model is very similar

to that of QCD. In the absence of quark masses and the
instanton interaction, there is a global SUð3Þc� Uð2ÞL �
Uð2ÞR symmetry. The instanton interaction breaks it to
SUð3Þc � SUð2ÞL � SUð2ÞR � Uð1ÞB. For nonzero but
equal quark masses this symmetry is reduced to SUð3Þc �
SUð2ÞV � Uð1ÞB. If a magnetic field is turned on, the
symmetry is reduced to SUð3Þc � Uð1Þ2 due to the differ-
ences in charge.
We choose the parameters as in Refs. [37,38]. This

means we write

G1 ¼ ð1� cÞG0; G2 ¼ cG0; (4)

where the parameter c controls the instanton interaction
strength, while the value for the quark condensate (which is
determined by the combinationG1 þG2) is kept fixed. For
our numerical studies we will use the following values for
the parameters: m ¼ 6 MeV, a three-dimensional momen-
tum UV cutoff � ¼ 590 MeV=c, and G0�

2 ¼ 2:435.

JORN K. BOOMSMA AND DANIËL BOER PHYSICAL REVIEW D 81, 074005 (2010)

074005-2



These values lead to a pion mass of 140.2 MeV, a pion
decay constant of 92.6 MeV, and finally, a quark conden-
sate h �uui ¼ h �ddi ¼ ð�241:5 MeVÞ3 [37], all in reasonable
agreement with experimental determinations.

To calculate the ground state of the theory, the effective
potential has to be minimized. In this section the effective
potential is calculated in the mean-field approximation. We
will assume that only the charge neutral condensates
h �c �0c i and h �c �3c i can become nonzero.

To obtain the effective potential in the mean-field ap-
proximation, first the interaction terms are ‘‘linearized’’ in
the presence of the h �c �0c i and h �c �3c i condensates (this
is equivalent to the procedure with a Hubbard-Stratonovich
transformation used in Ref. [38]),

ð �c �ac Þ2 ’ 2h �c �ac i �c �ac � h �c �ac
2i; (5)

leading to

L NJL ¼ �c ði��@� �M���0Þc � ðM0 �mÞ2
4G0

� M2
3

4ð1� 2cÞG0

; (6)

where M ¼ M0�0 þM3�3 and

M0 ¼ m� 2G0h �c �0c i;
M3 ¼ �2ð1� 2cÞG0h �c �3c i: (7)

Now the Lagrangian is quadratic in the quark fields, so
we can integrate over them. After going to imaginary time,
this results in the following effective potential in the mean-
field approximation [44]:

V ¼ ðM0 �mÞ2
4G0

þ M2
3

4ð1� 2cÞG0

� TNc

Xd
f¼u

X
p0¼ð2nþ1Þ�T

Z d3p

ð2�Þ3

� ln det½i�0p0 þ �ipi �Mf � �0��; (8)

where we have introduced the constituent quark masses
Mu ¼ M0 þM3 and Md ¼ M0 �M3.

As we have mentioned earlier, often G1 is taken equal to
G2, which is the case of c ¼ 1=2. This choice implies that
M3 is then always equal to 0; i.e., the constituent quark
masses are equal. Note that the reverse is not true. If the
assumption is made that the constituent quark masses are
equal, c ¼ 1=2 or h �c �3c i ¼ 0 or both. However, for

M3 ¼ 0, changes in c cannot be noticed because only the
combinationG1 þG2 occurs. Hence, the conclusion is that
h �c �3c i ¼ 0 and c can be any value. Instanton effect are
nevertheless present (G2 can be nonzero after all) and �
and a0 mesons can still be present in the spectrum. The
ratioG2=G1 simply cannot be determined ifM3 ¼ 0. Since
magnetic fields affect the two flavors differently because of
the difference in charge, isospin breaking effects are ex-
pected and it is unnatural to choose M3 ¼ 0 from the start
or to take c ¼ 1=2. Using the strange quark condensate, it
was argued in Ref. [37] that a realistic value of c would be
around 0.2.

A. Including a magnetic field

Now we include a magnetic field, which changes the
dispersion relation for the quarks in the following way:

p2
0n ¼ p2

z þM2 þ ð2nþ 1� �ÞjqjB; (9)

where n is the quantum number labeling the discrete orbits,
� the spin of the quark, and q its charge. The integral over
the three-momentum is modified as

Z d3p

ð2�Þ3 !
jqjB
2�

X1
n¼0

Z dpz

2�
: (10)

Performing the sum over the Matsubara frequencies gives
the following effective potential [14,15,18]:

V ¼ ðM0 �mÞ2
4G0

þ M2
3

4ð1� 2cÞG0

� Nc

2�

X
�;n;f

jqfjB
Z dpz

2�
Ep;fðBÞ

� Nc

2�

X
�;n;f

jqfjB
Z dpz

2�
fT ln½1þ e�½Ep;fðBÞþ��=T�

þ T ln½1þ e�½Ep;fðBÞ���=T�g; (11)

where Ep;fðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ð2nþ 1� �ÞjqfjBþM2

f

q
. Fol-

lowing the analysis of Ref. [18], this potential can be split
into three pieces, a part that is independent of external
parameters, a part that only depends on the magnetic field,
and a part that depends on the magnetic field, chemical
potential, and temperature:

V ¼ V 0 þV 1ðBÞ þV 2ðB;�; TÞ; (12)

with

V 0 ¼ ðM0 �mÞ2
4G0

þ M2
3

4ð1� 2cÞG0

� 2Nc

Xd
f¼u

Z d3p

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
;

V 1ðBÞ ¼ � Nc

2�2

Xd
f¼u

ðjqfjBÞ2
�
� 0ð�1; xfÞ � 1

2
ðx2f � xfÞ lnxf þ

x2f
4

�
;

V 2ðB;�; TÞ ¼ � Nc

2�

X
�;n;f

jqfjB
Z dpz

2�
fT ln½1þ e�½Ep;fðBÞþ��=T� þ T ln½1þ e�½Ep;fðBÞ���=T�g;

(13)
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where we have defined xf ¼ M2
f

2jqfjB and � 0ð�1; xfÞ ¼
d�ðz;xfÞ

dz jz¼�1 with �ðz; xfÞ the Hurwitz zeta function. We
have neglected xf-independent terms in V 1ðBÞ (including
a UV divergent one).

The term V 0 is divergent and needs to be regularized.
Here a conventional three-momentum UV cutoff is used,
yielding the expression

V 0 ¼ ðM0 �mÞ2
4G0

þ M2
3

4ð1� 2cÞG0

� Nc

8�2

Xd
f¼u

jMfj
�
M3

f ln

�
�

Mf

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

M2
f

vuut �

��ðM2
f þ 2�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M2
f

þ 1

vuut �
: (14)

The expression � 0ð�1; xfÞ in V 1ðBÞ can be written in a

more convenient form by differentiating and integrating
the function with respect to xf:

� 0ð�1; xfÞ ¼ � 0ð�1; 0Þ þ x2f
2
� xf

2
� xf

2
logð2�Þ

þ c ð�2ÞðxfÞ; (15)

where c ðmÞðxfÞ is the mth polygamma function. The term

� 0ð�1; 0Þ is independent of xf and will therefore not be

taken into account. The remaining expression is amenable
to numerical evaluation.

The summation over � and n in V 2ðB;�; TÞ can be
rewritten as

V 2ðB;�; TÞ ¼ � Nc

2�

X
k;f

ð2� �k0ÞjqfjB
Z dpz

2�

� fT ln½1þ e�½Ep;kðTÞþ��=T�
þ T ln½1þ e�½Ep;kðTÞ���=T�g; (16)

where Ep;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

f þ 2kjqfjB
q

and k denotes the

Landau level, which has degeneracy (2� �k0).
At zero temperature, V 2 can be simplified to

V 2ðB;�; 0Þ ¼ � Nc

2�

X
k;f

ð2� �k0Þ
Z dpz

2�
	ð�� Ep;kÞ

� ½�� Ep;k�

¼ Xd
f¼u

Xkf;max

k¼0

ð2� �k0Þ	ð�� sfðk; BÞÞ
jqfjBNc

4�2

�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � s2fðk; BÞ

q
� s2fðk; BÞ

� ln

��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � s2fðk; BÞ

q
sfðk; BÞ

��
; (17)

where sfðk; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ 2jqfjBk
q

and kf;max is the upper

Landau level, defined as

kf;max ¼
��2 �M2

f

2jqfjB
	
; (18)

where the brackets indicate the floor of the enclosed
quantity.
We will now use these expressions in a numerical study

of the minima of the effective potential, performed along
the lines discussed in Refs. [38,44].

III. RESULTS

We start by considering the case of � ¼ 0, T ¼ 0, and
c ¼ 0. Figure 1 shows the results for this unmixed case.
The magnetic field enhances Mu and Md, which are pro-
portional to h �uui and h �ddi, respectively; consequently the
chiral symmetry breaking is enhanced [9]. Because of the
charge difference of the quarks, the B dependence of the
constituent quark masses is not equal. Nonzero cwill cause
mixing and will bring the masses closer to each other. As
discussed, at c ¼ 1=2 the constituent quark masses are
exactly equal.

A. Nonzero chemical potential

In this section we turn to the phase structure near the
phase transition at nonzero chemical potential and zero
temperature. From Refs. [45–48] it is known that when the
isospin chemical potential is nonzero, it is possible to have
two phase transitions at low temperature and high baryon
chemical potential. Here we study a similar case: instead of
nonzero isospin chemical potential, we allow for a nonzero
magnetic field; here we will also see that the possibility of
separate phase transitions for the two quarks arises. We
will take equal chemical potentials for the quarks, but the
magnetic field acts effectively like a nonzero isospin
chemical potential due to the difference in charge of the
quarks. Instantons cause mixing between the quarks; if the
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FIG. 1. The dependence of the constituent quark masses Mu

and Md on the magnetic field B.
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mixing is strong enough, the two separate phase transitions
merge into one. This was extensively investigated in
Ref. [45] for the nonzero isospin chemical potential case.

From Refs. [14,15,17], where the NJL model in the
chiral limit was studied, it is known that Landau quantiza-
tion induces a more complex phase structure. Apart from
the usual phase of broken chiral symmetry with zero
nuclear density, there is also the possibility of such a phase
with nonzero nuclear density. Here we perform a more
detailed study of this case, which is a characteristic phe-
nomenon at nonzero chemical potential and sufficiently
strong magnetic fields [cf. Eq. (19) below].

1. The c ¼ 0 case

When the determinant interaction is turned off, the up
and down quarks are decoupled. This leads to the possi-
bility of separate phase transitions for the quarks. In Figs. 2
and 3 we show the constituent quark mass of the up and
down quarks, respectively, as a function of quark chemical
potential and magnetic field. As expected, the two quarks
have decoupled behavior.

Let us first discuss the behavior of the up quark. At low
chemical potential we have the ‘‘standard’’ chiral symme-
try breaking NJL ground state with empty Landau levels
(LL). Following the nomenclature of Refs. [14,15] where
the c ¼ 1=2 case was studied in the chiral limit, this is
called phase B. Note that this phase always has zero
nuclear density. At high chemical potential chiral symme-
try is restored, up to the explicit breaking. In this approxi-
mate symmetric phase, magnetic oscillations can be seen
in the constituent quark masses, caused by Landau quan-
tization. These oscillating phases are denoted by Ai, where
i gives the number of filled LL. As these phases have
occupied LL, they have nonzero nuclear density. The
nuclear density of level k is given by [18]


f;kðB;�Þ ¼ ð2� �k0Þ	ð�� sfðk; BÞÞ
jqfjBNc

6�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � s2fðk; BÞ

q
: (19)

In the chiral limit the constituent quark masses vanish in
the Ai phases.
The oscillations are due to the de Haas-van Alphen

effect, which in QED and in the two-flavor NJL model
for c ¼ 1=2 in the chiral limit leads to second order
transitions between the Ai phases [14]. However, with
our choice of parameters the transitions are weakly first
order. In the chiral limit they become second order, like for
c ¼ 1=2, as can, for instance, be seen in the nuclear
density. For completeness, we mention that in the color
superconducting case of Refs. [27,28], the oscillations in
the gap parameter are seen to be continuous, but second
order transitions can occur when neutrality conditions are
imposed.
For B larger than 4:5m2

�=e an interesting intermediate
phase arises, where the up quark jumps, as a function of�,
first to a phase with a still rather large constituent mass and
then to phase A1. This intermediate phase is called C0 in
the language of Refs. [14,15] and corresponds to a phase of
broken chiral symmetry having nonzero nuclear density
and a filled zeroth LL. So the essential difference between
this phase and A0 is the breaking of chiral symmetry. For
smaller values of the coupling constant G0 the phases Ck

with k > 0 (which are similar toC0 but with more occupied
LL) also occur. The transitions between the Ck are first
order; furthermore, they are nonperiodic in the sense that
the difference between the transitions is B dependent, as
the constituent mass strongly depends on B [14]. If we are
in this phase C0 and increase the magnetic field, the
constituent quark mass decreases, eventually becoming
almost zero; this can be interpreted as a crossover to A0.
In the chiral limit the crossover becomes a second order
transition. Finally, we would like to note that, already at
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FIG. 3. Same as Fig. 2, now for the down quark.

 2

 4

 6

 8

 10

 12

 320
 340

 360

 380

 400

 420

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

M
u 

(M
eV

)

B (mπ
2 / e)

µ (MeV)

B

A0

C0

A1

A2
...

FIG. 2. The dependence of the constituent up-quark mass on B
and �. Ai, B, and C0 denote the different phases using the
scheme of Refs. [14,15]. Chiral symmetry is broken in phases
B and C0, and phases A0 and C0 have nonzero nuclear density.

INFLUENCE OF STRONG MAGNETIC FIELDS . . . PHYSICAL REVIEW D 81, 074005 (2010)

074005-5



B ¼ 4m2
�=e, the phase C0 exists as a metastable phase (we

will discuss this in more detail later).
The qualitative behavior of the down quark is very

similar, as the quarks only differ in charge. Consequently,
Fig. 3 can be directly obtained from Fig. 2 by multiplying
B by 2; for ease of comparison we show both figures. If one
compares the two figures, one can immediately see that
there are large regions where the constituent quark masses
are considerably different. This is equivalent to a large
nonzero h �c �3c i condensate, i.e., spontaneous isospin
breaking. This will influence the behavior of the mesons
accordingly, for example, the masses.

Eventually, if one keeps increasing the magnetic field,
the phase transitions of the quarks will take place at (al-
most) the same chemical potential and there will be no
spontaneous isospin breaking.

2. The c � 0 case

In this section the consequences of the instanton inter-
action are studied; i.e., the parameter c is varied. Increasing
c will cause mixing between the constituent quarks, which
tends to bring the constituent quark masses together.
Around the phase transition there is competition between
the effect of the magnetic field and the instanton
interaction.

The competition is illustrated in Fig. 4, where the con-
stituent quark masses are plotted as a function of the quark
chemical potential for three characteristic values of c, c ¼
0, 0.03, and 0.1 with B ¼ 5m2

�=e. The qualitative behavior
for different values of the magnetic field is similar. One can
see that when c � 0, the phase transitions are indeed
coupled. Furthermore, one observes that the two phase
transitions merge into one when c is increased and that
the phase C0 disappears. Qualitatively, the behavior is
similar to the case of nonzero isospin chemical potential
studied in Ref. [45], but in that case the phase C0 does not
exist.

When the coupling constant G0 is lowered, it is possible
to have Ck phases at c ¼ 1=2, as in Ref. [14]. Compared to
the chiral limit studied there, the region of the phase
diagram with Ck phases increases for m � 0.
More insight into the phase structure and phase transi-

tions is obtained by looking at the behavior of local minima
of the effective potential. Near the phase transition at these
(large) magnetic fields, metastable phases arise. These
phases differ in the number of filled LL. Let us take as
an example the c ¼ 1=2 case, which is the easiest to
discuss, as the effective potential is then only a function
of Mu ¼ Md ¼ M. In Fig. 5 we show the effective poten-
tial as a function of M with � ¼ 378 MeV and B ¼
5m2

�=e. At these values four minima can be seen; the
global minimum is the phase in which the chiral symmetry
breaking is largest, i.e. minimum 4. When � is increased,
minimum 1 will take over, which is A1 for the up quark and
A2 for the down quark. The other two local minima never
become the global one for our choice of G0, but as they are
almost degenerate with the other minima (also for other
values of c), they are nevertheless important. These local
minima correspond to Ck phases and can become the
global minimum when G0 is lowered.
Similar results hold for c � 1=2; then, metastable

phases also exist with different fillings of LL. In this case
some of the Ck phases can become the global minimum, as
we have seen for c ¼ 0. Like before, the number of such
states depends on the choice of the other parameters.
As the metastable phases differ in the values of the h �uui

and h �ddi condensates at small c, they again represent rather
large broken isospin and will lead to different meson
masses. Whenever the system is passing through the phase
transition, it could be trapped in one of those metastable
phases for some time, and consequences from the changing
meson masses can arise, for example, enhancing or sup-
pressing certain decays.
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lines denote the up quarks, the dashed lines the down quark.
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B. Nonzero temperature

In this section the temperature dependence of the ground
state is investigated at zero chemical potential, but with a
magnetic field. As the instanton interaction does not influ-
ence the temperature dependence much, we only consider
c ¼ 1=2 for simplicity. Reference [19] found that, in the
linear sigma model coupled to quarks, the usual crossover
becomes a first order transition at very high magnetic
fields. However, we find that this is not the case in the
NJL model.

In Ref. [19] only the lowest Landau level was taken into
account. Here more Landau levels are included, so the
effect of the higher Landau levels can be investigated in
the NJL model. Since the levels with large k are exponen-
tially suppressed, the summation can be truncated in
Eq. (16); we will denote the largest k by ktrunc. The value
of ktrunc depends on the temperature, constituent quark

mass, chemical potential, and magnetic field considered.
IfM and T are increased or if B is decreased, ktrunc has to be
increased.
In Fig. 6 we show the temperature dependence of the

constituent quark mass at B ¼ 15m2
�=e for four different

values of ktrunc. The 13 levels case is chosen such that the
error is less than 1% at M ¼ 450 MeV, T ¼ 450 MeV.
From the figure it can be inferred that taking more Landau
levels into account makes the crossover sharper. Also,
there is a significant difference between including the
zeroth Landau level and including the first Landau level.
It is clear that including more Landau levels influences the
details of the transition. However, the qualitative aspects of
the phase transition are not changed.
In Fig. 7 the temperature dependence of the constituent

quark mass for different values of the external magnetic
field is shown. The phase transition remains a crossover, in
contrast to the results in the linear sigma model coupled to
quarks. This difference is important, as a first order phase
transition allows for metastable states, whereas a crossover
does not.
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In Fig. 8 the results in the chiral limit are shown, where
the transition remains a second order phase transition, as is
the case at zero magnetic field, and confirms the results of
[17], in which the phase diagram was calculated in a strong
magnetic field in the chiral limit using the Fock-Schwinger
proper time method. Note that the critical temperature
increases slightly with increasing magnetic field.

IV. CONCLUSIONS

The effect of a strong magnetic field on quark matter has
been investigated in the NJL model in two regimes, zero
temperature and finite chemical potential and vice versa.
The first regime is of relevance for (the interior of) mag-
netars and the second for heavy-ion collisions.

At very high magnetic fields, whenM � 2jqjB � �, the
phase structure shows a variety of phases and phase tran-
sitions due to Landau quantization. As a function of chemi-
cal potential, more phase transitions occur, corresponding
to Landau levels filling up successively. Because of the
difference in charge, this pattern is different for the two
quark flavors. When there is no mixing in the absence of
the instanton interaction, the two patterns are uncoupled.
This generally leads to rather different constituent quark
masses, or equivalently, spontaneous isospin breaking
h �c �3c i � 0. This affects the mesons inside the medium,
for example, their masses. It was found that for a realistic
choice of parameters in the NJL model, such a phase of
broken chiral and isospin symmetry arises around B ¼
4:5m2

�=e, but it is already present as a metastable phase
for lower magnetic fields.

When the instanton interaction is included, a competi-
tion occurs between the strength c of this interaction and
the magnetic field. This reduces the region in the phase
diagram with large h �c �3c i. For c sufficiently large, it
disappears entirely, leaving only one phase transition.
However, around this transition the phase structure is still
rather complex regarding metastable phases, which are
characterized by different fillings of Landau levels and
which differ only slightly in energy, but much in the
amount of chiral symmetry breaking. For lower values of
c some of these near-degenerate minima can also differ
considerably in the amount of isospin breaking.
Finally, the role of the temperature was studied at zero

chemical potential. In Ref. [19] it was found that, in the
linear sigma model coupled to quarks, a strong magnetic
field changes the usual crossover as a function of tempera-
ture into a first order transition. In the NJL model it was
found that the crossover remains a crossover. Also, includ-
ing higher Landau levels in the calculation of the effective
potential changes the details of the crossover; it becomes
sharper, albeit the qualitative aspects of the transition are
not changed. The difference between the two models is
important, as the first order transition allows for metastable
phases while a crossover does not.
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