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The quark-lepton complementarity (QLC) is very suggestive in understanding possible relations

between quark and lepton mixing matrices. We explore the QLC relations in all the possible angle-phase

parametrizations and point out that they can approximately hold in five parametrizations. Furthermore, the

vanishing of the smallest mixing angles in the Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-

Nakagawa-Sakata matrices can make sure that the QLC relations exactly hold in those five parametri-

zations. Finally, the sensitivity of the QLC relations to radiative corrections is also discussed.
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I. INTRODUCTION

The success of the standard model (SM) in describing
the mass origin of elementary particles has satisfied many
theoretical physicists, but it is now challenged by the
existence of neutrino oscillations observed in the solar
[1], atmospheric [2], reactor [3], and accelerator [4] neu-
trino experiments, which provide us with convincing evi-
dence for neutrino masses and lepton flavor mixing. The
underlying nature of neutrino mixings as compared with
that of the quark mixings has inspired a large amount of
speculation regarding symmetries in the quark-lepton
world as well as other kinds of new physics beyond the
SM [5].

In the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [6]
lepton mixing matrix, the most distinct feature is the ex-
istence of two large mixing angles, which is quite different
from the pattern the Cabibbo-Kobayashi-Maskawa (CKM)
[7] quark mixing matrix. To be specific, the PMNS matrix
consists of a large and nearly maximal angle #23 (atmos-
pheric angle), a large but nonmaximal angle #12 (solar
angle), and a small angle#13 (reactor angle) in the standard
parametrization. An interesting phenomenological relation
between the lepton and quark mixing angles, the so-called
quark-lepton complementarity (QLC), has been noticed
recently [8]. Namely, the sums of the mixing angles of
quarks and leptons for the 1-2 and 2-3 mixings agree with
45�:

�12 þ #12 ’ 45�; �23 þ #23 ’ 45�; (1)

where �12 and �23 are quark mixing angles. As for the 1-3
mixing angles of quarks and leptons, a similar relation
�13 þ #13 ’ 45� does not hold because their sum is less
than 10�.

Attempts to understand the deep meaning behind the
QLC relations have been made. It has been interpreted as

evidence for certain quark-lepton symmetry or quark-
lepton unification, especially the possibility of the bimax-
imal and tri-bimaximal fermion mixing patterns and the
deviation from them, which have been extensively dis-
cussed [9,10]. Some other aspects of the QLC relations
have also been studied, such as their phenomenological
implications [11] and renormalization group (RG) effects
[12]. There are also the extended QLC relations proposed
and discussed in the seesaw mechanisms [13]. Recent re-
views about the QLC relations can be found in Ref. [14].
However, whether this relation is an accident or not re-
mains an open question. In Ref. [15] Jarlskog points out
that the QLC relations are parametrization variant and the
specific models are far from being sufficiently pinned
down to be useful for connecting quark and lepton mixing
angles like this.
In this paper, we intend to analyze the parametrization

dependence of the QLC relations by calculating the mixing
angles of each possible parametrization. Among nine
angle-phase parametrizations of the CKM and PMNS ma-
trices, we find that five of them can have the approximate
QLC relations. If the QLC relations are assumed to exactly
hold in a certain parametrization such as the standard
parametrization, we examine whether they are possible to
exactly hold in other parametrizations. Furthermore, the
stability of the QLC relations under the RG running is also
studied in the Fritzsch-Xing (FX) parametrization [16].
The remaining part of this paper is organized as follows.

In Sec. II, with the latest experimental data for the CKM
and PMNS matrices, we calculate the mixing angles and
sum them up in each parametrization to check the QLC
relations. Section III is devoted to examining the relation-
ships between different parametrizations, especially
whether the QLC relations in one parametrization can
also hold in other parametrizations, and what conditions
should be satisfied. The RG running effects on the QLC
relations are discussed in the FX parametrization both in
the SM and the minimal supersymmetric standard model
(MSSM) in Sec. IV.*yjzheng@mail.sdu.edu.cn
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II. QLC RELATIONS IN DIFFERENTANGLE-
PHASE PARAMETRIZATIONS

In this section, we try to make numerical calculations of
the mixing angles of quark and lepton flavor mixing ma-
trices and examine the QLC relations for all the possible
angle-phase parametrizations.

The 3� 3 CKM quark mixing matrix can be expressed
in terms of four independent parameters, which are usually
taken as three rotation angles and one CP-violating phase
angle. For a clear classification of this kind of angle-phase
parametrizations, see [17]. It is pointed out that the CKM
matrix V, if real and orthogonal, can in general be written
as a product of three matrices R12, R23, and R31, which
describe simple rotations in the ð1; 2Þ, ð2; 3Þ, and ð3; 1Þ
planes.

R12ð�12Þ ¼
c12 s12 0
�s12 c12 0
0 0 1

0
@

1
A;

R23ð�23Þ ¼
1 0 0
0 c23 s23
0 �s23 c23

0
@

1
A;

R31ð�13Þ ¼
c13 0 s13
0 1 0

�s13 0 c13

0
@

1
A;

(2)

where sij � sin�ij, cij � cos�ij, etc. After introducing the

CP-violating phase �, among all the 12 possible products
only nine of them are structurally different, as the remain-
ing three products are correlated with each other and lead
essentially to the same form. And the specific forms of the
nine possible angle-phase parametrizations are listed in the
left column of Table I as P1 to P9, generally P1 corre-
sponds to the standard parametrization [18] and P2 to the
FX parametrization. To make it clear, we use � and #,
respectively, to denote quark and lepton mixing angles.
From P3 to P9 parametrization, #l, #�, and # in lepton
flavor mixing correspond to �u, �d, and � in the quark
flavor mixing separately. For Majorana neutrinos, two
additional parameters are needed in PMNS lepton mixing
matrix, namely, two Majorana CP-violating phase angles,
which do not affect oscillations [19].
In the calculation of quark mixing angles, we take the

Wolfenstein parametrization with the accuracy ofOð�6Þ as
proposed in [20], which is shown as below:

VCKM ¼
1� 1

2�
2 � 1

8�
4 � A�3ð�� i�Þ

��½1þ 1
2A

2�4ð2�� 1Þ þ iA2�4�� 1� 1
2�

2 � 1
8 ð4A2 þ 1Þ�4 A�2

A�3ð1� �� i�Þ �A�2½1þ 1
2�

2ð2�� 1Þ þ i�2�� 1� 1
2A

2�4

0
B@

1
CA: (3)

To calculate the moduli of the mixing matrix elements, we adopt the following inputs given by the Particle Data Group
[18]:

� ¼ 0:2257þ0:0009
�0:0010; A ¼ 0:814þ0:021

�0:022; �� ¼ 0:135þ0:031
�0:016; �� ¼ 0:349þ0:015

�0:017; (4)

where �� ¼ �� 1
2��

2 þ ð12A2�� 1
8�� A2ð�2 � �2ÞÞ�4 þOð�6Þ and �� ¼ �� 1

2��
2 þ ð12A2�� 1

8�� 2A2��Þ�4 þ
Oð�6Þ. Then we obtain

jVCKMj ¼
0:974 205�0:000 21

þ0:000 23 0:225 700þ0:000 90
�0:001 00 0:003 592þ0:000 40

�0:000 34

0:225 560þ0:000 90
�0:001 00 0:973 346�0:000 27

þ0:000 29 0:041 466þ0:001 41
�0:001 48

0:008 733þ0:000 11
�0:000 27 0:040 709þ0:001 44

�0:001 48 0:999 140�0:000 06
þ0:000 06

0
B@

1
CA: (5)

This result allows us to calculate the mixing angles in all the nine parametrizations according to the relations between
angles and moduli.

For lepton mixing angles, the standard parametrization is expressed in terms of three mixing angles #12, #13, #23 and
one CP-violating phase angle ’. As shown below, the first row and third column have a pretty simple form.

VPMNS ¼
c12c13 s12c13 s13

�c12s23s13 � s12c23e
�i’ �s12s23s13 þ c12c23e

�i’ s23c13
�c12c23s13 þ s12s23e

�i’ �s12c23s13 � c12s23e
�i’ c23c13

0
@

1
A; (6)

where sij ¼ sin#ij, cij ¼ cos#ij (i, j ¼ 1, 2, 3). With the latest global fit of the experimental data given in [21], the three
mixing angles read

sin 2#12 ¼ 0:312ð1þ0:128
�0:109Þð2�Þ; sin2#23 ¼ 0:466ð1þ0:292

�0:215Þð2�Þ; sin2#13 ¼ 0:016� 0:010ð1�Þ: (7)

Because of the smallness of #13 ’ ð7:27þ2:012
�2:824Þ�, those terms including sin#13 could be neglected in the ð2; 1Þ, ð2; 2Þ, ð3; 1Þ,
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and ð3; 2Þ entries in the standard parametrization. Thus the moduli of the mixing matrix elements can be obtained,

jVPMNSj ¼
0:822 795�0:0283

þ0:0244 0:554 083þ0:0314
�0:0284 0:126 491þ0:0348

�0:0490

0:408 176�0:0340
þ0:0117 0:606 129�0:0983

þ0:0705 0:677 159þ0:0886
�0:0742

0:381 303þ0:0790
�0:0624 0:566 223þ0:0584

�0:0523 0:724 883�0:1023
þ0:1023

0
B@

1
CA: (8)

With the relations between the moduli of mixing matrix
elements and mixing angles in each of the parametriza-
tions, we can get all the mixing angles. To be explicit, we

explain how to get mixing angles in FX parametrization
from the moduli of quark and lepton mixing angles.
For the FX parametrization, �u ¼ arctanjVub=Vcbj,

TABLE I. Classification of different parametrizations for the flavor mixing matrix and the QLC relations.

Parametrization Quark-Lepton Complementarity

P1: V ¼ R23ð�23ÞR31ð�13; �ÞR12ð�12Þ
c12c13 s12c13 s13

�c12s23s13 � s12c23e
�i� �s12s23s13 þ c12c23e

�i� s23c13
�c12c23s13 þ s12s23e

�i� �s12c23s13 � c12s23e
�i� c23c13

0
@

1
A

�12=�23=�13 #12=#23=#13

ð13:04þ0:053
�0:059Þ� þ ð33:96þ2:430

�2:137Þ� ¼ ð47:00þ2:483
�2:196Þ�

ð2:37þ0:081
�0:085Þ� þ ð43:05þ7:839

�5:834Þ� ¼ ð45:42þ7:920
�5:919Þ�

ð0:20þ0:023
�0:020Þ� þ ð7:27þ2:012

�2:824Þ� ¼ ð7:47þ2:035
�2:844Þ�

P2: V ¼ R12ð�uÞR23ð�;�ÞR�1
12 ð�dÞ

susdcþ cucde
�i� sucdc� cusde

�i� sus
cusdc� sucde

�i� cucdcþ susde
�i� cus

�sds �cds c

0
B@

1
CA

�u=�d=� #l=#�=#
ð4:95þ0:363

�0:305Þ� þ ð10:58þ1:310
�3:261Þ� ¼ ð15:53þ1:637

�3:566Þ�
ð12:11�0:262

þ0:065Þ� þ ð33:96þ2:430
�2:137Þ� ¼ ð46:67þ2:168

�2:072Þ�
ð2:38þ0:081

�0:085Þ� þ ð43:54þ7:956
�6:099Þ� ¼ ð45:92þ8:037

�6:184Þ�

P3: V ¼ R23ð�dÞR12ð�;�ÞR�1
23 ð�uÞ

c� s�cu �s�su
�s�cd c�cdcu þ sdsue

�i� �c�cdsu þ sdcue
�i�

s�sd �c�sdcu þ cdsue
�i� c�sdsu þ cdcue

�i�

0
@

1
A

�u=�d=� #l=#�=#
ð0:91þ0:096

�0:083Þ� þ ð12:86þ2:538
�4:477Þ� ¼ ð13:77þ2:634

�4:560Þ�
ð2:22þ0:019

�0:059Þ� þ ð43:05þ7:839
�5:834Þ� ¼ ð45:27þ7:858

�5:893Þ�
ð13:04þ0:053

�0:059Þ� þ ð34:63þ2:758
�2:538Þ� ¼ ð47:67þ2:811

�2:597Þ�

P4: V ¼ R23ð�dÞR12ð�;�ÞR�1
31 ð�uÞ

c�cu s� �c�su
�s�cdcu þ sdsue

�i� c�cd s�cdsu þ sdcue
�i�

s�sdcu þ cdsue
�i� �c�sd �s�sdsu þ cdcue

�i�

0
@

1
A

�u=�d=� #l=#�=#
ð0:21þ0:023

�0:020Þ� þ ð8:74þ2:733
�3:516Þ� ¼ ð8:95þ2:756

�3:536Þ�
ð2:39þ0:086

�0:088Þ� þ ð43:05þ7:839
�5:834Þ� ¼ ð45:44þ7:925

�5:922Þ�
ð13:04þ0:053

�0:059Þ� þ ð33:65þ2:189
�1:935Þ� ¼ ð46:69þ2:242�1:994Þ�

P5: V ¼ R31ð�dÞR23ð�u;�ÞR�1
12 ð�Þ

�s�sdsu þ c�cue
�i� �c�sdsu � s�cue

�i� cdsu
s�cd c�cd sd

�s�sdcu � c�sue
�i� �c�sdcu þ s�sue

�i� cdcu

0
B@

1
CA

�u=�d=� #l=#�=#
ð0:21þ0:023

�0:020Þ� þ ð9:90þ4:622
�4:326Þ� ¼ ð10:11þ4:645

�4:346Þ�
ð2:38þ0:081

�0:085Þ� þ ð42:62þ7:354
�5:537Þ� ¼ ð45:00þ7:435

�5:622Þ�
ð13:05þ0:054

�0:059Þ� þ ð33:96þ2:430
�2:137Þ� ¼ ð47:01þ2:484

�2:196Þ�

P6: V ¼ R12ð�ÞR31ð�u;�ÞR�1
23 ð�dÞ

c�cu c�sdsu þ s�cde
�i� c�cdsu � s�sde

�i�

�s�cu �s�sdsu þ c�cde
�i� �s�cdsu � c�sde

�i�

�su sdcu cdcu

0
B@

1
CA

�u=�d=� #l=#�=#
ð0:50þ0:006

�0:015Þ� þ ð22:41þ4:993
�3:818Þ ¼ ð22:91þ4:999

�3:833Þ�
ð2:33þ0:083

�0:085Þ� þ ð37:99þ7:102
�5:080Þ� ¼ ð40:32þ7:185

�5:165Þ�
ð13:04þ0:053

�0:059Þ� þ ð26:39�1:164
�0:021Þ� ¼ ð39:43�1:111�0:080Þ�

P7: V ¼ R31ð�uÞR12ð�;�ÞR�1
31 ð�dÞ

c�cucd þ susde
�i� s�cu �c�cusd þ sucde

�i�

�s�cd c� s�sd
�c�sucd þ cusde

�i� �s�su c�susd þ cucde
�i�

0
B@

1
CA

�u=�d=� #l=#�=#
ð10:22þ0:315

�0:320Þ� þ ð45:62þ1:233
�1:268Þ� ¼ ð55:84þ1:537

�1:577Þ�
ð10:42þ0:304

�0:320Þ� þ ð58:92þ5:037
�3:769Þ� ¼ ð69:34þ5:341

�4:089Þ�
ð13:26þ0:067

�0:073Þ� þ ð52:69þ6:791
�5:274Þ� ¼ ð65:95þ6:858

�5:347Þ�

P8: V ¼ R12ð�ÞR23ð�d;�ÞR31ð�uÞ
�s�sdsu þ c�cue

�i� s�cd s�sdcu þ c�sue
�i�

�c�sdsu � s�cue
�i� c�cd c�sdcu � s�sue

�i�

�cdsu �sd cdcu

0
B@

1
CA

�u=�d=� #l=#�=#
ð0:50þ0:006

�0:016Þ� þ ð27:75þ8:734
�5:863Þ� ¼ ð28:25þ8:740

�5:879Þ�
ð2:33þ0:083

�0:085Þ� þ ð34:49þ4:169
�3:562Þ� ¼ ð36:82þ4:252

�3:647Þ�
ð13:06þ0:054

�0:060Þ� þ ð42:43þ6:631
�4:590Þ� ¼ ð55:49þ6:685

�4:650Þ�

P9: V ¼ R31ð�uÞR12ð�;�ÞR23ð�dÞ
c�cu s�cdcu � sdsue

�i� s�sdcu þ cdsue
�i�

�s� c�cd c�sd
�c�su �s�cdsu � sdcue

�i� �s�sdsu þ cdcue
�i�

0
B@

1
CA

�u=�d=� #l=#�=#
ð0:51þ0:007

�0:016Þ� þ ð24:86þ5:223
�4:236Þ� ¼ ð25:37þ5:230

�4:252Þ�
ð2:43þ0:084

�0:088Þ� þ ð48:17þ8:282
�6:463Þ� ¼ ð50:60þ8:366

�6:551Þ�
ð13:04þ0:053

�0:059Þ� þ ð24:09�2:114
þ0:737Þ� ¼ ð37:13�2:061

þ0:678Þ�
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� ¼ arccosjVtbj, and �d ¼ arctanjVtd=Vtsj hold. All the
moduli of the CKM matrix elements have been illustrated
in Eq. (5); accordingly �u, �, and �d in FX parametrization
can be obtained. So are the cases for the PMNS matrices.

The numerical results of quark and lepton mixing angles
as well as their QLC relations are listed in the right column
of Table I. It is obvious from the table that the QLC
relations approximately hold in P1, P2, P3, P4, and P5
parametrizations but suffer from large deviation in the
remaining four parametrizations. Thus the QLC relations
are indeed parametrization dependent. Note that the pa-
rametrization proposed in Ref. [22] is equivalent to the
standard parametrization when ignoring the CP-violating
phase; hence the QLC relations will also hold in this
parametrization. Furthermore, the distinct feature for those
parametrizations accommodating the QLC relations is that
they all have a simple form in their ð1; 3Þ entries.

III. CONDITIONS FOR THE EXACT QLC
RELATIONS TRANSFORMATION

Since the QLC relations depend on the forms of parame-
trizations, the exploration of those parametrizations that
ensure this relation is necessary and pressing. Based on the
hypothesis that the QLC relations hold in the standard
parametrization,

�12 þ #12 ¼ 45�; �23 þ #23 ¼ 45�; (9)

we aim to see under what conditions this is still the case for
the corresponding angles in the other parametrizations.
Taking the FX parametrization (i.e. P2 in Table I) as an
example, we have

tan�d ¼ jVtdj
jVtsj ¼

jc�12c�23s�13 � s�12s�23e
�i�j

js�12c�23s�13 þ c�12s�23e
�i�j ;

cos� ¼ jVtbj ¼ jc�23c�13 j:
(10)

We first consider �d þ #�, which is corresponding to the
first relation in Eq. (9):

tanð�d þ #�Þ ¼ tan�d þ tan#�

1� tan�d tan#�

¼ CAþDB
DA� CB

; (11)

where A, B, C, and D are defined as

A ¼ js#12
c#23

s#13
þ c#12

s#23
e�i’j;

B ¼ jc#12
c#23

s#13
þ s#12

s#23
e�i’j;

C ¼ jc�12c�23s�13 � s�12s�23e
�i�j;

D ¼ js�12c�23s�13 þ c�12s�23e
�i�j:

(12)

Using the QLC relation in Eq. (9), one can get A and B
expressed in the form of the standard parametrization:

A ¼ 1
2jðc�12 � s�12Þðc�23 þ s�23Þs#13

þ ðc�12 þ s�12Þðc�23 � s�23Þe�i’j;
B ¼ 1

2jðc�12 þ s�12Þðc�23 þ s�23Þs#13

þ ðc�12 � s�12Þðc�23 � s�23Þe�i’j:

(13)

After substituting the above expressions of A and B into
Eq. (11), we find that it is hard to deduce any useful
conclusion from it. Furthermore, we assume that the cor-
responding smallest angles in the standard parametrization
for quark and lepton mixings are vanishing, i.e. �13 ¼
#13 ¼ 0�, and thus

A ¼ 1
2jðc�12 þ s�12Þðc�23 � s�23Þj;

B ¼ 1
2jðc�12 � s�12Þðc�23 � s�23Þj;

C ¼ js�12s�23 j;
D ¼ jc�12s�23 j;

(14)

which leads to a remarkable result,

tanð�d þ #�Þ ¼ 1; (15)

from which the QLC relation in the FX parametrization
�d þ #� ¼ 45� exactly holds.
Now we turn to consider the second relation of Eq. (10).

With the help of the QLC relation for �23 and #23 and the
assumption of the vanishing smallest mixing angles �13 ¼
#13 ¼ 0�, one can obtain

cosð�þ #Þ ¼
ffiffiffi
2

p
2

: (16)

Again, the QLC relation holds for the FX parametrization
in this situation. Namely,

�d þ #� ¼ 45� and �þ # ¼ 45�: (17)

In fact, under the condition of �13 ¼ #13 ¼ 0�, the
conclusion that the QLC relations hold in these parame-
trizatons can be exactly obtained. For example, from
Eq. (10) we can easily get tan�d ¼ j tan�12j and cos� ¼
j cos�23j in the FX parametrization if �13 ¼ #13 ¼ 0�. So
is the case in the lepton sector, i.e. tan#� ¼ j tan#12j and
cos# ¼ j cos#23j. Hence, the QLC relations hold in the FX
parametrization. And the same conclusion can also be
obtained for P3, P4, and P5 parametrizations in a similar
procedure. The reason is simple that these five parametri-
zations are essentially equivalent to one another in the
�13 ¼ #13 ¼ 0� limit.

IV. ON THE STABILITY OF QLC RELATIONS RG
RUNNING

As proposed in many papers, the quark-lepton symmetry
implied by the QLC relations means that physics respon-
sible for these relations should be realized at some scales,
which might be the quark-lepton unification scale, �GUT,
or even higher scales, and the RG effects have been dis-

YA-JUAN ZHENG PHYSICAL REVIEW D 81, 073009 (2010)

073009-4



cussed in the framework of the standard parametrization
[12,23]. Since there are specific advantages in the FX
parametrization for the study of fermion mass matrices
and B-meson physics [17], it is useful to examine the
sensitivity of the QLC relations to the RG effects in this
parametrization. And it has been shown that the RG equa-
tions of quark and lepton mixing angles have a particularly
simple form in the FX parametrization [24,25]. Assume
that QLC relations hold exactly at the scale MZ in this
parametrization:

�d þ #� ¼ 45�; �þ # ¼ 45�; (18)

and thus

_� d þ _#� ¼ 0; _�þ _# ¼ 0; (19)

where _� ¼ d�
dt with t � lnð�=MZÞ. We already have the RG

equations of three quark mixing angles [24] and three
Dirac neutrino mixing angles [25] in FX Parametrization:

_�u ¼ � 1

32	2
Cy2b sin2�usin

2�;

_�d ¼ � 1

32	2
Cy2t sin2�dsin

2�;

_� ¼ � 1

32	2
Cðy2b þ y2t Þ sin2�;

_#l ¼ þ Cy2

16	2

c�s�c#c’ð�13 � �23Þ;

_#� ¼ þ Cy2

16	2

c�s�½s2#�12 þ c2#ð�13 � �23Þ�;

_# ¼ þ Cy2

16	2

c#s#ðs2��13 þ c2��23Þ;

(20)

where C ¼ �1:5ðþ1Þ in the SM (MSSM), �ij �
ðy2i þ y2j Þ=ðy2i � y2j Þ, and y�, ya, and yi (� ¼ 
, a ¼ b, t,

and i ¼ 1, 2, 3) stand, respectively, for the eigenvalues of
the Yukawa coupling matrices of charged leptons, quarks,
and neutrinos. In the case of the SM, the Yukawa couplings
yi ¼ mi

v ði ¼ 1; 2; 3Þ, where the Higgs vacuum expection

value (VEV) v is 174 GeV. In the MSSM, m� ¼
y�v sin
, m� ¼ y�v cos
 (� ¼ u, c, t, � ¼ d, s, b, e,

�, 
), where tan
 is the ratio of two Higgs VEV’s.
Some qualitative comments on the main features of

Eq. (20) are in order.
(a) For the RG equations of quark flavor mixing angles

in both the SM andMSSM, noticing that the value of
� is very small, we can safely claim that the RG
running effects of �u, �d, and � are highly sup-
pressed. As a result, three quark mixing angles in
FX parametrization will not change a lot under the
RG running.

(b) In the lepton sector in the SM case, the derivatives of
three mixing angles are proportional to y2
 ¼ ðm


v Þ2 ’
10�4 [26]. Notice that �ij ¼ � m2

iþm2
j

�m2
ji

, with �m2
ji ¼

m2
j �m2

i , �m
2
21 ’ 7:7� 10�5 eV2, and j�m2

32j �
j�m2

31j � 2:4� 10�3 eV2 [21]. Thus the most sen-

sitive angle to radiative corrections is #� whose RG
equation is the only one that consists of �12. But we
still cannot expect large running effects on �� be-
cause the loop factor 1=16	2 makes the derivative
even smaller. While in the MSSM case, where y
 ¼
m


v cos
 , the RG running effects could be enhanced

when tan
 is significantly large.
As a result, if we sum up the derivatives of the corre-

sponding mixing angles of quark and lepton sectors in
Eq. (20), we can conclude that in the SM case the QLC
relations are essentially stable under the RG running and in
the MSSM case these relations might become unstable
only when tan
 is sufficiently large.

V. SUMMARY

To understand the deep meaning of the quark and lepton
world, the quark-lepton symmetry topic has drawn a lot of
attention in recent years. Among many of the aspects that
imply the symmetry and unification in quark and lepton
sectors, the QLC relations between the mixing angles of
the CKM and PMNS matrices have been considered very
interesting and suggestive. In this paper, we have calcu-
lated the QLC relations for each of the angle-phase pa-
rametrizations and find that these relations are
parametrization dependent. Furthermore, the distinct fea-
ture of those parametrizations that can approximately ac-
commodate the QLC relations is that they all have a simple
form in the ð1; 3Þ entries. Then based on the assumption
that the QLC relations hold exactly in the standard parame-
trization, we make an exploration in the FX parametriza-
tion and get the conclusion that these relations can also
hold as long as the smallest mixing angle �13 is vanishing.
Finally, we make clear that the QLC relations can essen-
tially stay stable under the RG running effects in the SM
and MSSM unless the value of tan
 is sufficiently large.
Since we know from the above analysis that QLC rela-

tions are parametrization dependent, maybe this property
of complementarity can be regarded as a criterion for
picking up favorable parametrizations from this perspec-
tive. If so, the still unconfirmed lepton mixing pattern can
also be deduced to some degree. For those parametriza-
tions that accommodate QLC relations, they make the
underlying symmetry between quark and lepton worlds
more transparent. In fact, according to grand unified theo-
ries constraints for the fermion mixing matrices, QLC
relations can be predicted in a good agreement with the
experimental data, and the details have been explored in
the previous reviews.
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