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We discuss the interplay of low-x physics and QCD scaling violations by extending the unified

approach describing inclusive structure functions and diffractive production in ��p interactions proposed

in previous papers to large values ofQ2. We describe the procedure of extracting, from the nonperturbative

model, initial conditions for the QCD evolution that respect unitarity. Assuming Regge factorization of the

diffractive structure function, a similar procedure is proposed for the calculation of hard diffraction. The

results are in good agreement with experimental data on the proton structure function F2 and the most

recent data on the reduced diffractive cross section, xP�
Dð3Þ
r . Predictions for both F2 and FL are presented

in a wide kinematical range and compared to calculations within high-energy QCD.
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I. INTRODUCTION

The interaction of a highly energetic virtual photon with
a nucleon, or a nucleus, probes the high-energy limit of
strong interactions. In this situation it is important both to
find the correct degrees of freedom of the interaction and to
preserve unitarity of the cross section. In the infinite mo-
mentum frame the latter comes about, in the limit of large
gluon density, as nonlinear gluon interactions, which tame
the growth of parton distributions and eventually lead to
saturation. In the target rest frame the same phenomenon is
manifested in terms of multiple scattering.

Experimental data indicate a fast growth of the ��p
cross section accompanied by a large diffractive cross
section at the highest available energies [1–21]. This calls
for a unified treatment of several effects: a proper unitar-
ization of the total cross section at lowmomentum scales in
conjunction with a correct treatment of QCD scaling vio-
lations. While present day data give a rich insight into the
latter, the question of whether saturation effects have been
observed is still under debate. All the same, these effects
are of crucial importance when extrapolating to higher
energies, deep inelastic scattering (DIS) off nuclei, and
heavy-ion collisions.

DIS measurements are typically used to constrain uni-
versal parton distribution functions (PDFs) through an
analysis of QCD scaling violations. The most recent
state-of-the-art fits based on the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations up
to next-to-next-to-leading order have been presented in
[22,23]. Regrettably, one has no perturbative theoretical
control of the initial conditions and, thus, extrapolations to
kinematical regions yet unexplored by experiments are
affected by significant uncertainties, e.g. as obtained by
recent PDF fits using neural networks [24].

An established approach to the problem of high-energy
scattering in QCD is the dipole model [25,26]. One can
show that at very high energies the ��p scattering can be

modeled as a convolution of the wave function of a virtual
photon fluctuating into a q �q dipole and the subsequent
dipole-proton cross section. While the former is known
exactly from QED, the latter can be treated theoretically
(approximated e.g. by two-gluon exchange) or simply
parameterized. Still, the dipole model contains several
weaknesses that limit its range of applicability, such as
lack of scaling violations owing to QCD evolution.
Furthermore, the model is valid only for small dipole sizes
and at low-x.
Using perturbative arguments one can show that the

strength of the q �q� N cross section should scale with
the transverse area of the dipole [25,26]. A particular
simple parameterization of this cross section was sug-
gested in [27]. The so-called Golec-Biernat–Wüsthoff
(GBW) dipole cross section encodes the characteristic
features of parton saturation by assuming an x-dependent
damping of large-size dipoles or, in other words, a satura-
tion scale Q2

s / x��. A fit to experimental data resulted in
a value � � 0:28. The model was extended to describe
diffraction in [28].
In fact, the effective energy dependence of the cross

section, �eff ¼ d lnF2=d lnð1=xÞ, changes from a quite
small value at low-Q2, consistent with the so-called soft
Pomeron, to a steady growth in the perturbative region. The
dipole model incorporates some scaling violations in the
�� � q �q wave function which mimic the QCD behavior,
but fails to match with the DGLAP equations at high-Q2

data due to the lack of scale dependence of the q �q� N
cross section. The authors in [29] attempt to include these
by making use of the connection between the dipole cross
section and the gluon distribution function at leading loga-
rithmic accuracy. At the initial scale they include solely a
nonzero gluon PDF and perform a LO QCD fit to constrain
its parameters. An impact parameter dependence was also
introduced in a later extension of the model [30].
Calculations of diffraction within the improved dipole
model have also been presented [31].
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Recently, a general evolution equation for high-energy
QCD has been derived using renormalization group tech-
niques, the so-called Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner equation [32–38]. It can be
approximated, with great accuracy, by the significantly
less complicated Balitsky-Kovchegov (BK) equation
[38,39]. Unfortunately, calculations at leading order result,
for realistic values of the strong coupling constant, in an x
dependence of the saturation scale significantly larger than
the � extracted phenomenologically [27]. Subleading ef-
fects, such as energy-momentum conservation and inclu-
sion of running of the strong coupling constant, are
believed to tame this growth [40,41]. It was not until
recently that a complete numerical solution [42] of the
BK equation with running coupling was presented [43–
45]. In [46] a set of parameters related to the initial
distribution was fixed to obtain a good agreement with
F2 and FL at x < 0:01, and predictions down to x ¼
10�12 were made for a wide range of Q2.

In spite of the successes, there are many aspects of the
theoretical computations that are still to be fully under-
stood, such as the impact parameter dependence and the
description of diffraction. In the absence of a unified QCD
approach to the entirety of ��N (��A) processes, a useful
guidance for investigating the connection between non-
perturbative and perturbative aspects of DIS valid for ex-
trapolations to extremely small momentum fractions x can
be found in terms of the Reggeon calculus [47] with a
supercritical Pomeron, �P ¼ �P � 1> 0, and the par-
tonic picture of ��N interactions. Multi-Reggeon ex-
changes are included so as to satisfy s-channel unitarity.
In a particular realization of these models, in the �� wave
function, one distinguishes explicitly between a large (L)
and a small (S) component [48,49]. The former interacts
strongly even at high-Q2 but is quite rare, while the latter
interacts according to r� 1=Q. Thus both components
have a leading 1=Q2 dependence of the total cross section
while the L component gives the leading contribution to
diffraction (1=Q2 vs 1=Q4). Large-mass diffraction is in-
cluded through triple-Reggeon interactions. In this work
we will follow the approach of [49], where the small
component was cast in the form of the dipole model. The
model gave a simultaneous description of inclusive F2 and
diffraction in the region of 0<Q2 � 5–10 GeV2, and was
used to predict the structure functions at very low x. In [50]
these results were used to predict nuclear shadowing cal-
culated in the Glauber-Gribov theory, in good agreement
with data. In Sec. II we give a detailed description of the
model (formulas for diffraction are given in the Appendix).

With the advent of high-energy colliders, such as
Hadron Electron Ring Accelerator (HERA) and LHC,
and the planned electron-hadron experiments [51,52], the
need for low-x structure functions for nucleons and nuclei
at high-Q2 have arisen. This motivates an extension of the
model mentioned above [49] to the perturbative regime by

the inclusion of QCD scaling violations. We describe a
prescription for extracting the initial conditions at leading
order for the DGLAP equations from the nonperturbative
model for both inclusive F2 and diffraction. In the former
case, this procedure does not involve new parameters. The
situation for the inclusive diffractive cross section is more
complex, because it involves both more complicated
Reggeon exchanges and additional variables in the prob-
lem. For the proper description of data in the whole � and
xP region we identify explicitly Pomeron and Reggeon
contributions to diffraction. One can then invoke a supple-
mentary factorization of variables, the so-called Regge
factorization [53], which allows for a comprehensible
QCD analysis. In the Reggeon case, we identify and in-
clude missing diagrams, which are crucial for a proper
description of data. Details on the initial conditions and
subsequent QCD evolution in the inclusive and diffractive
cases are given in Secs. III and V, respectively.
Thus, equipped with properly unitarized initial condi-

tions for the DGLAP evolution equations, we obtain
leading-order structure functions and PDFs for the proton

down to x� 10�8 at high-Q2. The resulting F2 and xPF
ð3Þ
2D

are shown to be in good agreement with the most recent
experimental data. We also compute the longitudinal struc-
ture function within the dipole model using the perturba-
tive gluon PDF thus obtained in Sec. IV. Comparisons are
made with the recently computed solution of the running-
coupling BK equation [46]. Finally, we present our con-
clusions in Sec. VI.

II. BRIEF DESCRIPTION OF THE CFSK MODEL

At small x, the total cross section for ��p interactions is
related to the structure function F2ðx;Q2Þ by

�ðtotÞ
��pðW2; Q2Þ ¼ 4�2�e:m:

Q2
F2ðx;Q2Þ; (1)

where x ¼ Q2=ðW2 þQ2Þ, W ¼ ffiffiffi
s

p
is the invariant mass

of the produced hadronic system, andQ2 is the virtuality of
the photon. In the model of [49], denoted in the following
as Capella-Ferreiro-Salgado-Kaidalov (CFSK), the total
cross section was written as a sum of two contributions

�ðtotÞ
��pðs;Q2Þ ¼

Z
d2b�ðtotÞ

��pðb; s; Q2Þ; (2)

�ðtotÞ
��pðb; s; Q2Þ ¼ g2LðQ2Þ�ðtotÞ

L ðb; s;Q2Þ þ �ðtotÞ
S ðb; s; Q2Þ:

(3)

The first term on the right-hand side of Eq. (3) describes the
nonperturbative interaction of large-size partonic configu-
rations of the virtual photon with the target, while the
second term describes the interaction of small-size con-
figurations. The function g2LðQ2Þ, determining the coupling
of the �� to the large q �q dipole, was chosen in the form

g2LðQ2Þ ¼ g2Lð0Þ
1þQ2=m2

L

; (4)

vanishing at highQ2 while theQ2 dependence of the small-
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size component is an inherent characteristic of the dipole
model.

The cross section of the L component in impact parame-
ter space is cast in the quasieikonal form (to include proton
dissociation)

�ðtotÞ
L ðb; s; Q2Þ ¼ 1� expð�C�Lðb; s; Q2ÞÞ

2C
; (5)

where the function �L accounts for multiple Pomeron (P)
and Reggeon (R ¼ ff; A2; . . .g) exchanges and triple-
Reggeon interactions, as follows:

�Lðs; b; Q2Þ ¼ �P
L0ðb; �Þ

1þ a�3ðs; b;Q2Þ þ �R
L0ðb; �Þ: (6)

The first term in Eq. (6) corresponds to a summation of fan-
type diagrams, also called the Schwimmer model [54]. The
constant a is defined as a ¼ gPppð0ÞrPPP=16�, where

gPppð0Þ is the proton-Pomeron coupling and rPPP is the

triple-Pomeron coupling. The eikonal functions �k
L0 (k ¼

P, R) are written in the standard Regge form

�k
L0ðb; �Þ ¼

Ck
L

�L
0kð�Þ

exp

�
�k�� b2

4�L
0kð�Þ

�
; (7)

where

�k ¼ �kð0Þ � 1; � ¼ ln
sþQ2

s0 þQ2
;

�L
0k ¼ R2

0kL þ �0
k�;

(8)

and �kð0Þ and �0
k are the intercept and slope of the corre-

sponding trajectories, respectively. The function � is
chosen such that it behaves as lnð1=xÞ at high-Q2 and
lnðs=s0Þ at Q2 ¼ 0. The triple-Reggeon interaction term,
�3ðs; b;Q2Þ, is

�3ðs; b;Q2; �Þ ¼ 1

�PðxPÞ exp
�
� b2

4�PðxPÞ
��

1

xP

�
�P

� ð1� �ÞnðQ2Þþ4; (9)

�3ðs; b;Q2Þ ¼
Z �max

�min

d�

�
�3ðs; b;Q2; �Þ; (10)

where, in this case, �PðxPÞ ¼ R2
0P þ �0

P lnð1=xPÞ, where
xP ¼ x=� is the Bjorken momentum fraction of the
Pomeron, and the limits of integration are given by �min ¼
x=xPmax ¼ 10x and �max ¼ Q2=ðQ2 þM2

minÞ. The triple-

Reggeon eikonal accounts for heavy-mass diffraction, and
thus Mmin ¼ 1 GeV.1 A generic diagram of the ��p inter-
action is shown in Fig. 1.

The cross section of the S component has been cast in
the standard dipole form

�ðtotÞ
S ðs; Q2Þ ¼ X

T;L

Z r0

0
dr

Z 1

0
dzjc T;Lðr; zÞj2�Sðr; s; Q2Þ;

(11)

where r0 is a cutoff parameter on the size of the dipoles, to

be fitted, and c TðLÞ are the wave functions of the q �q pair
corresponding to transverse and longitudinal polarizations
of the virtual photon, the corresponding squares given by

jc Tðr; zÞj2 ¼ 6�e:m:

4�2

X
q

e2q½z2 þ ð1� zÞ2	2K2
1ð	rÞ

þm2
qK

2
0ð	rÞ�; (12)

jc Lðr; zÞj2 ¼ 6�e:m:

4�2

X
q

e2q½4Q2z2 þ ð1� zÞ2K2
0ð	rÞ�:

(13)

Here 	2 ¼ zð1� zÞQ2 þm2
q, and K0 and K1 are

McDonald functions. We use the same quark mass, mq,

for all three quark flavors. The dipole-nucleon cross sec-
tion�Sðr; s; Q2Þ can be written in terms of the cross section
at a given impact parameter

�Sðr; s; Q2Þ ¼ 4
Z

d2b�Sðr; b; s; Q2Þ; (14)

where �Sðr; b; s; Q2Þ is cast analogously to Eqs. (5) and (6)
for �Lðb; s; Q2Þ with �L replaced by �S. The dependence
of the dipole cross section on r is introduced taking into
account that for small dipoles cross sections are propor-
tional to r2, so that the eikonal function is defined as

�P
S0ðb; �Þ ¼

CP
S r

2

�S
0Pð�Þ

exp

�
�P�� b2

4�S
0Pð�Þ

�
; (15)

where �S
0P ¼ R2

0PS þ �0
P�. Note that secondary (R) ex-

changes do not contribute to the S component.
A notable feature of the model is its growing interaction

radius with energy, encoded in the functions �L
0k and �S

0P,

FIG. 1. A generic Reggeon diagram included in the CFSK
model.

1In the CFSK model [49], �3 contains a contribution from
RPP diagrams (exchanges in the triple-Reggeon or Pomeron
diagrams are labeled clockwise starting from the left). These are
unphysical and have been removed in the calculations presented
in this paper. Numerically, this contribution is insignificant in
calculations of inclusive DIS and are only sizable in the high-xP,
low-� region of diffraction, which we discuss in detail below.
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which leads to an increase of the cross section at low x. It is
also worth noticing that the amount of damping of the
functions �L and �S [see Eq. (6)] are controlled by the
parameter a and the function �3, which are strongly con-
strained by diffraction. In this way, unitarization of the
cross section and the amount of diffraction are intimately
linked.

Several of the model parameters are fixed from studies
of the energy dependence of total and diffractive cross
sections of hadronic reactions in Regge theory, while the
rest were fitted to inclusive and diffractive DIS at low x and
0<Q2 < 5 GeV2 [49]. A summary of the parameter val-
ues is given in Table I; the fitted ones from [49] can be
found in the column labeled CFSK. This particular real-
ization of the model conjectured a (nonstandard) value of
the Reggeon intercept, �f ¼ �0:3. We have redone the fit

to the same data set fixing �f ¼ �0:5, which in the

following we will denote as CFSK0; see rightmost column
in Table I for details. The new fit works even slightly better
than the old one and has several additional advantages,
which we will describe in detail below. It is interesting to
notice that the fitted cutoff on the size of the dipoles in the
S component is about 0:2–0:25 fm.

III. QCD EVOLUTION OF THE INCLUSIVE
STRUCTURE FUNCTION

In order to generalize the CFSK model to large values of
Q2, QCD scaling violations have to be included. The
model is therefore used as the initial condition for the
DGLAP evolution equations at the initial scale Q2

0 ¼
2 GeV2 (any Q2

0 � 1 GeV2 can, in principle, be set as

the initial scale and the results are rather insensitive to
the value of Q0). The initial condition for the evolution
equations should be given for all x. While the CFSK model
is valid only for small values of x, it can easily be extended
to the x� 1 region. In order to do so, we follow a standard
procedure [55], multiplying the partonic distributions by

the relevant powers of (1� x) as explained below. In what
follows we will work at leading order (LO).
Let us first infer the valence quark PDFs from the total

cross section. They correspond to the exchange of second-
ary Reggeons. In our model these are included only in the
L component; see Eq. (5). In order to separate the R
contribution, only linear terms in �R

L will be taken since
it is sizable only at not too low x, where multi-Reggeon
exchanges can be neglected. We therefore find that the
valence quark contribution to F2 from the model is

Flow-x
2V ¼ Q2

4�2�S

4g2LðQ2Þ
Z

d2b
�R
L

2

¼ 2Q2

��S

g2LðQ2ÞCR
L�

�R : (16)

For the proton, we take ulow-xV ðx;Q2Þ=2 ¼ dlow-xV ðx;Q2Þ
[55] and use

Flow-x
2V ðx;Q2

0Þ ¼ 4
9xu

low-x
V ðx;Q2

0Þ þ 1
9xd

low-x
V ðx;Q2

0Þ (17)

as the low-x valence quark distribution at the initial scale.
The extension to high-x for the proton is carried out by

multiplying the uV quarks by ð1� xÞnðQ2Þ and the dV
quarks by ð1� xÞnðQ2Þþ1, respectively, where

nðQ2Þ ¼ 3

2

�
1þ Q2

Q2 þ c

�
; (18)

and c ¼ 3:55 GeV2 [55]. Finally, the valence quark distri-
butions are given by

xuVðx;Q2
0Þ ¼ 2Flow-x

2V ðx;Q2
0Þð1� xÞnðQ2

0Þ; (19)

xdVðx;Q2
0Þ ¼ Flow-x

2V ðx;Q2
0Þð1� xÞnðQ2

0Þþ1: (20)

The sea-quark PDF is given by the sum of the S component
and the singlet contribution to the L component, i.e. ne-
glecting all R terms in the latter:

Flow-x
2 Sea ¼ Q2

4�2�S

ð�ðtotÞ
S þ �ðtotÞ

L jCf
L¼0Þ: (21)

In order to obtain the PDF’s for the different flavors in the
sea, we define Sðx;Q2Þ 	 u ¼ �u ¼ d ¼ �d ¼ 2s ¼ 2�s,2 so
that

Flow-x
2Sea ðx;Q2

0Þ ¼
X
q; �q

e2qxq
low-xðx;Q2

0Þ ¼
11

9
xSlow-xðx;Q2

0Þ:

(22)

Taking into account the relevant (1� x) factor for the
high-x behavior, the sea-quark distribution is finally given
by

TABLE I. Parameters of the ��N model: the column labeled
CFSK corresponds to the original model parameters, as found in
[49]; the column labeled CFSK0 corresponds to a new fit per-
formed with a smaller value of the Reggeon intercept, �f.

Fixed parameters CFSK [49] CFSK0

�P 0.2 g2Lð0Þ 4:56� 10�3 5:65� 10�3

�f �0:3a Cf
L 1:87 GeV�2 2:95 GeV�2

�0
P 0:25 GeV�2 CP

L 0:56 GeV�2 0:46 GeV�2

�0
f 0:9 GeV�2 s0 0:79 GeV2 0:79 GeV2

R2
0kL 3 GeV�2 a 4:63� 10�2 GeV�26:13� 10�2 GeV�2

R2
0PS 2 GeV�2 m2

L 0:59 GeV2 0:70 GeV2

R2
1k 2:2 GeV�2 CS 0.185 0.105

�f 8 r0 1:06 GeV�1 1:33 GeV�1

C 1.5 m2
q 0:15 GeV2 1� 10�3 GeV2

aPut to �0:5 in the CFSK0 fit.

2Here we neglect the difference between �u and �d quarks in the
region x � 0:1.
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xSðx;Q2
0Þ ¼

9

11
Flow-x
2 Sea ðx;Q2

0Þð1� xÞnðQ2
0Þþ4 (23)

at the initial scale.
At sufficiently largeQ2 the term �S can be related to the

distribution of gluons in the proton. In the leading loga-
rithmic approximation [56,57] we have that

�Sðr; s; Q2Þ ¼ r2
�2

3
�SðQ2Þxgðx;Q2Þ; (24)

where xgðx;Q2Þ is the gluon distribution function of a
proton and �S is the strong coupling constant. For small
values of �S, we obtain

xglow-xðx;Q2
0Þ ¼

6

�2�SðQ2
0Þ

CP
S

�S
0Pð�Þ

�
Z

d2b
expð�P�� b2

4�S
0Pð�Þ

Þ
1þ a�3ðb; s;Q2Þ : (25)

The extrapolation to large values of x is the same as for the
sea quarks with an additional ð1� xÞ�1 factor [55]; that is,

xgðx;Q2
0Þ ¼ xglow-xðx;Q2

0Þð1� xÞnðQ2
0
Þþ3: (26)

Thus, Eqs. (19), (20), (23), and (26) constitute the initial
conditions for the DGLAP evolution equations for the
inclusive structure function.

The treatment of heavy quarks is done in the zero-mass
variable flavor number scheme. This scheme provides
matching prescriptions between Nf and Nf þ 1 evolved

PDFs at a given threshold scale, 
T , proportional to the
heavy quark mass, mQ. The proportionality constant is not

known theoretically but can be estimated requiring
smoothness of observables; see [58,59]. We take the charm
quark mass to be mc ¼ 1:4 GeV, neglect bottom and top
contributions, and take 
T ¼ 2:5mc. Further investigation
of the impact of heavy quarks and a detailed comparison to

heavy quark structure functions, Fc
2 and F

b
2 , lie beyond the

scope of the present work.
The parton distribution functions at the initial scale at

leading order are thus fixed unambiguously as described
above, and they have to fulfill the valence and momentum
sum rules, namely,

Z
dxuVðx;Q2

0Þ ¼ 2;
Z

dxdVðx;Q2
0Þ ¼ 1;

Z
dxxðuVðx;Q2

0Þ þ dVðx;Q2
0Þ þ 5Sðx;Q2

0Þ þ gðx;Q2
0ÞÞ ¼ 1:

(27)

The partonic decomposition of the original CFSK model
does not automatically fulfill these rules, which would
force us to introduce uncomfortably large overall normal-
ization factors. The CFSK0 fit described above, on the other
hand, automatically fulfills the sum rules to a good ap-
proximation. We have verified that Eqs. (27) are satisfied
with an accuracy better that 5%–10%. To further improve

the sum rules, we have increased the parameterCf
L by 12%;

see Table I. The fraction of the proton momentum carried
by the gluons at the initial scale is thenR

dxxgðx;Q2
0ÞR

dxxðSðx;Q2
0Þ þ gðx;Q2

0ÞÞ
¼

�
0:59 in CFSK;
0:49 in CFSK0: (28)

The initial PDFs for both fits are compared to the
CTEQ6 LO parameterization [23] in Fig. 2. The choice
of�f ¼ �0:5 is clearly improving theCFSK0 valence PDF
contribution, and the smaller value of the CS parameter
than in the original CFSK brings the gluons closer to the fit
of CTEQ6. Since the QCD sum rules seem to be better
satisfied in the CFSK0 model with no additional normal-
ization of the input PDFs, we will continue using this set of
parameters in what follows.
We have subsequently performed QCD evolution at LO,

with �SðM2
ZÞ ¼ 0:126 using the QCDNUM evolution code

1x10-5 1x10-4 1x10-3 1x10-2 1x10-1

x

0.2

0.4

0.6

0.8

1

1.2

CFSK u
CTEQ6 LO u
CFSK d
CTEQ6 LO d
CFSK u
CTEQ6 LO u

x 
q(

x,
Q

2 )

x 
g(

x,
Q

2 )

Q2 = 2 GeV2

1x10-5 1x10-4 1x10-3 1x10-2 1x10-1
0

5

10

15

20
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CTEQ6 LO

1x10-5 1x10-4 1x10-3 1x10-2 1x10-1

x
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0.4
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1
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CFSK' u
CTEQ6 LO u
CFSK' d
CTEQ6 LO d
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x 
q(

x,
Q

2 )

x 
g(

x,
Q

2 )

Q2 = 2 GeV2

1x10-5 1x10-4 1x10-3 1x10-2 1x10-1
0
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10

15

20

CFSK'
CTEQ6 LO

FIG. 2 (color online). Initial quark and gluon parton distribution functions in CFSK (left) and CFSK0 (right) models compared to the
CTEQ6 LO parameterization [23] at Q2

0 ¼ 2 GeV2.
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[60]. The F2, and the associated parton distribution func-
tions, thus obtained are denoted CFSK0e (evolved).
Comparing with data from experiments [1–16], a total of
847 data points, the resulting �2=d:o:f: is 2 both for CFSK0
(0<Q2 � 2 GeV2) and in the evolved case
(2<Q2 < 1000 GeV2).3 The results of CFSK0 and
CFSK0e are shown and compared to a set of the experi-
mental data in Fig. 3. Summarizing, we have shown that
the proposed model is in good agreement with experimen-
tal data in the whole range of accessible Q2 and down to
very low x.

The LO DGLAP evolution takes into account large
logarithms in Q2, yet at very high energies one expects
large corrections arising from the missing terms in lnð1=xÞ,
which are more properly accounted for in the BK equation
or in linear resummation schemes [61,62]. In Fig. 4 we
compare predictions of low-x F2 to the recent solution of
the BK equation presented in [46], where an initial q �qN
cross section in the form of the GBW model was assumed.
We notice large differences between the models at very
large Q2, which may partly be caused by the fact that the
calculation presented in [46] does not take into account
heavy flavors, which are important at those momentum
scales, and partly by the absence of impact parameter
dependence in the calculation [46]. Regardless of this,
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FIG. 3 (color online). The structure function F2 in the CFSK0e model compared to data. The blue dashed curve is the unevolved
CFSK0 model, and the red solid curves are the CFSK0 evolved at LO. Black points are experimental data [1–16].

3Here, we have not considered the normalization errors of the
data sets when calculating the �2.
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the deviations between the models for x � 10�6 at Q2 >
10 GeV2 hint of a breakdown of the DGLAP equations.
Although the CFSK model satisfies unitarity, the observed
difference is purely an effect of high-energy QCD and will
be extremely interesting to study in the future.

IV. THE LONGITUDINAL STRUCTURE
FUNCTION

The measurement of the longitudinal structure function
of the proton at HERA has been eagerly awaited. The
longitudinal structure function is zero at leading-order
QCD and is a direct measure of the size of the gluon
distribution, which had before this been accessed only
through the scaling violations of the total structure func-
tion. Thus, it is believed that it can be a sensitive probe to
saturation effects at low x. In the dipole model at leading
logarithmic accuracy FL only probes the dynamics of
small, perturbative configurations.

Although the longitudinal structure function is a next-to-
leading order observable in the QCD improved parton

model within collinear factorization, one can calculate
this quantity in the framework of the dipole model using
the connection between the dipole-nucleon cross section
and the gluon distribution function at leading-logarithmic
approximation. On the one hand, we can use directly the
form of the dipole-nucleon cross section of the unevolved
CFSK0 model, Eq. (26), and, on the other hand, we can
make use of the relation of this cross section to the gluon
distribution at Q2 � Q2

0, Eq. (24), which we extract from

the perturbative calculation, CFSK0e.
Note that in the latter case there is a slight mismatch

between the nonperturbative and perturbative gluons due to
the integration over impact parameter. In principle, the
definition in Eq. (26) gives us the first term in a series of
the (impact parameter dependent) quasieikonal model. To
be able to resum the quasieikonal series we should include
the correct impact parameter dependence of each individ-
ual term. We therefore define the impact parameter depen-
dent gluon density in full analogy with each of the
Pomeron terms as follows:

xgðb; x;Q2Þ ¼ expf�b2=4�S
0Pð�Þg

4��S
0Pð�Þ

xgðx;Q2Þ; (29)

where we have ensured the proper normalization. The final
q �q� N cross section is therefore

�Sðr; x; Q2Þ ¼ 4
Z

d2b
1

2C

�
1� exp

�
�C

�2�SðQ2Þ
6

� expf�b2=4�S
0Pð�Þg

4��S
0Pð�Þ

xgðx;Q2Þr2
��
; (30)

where both the gluon distribution and the strong coupling
constant are calculated at LO. The resulting longitudinal
structure function is found by convoluting �S in Eq. (30)
with the wave function for longitudinally polarized pho-
tons in Eq. (13).
We compare the two prescriptions for the dipole-

nucleon cross section described above to H1 [17] and
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FIG. 4 (color online). Predictions for F2 in the CFSK0e model
and from a numerical solution of the BK equation [46].
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ZEUS [18] data in Figs. 5 and 6. At the present moment the
experimental data have too large errors to distinguish
between models, but more precise data at low-Q2 could
increase the discriminating power of the observable.

Finally, FL at low x is expected to be sensitive to
saturation effects, which could be probed at a future
electron-proton collider. The authors of [63] found that
combined data on F2 and FL give a strong discriminating
power in revealing saturation effects. In particular, we note
an order of magnitude difference between the prediction of
the CFSK model and the BK model at low x andQ2, which
are compared in Fig. 7. This region lies beyond the reach of
perturbation theory and can shed light on the transition to
the nonperturbative regime.

V. QCD EVOLUTION OF THE DIFFRACTIVE
STRUCTURE FUNCTION

Using the Abramovsky-Gribov-Kancheli cutting rules
[64], we can readily obtain the diffractive cross section
from the formulas of the total cross section described
above. Once more, the diffractive cross section will consist
of contributions from the large and small partonic configu-
rations of the virtual photon wave function, while the
leading contribution arises only from the former, unlike
in the inclusive case. Therefore, the CFSK model includes
also the explicit contribution from 3P diagrams, which are
responsible for high-mass diffraction (the low-� region).
For specific details on the diffractive part of the CFSK
model we refer the reader to [48,49] and the Appendix.
The collinear factorization theorem of the diffractive

cross section, xP�
Dð4Þð�; xP; Q2; tÞ, is valid at fixed xP

and t only for the resolved photon [65]. Nonetheless,
experimental data show to a good approximation that
diffractive DIS data satisfy proton vertex factorization,
whereby the dependences on variables that describe the
scattered proton ðxP; tÞ factorize from those describing the
hard partonic interaction ðQ2; �Þ. This property is also
known as Regge factorization [53]. For example, the slope
parameter B, extracted by fitting the t distribution to the
form d�=dt / eBt, shows no significant variations from the
average value [19]. Also, one observes no significant varia-
tion of the Pomeron intercept with Q2 [19].
These observations hold as long as one-Pomeron ex-

change dominates the cross section. The CFSK model
involves more complicated diagrams and respects this
naive factorization only in a limited kinematical region.
On the one hand, the multi-Reggeon exchanges change the
effective intercept of the Pomeron. On the other hand, the
low-� and high-xP region is dominated by Reggeon ex-
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FIG. 7 (color online). Predictions for FL in the CFSK model
and from a numerical solution of the BK equation [46]. Note that
the lower red, dashed curve of the BK solution corresponds to
Q2 ¼ 10�1 GeV2.

0

0.5

1
2 = 12 GeV2Q 2 = 15 GeV2Q 2 = 20 GeV2Q

0

0.5

1
2 = 25 GeV2Q 2 = 35 GeV2Q

-410 -310 -210

2 = 45 GeV2Q

-510 -410 -310 -210

0

0.5

1

2 = 60 GeV2Q
-410 -310 -210

2 = 90 GeV2Q

H1 Data

CFSK'e

CFSK'

)
2

 (
x,

Q
LF

FIG. 6 (color online). The x dependence of the longitudinal structure function of the proton for several Q2 bins in the CFSK0 and
CFSK0e models compared to H1 data [17].

ARMESTO et al. PHYSICAL REVIEW D 81, 074002 (2010)

074002-8



change, a missing piece in the original formulation of
CFSK. For the sake of simplicity, comparing our calcula-
tions to the experimentally available t-integrated (reduced)

diffractive cross section, xP�
Dð3Þ
r ð�; xP; Q2Þ, we will make

use of the general Regge factorization, representing the
diffractive structure functions as

Fð3Þ
2DðxP; �;Q2Þ ¼ �fP=pðxPÞFP

2 ð�;Q2Þ
þ nR �fR=pðxPÞFR

2 ð�;Q2Þ; (31)

where Fi
2 are the Reggeon/Pomeron structure functions

and �fk=p is the t-integrated (k ¼ Ri;P) flux factor of the

proton

�f k=p ¼
Z tmin

tcut

dt
Ak

x2�kðtÞ�1
P

eBit; (32)

where tmin ¼ m2
Nx

2
P and tcut ¼ �1 GeV2. Finally, nR is an

unknown normalization of the Reggeon contribution.

Concentrating on the Pomeron contribution to Fð3Þ
2D for

the time being, we have checked numerically that the
CFSK model of diffraction follows a universal trend,

such that xPF
ð3Þ
2D � x2�eff

P � fð�Þ for a large range of xP
at the initial scaleQ2

0, where�eff ¼ 1� �eff
P ð0Þ ¼ 0:123 is

the effective Pomeron slope; see Fig. 8 for details. Thus,
Regge factorization is very well satisfied in the CFSK
model, a slight breakdown observed at low � values and
xP � 10�2.

The pure multi-Pomeron contribution at a given xP0 can
consequently be defined as

½xPFð3Þ
2D�0 ¼ xPF

ð3Þ
2DðxP; �;Q2ÞjxP0 ¼ ~APx

�2�eff

P0 FP
2 ð�;Q2Þ;

(33)

where ~AP is an overall normalization and the RPP con-
tribution is not included. We will hereafter choose xP0 ¼
0:01 as a reference. Thus, the value of the diffractive

structure function at a given xP is simply

xPF
ð3Þ
2DðxP; �;Q2Þ ¼

�
xP0
xP

�
2�eff ½xPFð3Þ

2D�0: (34)

We carry on with an attempt of a partonic decomposition of
the Pomeron structure function, analogously to the inclu-
sive case.

The normalization of the Pomeron flux factor, ~AP, is
unknown, and therefore we define the singlet quark dif-
fractive parton distribution at the initial scale as

½�~SPð�;Q2
0Þ�0 ¼

9

11
½xPFð3Þ

2DðxP; �;Q2
0Þ�0; (35)

where we have assumed three active quarks flavors and
suppressed the strange quarks by a factor of 2 in analogy to
the proton PDFs explained in Sec. III. The brackets ½
 
 
�0
denote that this value is taken at a given xP0. The general
xP dependence is given through the relation in Eq. (34).
Concerning the gluons, since we are not able to separate

the flux and the diffractive PDFs (dPDFs), we effectively
obtain the � and Q2 dependences through the QCD evo-
lution and gain access to a product of the Pomeron flux and
gluon dPDF given by

xP �fP=pðxPÞ�gPð�;Q2Þ ¼
�
xP0
xP

�
2�eff ½�~gPð�;Q2Þ�0;

(36)

where the normalization is the same for gluons and quarks.
There is no a priori procedure to extract the gluon distri-
bution from the CFSK model in the diffractive case. Thus,
the last factor on the right-hand side of Eq. (36) is parame-
terized as

½�~gPð�;Q2Þ�0 ¼ Ag�
Bgð1� �ÞCgð1þDg

ffiffiffi
x

p Þ

� exp

�
� 0:001

1� x

�
; (37)

so that it is integrable. Since, in the single-Pomeron ex-
change model, the ratio of gluon and sea-quark distribu-
tions in the proton should equal the corresponding ratio in
the Pomeron at low x and �, respectively, we fix the
parameter Bg to the standard value, Bg ¼ ��P. The re-

maining parameters, Ag, Cg, and Dg, of the gluon dPDF at

the initial scale have to be extracted from the data.
The description of diffractive data (Q2 > 2 GeV2) in the

whole region of xP and� demands a careful analysis of the
necessary components [66]. As shown in [20,67], the in-
clusion of Reggeon terms is crucial for describing data at
high xP. A missing piece in the original model is the RPR
contribution, which is dominant in the triple-Reggeon
region, i.e. at low � and high xP. Its diffractive cut corre-
sponds to a Reggeon exchange with large-mass diffraction.
One should accordingly introduce parton densities in the
Reggeon and, following the standard procedure [21], we
identify them with the pion ones; together with the stan-
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FIG. 8 (color online). Regge factorization in the CFSK model.

UNITARIZED MODEL OF INCLUSIVE AND DIFFRACTIVE . . . PHYSICAL REVIEW D 81, 074002 (2010)

074002-9



dard expression for the Reggeon flux [see Eq. (32)], we

thus obtain the Reggeon contribution to Fð3Þ
2D. In the present

work we have employed the LO DGLAP fit from [68],
which was shown to be in reasonable agreement with
recent leading neutron data from HERA [69]. The parame-
ters of the Reggeon trajectory and t slope are the experi-
mentally extracted ones, listed in [21]. Finally, the

normalization of the flux was set so that xP
Rtmin
tcut fR=pdt ¼

1 at xP ¼ xP0.
We have performed a LO DGLAP fit [with �SðM2

ZÞ and

T as described in Sec. III] of the gluon dPDF parameters
and nR of the Reggeon contribution together with the input
sea dPDF given in Eq. (35) to experimental data on the
diffractive structure function from H1 [21] (LRG, 461
points) and ZEUS [19] (LRG, 277 points and LPS, 118

points). The resulting �2=d:o:f: for both the unevolved and
evolved CFSK0 models with nR ¼ 0 are large. The largest
deviations arise at high xP where precise data dictate a
more careful treatment of the Reggeon contribution to
diffraction. Leaving nR as a free parameter, we obtain a
�2=d:o:f: of 1.8, improving the agreement significantly.
The resulting values of the parameters obtained from the
fit are listed in Table II.
The QCD evolved CFSK0 initial condition with the fitted

parameterization of the gluon dPDF and the Reggeon
contribution are compared to the H1 LRG data for the
lowest Q2 bins in Fig. 9 together with the unevolved
CFSK0 model. The overall description of the data seems
satisfactory in both models, except the low-� bins where
the missing Reggeon contributions leads to larger devia-
tions for the model without evolution. The reason for the
fairly good description of data at high Q2 in the original
model can, in fact, be traced back to the dipole form of the
small component of the 3P contribution, which gives rise
to a logarithmic growth in Q2.
Whereas the description of the inclusive proton F2 at

Q2 > 2 GeV2 calls for an extension of the CFSK model
while the scaling violations of the diffractive cross section

TABLE II. Parameters of the gluon density of the Pomeron
and the normalization of the Reggeon contribution obtained from
a fit to diffractive data [19,21].

Ag Cg Dg nR

Fit result 0.108 �1:82 �0:91 0.0107
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are much better accounted for, we have presented, for the
sake of consistency, a complete procedure for a partonic
decomposition of the original model and subsequent QCD
evolution for both the inclusive and the diffractive calcu-
lations, dubbed CFSK0e. The proper magnitude of the
scaling violations of the diffractive part is crucial for the
comparison with the inclusive F2 in the calculation of
nuclear shadowing in Glauber-Gribov theory [70], giving
rise to the correct Q2 evolution of shadowing.

Finally, as an additional cross-check of the region of
validity of the CFSK0emodel presented in detail above, we
study the condition that �diff=�tot � 1=2 related to the
conservation of unitarity, also called the Pumplin bound
[71]. We define

RP ¼
R
dxPBðxPÞFð3Þ

2Dð�; xP; Q2Þ
F2ðx;Q2Þ : (38)

In Fig. 10 we plot RP for several 0:5 GeV2 � Q2 �
20 GeV2. We see that RP is below 0.5 down to x�
10�12, which proves the validity of the model for large
Q2 in the kinematical region we are discussing in this
paper, relevant for present and future experiments and
even cosmic-ray physics.

VI. CONCLUSIONS

We have extended the original CFSK model [48,49] of
DIS to the high-Q2 region by the inclusion of QCD scaling
violations via the DGLAP evolution equations. The ex-
tended model (CFSK0e) was used to calculate F2, FL, and

xPF
ð3Þ
2DðxP; �;Q2Þ of the proton for 0<Q2 < 1600 GeV2

and all values of x down to 10�8. The agreement with
existing experimental data on all of these observables is
good.

The CFSK0e model for scattering off nucleons can be
used for robust predictions at high energies for a wide
range of observables, from DIS observables to multiplic-
ities in heavy-ion collisions [72]. It also provides a bridge
between perturbative and nonperturbative regimes of QCD

and can serve as a baseline for deviations from the standard
Q2 evolution involving resummations of logarithms of x.
Finally, it bridges unitarity corrections with the strength of
diffraction at high energies.
We observed differences between our approach and

high-energy QCD evolution encoded in the solution of
the BK equation in kinematical regions beyond current
experimental reach. At low x, F2 at highQ

2 is significantly
larger in our calculations. This may imply the breakdown
of the collinear factorization leading to the DGLAP evo-
lution and a transition to a linear resummation or nonlinear
regime. On the other hand, the BK calculation is performed
at a fixed impact parameter while the CFSK explicitly
includes a growing interaction radius with energy, which
make it hard to quantify these deviations. At low Q2, FL

may shed light on the transition between the perturbative
and nonperturbative (Regge) regimes.
As we have pointed out above, the model for low-x

structure functions at high Q2 respects unitarity at the
initial scale of QCD evolution, but lacks nevertheless
logarithms of 1=x that should be resummed at high ener-
gies. One should also keep in mind that the QCD analysis
presented above was done at leading order in the coupling
constant. In the future we will attempt to include higher-
order corrections in our calculations. The analysis has also
been extended to scattering off nuclei at low x, for both the
total and the diffractive cross sections, in [73].
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APPENDIX: THE DIFFRACTIVE CROSS SECTION
IN THE CFSK MODEL

The diffractive cross section of a virtual photon in the
CFSK model [49] is given by three terms,

�ðdiffÞ
��p ¼ X

i¼L;S

�ðdiffÞ
i þ �PPP; (A1)

where

�ðdiffÞ
L ¼ 4g2LðQ2Þ

Z
d2b½�ðtotÞ

L ðb; s;Q2Þ�2; (A2)
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FIG. 10 (color online). The Pumplin ratio for the CFSK and
CFSK0e (for Q2 > 2 GeV2) models. The calculation for Q2 ¼
3:5 GeV2 is also shown for a larger range in x in the subview of
the plot.
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�ðdiffÞ
S ¼ 4

X
T;L

Z
d2b

Z r0

0
d2r

�
Z 1

0
dzjc T;Lðz; rÞj2½�Sðr; b; s; Q2Þ�2; (A3)

�PPP ¼ 2g2LðQ2Þ
Z

d2b�L
PPPðb; s;Q2Þe�2C�Lðb:s:Q2Þ

þ 2
X
T;L

Z
d2b

Z r0

0
d2r

Z 1

0
dzjc T;Lðz; rÞj2

� �S
PPPðb; s;Q2Þe�2C�Lðb:s:Q2Þ: (A4)

Here

�i
PPPðb; s;Q2Þ ¼ a�P

i ðb; s;Q2Þ�3ðb; s; Q2Þ; (A5)

where i ¼ L, S, �P
L is given by the first term in Eq. (6) and

�3 is defined in Eq. (10). To find the (reduced) diffractive
structure function as a function of �, defined by

xPF
ð3Þ
2DðxP; �;Q2Þ ¼ Q2

4�2�e:m:

Z
dtxP

d�

dxPdt
; (A6)

we perform the same decomposition as above, giving

Fð3Þ
2D ¼ Fð3Þ

2DS þ Fð3Þ
2DL þ Fð3Þ

2D3P; (A7)

where the individual pieces are extended to the whole �
region. In particular, the S component amounts to

xPF
ð3Þ
2DS ¼

Q2

4�2�e:m:

ð�ð0ÞL
S N ½ ~�3ð1� 2�Þ2�

þ �ð0ÞT
S N ½ ~�3ð1� �Þ�Þ; (A8)

where ~� ¼ ðQ2 þ s0Þ=ðQ2 þM2Þ ¼ �~x=x, and

N ½fð�Þ� ¼ fð�Þ
�Z �max

�min

d�

�
fð�Þ; (A9)

with�min ¼ 10x and�max ¼ Q2=ðQ2 þ 4m2
�Þ. Next, the L

component is

xPF
ð3Þ
2DL ¼ Q2g2LðQ2Þ

4�2�e:m:

�ð0Þ
L

�ð0Þ
L jC¼0

�
Z

d2bð�P
L Þ2N ½ ~��iþ�k��Rð1� �ÞnðQ2Þ�;

(A10)

where �P
L is given by the first term in Eq. (6). Note the

difference between our formula and [49] where also double
PR and RR exchanges were taken into account (numeri-
cally, these contributions are insignificant). Finally, the 3P
component is

xPF
ð3Þ
2D3P ¼ xPF

ð3ÞB
2D3P

�ð0Þ
PPP

�ð0Þ
PPPjC¼0

; (A11)

xPF
ð3ÞB
2D3P ¼ Q2

4�2�e:m:

2a
Z

d2b�3ðb; s;Q2; �Þ

� ½�ðtotÞ
S ðs; b; Q2Þ þ �

ðtotÞ;singlet
L ðs; b; Q2Þ�C¼0:

(A12)
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