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We compute the Bs ! f0ð980Þ transition form factors using light-cone QCD sum rules at leading order

in the strong coupling constant, and also including an estimate of next-to-leading order corrections. We

use the results to predict the branching fractions of the rare decay modes Bs ! f0‘
þ‘� and Bs ! f0� ��,

which turn out to be Oð10�7Þ (Bs ! f0ð980Þ‘þ‘�, with ‘ ¼ e, �), Oð10�8Þ (Bs ! f0ð980Þ�þ��) and
Oð10�6Þ (Bs ! f0ð980Þ� ��). We also predict the branching ratio of Bs ! J=c f0ð980Þ decay under the

factorization assumption, and discuss the role of this channel for the determination of the Bs mixing phase

compared to the golden mode Bs ! J=c�. As a last application, we consider Ds ! f0 form factors,

providing a determination of the branching ratio of Ds ! f0e
þ�e.
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I. INTRODUCTION

Theoretical and experimental efforts aimed at disclosing
physics beyond the standard model (SM) proceed in sev-
eral directions. Among these, there is the study of rare
processes which are induced only at loop level in the SM
and are therefore sensitive to new physics (NP) contribu-
tions which may potentially enhance their small (< 10�5)
branching ratios [1]. Another testing ground is the precise
study of CP violation. It has been realized that the amount
of CP violation within the SM is too small to explain the
observed baryon asymmetry of the Universe [2], a conclu-
sion confirmed by recent analyses [3]. Since the only
source of CP violation in the SM is the complex phase
of the Cabibbo Kobayashi Maskawa (CKM) mixing ma-
trix, the determination of the elements of this matrix and of
their relative phases is of primary importance, in order to
disentangle sources of additional contributions to CP vio-
lation. As is well known, the task is afforded through the
study of the so-called unitarity triangles, the graphical
representations of the conditions stemming from unitarity
of the CKM matrix. The most studied triangle is the one
which relates the CKM elements involved in B decays.
Direct and indirect determinations of its sides and angles
lead to a picture of CP violation coherent with the SM
description. Also in this case, investigation of effects pre-
dicted to be small in the SM is a promising strategy to
reveal new physics.

Bs mesons provide the possibility to search for new
physics scenarios exploiting both the strategies outlined
above. On the one hand, rare Bs decays induced by b ! s
transition are suppressed in the SM, as with all decay
modes governed by such a transition, and new physics
effects may enhance their branching fractions. For ex-
ample, it has been shown that, in presence of a single
universal extra dimension compactified on a circle with

radius R, the rates ofBs ! �� ��,Bs ! �ð0Þ‘þ‘� andBs !
�ð0Þ� �� are enhanced when R�1 decreases, while the oppo-
site happens in the case of Bs ! ��, which has a smaller

branching fraction with respect to SM for small values of
R�1 [4].
On the other hand, the analysis of the unitarity triangle

of CKM elements relevant for Bs decays is an important
test of the SM description of CP violation. The triangle is
defined by the relation

VusV
�
ub þ VcsV

�
cb þ VtsV

�
tb ¼ 0: (1)

One of its angles, �s, defined as �s ¼ Arg½� VtsV
�
tb

VcsV
�
cb
�, is half

of the phase of Bs � �Bs mixing, and is expected to be tiny
in the SM: �s ’ 0:019 rad. Recent data obtained by the
CDF [5] and D0 [6] Collaborations, based on the angular
analysis of Bs ! J=c�, indicate much larger values,
although with sizable uncertainties, so that the precise
measurement of �s represents one of the priorities in the
physics programs at the hadron colliders and at the B
factories operating at the �ð5SÞ peak [7].
In this paper we consider Bs decays in both respects. We

compute the Bs ! f0ð980Þ1 form factors using light-cone
QCD sum rules (LCSR) at the leading order in the strong
coupling constant (Sec. II and III A) and including an
estimate of next-to-leading (NLO) corrections
(Sec. III B). In Sec. IVA, we use the results to predict the
branching fractions of the rare decay modes Bs ! f0‘

þ‘�
and Bs ! f0� �� in the SM. The form factors are also a
necessary ingredient to study the nonleptonic mode Bs !
J=c f0 which, together with Bs ! J=c�, permits one to
access the phase �s [8]. Our predictions for this mode are
collected in Sec. IVB. As a by-product of the calculation,
we explore theDs ! f0e

þ�e decay channel, the branching
ratio of which has been recently measured by the CLEO
Collaboration [9,10]. Conclusions are presented in the last
section.

1Hereafter, we use f0 to denote the f0ð980Þ meson.
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II. LIGHT-CONE QCD SUM RULE CALCULATION
OF Bs ! f0 FORM FACTORS

The matrix elements involved in Bs ! f0 transitions can
be parameterized in terms of form factors as

hf0ðpf0Þj �s���5bj �BsðpBs
Þi

¼ �ifF1ðq2Þ
�
P� �m2

Bs
�m2

f0

q2
q�

�

þ F0ðq2Þ
m2

Bs
�m2

f0

q2
q�

�
; (2)

hf0ðpf0Þj�s����5q
�bj �BsðpBs

Þi

¼ � FTðq2Þ
mBs

þmf0

½q2P� � ðm2
Bs
�m2

f0
Þq��; (3)

where P ¼ pBs
þ pf0 and q ¼ pBs

� pf0 . In this section

we describe the calculation of the three functions F1, F0

and FT using the method of light-cone QCD sum rules. For
the sake of the calculation, it is convenient to define the
auxiliary form factors fþ and f�,

hf0ðpf0Þj�s���5bj �BsðpBs
Þi ¼ �iffþðq2ÞP� þ f�ðq2Þq�g

(4)

in terms of which F1 and F0 read

F1ðq2Þ ¼ fþðq2Þ;

F0ðq2Þ ¼ fþðq2Þ þ q2

m2
Bs
�m2

f0

f�ðq2Þ:
(5)

As a reconciliation of the original QCD sum rule approach
[11] and the application of perturbation theory to hard
processes, LCSR [12] present several advantages in the
calculation of quantities such as the heavy-to-light meson
form factors. The method includes both hard scattering and
soft contributions. In the hard scattering region the opera-
tor product expansion (OPE) near the light-cone is appli-

cable. Based on the light-cone OPE, hadronic quantities,
like form factors, are expressed as a convolution of light-
cone distribution amplitudes (LCDA) with a perturbatively
calculable hard kernel. The leading twist and a few sub-
leading twist LCDA give the dominant contribution, while
higher twist terms are power suppressed. The LCSR ap-
proach has been successfully applied to compute the had-
ronic parameters involved in many different processes
[13].
The starting point for a LCRS evaluation of form factors

is the correlation function of suitably chosen quark cur-
rents. Here we consider the correlation function

�ðpf0 ; qÞ ¼ i
Z

d4xeiq�xhf0ðpf0ÞjTfj�1
ðxÞ; j�2

ð0Þgj0i;
(6)

where j�1
is one of the currents appearing in the matrix

elements (2) and (3) defining the form factors: j�1
¼ J5� ¼

�s���5b for F1 and F0, and j�1
¼ J5T� ¼ �s����5q

�b for

FT . The current j�2
interpolates the Bs meson: we choose

j�2
¼ �bi�5s. Its matrix element between the vacuum and

Bs is given in terms of the decay constant fBs
,

h �BsðpBs
Þj �bi�5sj0i ¼

m2
Bs

mb þms

fBs
: (7)

We also introduce the f0ð980Þ decay constant �ff0 ,

hf0ðpf0Þj �ssj0i ¼ mf0
�ff0 (8)

needed in the following; �ff0 has been evaluated by several

groups [14–17].
The LCSR method consists in evaluating the correlation

function Eq. (6) both at the hadronic level and in QCD.
Equating the two representations provides one with a sum
rule suitable to derive the form factors.
The hadronic representation of the correlation function

in (6)

�HADðpf0 ; qÞ ¼
hf0ðpf0Þjj�1

j �Bsðpf0 þ qÞih �Bsðpf0 þ qÞjj�2
j0i

m2
Bs
� ðpf0 þ qÞ2 þX

h

hf0ðpf0Þjj�1
jhðpf0 þ qÞihhðpf0 þ qÞjj�2

j0i
m2

h � ðpf0 þ qÞ2 (9)

consists in the contribution of the �Bs meson and of the higher resonances and the continuum of states h. In a
one-resonanceþ continuum representation, the correlation function can be written as

�HADðpf0 ; qÞ ¼
hf0ðpf0Þjj�1

j �Bsðpf0 þ qÞih �Bsðpf0 þ qÞjj�2
j0i

m2
Bs
� ðpf0 þ qÞ2 þ

Z 1

s0

ds
	hðs; q2Þ

s� ðpf0 þ qÞ2 ; (10)

where higher resonances and the continuum of states are described in terms of the spectral function 	hðs; q2Þ, which
contributes starting from a threshold s0.

At the quark level, the correlation function can be evaluated in QCD, writing it as

�QCDðpf0 ; qÞ ¼
1




Z 1

ðmbþmsÞ2
ds

Im�QCDðs; q2Þ
s� ðpf0 þ qÞ2 : (11)

This step is afforded expanding the T-product in Eq. (6) on the light-cone, a procedure which provides us with a series of
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operators, ordered by increasing twist, the matrix elements
of which between the vacuum and the f0 [required to
evaluate Eq. (6)] are expressed in terms of f0 LCDAs.
The equality of the two representations of the correlation
function, Eqs. (10) and (11), does not yet allow us to derive
the Bs ! f0 form factors appearing in the first term on the
right-hand side of (10), since the hadronic spectral function
	h is unknown. For this reason, we invoke global quark-
hadron duality above the threshold s0 [18], which amounts
to identify integrals of the spectral function 	h with cor-
responding integrals of 	QCD ¼ 1


 Im�QCD, in particular

Z 1

s0

ds
	hðs; q2Þ

s� ðpf0 þ qÞ2 ¼
1




Z 1

s0

ds
Im�QCDðs; q2Þ
s� ðpf0 þ qÞ2 : (12)

Using duality, together with the equality �HADðpf0 ; qÞ ¼
�QCDðpf0 ; qÞ, we obtain from Eqs. (10) and (11):

hf0ðpf0Þjj�1
j �Bsðpf0 þ qÞih �Bsðpf0 þ qÞjj�2

j0i
m2

Bs
� ðpf0 þ qÞ2

¼ 1




Z s0

ðmbþmsÞ2
ds

Im�QCDðs; q2Þ
s� ðpf0 þ qÞ2 : (13)

Following the usual QCD sum rule procedure, we carry
out a Borel transformation of the hadronic and of the QCD
expressions of the correlation function, consequently of the
two sides in (13). This is defined as

B ½F ðQ2Þ� ¼ lim
Q2!1;n!1;ðQ2=nÞ¼M2

1

ðn� 1Þ! ð�Q2Þn

�
�

d

dQ2

�
n
F ðQ2Þ; (14)

where F is a function of Q2 ¼ �q2 and M2 is the Borel
parameter, so that

B
�

1

ðsþQ2Þn
�
¼ expð�s=M2Þ

ðM2Þnðn� 1Þ! : (15)

This operation improves the convergence of the OPE series

by factorials of the power n, and for suitably chosen values
of M2 enhances the contribution of the low lying states to
the hadronic expression of the correlation function.
Applying the transformation to both �HAD and �QCD

we obtain

hf0ðpf0Þjj�1
j �BsðpBs

Þih �BsðpBs
Þjj�2

j0i exp
�
�m2

Bs

M2

�

¼ 1




Z s0

ðmbþmsÞ2
ds exp½�s=M2�Im�QCDðs; q2Þ; (16)

where pBs
¼ pf0 þ q. Equation (16) allows to derive the

sum rules for fþ, f� and FT , choosing either the current
j�1

¼ J5� or the current j�1
¼ J5T� .

The calculation of �QCD is based on the expansion of
the T-product in (6) near the light-cone, which produces
matrix elements of nonlocal quark-gluon operators. In the
description of f0 as a s�s state modified by some hadronic
dressing [14], these can be defined in terms of f0 light-cone
distribution amplitudes of increasing twist:

hf0ðpf0Þj�sðxÞ��sð0Þj0i ¼ �ff0pf0�

Z 1

0
dueiupf0

�x�f0ðuÞ;

hf0ðpf0Þj�sðxÞsð0Þj0i ¼ mf0
�ff0

Z 1

0
dueiupf0

�x�s
f0
ðuÞ;

hf0ðpf0Þj �sðxÞ���sð0Þj0i ¼ �mf0

6
�ff0ðpf0�x� � pf0�x�Þ

�
Z 1

0
dueiupf0

�x��
f0
ðuÞ; (17)

where the LCDA �f0 is twist-2, and the other two are

twist-3, and are normalized as

Z 1

0
du�f0ðuÞ ¼ 0;

Z 1

0
du�s

f0
ðuÞ ¼

Z 1

0
du��

f0
ðuÞ ¼ 1:

(18)

In terms of these LCDA, the sum rules for the three form
factors read

fþðq2Þ ¼ mb þms

2m2
Bs
fBs

�ff0 exp

�m2
Bs

M2

��Z 1

u0

du

u
exp

�
�m2

b þ u �um2
f0
� �uq2

uM2

��
�mb�f0ðuÞ þ umf0�

s
f0
ðuÞ þ 1

3
mf0�

�
f0
ðuÞ

þm2
b þ q2 � u2m2

f0

uM2

mf0�
�
f0
ðuÞ

6

�
þ exp½�s0=M

2�mf0�
�
f0
ðu0Þ

6

m2
b � u20m

2
f0
þ q2

m2
b þ u20m

2
f0
� q2

�
; (19)

f�ðq2Þ ¼ mb þms

2m2
Bs
fBs

�ff0 exp

�m2
Bs

M2

��Z 1

u0

du

u
exp

�
�m2

b þ u �um2
f0
� �uq2

uM2

��
mb�f0ðuÞ þ ð2� uÞmf0�

s
f0
ðuÞ

þ 1� u

3u
mf0�

�
f0
ðuÞ � uðm2

b þ q2 � u2m2
f0
Þ þ 2ðm2

b � q2 þ u2m2
f0
Þ

u2M2

mf0�
�
f0
ðuÞ

6

�

� u0ðm2
b þ q2 � u20m

2
f0
Þ þ 2ðm2

b � q2 þ u20m
2
f0
Þ

u0ðm2
b þ u20m

2
f0
� q2Þ exp½�s0=M

2�mf0�
�
f0
ðu0Þ

6

�
; (20)
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FTðq2Þ ¼
ðmBs

þmf0Þðmb þmsÞ
m2

Bs
fBs

�ff0 exp

�m2
Bs

M2

��Z 1

u0

du

u
exp

�
�ðm2

b � �uq2 þ u �um2
f0
Þ

uM2

��
��f0ðuÞ

2
þmb

mf0�
�
f0
ðuÞ

6uM2

�

þmb

mf0�
�
f0
ðu0Þ

6

exp½�s0=M
2�

m2
b � q2 þ u20m

2
f0

�
; (21)

where

u0 ¼
m2

f0
þ q2 � s0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

f0
þ q2 � s0Þ2 þ 4m2

f0
ðm2

b � q2Þ
q

2m2
f0

: (22)

Our formulas can be compared to the ones for the B-to-
scalar meson form factors in Ref. [19], where the case of
the meson a0 is considered. We find differences in the
expression of the form factor fþ.

The expressions (19)–(21) are obtained considering that
the weak currents relevant for the processes we are study-
ing probe the �ss content of f0ð980Þ. If the flavor wave
function of f0 has other light quark components (the only
ones one could include in a straightforward way in our
method of calculation), such expressions are modified by
coefficients involving the cosine of the f0 � � mixing
angle, the value of which is uncertain, not uniquely deter-
mined by experiment and close to 0� or 180� [20]. These
coefficients leave the ratios of form factors at q2 ¼ 0 and
the q2 dependences unchanged, and only affect the overall
normalization at zero recoil, a systematic uncertainty in
our numerical results.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Leading order results

Based on the conformal spin invariance, the LCDA can

be expanded in terms of Gegenbauer polynomials C3=2
n .

The expansion of the twist-2 LCDA �f0ðuÞ reads:

�f0ðuÞ ¼ 6uð1� uÞ
�
B0 þ

X
n¼1

BnC
3=2
n ð2u� 1Þ

�
: (23)

Because of the charge conjugation invariance, all even
Gegenbauer moments of �f0ðuÞ vanish, so that B2m ¼ 0

for m ¼ 0; 1; � � � in (23); as for the odd moments, we
include only the first one, using the value of the coefficient
B1 ¼ �0:78� 0:08 fixed in Ref. [17]. For the twist-3
LCDA, due to the lack of knowledge about their moments,
we use the asymptotic form, i.e. the first term of the
Gegenbauer expansion,

�s
f0
ðuÞ ¼ 1; ��

f0
ðuÞ ¼ 6uð1� uÞ: (24)

Let us quote the numerical values of the other physical
parameters. The meson masses are fixed to the PDG values
mBs

¼ 5:366 GeV and mf0 ¼ 0:98 GeV [21], while for

quark masses we use mb ¼ 4:8 GeV and ms ¼ 0:14 GeV
[21,22]. As for the decay constants, we use fBs

¼ ð0:231�

0:015Þ GeV [23] and �ff0 ¼ ð0:18� 0:015Þ GeV [14].2

The threshold s0 is fixed to s0 ¼ ð34� 2Þ GeV2, which
should correspond to the mass squared of the first radial
excitation of Bs.
With these numerical inputs, the sum rules (19)–(21)

provide us with the form factors for each value of q2 as a
function of the Borel parameter. The result is obtained
requiring stability against variations of M2.
In Fig. 1 we show the dependence of the form factors at

q2 ¼ 0 on the Borel parameter M2. We observe stability
when M2 > 6 GeV2, and we fix M2 ¼ ð8� 2Þ GeV2, val-
ues that are smaller than in other B to light meson tran-
sitions [24,25].
To describe the form factors in the whole kinematically

accessible q2 region, we adopt the parameterization

Fiðq2Þ ¼ Fið0Þ
1� aiq

2=m2
Bs
þ biðq2=m2

Bs
Þ2 ; (25)

where Fi denotes any function among F1;0;T . The parame-

ters Fið0Þ, ai and bi are obtained through fitting the form
factors computed numerically in the small q2 region (we
choose 0< q2 < 15 GeV2); the results for Fið0Þ, ai and bi
are collected in Table I, and the q2 dependence is depicted
in Fig. 2. The uncertainties in the results reflect those of the
input parameters, the threshold s0, the Borel mass M2, the
Gegenbauer moments and the decay constants. In Table I
we also report the values of the form factors at zero-recoil
(q2max) which are derived using the expression in Eq. (25).
The results in Table I show that the parameters ai and bi

determining the q2 dependence are close to each other in
the case of F1 and FT . The reason is the following. In the
heavy-quark limit and in the large energy (LE) limit of the
recoiled meson, the three Bs ! f0 form factors can be
related to a single universal function �f0 which is specific

for f0 and does not depend on the Dirac structure of the
current appearing in the definition of the various matrix
elements, such as those in Eqs. (2) and (3) [26]. When the
energy E of the light meson in the final state is large, such
relations read as

2In Ref. [17] a larger result is reported: �ff0 ¼ ð0:37�
0:02Þ GeV.
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mBs

mBs
þmf0

FTðq2Þ ¼ F1ðq2Þ ¼
mBs

2E
F0ðq2Þ; (26)

where, neglecting m2
f0

but keeping mf0 in the kinematical

factors, E is related to q2:

q2 ¼ m2
Bs
� 2mBs

E: (27)

The first equality in Eq. (26) shows that the large energy
limit predicts that F1 and FT have the same q2 dependence.
For the shape parameters of F0, one can obtain two rela-
tions through the second equality:

a0 ¼ �1þ a1; b0 ¼ 1� a1 þ b1: (28)

Using the results for a1 and b1, we find from (28) that

aðLEÞ0 ’ 0:44� 0:1 and bðLEÞ0 ’ 0:15� 0:12; therefore, the
first relation in (28) is well respected in our calculation,
while not much can be said about the second relation due to
the uncertainty affecting b0.

B. Estimate of the next-to-leading order corrections

In order to provide an estimate of next-to-leading order
effects in the determination of the Bs ! f0 form factors, it
is worth comparing this case to the calculation of B ! 

form factors. In B ! 
 transition, both the light quarks and
the light 
 meson have small masses which can be safely
neglected, while the strange quark and the scalar meson f0
masses may induce sizable effects. Another observation is
that, neglecting the quark masses, the Lorentz structures of

pion and f0 matrix elements differ by a minus sign in terms
proportional to the twist-2 LCDA. Finally, contributions
from the twist-3 LCDAs in B ! 
 transition are charac-
terized by the chiral scale parameter �
, while in Bs ! f0
they are proportional to the mass of f0.
In LCSR, NLO corrections to B ! 
 form factors have

been studied by two groups [24,25], while the complete
expressions for the NLO corrections to Bs ! f0 form
factors are not known at present. The expressions relevant
for B ! 
 form factors given in Ref. [25] can be used to
estimate the radiative corrections in the case Bs ! f0,
keeping in mind the three differences above. We first
consider the changes to the leading order result due to
the different treatment of quark and hadron masses.
Setting the quark mass ms to zero, the values of the form
factors are reduced by about 3%. The mass of f0, the
analogous of the pion mass m
 and the chiral scale pa-
rameter �
, cannot be put to zero, as this would smear all
terms from twist-3 LCDA: we set the mass square of f0 to
be zero keeping the linear terms in the form factors,
obtaining an enhancement of the form factors by about
3%. After that, evolving all the scale-dependent parameters
to a scale of about the Borel mass, � ’ 3 GeV (as done,
e.g. in [24,25]), we find that the leading order contributions
are furtherly enhanced, obtaining the central values
F1ð0Þ ¼ F0ð0Þ ¼ 0:216, a1 ¼ 1:50, b1 ¼ 0:58, a0 ¼
0:216, b0 ¼ 0:53 and FTð0Þ ¼ 0:262, at ¼ 1:46, bt ¼
0:58. Then, radiative corrections to twist-2 and twist-3
LCDA are also found to be rather small, the Bs ! f0
form factors being changed to F1ð0Þ ¼ F0ð0Þ ¼ 0:238
and FTð0Þ ¼ 0:308. The resulting values, with the inclu-
sion the uncertainty due to the input parameters, are col-
lected in Table II; they are also used in the
phenomenological analysis, keeping in mind, however,
that the procedure used in their determination must be
considered as only approximate.
Before closing this section, it is worth mentioning that

the Bs ! f0ð980Þ form factors have been computed by

TABLE I. Parameters of the Bs ! f0 form factors by LCSR at
the leading order. The values of Fiðq2maxÞ are evaluated through
Eq. (25).

Fiðq2 ¼ 0Þ ai bi Fiðq2maxÞ
F1 0:185� 0:029 1:44þ0:13

�0:09 0:59þ0:07
�0:05 0:614þ0:158

�0:102

F0 0:185� 0:029 0:47þ0:12
�0:09 0:01þ0:08

�0:09 0:268þ0:055
�0:038

FT 0:228� 0:036 1:42þ0:13
�0:10 0:60þ0:06

�0:05 0:714þ0:197
�0:126

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M 2 GeV2

F1 0

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M 2 GeV2

FT 0

FIG. 1 (color online). Dependence on the Borel parameterM2 of the Bs ! f0 form factors at q2 ¼ 0: F1ð0Þ ¼ F0ð0Þ (left panel) and
FTð0Þ (right panel).
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other approaches: the method based on covariant light-
front dynamics (CLFD) and dispersion relation (DR)
[27], the perturbative QCD approach (PQCD) [28], short-
distance QCD sum rules (QCDSR) [29]. The results are

collected in Table III. The form factors by PQCD are
proportional to the f0 decay constant, while those by
short-distance QCD sum rules are proportional to the
inverse of this constant. Thus, a larger decay constant,
�ff0 ¼ 0:37 GeV as reported and used in [17], gives larger

form factors in the PQCD approach and smaller ones in
QCDSR with respect to ours. Taking into account the
difference in the decay constant, the results in
Refs. [28,29] are consistent with ours, while the two results
in Ref. [27] are sensibly larger.

IV. PHENOMENOLOGICAL APPLICATIONS

A. Semileptonic �Bs ! f0‘
þ‘� and �Bs ! f0� �� decays

As a first application of our study, we predict the branch-
ing ratios of the decays �Bs ! f0‘

þ‘� and �Bs ! f0� ��,
processes which, being induced by the flavor-changing
neutral current transition b ! s, are potentially important
for detecting new physics effects.
The SM �B ¼ 1, �S ¼ �1 effective Hamiltonian de-

scribing the transition b ! s‘þ‘� can be expressed in
terms of a set of local operators:

Hb!s‘þ‘� ¼ �4
GFffiffiffi
2

p VtbV
�
ts

X10
i¼1

Cið�ÞOið�Þ; (29)
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0.0

0.2

0.4

0.6

0.8

1.0
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F0 q2
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0.0

0.2

0.4

0.6

0.8

1.0

q2 GeV2

FT q2

FIG. 2 (color online). q2 dependence of the Bs ! f0 form factors.

TABLE II. Bs ! f0ð980Þ transition form factors obtained in-
cluding an estimate of next-to-leading order corrections (see
text).

Fiðq2 ¼ 0Þ ai bi

F1 0:238� 0:036 1:50þ0:13
�0:09 0:58þ0:09

�0:07

F0 0:238� 0:036 0:53þ0:14
�0:10 �0:36þ0:09

�0:08

FT 0:308� 0:049 1:46þ0:14
�0:10 0:58þ0:09

�0:07

TABLE III. Bs ! f0ð980Þ form factors at q2 ¼ 0. Results
evaluated by CLFD/DR [27], PQCD [28] and QCDSR [29]
approaches are collected for a comparison.

CLFD/DR PQCD QCDSR This work

F1ð0Þ 0:40=0:29a 0:35þ0:09
�0:07

b 0:12� 0:03 c 0:185� 0:029
FTð0Þ 0:40þ0:10

�0:08
b �0:08� 0:02c 0:228� 0:036

aUsing fBs
¼ 0:259 GeV.

bUsing �ff0 ¼ 0:37 GeV.
cUsing �ff0 ¼ 0:37 GeV and fBs

¼ 0:209 GeV.
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GF ¼ 1:166� 10�5 GeV�2 being the Fermi constant and Vij the elements of the CKM mixing matrix [since the ratio

j VubV
�
us

VtbV
�
ts
j is Oð10�2Þ, we neglect terms proportional to VubV

�
us]. The operators Oi are written in terms of quark and gluon

fields:

O1 ¼ ð�sL���bL�Þð �cL���cL�Þ; O2 ¼ ð�sL���bL�Þð �cL���cL�Þ;
O3 ¼ ð �sL���bL�Þ½ð �uL���uL�Þ þ . . .þ ð �bL���bL�Þ�; O4 ¼ ð�sL���bL�Þ½ð �uL���uL�Þ þ . . .þ ð �bL���bL�Þ�;
O5 ¼ ð �sL���bL�Þ½ð �uR���uR�Þ þ . . .þ ð �bR���bR�Þ�; O6 ¼ ð �sL���bL�Þ½ð �uR���uR�Þ þ . . .þ ð �bR���bR�Þ�;
O7 ¼ e

16
2
ðmb �sL��

��bR� þms �sR��
��bL�ÞF��; O8 ¼ gs

16
2
mb

�
�sL��

��

�
a

2

�
��

bR�

�
Ga

��;

O9 ¼ e2

16
2
ð �sL���bL�Þ �‘��‘; O10 ¼ e2

16
2
ð �sL���bL�Þ �‘���5‘; (30)

with �, � color indices, bR;L ¼ 1��5

2 b, and ��� ¼ i
2 �½��; ���; e and gs are the electromagnetic and the strong

coupling constant, respectively, and F�� and Ga
�� in O7

and O8 denote the electromagnetic and the gluonic field
strength tensor. O1 and O2 are current-current operators,
O3; . . . ; O6 QCD penguin operators, O7 and O8 magnetic
penguin operators, O9 and O10 semileptonic electroweak
penguin operators. The Wilson coefficients in (29) are
known at next-to-next-to-leading order (NNLO) in the
standard model [30]. The operators O1 and O2 contribute
to the final state with a lepton pair through a �cc contribu-
tion that can give rise to charmonium resonances
J=c ; c ð2SÞ; � � � , resonant term which can be subtracted
by appropriate kinematical cuts around the resonance
masses. The Wilson coefficients C3 � C6 are small, hence
the contribution of only the operators O7, O9 and O10 can
be kept for the description of the b ! s‘þ‘� transition. In
our study we use a modification of the Wilson coefficient
C7: C

eff
7 , which is a renormalization scheme independent

combination of C7, C8 and C2, given by a formula that can
be found, e.g., in [31].

The �Bs and f0 matrix elements of the operators in (30)
can be written in terms of form factors, so that the differ-
ential decay width of �Bs ! f0‘

þ‘� reads

d�ð �Bs!f0‘
þ‘�Þ

dq2
¼G2

F�
2
emjVtbj2jV�

tsj2
ffiffiffiffi


p
512m3

Bs

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�4m2

‘

q2

s

� 1

3q2
�
�
6m2

‘jC10j2ðm2
Bs
�m2

f0
Þ2

�F2
0ðq2Þþðq2þ2m2

‘Þ

�
��������C9F1ðq2Þþ2C7ðmb�msÞFTðq2Þ

mBs
þmf0

��������
2

þjC10j2ðq2�4m2
‘ÞF2

1ðq2Þ
�
; (31)

with ¼ðm2
Bs
;m2

f0
;q2Þ¼ ðm2

Bs
�q2�m2

f0
Þ2�4m2

f0
q2,

�em¼1=137 the fine structure constant and m‘ the lepton
mass.

Analogously, the SM effective Hamiltonian for b !
s� ��,

Hb!s� �� ¼ GFffiffiffi
2

p �em

2
sin2ð�WÞ
VtbV

�
ts�XXðxtÞOL � CLOL;

(32)

includes the operator

OL ¼ ð�s��ð1� �5ÞbÞð ����ð1� �5Þ�Þ: (33)

�W is the Weinberg angle; the function XðxtÞ (xt ¼ m2
t

m2
W

,

with mt the top quark mass and mW the W mass) has been
computed in [32–34], while the QCD factor�X is close to 1
[33–35], so that one can use �X ¼ 1. From this effective
Hamiltonian, the differential decay width

d�ð �Bs ! f0� ��Þ
dq2

¼ 3
jCLj23=2ðm2

Bs
; m2

f0
; q2Þ

96m3
Bs

3

jF1ðq2Þj2

can be obtained.
In the numerical calculation we use

C7 ¼ �0:30137; C9 ¼ 4:1696;

C10 ¼ �4:46418; CL ¼ 2:62� 10�9;
(34)

together with Vts ¼ 0:0387 and Vtb ¼ 0:999 [21]. Using
these inputs and �ðBsÞ ¼ 1:47 ps [21] we find

BRð �Bs ! f0‘
þ‘�Þ ¼ ð9:5þ3:1

�2:6Þ � 10�8;

BRð �Bs ! f0�
þ��Þ ¼ ð1:1þ0:4

�0:3Þ � 10�8;

BRð �Bs ! f0� ��Þ ¼ ð8:7þ2:8
�2:4Þ � 10�7

(35)

with ‘ ¼ e,�. Our estimate of the NLO effects in the form
factors modifies the branching ratios to BRð �Bs !
f0‘

þ‘�Þ ¼ ð16:7� 6:1Þ � 10�8, BRð �Bs ! f0�
þ��Þ ¼

ð2:7� 1:3Þ � 10�8, and BRð �Bs ! f0� ��Þ ¼ ð15:2�
5:6Þ � 10�7. These decay modes are therefore accessible
at the LHCb experiment at the CERN Large Hadron
Collider and at a Super B factory operating at the �ð5SÞ
peak.
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B. Nonleptonic Bs ! J=c f0 transition

The study of CP violation and the measurement of the
CKM angles mainly proceed through the measurement of
nonleptonic decay modes. In the Bs sector, the channel
Bs ! J=c� is the golden mode to investigate CP viola-
tion, and from the analysis of this mode the CDF [5] and
D0 [6] Collaborations at the Fermilab Tevatron have ob-
tained values of the Bs mixing phase �s ¼ �2�s much
larger than predicted in the SM, modulo a large experi-
mental uncertainty. If confirmed, this measurement would
indicate physics beyond SM. It is of prime importance to
consider other processes allowing to access �s, namely,
Bs ! J=c�, J=c�0 and J=c f0ð980Þ in which the final
state is a CP eigenstate and no angular analysis is required
to disentangle the various CP components, as needed for
Bs ! J=c�. However, the reconstruction of Bs modes
into � and �0 is experimentally challenging, since the
subsequent � or �0 decays involve photons in the final
state. The case of f0 seems feasible, since f0ð980Þ essen-
tially decays to 
þ
� and to 2
0 (the decay to KþK� has
also been seen) [21]. Predictions of Bs ! J=c f0ð980Þ are
therefore of great importance.

The quantitative description of nonleptonic decays is
very challenging. The theoretical framework to study
such decays is based on the operator product expansion
and renormalization group methods, which allow to write
an effective Hamiltonian as in the case of the modes
considered in the previous section. However, now one
has to consider hadronic matrix elements hJ=c f0jOijBsi
with Oi four-quark operators, the calculation of which is a
nontrivial task. One of the strategies which has been ex-
ploited is the naive factorization [36], in which such quan-
tities are replaced by products of matrix elements of the
weak currents appearing in each one of the operators of the
effective hamiltonian relative to the considered process.
These are expressed in terms of meson decay constants and
hadronic form factors. Such a procedure is affected by
several drawbacks, and various refinements have been
proposed [37–39], starting from the observation that a
theoretical justification of naive factorization in the case
of B decays can be found in the heavy-quark limitmb ! 1
only in a limited class of processes. However, improved
approaches, namely, those based on QCD factorization
[37], have not been applied to theBs decay mode of interest
here. In order to estimate the size of the Bs ! f0J=c
decay rate, we consider the so called generalized factori-
zation approach, in which the Wilson coefficients (or ap-
propriate combinations of them) appearing in the
factorized amplitudes are regarded as effective parameters

to be fixed from experiment. Using this factorization an-
satz, the decay amplitude �BsðpBs

Þ ! J=c ðpc ; �Þf0ðpf0Þ
(� being the J=c polarization vector, pBs

, pc , pf0 the

momenta of the three particles) is given as

Að �Bs ! J=c f0Þ ¼ GFffiffiffi
2

p VcbV
�
csa2mc fJ=cF

Bs!f0
1

� ðm2
J=c Þ2ð�� � pBs

Þ; (36)

fJ=c is the J=c decay constant, determined from the

J=c ! eþe� decay width [21]: fJ=c ¼ ð416:3�
5:3Þ MeV. The factor a2 is a combination of Wilson co-
efficients which can be extracted from the B ! J=cK
decays, under the assumption that a2 is the same in the
two processes. For these decays the branching ratios are
known [21]:

BRðB� ! J=cK�Þ ¼ ð1:007� 0:035Þ � 10�3;

BRðB0 ! J=cK0Þ ¼ ð8:71� 0:32Þ � 10�4:
(37)

In order to extract a2, the form factor FB!K
1 is required. We

use two different parameterizations, obtained by short-
distance (CDSS) [40] and light-cone QCD sum rules
(BZ) [24]. The result is different for the two sets of form
factors, while there is almost no difference whether we use
the charged or the neutral channel:

jaB!J=cK;ðCDSSÞ
2 j ¼ 0:394þ0:053

�0:041;

jaB!J=cK;ðBZÞ
2 j ¼ 0:25� 0:03:

(38)

To be conservative with the hadronic uncertainty, we use
the average value a2 ¼ 0:32� 0:11 of the two values to
compute BRð �Bs ! J=c f0Þ. Using Vcb ¼ 0:0412, Vcs ¼
0:997 [21] and our LO prediction for the Bs ! f0 form
factors, we obtain

BRð �Bs ! J=c f0Þ ¼ ð3:1� 2:4Þ � 10�4 (39)

while, including our estimate of NLO corrections, the
branching fraction is BRð �Bs ! J=c f0Þ ¼ ð5:3� 3:9Þ �
10�4. The rate of Bs ! J=c f0 is large enough to permit a
measurement; notice that the branching fraction of Bs !
J=c� is BRðBs ! J=c�Þ ¼ ð1:3� 0:4Þ � 10�3 [21].
To gain a better insight on this point, it is interesting to

compare these results to the branching fraction of Bs !
J=c L�L (L denotes a longitudinally polarized meson)
computed in the factorization approach. Neglecting the
mass difference between � and f0 in the phase space, the
ratio of the branching fractions of the two modes can be
written in terms of form factor combinations:

R
Bs

f0=�
¼ BRðBs ! J=c f0Þ

BRðBs ! J=c L�LÞ ’
½FBs!f0

1 ðm2
c Þ�2ðm2

Bs
; m2

c ; m
2
f0
Þ

½ABs!�
1 ðm2

c ÞðmBs
þm�Þ ðm

2
Bs
�m2

c�m2
�
Þ

2m�
� ABs!�

2 ðm2
c Þ

ðm2
Bs
;m2

c ;m
2
�
Þ

2m�ðmBsþm�Þ�2
¼

�
0:13� 0:06
0:22� 0:10

;

(40)
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where the two results correspond to the Bs ! f0 form
factor evaluated at the leading order or not. A

Bs!�
1 A

Bs!�
2

are among the Bs ! � transition form factors and are
taken from Ref. [41]. In Ref. [8] it was suggested that the
ratio RBs

f0=�
can be inferred from the ratio of Ds decay

widths to f0

þ and �
þ, obtaining RBs

f0=�
’ 0:2� 0:3,

which is compatible with our result (40).
Another relation has been also proposed in [8] connect-

ing RBs

f0=�
to a different observable in Ds decays:

RBs

f0=�
’ RDs

f0=�
¼

d�
dq2

ðDþ
s ! f0e

þ�; f0 ! 
þ
�Þjq2¼0

d�
dq2

ðDþ
s ! �eþ�;� ! KþK�Þjq2¼0

:

(41)

For this quantity the CLEO Collaboration has recently

provided a measurement: RDs

f0=�
¼ ð0:42� 0:11Þ [10]

which is larger than our (40).
All the above considerations show that the mode Bs !

J=c f0 must be used, together with the golden mode Bs !
J=c�, to measure the Bs mixing phase, mainly because it
provides us with a large number of events and does not
require an angular analysis to separate different CP com-
ponents of the final state. This is also the case of modes in
which J=c is replaced by a spin 0 charmonium state, such
as �c0, modulo the difficulty of the �c0 reconstruction.
Bs ! �c0� will provide a side-check when the number
of accumulated data will increase. Although Bs ! �c0� is
a suppressed channel in naive factorization, its branching
fraction may not be small due to the intermediate rescatter-
ing mechanism [42] or because of the contribution of
nonfactorizable diagrams [43] as in B ! �c0K.
Analogously for Bs ! �c0�, the branching ratio of B !
�c0K

� has been measured [44],

BRð �B0 ! �c0
�K�0Þ ¼ ð1:7� 0:3� 0:2Þ � 10�4;

BRðB� ! �c0K
��Þ ¼ ð1:4� 0:5� 0:2Þ � 10�4

< 2:1� 10�4ð90%C:L:Þ (42)

and, on the basis of SUð3ÞF symmetry, the branching
fraction of Bs ! �c0� should be similar.

V. DECAY Ds ! f0e
þ�

By a suitable change of parameters in the sum rules in
Sec. II, also theDs ! f0 form factors can be computed and
the branching ratio of the semileptonic decayDs ! f0e

þ�
can be predicted. We use mc ¼ 1:4 GeV and �ðDsÞ ¼
0:5 ps [21]; the threshold parameter is fixed to s

Ds

0 ¼
ð6:5� 1:0Þ GeV2. For the Ds decay constant we use the
value quoted by the Heavy Flavor Averaging Group: fDs

¼
ð256:9� 6:8Þ MeV [45]. The Borel parameter can be fixed
requiring stability of the sum rule result with respect toM2

variations. In Fig. 3 we plot F
Ds!f0
1 ð0Þ versus M2; the

stability window is selected in the range M2 ¼
ð5� 1Þ GeV2. We find

F
Ds!f0
1 ð0Þ ¼ F

Ds!f0
0 ð0Þ ¼ 0:30� 0:03: (43)

The q2 dependence of the two form factors is displayed in
Fig. 4. The value of (43) is much smaller than in theD ! K
case, for which the light-cone sum rule prediction is
FD!K
1 ð0Þ ¼ 0:75þ0:11

�0:08 [46]. We can understand this differ-

ence noticing that contribution of the f0 twist-2 LCDA in
Ds ! f0 transition is small due to the different shape of the
twist-2 f0 distribution amplitude with respect to the case of
K. The two LCDA are plotted in Fig. 5, where the position
of the parameter u0, defined in Eq. (22), is also displayed
(left panel). The situation can be compared to the Bs ! f0
case, shown in the right panel of the figure. Since the
LCDA is integrated in the range ½u0; 1�, one can see that,
in the case of f0ð980Þ, the integral of the distribution
amplitude gets two opposite contributions which tend to
cancel each other, due to the presence of a zero in the DA.
The zero is not present in the kaon DA, so that the inte-
grated DA gives a much larger contribution. In the case of
Bs, the position of the parameter u0 is such that the zero of
the DA is not included in the integration region, so that no
sizable difference is expected between the f0 and the kaon
cases. This argument explains also why, compared with the
results of other approaches, our outcomes are smaller. This
can be noticed in Table IV, where we compare our results
for the Ds ! f0 form factors with other estimates
[27,47,48].
The form factor F1ðq2Þ enters in the expression of the

differential decay rate

d�ðDs ! f0e
þ�Þ

dq2
¼ G2

FV
2
cs

3=2ðm2
Ds
; m2

f0
; q2Þ

192m3
Ds

3

jF1ðq2Þj2;

(44)

where the lepton mass is neglected. Since in Ds ! f0e
þ�

the kinematically accessible q2 range is limited, the appli-
cable region for LCSR is narrow. One can fit the form
factors in the spacelike region, for example �2 GeV2 <
q2 < 0, and then extrapolate to the timelike region.

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M 2 GeV2

F1 0

FIG. 3 (color online). Dependence of the Ds ! f0 form fac-
tors at q2 ¼ 0 F1ð0Þ ¼ F0ð0Þ on the Borel parameter M2.
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However, the result of the extrapolation strongly depends
on the choice of the fitting region. Moreover, looking at
Fig. 4, one can notice that the q2 dependence of F1 and F0

is mild. In view of this, we use a constant form factor
F1ðq2Þ ¼ F1ð0Þ to compute the branching ratio of Ds !
f0e

þ�; the result varies less than 10% including the q2

dependence according to different fitting formulae. The
obtained branching fraction is

BRðDs ! f0e
þ�Þ ¼ ð2:0þ0:5

�0:4Þ � 10�3: (45)

The modification due to radiative corrections can be esti-

mated as in the case of Bs ! f0, finding FDs!f0
1 ð0Þ ¼

0:29þ0:05
�0:04.

Let us consider the available experimental data. The
CLEO Collaboration has measured the product of branch-
ing fractions [10]

BRðDs ! f0ð980Þeþ�Þ �BRðf0 ! 
þ
�Þ
¼ ð0:20� 0:03� 0:01Þ � 10�2; (46)

updating a previous determination [9]

BRðDs ! f0e
þ�Þ �BRðf0 ! 
þ
�Þ

¼ ð0:13� 0:04� 0:01Þ � 10�2: (47)

Using experimental data provided by the BES
Collaboration studying the processes �c0 !
f0ð980Þf0ð980Þ ! 
þ
�KþK� and �c0 !
f0ð980Þf0ð980Þ ! KþK�KþK� [49], CLEO quotes

f0

K

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0
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0.5

1.0

1.5

u

f0

K

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

FIG. 5 (color online). Shape of the twist-2 LCDA: ��f0 ¼ �6uð1� uÞB1C
3=2
1 ð2u� 1Þ (dashed line) and �K (solid line) taken

from [50]. In the left panel, the vertical (red) line denotes the position of u
Ds

0 ¼ 0:334 fixed for the Ds ! f0 transition, while in the

right panel the vertical (red) line corresponds to the position of u
Bs

0 ¼ 0:684 at q2 ¼ 0 in Bs ! f0 transition.

TABLE IV. Ds ! f0ð980Þ form factor at q2 ¼ 0, together with
the results obtained by CLFD/DR [27], QCDSR [47] and
CLFQM [48] approaches.

CLFD/DR QCDSR CLFQM This work

F1ð0Þ 0:45=0:46a 1:7ð0:27� 0:02Þb 0.434 0:30� 0:03

aUsing fDs
¼ 0:274 GeV.

bUsing fDs
¼ 0:22� 0:02 GeV; by using different input pa-

rameters two results are obtained, the first one in parentheses,
the second one 1.7 times larger.
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0.0
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FIG. 4 (color online). q2 dependence of the Ds ! f0 form factors.
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BRðf0 ! 
þ
�Þ ¼ ð50þ7
�9Þ � 10�2 (48)

which, combined with (46), gives

BRðDs ! f0e
þ�Þ ¼ ð4:0� 0:6� 0:6Þ � 10�3; (49)

marginally consistent with our (45).

VI. CONCLUSIONS

We have computed the Bs ! f0 transition form factors
using light-cone QCD sum rules at leading order in the
strong coupling constant, and also estimating the size of
NLO corrections. The resulting form factors permit to
predict the rates of Bs ! f0‘

þ‘� and Bs ! f0� �� decays,
finding branching ratios accessible at future machines, like

a Super B factory, and at the LHCb experiment at CERN.
The branching ratio of Bs ! J=c f0 can be predicted
under the factorization assumption: we find BRðBs !
J=c f0Þ=BRðBs ! J=c�Þ 	 0:2� 0:3, thus the Bs !
J=c f0 channel can be considered another promising
mode to access the Bs � �Bs mixing phase. We have also
investigated the Ds ! f0e

þ� decay channel by the LCSR
approach and compared the results to recent
measurements.

ACKNOWLEDGMENTS

W.W. thanks Yu-Ming Wang for useful discussions.
This work was supported in part by the EU Contract
No. MRTN-CT-2006-035482, FLAVIAnet.

[1] P. Ball et al., arXiv:hep-ph/0003238.
[2] A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967)

[JETP Lett. 5, 24 (1967); Sov. Phys. Usp. 34, 392 (1991);
Usp. Fiz. Nauk 161, 61 (1991)].

[3] P. Huet and E. Sather, Phys. Rev. D 51, 379 (1995).
[4] P. Colangelo, F. De Fazio, R. Ferrandes, and T.N. Pham,

Phys. Rev. D 77, 055019 (2008); M.V. Carlucci, P.
Colangelo, and F. De Fazio, Phys. Rev. D 80, 055023
(2009).

[5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.
100, 161802 (2008).

[6] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.
101, 241801 (2008).

[7] M. Artuso et al., Eur. Phys. J. C 57, 309 (2008); M. Bona
et al., arXiv:0709.0451.

[8] S. Stone and L. Zhang, Phys. Rev. D 79, 074024 (2009);
arXiv:0909.5442.

[9] J. Yelton et al. (CLEO Collaboration), Phys. Rev. D 80,
052007 (2009).

[10] K.M. Ecklund et al. (CLEO Collaboration), Phys. Rev. D
80, 052009 (2009).

[11] M.A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979); B147, 448 (1979).

[12] N. S. Craigie and J. Stern, Nucl. Phys. B216, 209 (1983);
V.M. Braun and I. E. Filyanov, Z. Phys. C 44, 157 (1989);
V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B345, 137
(1990); V.M. Belyaev, V.M. Braun, A. Khodjamirian, and
R. Ruckl, Phys. Rev. D 51, 6177 (1995).

[13] For a review see P. Colangelo and A. Khodjamirian, in At
the Frontier of Particle Physics / Handbook of QCD,
edited by M. Shifman (World Scientific, Singapore,
2001), Vol. 3, p. 1495.

[14] F. De Fazio and M.R. Pennington, Phys. Lett. B 521, 15
(2001).

[15] I. Bediaga, F. S. Navarra, and M. Nielsen, Phys. Lett. B
579, 59 (2004).

[16] H. Y. Cheng and K. C. Yang, Phys. Rev. D 71, 054020
(2005).

[17] H. Y. Cheng, C. K. Chua, and K. C. Yang, Phys. Rev. D 73,

014017 (2006).
[18] M.A. Shifman, in At the Frontier of Particle Physics /

Handbook of QCD, edited by M. Shifman (World
Scientific, Singapore, 2001), Vol. 3, p. 1447.

[19] Y.M. Wang, M. J. Aslam, and C.D. Lu, Phys. Rev. D 78,
014006 (2008).

[20] M.G. Alford and R. L. Jaffe, Nucl. Phys. B578, 367

(2000); A. V. Anisovich, V. V. Anisovich, and V.A.
Nikonov, Eur. Phys. J. A 12, 103 (2001); A. Gokalp, Y.

Sarac, and O. Yilmaz, Phys. Lett. B 609, 291 (2005); H. Y.
Cheng, Phys. Rev. D 67, 034024 (2003).

[21] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[22] P. Colangelo, F. De Fazio, G. Nardulli, and N. Paver, Phys.
Lett. B 408, 340 (1997).

[23] E. Gamiz, C. T.H. Davies, G. P. Lepage, J. Shigemitsu,
and M. Wingate (HPQCD Collaboration), Phys. Rev. D
80, 014503 (2009).

[24] P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005).
[25] G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic, and

N. Offen, J. High Energy Phys. 04 (2008) 014.
[26] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, and J. C.

Raynal, Phys. Rev. D 60, 014001 (1999).
[27] B. El-Bennich, O. Leitner, J. P. Dedonder, and B. Loiseau,

Phys. Rev. D 79, 076004 (2009).
[28] R. H. Li, C.D. Lu, W. Wang, and X.X. Wang, Phys. Rev.

D 79, 014013 (2009).
[29] N. Ghahramany and R. Khosravi, Phys. Rev. D 80, 016009

(2009).
[30] C. Bobeth, M. Misiak, and J. Urban, Nucl. Phys. B574,

291 (2000); H. H. Asatrian, H.M. Asatrian, C. Greub, and
M. Walker, Phys. Lett. B 507, 162 (2001); Phys. Rev. D

65, 074004 (2002); 66, 034009 (2002); H.M. Asatrian, K.
Bieri, C. Greub, and A. Hovhannisyan, Phys. Rev. D 66,
094013 (2002); A. Ghinculov, T. Hurth, G. Isidori, and
Y. P. Yao, Nucl. Phys. B648, 254 (2003); A. Ghinculov, T.
Hurth, G. Isidori, and Y. P. Yao, Nucl. Phys. B685, 351
(2004); C. Bobeth, P. Gambino, M. Gorbahn, and U.
Haisch, J. High Energy Phys. 04 (2004) 071.

Bs ! f0ð980Þ FORM FACTORS AND . . . PHYSICAL REVIEW D 81, 074001 (2010)

074001-11



[31] P. Colangelo, F. De Fazio, R. Ferrandes, and T.N. Pham,
Phys. Rev. D 73, 115006 (2006).

[32] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981);
65, 1772(E) (1981).

[33] G. Buchalla and A. J. Buras, Nucl. Phys. B400, 225
(1993); G. Buchalla, A. J. Buras, and M. E. Lauten-
bacher, Rev. Mod. Phys. 68, 1125 (1996).

[34] M. Misiak and J. Urban, Phys. Lett. B 451, 161 (1999).
[35] G. Buchalla and A. J. Buras, Nucl. Phys. B548, 309

(1999).
[36] For a review see M. Neubert and B. Stech, Adv. Ser. Direct

High Energy Phys. 15, 294 (1998).
[37] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,

Nucl. Phys. B591, 313 (2000).
[38] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,

Nucl. Phys. B606, 245 (2001).
[39] C.W. Bauer, D. Pirjol, I. Z. Rothstein, and I.W. Stewart,

Phys. Rev. D 70, 054015 (2004).
[40] P. Colangelo, F. De Fazio, P. Santorelli, and E. Scrimieri,

Phys. Rev. D 53, 3672 (1996); 57, 3186(E) (1998).
[41] P. Ball and R. Zwicky, Phys. Rev. D 71, 014029 (2005).

[42] P. Colangelo, F. De Fazio, and T. N. Pham, Phys. Lett. B
542, 71 (2002).

[43] T.N. Pham and G. h. Zhu, Phys. Lett. B 619, 313 (2005);
C. Meng, Y. J. Gao, and K. T. Chao, Commun. Theor.
Phys. 48, 885 (2007); C.H. Chen and H.N. Li, Phys.
Rev. D 71, 114008 (2005); M. Beneke and L. Vernazza,
Nucl. Phys. B811, 155 (2009).

[44] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78,
091101 (2008).

[45] Heavy Flavor Averaging Group, www.slac.stanford.edu/
xorg/hfag/.

[46] A. Khodjamirian, C. Klein, T. Mannel, and N. Offen,
Phys. Rev. D 80, 114005 (2009).

[47] T.M. Aliev and M. Savci, arXiv:hep-ph/0701108.
[48] H.W. Ke, X. Q. Li, and Z. T. Wei, Phys. Rev. D 80, 074030

(2009).
[49] M. Ablikim et al. (BES Collaboration), Phys. Rev. D 70,

092002 (2004); 72, 092002 (2005).
[50] P. Ball, V.M. Braun, and A. Lenz, J. High Energy Phys. 05

(2006) 004.

PIETRO COLANGELO, FULVIA DE FAZIO, AND WEI WANG PHYSICAL REVIEW D 81, 074001 (2010)

074001-12


