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We make an estimate of the likelihood function for the Higgs vacuum expectation value (vev) by

imposing anthropic constraints on the existence of atoms while allowing the other parameters of the

standard model to also be variable. We argue that the most important extra ingredients are the Yukawa

couplings, and for the intrinsic distribution of Yukawa couplings we use the scale-invariant distribution

which is favored phenomenologically. The result is successful phenomenologically, favoring values close

to the observed vev. We also discuss modifications that can change these conclusions. Our work supports

the hypothesis that the anthropic constraints could be the origin of the small Higgs vev.

DOI: 10.1103/PhysRevD.81.073003 PACS numbers: 14.80.Bn

I. INTRODUCTION

It is known that if the masses of the light quarks and the
electron were modestly different, then nuclei and atoms
would not exist [1–3]. Because the masses of fermions are
proportional to the Higgs vacuum expectation value (vev),
these bounds can be interpreted as constraints on possible
values of the Higgs vev if the other parameters of the
standard model are held fixed [1,3]. This observation is
interesting because it could provide an answer to one of the
most significant puzzles of the standard model—often
called the fine-tuning problem or the hierarchy problem.
If the underlying theory allows the existence of different
values of the Higgs vev, we would only find ourselves in a
region of the Universe that contains atoms, and hence the
vev may be constrained to a small range of possible values.
This provides a motivation for theories with multiple pos-
sible values of the physical parameters, such as the string
theory landscape [4].

However, in theories in which the basic parameters can
take on multiple values, other parameters besides the Higgs
vev will most likely also be variable. This would be the
case in the string landscape picture. Since the atomic
constraints are really on the up quark, down quark, and
electron masses, they translate to constraints on the product
of the fermion Yukawa couplings and the Higgs vev, not
the vev uniquely. Even without the exploration of specific
theories, we might hope that the rough conclusion is un-
changed, namely, that the scale of the electroweak sector
must be reasonably close to the scale of the strong inter-
actions in order that the masses of the light quarks and
electron—the product of the electroweak interactions—be

comparable to nuclear binding energies—primarily due to
strong interactions.
In this paper we consider the more general case of

allowing other parameters of the standard model to vary,
and attempt to provide a likelihood distribution for the
Higgs vev. One might think that this would be possible
only with the knowledge of the full underlying theory, but
we will primarily use data for this purpose. As we will
argue in Secs. II and III, this is possible because it is the
Yukawa couplings that appear to have the most significant
influence on the range of the vev. Because there are many
masses, we then have an experimental indication of the
intrinsic probability distribution for the Yukawa couplings.
The observed quark and lepton masses provide quite strong
statistical evidence that this distribution is close to scale
invariant [5,6]. We will review this idea in Sec. IV and
provide further evidence in its favor in Sec. V.
Applying such a scale-invariant probability distribution

for the Yukawa couplings, we investigate the likelihood
distribution for the Higgs vev. This result is obtained by
finding the relative probability that the u, d quarks and the
electron (governed by the scale-invariant weight) fall in the
anthropically allowed range. In this case our result is
developed and displayed in Sec. VI. We can also study
the effect of producing modest changes in our underlying
assumptions. These are studied in Sec. VII. We present our
conclusions in Sec. VIII.
We are aware of many limitations of our work. Besides

the assumptions that we state and explore, there are likely
other effects (nucleosynthesis, cosmology, etc.) that come
into play, especially once we consider significant changes
in the parameters of the standard model. However, one
would expect that possible further anthropic constraints
would only tighten the likelihood function in the neighbor-
hood of the physical value. The goal of the present work is
to obtain a sense of whether or not the atomic constraints
could be the origin of the low value of the Higgs vev
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(within the context of landscapelike theories). Our work
can be viewed as an attempt to quantify this by looking at
what may be the dominant effects. Overall, our conclusion
is that it remains plausible that the atomic constraints are
the origin of the low value of the Higgs vev.

II. GENERAL FRAMEWORK

The situation that we have in mind is similar to the string
landscape picture in which there are very many possible
values of each of the parameters. While in string theory the
choices of parameters are discrete, the results appear to be
so densely packed as to appear almost continuous.1 We
then describe the ensemble of such states by an intrinsic
probability distribution or weight that specifies the proba-
bility of finding different values of the parameters. These
probabilities would emerge from string theory, and the
weight encodes the shape of the string landscape. Let us
call this weight �ðv;�i; giÞ, where v is the Higgs vacuum
expectation value, �i are the Yukawa couplings, and gi
stands for the gauge couplings and all other parameters of
the theory.

However, many combinations of the parameters do not
lead to nuclei and atoms. There is an intrinsic selection
effect such that we would only find ourselves in friendly
regions that include atoms. The shape of the intrinsic
probability distribution in unfriendly regions of parameter
space is then completely irrelevant for us, and we are only
concerned with the parameter subspace that leads to atoms.
Let us denote by Aðv;�i; giÞ the function that is zero for all
parameters that do not lead to atoms and unity for those
that do. We will refer to this as the atomic function. In
principle, the atomic function could also take into account
not only the mere existence of atoms, but also the proba-
bility of a physical environment of sufficient complexity
developing with the atoms that are available with that
parameter set. As one moves around the parameter space,
especially near the allowed borders, greater or fewer num-
bers of atoms exist and/or would be produced in the early
Universe. With a reduced or enhanced set of atoms avail-
able, the resulting complexity might be greatly reduced or
enhanced. However, such considerations are beyond our
capabilities to calculate and we do not consider them.
Given the primary features uncovered below, it is unlikely
that modifying the boundaries of the atomic function
would have a large effect on our results. Moreover, it is
certainly cleaner and more conservative to limit our dis-
cussion to the general physical characteristics of atoms and
nuclei.

With the atomic function we can obtain the total proba-
bility to find atoms in the landscape

PðAÞ ¼
Z

dvd�idgiAðv;�i; giÞ�ðv;�i; giÞ; (1)

where A denotes the existence of atoms. However, this total
probability is not a quantity of interest. A more interesting
one is constructed by omitting the integration over v,

LðvÞ ¼
Z

d�idgiAðv;�i; giÞ�ðv;�i; giÞ (2)

which we call the likelihood function. It is in fact the

probability density dp
dv for atoms to exist.

Another useful assumption is the independence of pa-
rameters. This means that we assume that the intrinsic
probability function factorizes into the product of separate
weights. In formulas this implies

�ðv;�i; giÞ ¼ �ðvÞ�ð�eÞ�ð�uÞ�ð�dÞ . . . : (3)

This is at least partially motivated by the vastness of the
string landscape. If we hold all but one parameter fixed,
there are likely other allowed vacua with this last parame-
ter scanning over its allowed range. There is also some
phenomenological evidence in favor of this from the dis-
tribution of quark and lepton masses, which all seem con-
sistent with the same distribution. However, we note the
approximate nature of this feature in our discussion in
Sec. VII.
There also could be an a priori distribution for the Higgs

vev, �ðvÞ, which is a property of the fundamental theory.
We clearly do not know this function. However, it is
expected that the vev can take on values in a very large
range, at least up to a unification scale. Moreover, there are
many additive contributions to v that come from quantum
corrections. These add linearly in the respective couplings,
and this suggests that the overall distribution could be
Taylor expanded in v about the observed value. If this is
the case, then our considerations cover only a very small
portion of the allowed range, and we treat the a priori
distribution as a constant in this narrow range. If the a
priori distribution in v were to be highly peaked in some
direction, our results would be modified, and so this must
count as an uncertainty in our method. Therefore, our
assumption will be �ðvÞ � constant, and unless we know
more about the underlying theory, we feel that this is the
most reasonable assumption under which to proceed.
The quantity we will explore in detail below is the

probability to find atoms for a given value of v. It is
obtained by taking a sample v and drawing the other
relevant parameters randomly from the probability distri-
butions we consider. Then we decide if the resulting con-
figuration can yield atoms or not. With a large sample for a
fixed value of v, we can obtain the probability of having
atoms by dividing the number of times we obtained atoms
by the total number of simulations. Using the assumption
of independence of the parameters introduced above, the
quantity we obtain from our simulations then is

1For example, it has been estimated that there are 10100 string
vacua reproducing the standard model parameters within the
present experimental error bars [4], and the density of states
would be equally high in the neighborhood of these parameters.
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PðAjgivenvÞ ¼
Z

d�i

Z
dgj

�Y
i;j

�ð�iÞ�ðgjÞ
�
Að�i; gj; vÞ:

(4)

Now the likelihood function LðvÞ of Eq. (2) is obtained by
the product of PðAjgivenvÞ and the intrinsic probability
distribution �ðvÞ. Under our assumption of a flat �ðvÞ �
const in the range of interest, the likelihood function is then
simply proportional to PðAjgivenvÞ of Eq. (4).

From the shape of the likelihood function LðvÞ we can
infer which values of v are typical and which ones are
highly improbable. Since LðvÞ is a probability density, its
shape itself is not a direct indicator of the most likely
values of v. A peak in LðvÞ, for example, does not indicate
the most likely values of v; more meaningful quantities to
give would be the median or other percentiles. A simpler
way to explore the order of magnitude of the most likely
values of v can be obtained by plotting our results for LðvÞ
on a log-log scale. Since any probability distribution which
has a finite value of its percentiles must fall off faster than
1=v at large values of v, the log-log plots show us if and
when the likelihood function falls off faster than 1=v. If
present, this point is then a reasonable estimate of the most
likely values of v. If LðvÞ does not fall off faster than 1=v,
no constraints on the Higgs vev arise from the existence of
atoms.

III. BRIEF SUMMARYOFATOMIC CONSTRAINTS

To the extent that we understand how the standard model
leads to the world that we observe, we should be able to
describe the world that would result if we instead used
parameters different from, but in the neighborhood of,
those seen in nature. Surprisingly, the structure of the
elements changes dramatically for quite modest changes
in the quark masses. In a recent paper [1], Damour and
Donoghue have tightened and summarized the anthropic
constraints on quark masses.2 Here we briefly summarize
these results.

The first constraint which results from the binding of
nuclei gives an upper bound on the sum mu þmd. The key
feature here is that the pion mass squared is proportional to
this sum of masses, and as the pion mass gets larger,
nuclear binding quickly becomes weaker. The binding
energy is small on the scale of QCD and is known to
have opposing effects from an intermediate range attrac-
tion and a shorter range repulsion. The attractive compo-
nent, heavily due to two pion exchange, is the most
sensitive to the pion mass and weakening it leads to a
lack of binding of nuclei. From [1] this constraint is

mu þmd � 18 MeV: (5)

The second constraint comes from the stability of pro-
tons. If protons could annihilate with electrons, pþ e� !
nþ �e, hydrogen would not exist. The proton and neutron
mass difference gets contributions from the quark masses
and from electromagnetic interactions. Using the best
present estimates of these, the constraint becomes [1]

md �mu � 1:67me � 0:83 MeV: (6)

The right-hand side of the equation is linear in the electro-
magnetic fine-structure constant. Modest variations in this
number would not influence our results significantly. In
providing this constraint, it has been assumed that the
neutrino masses remain negligibly small. This feature is
also anthropically required [7].
These constraints are summarized in Fig. 1. Note that the

up quark and electron masses are able to vary down to zero
mass, while the down quark mass is constrained to be
nonzero. The dimensional scale is set by the QCD scale
�QCD, so that these constraints could be rephrased in terms

of dimensionless ratios mi=�QCD.
3

There are no known atomic constraints on the masses of
the heavier quarks and leptons as long as they are signifi-
cantly heavier than the up quark, down quark, and electron.
Heavy quarks decouple from low energy physics and have
little influence on nuclei and atoms. Therefore, in our case
the atomic function Aðv;�i; giÞ reduces to Aðv;�u;�d;�eÞ.
However, the Higgs vev does influence the mass of the W

FIG. 1 (color online). The anthropic constraints on mu, md, me

in MeV units.

2See also [2].

3In fact, �QCD serves as the comparison scale for all dimen-
sional quantities in this work, so that the reference value for the
Higgs vev v0 is also in units of �QCD.
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gauge boson, and this in turn influences the rates of weak
processes. Since weak interactions play a significant role in
the pp cycle in stars, in particular, the crucial reaction pþ
p ! dþ eþ þ �, raising the W mass will slow the pro-
duction of elements. So while atoms may exist, they may
not be produced in favorable numbers. This constraint is
complicated also by the dependence on the cosmological
parameters governing stars. In [8], a special scenario was
constructed in which theW mass can be taken to infinity if
modifications are made to the usual picture of nucleosyn-
thesis.4 So while there may be additional constraints from
the W mass which would further tighten the likelihood
function, they have not been convincingly shown to be
tighter than those of the atomic function, so we will ignore
them in our analysis. Because further constraints lead to a
narrowing of the likelihood function, omitting them is
therefore a more conservative approach.

IV. THE DISTRIBUTION OF QUARK AND LEPTON
MASSES

In a landscape picture, the Yukawa couplings would not
be uniquely determined but would follow from some in-
trinsic distribution. Because there are enough masses, the
observed masses can give us insight into what this distri-
bution is without having to know the full underlying theory
of the landscape [5,6].5

The intrinsic probability distribution for a quark or
lepton Yukawa coupling is defined such that the fraction
of values that appear at coupling � within a range d� is
�ð�Þd�, with the normalization

1 ¼
Z

d��ð�Þ: (7)

In particular, we have explored a set of power-law weights
[5,6]

�ð�Þ ¼
� N
�� if �min < �< �max

0 otherwise;
(8)

where the normalization constant is N ¼ ð1� �Þ=½�1��
min �

�1��
min � if � � 1 and N ¼ 1= ln½�min=�min� if � ¼ 1.
Such simple power-law weights require at least one

endpoint (or two for � ¼ 1) in order to be normalizable
as in Eq. (7). When we determine the endpoints for the
Yukawa distributions at large and low values, it is natural to
use the renormalization group quasifixed point [12] �max �
1:26 as the upper limit. In [5,6] a lower endpoint �min �
1:18� 10�6, which corresponds to 0:4me, was used. This
is explored more in the following section. With these

ingredients, a likelihood analysis found that � ¼ 1:02�
0:08.
Of particular interest is the experimentally favored

scale-invariant distribution that corresponds to a weight
with � ¼ 1:

�ð�Þ ¼ N

�
: (9)

While the evidence for the scale-invariant weight is based
on quantitative studies, the result can be seen qualitatively
in Fig. 2. A scale-invariant distribution is one which is a
random uniform population on a logarithmic scale.
Figure 2 shows the Yukawa couplings for the quarks and
leptons, at the scale � ¼ MW , plotted on a logarithmic
scale. The result appears visually to be consistent with this
idea, and, in practice, a scale-invariant weight is highly
favored.6 We will use this as our primary weight for our
analysis.
In exploring the uncertainties in the Higgs likelihood

function, we will also consider weights which have no
lower bound on the Yukawa couplings. This is only pos-
sible for � < 1, if the distribution is to be normalizable.
While the possibility �min ¼ 0 is statistically disfavored
(see next section), we found in [6] that the best-fit value in
that case is � ¼ 0:86þ0:04

�0:05. We will use this in our tests of

uncertainties in Sec. VII.

V. FURTHER EVIDENCEON THE FERMIONMASS
DISTRIBUTION

Since the Bayesian result of Ref. [6], � ¼ 1:02� 0:08,
from a likelihood analysis does not address the question of

Quarks

Leptons

log m 

FIG. 2. Quark and lepton masses, defined at the energy � ¼
MW , on a logarithmic scale. A scale-invariant weight corre-
sponds to a uniform distribution on this scale. We use this feature
to describe the distribution of Yukawa couplings.

4See, however, [9], which raises problems with this scenario.
5The Yukawa interactions also influence quark mixing, and the

observed weight is consistent with the hierarchy of weak mixing
elements [6,10]. There are also possible implications for neu-
trino properties [6,11].

6Because the result is consistent with being scale invariant, the
choice of scale is not important and a similar result would be
obtained using either the unrescaled masses or with the Yukawa
couplings defined at the grand unification scale.
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whether the best-fit distribution is actually consistent with
the data, we have studied a set of frequentist Kolmogorov-
Smirnov (KS) tests. The observational input into a KS test
is the so-called empirical distribution function Fobsð�Þ,
defined as the fraction of the nine observed Yukawa cou-
plings that lie below a given � value. This function is
plotted in Fig. 3, and the horizontal location of the
staircase-shaped steps corresponds to the nine rank-
ordered Yukawa couplings for ðe;�; �; u; d; s; c; b; tÞ, taken
from the Particle Data Group compilation [13]. For any
particular choice of our model parameters ð�;�min;�maxÞ,
we can compute a predicted cumulative probability distri-
bution function

Fð�Þ �
Z �

�min

�ð�0Þd�0 (10)

and compare how well it agrees with Fobsð�Þ. Figure 3
illustrates this for variations in both � and �min. The KS
test uses as a goodness-of-fit statistic the maximum vertical
discrepancy jFobsð�Þ � Fð�Þj between theory and obser-
vation. The corresponding consistency probability is
shown in Figs. 4 and 5 for variations in � and �min,
respectively, keeping a fixed upper cutoff �min ¼ 1:2.

FIG. 3 (color online). The staircaselike curve shows the em-
pirical distribution function, defined as the fraction of the nine
observed Yukawa couplings that lie below a given � value. The
other curves show the cumulative distribution functions pre-
dicted by our power-law probability distribution Ansatz. All
curves assume �min ¼ 1:2, and the straight lines correspond to
the log-uniform � ¼ 1 case with different values of �min, the
solid line having the best-fit value �min ¼ 5� 10�7. From top to
bottom, the bent curves with the same endpoints take the �
values 1.2, 1.1, 1.0, 0.9, and 0.8, respectively. The � ¼ 1 line is
seen to exhibit good consistency with the observed data.

FIG. 5 (color online). The probability that our model is con-
sistent with the nine observed Yukawa couplings is shown as a
function of the lower cutoff �min, assuming the scale-invariant
power-law index � ¼ 1. The V-shaped curve shows the maximal
difference between the predicted and observed distribution func-
tions from Fig. 3.

-

FIG. 4 (color online). The probability that our model is con-
sistent with the nine observed Yukawa couplings is shown as a
function of the power-law index �, assuming the best-fit value
�min ¼ 5� 10�7. The V-shaped curve shows the maximal dif-
ference between the predicted and observed distribution func-
tions from Fig. 3.
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The constraints on � from Fig. 4 nicely reproduce the
previous likelihood result using frequentist methods.
Figure 4 shows that we can reject the null hypothesis that
our model is correct at high significance if � deviates
substantially from unity, and also that the data are perfectly
consistent with � ¼ 1. This approach also enables us to
place a bound on the lower endpoint �min, as seen in Fig. 5.
Normalizability alone requires a lower endpoint when � �
1, but for any � value, it is clear from Fig. 3 that the fit
becomes poor if the left endpoint is dragged sufficiently far
to the left of the leftmost data point. Figure 5 shows that the
best-fit value is �min 	 5� 10�7 for the scale-invariant
case, although the constraints are rather weak, with 1�
� and 2� � bounds (32% and 0.045% consistency proba-
bility) corresponding to �min 	 7� 10�9 and 	
5� 10�11, respectively.

In Ref. [6] a Bayesian approach was employed where the
dependence of the likelihood function on the exponent �
was studied for a fixed �min. Here we extend this analysis
by investigating also the dependence of the likelihood on
�min. As in [6] we fix the upper endpoint to be �max ¼ 1:26,
which is motivated by the quasifixed point of the standard
model. In Fig. 6 we show the contour plot of the log-
likelihood function as a function of the lower Yukawa
endpoint �min and the exponent �. The darkest area is the
1� � range, the next one is the 2� � range, etc. Here the
n� � range is taken as the parameter space where the log
likelihood is, at most, n2=2 below its maximum.

We see that for all values of � the data favor a lower
endpoint for the distribution, and for any fixed value of �,
the likelihood function increases monotonically up to the
highest possible value �min ¼ �e. The best fit, i.e. the
highest likelihood, is found for � ¼ 1:06 and �min ¼ �e.
Any probability distribution with �min ¼ �e seems, of
course, very unnatural since one out of the nine measured
Yukawas would lie exactly on the endpoint of the proba-
bility distribution, but the likelihood analysis does not take
that into account. For � < 1, where the power-law weights
do not require a lower endpoint �min, the data show that
such a scenario with �min ¼ 0 is disfavored by over 2� �.

VI. THE LIKELIHOOD FUNCTION FOR THE
HIGGS VEV

We now combine our two key ingredients, the anthropic
constraints and the probability distribution for the Yukawa
couplings which is phenomenologically successful in de-
scribing the observed Yukawa couplings, in order to esti-
mate the likelihood distribution for the Higgs vev. Our
approximation of the full problem, under the assumptions
described in Sec. II, consists of

LðvÞ ¼
Z

d�iAðv;�u;�d;�eÞ�ð�iÞ; (11)

where a product over all charged fermions i is understood.
In comparison with Eq. (2), the gauge couplings have been
dropped because of our focus on the primary constraints
due to the Yukawa couplings. The potential dependence on
v in �ðv;�i . . .Þ is no longer present due to the assumption
that the intrinsic probability distribution in v is roughly flat
over the allowed atomic window.7 The atomic function
Aðv;�u;�d;�eÞ is summarized in Fig. 1, and �ð�iÞ is the
probability distribution for the Yukawa couplings, where
we use � ¼ 1, �min ¼ 0:4�e, and �max ¼ 1:26. The nor-
malization of LðvÞ is irrelevant; we are only interested in
estimating its shape. We calculate LðvÞ numerically by
randomly populating the Yukawa couplings using the ap-
propriate weight at different values of the vev. In particular,
we generate a set of three Yukawa couplings for the up-
type quarks, for the down-type quarks, and for the leptons.
The smallest Yukawa coupling of each set is defined to be
�u, �d, and �e, respectively. The relative probability of
satisfying the atomic constraints then yields the likelihood
function.
Let us briefly reiterate here the main assumptions which

go into our analysis and explain the logic of how the
application of a scale-invariant probability distribution
for the Yukawa couplings can yield a constraint on the
scale of the Higgs vev. First of all, we note that we extract
the observed Higgs vev from measurements other than the
fermion masses, such asMW . Now, our crucial assumption

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 6 (color online). Contour plot of the log likelihood as a
function of the lower endpoint for the Yukawa couplings �min

and the exponent �. We normalize �min relative to the lowest
observed Yukawa coupling, �e, by defining xmin ¼ �min=�e. The
darkest area is the 1� range, the second darkest area marks the
2� range, etc.

7We will return to these issues in our discussion of the
uncertainties.
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that the Higgs vev and the Yukawa couplings are statisti-
cally independent is used to infer the probability distribu-
tion for the Yukawa couplings independently of the Higgs
vev. In practice, this essentially means that we infer the
scale-invariant weight for the Yukawa couplings directly
from the observed scale-invariant weight for the quark and
lepton masses for a fixed value of the Higgs vev. The
probability distribution for the Yukawa couplings is taken
to be a power law with an exponential close to the scale-
invariant case of � ¼ 1. For � ¼ 1 it requires lower and
upper endpoints. Whereas the lower endpoint of the distri-
bution is inferred from the measured Yukawa couplings,
for the upper endpoint the renormalization group quasi-
fixed point has been used. Again, the assumption of statis-
tical independence is crucial when we extract these
endpoints and use them universally for any Higgs vev.
Thus, we know that the Yukawa couplings have to be
uniformly distributed on a log scale in a segment extending
over roughly 6 orders of magnitude, and we knowwhere on
the log scale this segment is located. Finally, a scale enters
through the atomic constraints on the light fermion masses,
and together with the probability distribution of Yukawa
couplings, it yields our constraints on the Higgs vev.
Consider, for example, a large Higgs vev of 1016 GeV.
Since our Yukawa couplings from a scale-invariant weight
are required to lie roughly between 10�6 and 1, it would be
impossible to get light fermion masses in the MeV range
for such a large value of the Higgs vev.

For our main result, we consider the case seen in nature
where only the u, d quarks and the electron fall within the
anthropic window—all others quarks and leptons are heav-
ier and should not be part of stable atoms. We discuss
alternatives in the next section. We implement this con-
straint by requiring that the second lightest up-type quark,
the c quark, does not lie within the anthropic window

FIG. 8. This shows the same likelihood function L as in Fig. 7,
but with the vertical axis on a linear scale.

FIG. 7. The likelihood function L for the Higgs vev as a
function of v=v0 (v0 is the observed Higgs vev of 246 GeV),
constructed with our favored scale-invariant weight. The nor-
malization gives the fraction of simulations which satisfy the
anthropic constraints.

FIG. 9. The likelihood function L shown in Figs. 7 and 8 is
shown here with both the horizontal and vertical axes on a linear
scale.

LIKELY VALUES OF THE HIGGS VACUUM EXPECTATION . . . PHYSICAL REVIEW D 81, 073003 (2010)

073003-7



sketched in Fig. 1 when the mu axis is replaced by mc, and
analogously for the second lightest down-type quark.

For our favored scale-invariant weight, the result is
shown in Figs. 7–9 using log-log, log-linear, and linear-
linear coordinate axes. This is our primary result. We see
that the distribution is peaked near the value v0 observed in
nature, and it extends over several orders of magnitude.
The median value in this distribution is v ¼ 2:25v0. The
2� � range extends from 0:10v0 to 11:7v0. We observe
that there is a steep upper cutoff in the allowed values of
the vev which comes from the lower endpoint �min present
in the scale-invariant distribution of the Yukawa couplings.
The relevant point where the likelihood function falls off
faster than 1=v is located at a few times v0. We conclude
that v0 would be a very typical value for the Higgs vev,
whereas values 
 10� v0 would be very unlikely.

VII. UNCERTAINTIES

In this section, we consider the changes in the likelihood
function if we modify some of the features of our analysis.
The two greatest effects come from the variation or re-
moval of the lower endpoint in the fermion mass distribu-
tion, and from the possibility of extra quarks or leptons
within the anthropic window. The first of these has the
potential to significantly modify our results.

First we can consider the changes if we use a different
value of the lower cutoff. Changing the lower endpoint by
1 order of magnitude within the context of the scale-
invariant weight produces the modification shown in
Fig. 10. The plot shows that for �min ¼ 0:04�e the like-
lihood distribution favors larger values of the Higgs vev. In

this case, smaller allowed values of the Yukawa couplings
are compensated by larger values of the Higgs vev to
satisfy the atomic constraint. We see that the qualitative
features of the spectrum remain. However, the value of v
where the likelihood starts to falls off faster than 1=v is
roughly 10 times higher if we divide �min by a factor of 10.
We clearly need to address this issue of how much the most
likely Higgs vevs depend on the cutoff at low Yukawa
couplings in the weight.
One major concern about the result of the previous

section is that the shape of the likelihood function is
determined at large values of the vev by the fact that the
scale-invariant weight has a lower endpoint to the Yukawa
distribution. We address this issue by considering a power
weight with � less than unity, with no lower endpoint. Thus
the power-law behavior of the weight at low Yukawa
couplings is not cut off at all and extends all the way
down to zero. The Yukawa couplings can therefore become
arbitrarily small, without being in violent disagreement
with the overall fermion mass distribution. Such a distri-
bution has the potential to allow arbitrarily large values for
the vev. In these cases, there would be situations where a
high value of the vev is counterbalanced by very small
Yukawas in order to satisfy the atomic constraints.
In Fig. 11 we show the likelihood function that is

obtained for � ¼ 0:86 and �min ¼ 0. While the maximum
of the likelihood function remains close to the observed
value, we see that it never falls off faster than 1=v in the
region studied, which extends up to 108 � v0. That means
the most likely values of the Higgs vev in this scenario
would be very large. Because the power-law weight is valid
down to zero Yukawa couplings, we lose the constraints for

FIG. 10. The likelihood function for different values of the
lower endpoint in the Yukawa distribution, �min ¼ 0:4�e (solid
line) and �min ¼ 0:04�e (dashed line).

FIG. 11. The likelihood function resulting from a power-law
weight of exponent � ¼ 0:86 without any lower endpoint �min.
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the Higgs vev to be in the neighborhood of the observed v0.
While our analysis in Sec. V has shown that �min ¼ 0 is
disfavored by over 2� �, this issue remains a serious
caveat. It motivates further top-down studies of properties
of the string theory landscape in order to identify the
existence of a lower cutoff in the quark mass weight.

Another uncertainty is the interesting possibility that
more quarks beyond u, d, e fall in the atomic window. If
we treat all the quarks independently as we have been
doing, we find that it is reasonably common that more
quarks do fall in the allowed atomic window. For example,
with the scale-invariant weight the likelihood function
including extra quarks in this range is shown in Fig. 12.
The allowance of extra small masses falling in the atomic
window makes the distribution peaked around smaller
values in comparison to when we do not allow them to
fall inside the window. The value of v where the likelihood
starts falling off faster than 1=v and therefore the most
likely Higgs vev remains almost unchanged. We do not see
the disadvantage of this situation for the existence of
atoms.

However, at this point it is useful to recognize a known
flaw in our approximation—that the Yukawa distributions
of each flavor are treated as independent. Even if the
original Yukawa couplings of the theory are distributed
independently, the final output governing masses will not
be independent. The original Yukawas exist in a 3� 3
complex matrix for each charge sector. The diagonaliza-
tion of this matrix yields the final eigenvalues as well as
rotation angles that go into the weak mixing matrices. It is
well known that upon diagonalization, the eigenvalues of a

matrix repel each other. In random matrix theory this leads
to a repulsion of the final eigenvalues. For our case, this
says that the u, d, e distributions will be independent, since
they come from different charge sectors, hence different
matrices. However, the likelihood of two quarks of the
same charge falling in the allowed atomic range will be
decreased by this repulsion. We have studied this effect by
generating random Yukawa couplings in a 3� 3 matrix
and diagonalizing. As discussed in [6], in this case, in order
to approximate a scale-invariant distribution of the final
eigenvalues, we start with an initial weight with � ¼ 1:16,
and we use �min ¼ 0:4�e. The resulting likelihood func-
tion is shown in Fig. 13, where the solid curve only allows
u, d, e in the anthropic window and where the dashed curve
results from allowing any number of light quarks in the
anthropic window. While the falloff at higher v is now less
steep than in the result from diagonal simulations without
matrix diagonalizations in Fig. 12, it is clearly falling off
much faster than 1=v, and the most likely value of v would
be below 10� v0. Comparing the result from the diago-
nalization of the Yukawa matrices in Fig. 13 with the
corresponding result from diagonal simulations without
matrix diagonalizations shown in Fig. 12, we note that
the two curves in Fig. 13 are closer together than the
ones in Fig. 12, which is due to the repulsion of eigenvalues
in the matrix diagonalization case.
Since our work is based on statistical independence of v

and �i, i.e. �ðv;�iÞ ¼ �ðvÞ�ð�iÞ, there could be even more
dramatic problems if there were correlations between v
and �i. For example, if in our weight �ð�iÞ both endpoints
�min, �max were proportional to 1=v, there would be no

FIG. 12. The likelihood function allowing any number of light
quarks in the anthropic window (dashed line), along with that
allowing u, d, e only (solid line).

FIG. 13. The likelihood function resulting from a bi-unitary
diagonalization of the Yukawa matrices allowing any number of
light quarks in the anthropic window (dashed line), along with
that allowing u, d, e only (solid line).
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anthropic constraints on v since varying v would keep the
distribution of the masses the same. Because we measure
the Yukawa couplings at a single value of v, we cannot
address this.

We have mentioned previously the possibility that fur-
ther anthropic constraints could come into play. These
could change the detailed shape of the likelihood function
because they could eliminate regions of parameter space
which are somewhat different from our world. However,
since our parameters are clearly consistent with the con-
straints, the elimination of other regions would likely
narrow the resulting likelihood function for v. This would
change the shape of the function, but would not modify our
basic conclusions about the compatibility of our value of v
with the allowed anthropic range.

One might also wonder if the likelihood function should
take into account the other great anthropic constraint, that
on the clumping of matter in the Universe to form stars and
planets, which limits, in particular, the cosmological con-
stant. The likelihood function for the cosmological con-
stant has been studied by Vilenkin and Garriga [14]. The
parameters of the standard model do of course also influ-
ence the cosmological constant. For example, a shift in the
value of the up-quark mass (or the Higgs vev) by one part
in 1040 would shift the cosmological constant by 100%.
However, for the cosmological constant to have an an-
thropic selection, the possible values of � must be densely
packed, and there should be other slightly different combi-
nations of parameters that yield an anthropically allowed
cosmological constant. For the rather narrow range of v
that we probe, it seems very reasonable that the clumping
of matter constraint has little influence on the likelihood of
the Higgs vev.

VIII. CONCLUSIONS

The fundamental question that we are addressing is
whether it is plausible that the atomic constraints explain
the low value of the Higgs vev in landscape theories. This
is known to be the case at fixed values of the Yukawa
couplings, but since these parameters also may vary in
landscape theories, and since their magnitudes seem to
be peaked at low values, the answer is less obvious in a
more general context. We have used experimental infor-
mation on the distribution of masses to address this issue.
We find that even if the Yukawa couplings are allowed to
scan in a way that is favored phenomenologically, the
likely values of the Higgs vev are close to the one observed
in nature. This supports the hypothesis that these con-
straints favor Higgs values similar to ours.

This can be interpreted as a motivation for further ex-
ploration of landscape theories. The value of the Higgs vev
and that of the cosmological constant are two great ‘‘fine-
tuning’’ problems of the fundamental interactions, and the
presence of a landscape would change the way that we
approach the issue of fine-tuning [15]. This is because both

of these problems appear to have plausible resolutions
through anthropic constraints that are appropriate for land-
scape theories.8

In [8], it was argued that the anthropic constraints on the
quark masses cannot be used to constrain the Higgs vev, by
constructing a plausible scenario in which the weak inter-
actions do not appear. In the context of our exploration in
this paper, this could be realized by taking v ! 1, � ! 0,
with their product fixed. This situation may arise in our
scenario for power-law weights with exponent � < 1
which extend down to zero Yukawa couplings. Such
weights are disfavored by more than 2� � in comparison
to weights with a lower cutoff �min of the order of �e, as we
inferred from the measured fermion spectrum.
Nevertheless, they are a serious caveat to an anthropic
constraint for the Higgs vev. For the preferred weights
with a lower cutoff �min of the order of �e, the most likely
values are close to that seen in nature.
One of the strengths of our approach is that it does not

rely on the ultraviolet completion of the fundamental
underlying theory. Aside from our assumption of statistical
independence, this input comes from the data on the quark
and lepton masses. Both the issues of statistical indepen-
dence and of weights without a lower cutoff could possibly
be addressed in top-down studies of the landscape.
The likelihood function that we have constructed is an

estimator that tries to quantify the effect of the possible
variation of the fundamental parameters on the range of
allowed values for the Higgs vev. Further understanding of
anthropic constraints may be able to narrow the likelihood
function further. Even if the range is narrowed, this is more
of a consistency check than a prediction of landscape
theories, since we already know that the observed value
of the vev is anthropically allowed. However, it does
provide further motivation for landscape theories and sug-
gests that within these theories the hierarchy and fine-
tuning problems associated with the vev are not as serious
obstacles as they are in other theories.
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