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We continue exploring free strings in the background of null Kasner-like cosmological singularities,

following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the

lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of

singularities whose Kasner exponents satisfy certain relations. We compare this with the description in

other variables. We then study certain regulated versions of these singularities where the singular region is

replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The

string modes can again be solved for exactly, giving some insight into how string oscillator states get

excited near the singularity.

DOI: 10.1103/PhysRevD.81.066005 PACS numbers: 11.25.�w, 98.80.�k

I. INTRODUCTION

In this article, we continue exploring free string propa-
gation in the background of null cosmological singular-
ities, following [1], and motivated by [2–5], as well as
some earlier investigations, e.g. [6–26].

Time-dependent generalizations of AdS/CFT where the
bulk contains null or spacelike cosmological singularities
were studied in [2–4], with a nontrivial dilaton e� that
vanishes at the location of the cosmological singularity, the
curvatures behaving as RMN � @M�@N�. The gauge the-
ory duals are N ¼ 4 Super Yang-Mills theories with a
time-dependent gauge coupling g2YM ¼ e�, and [2–4] de-
scribe aspects of the dual descriptions of the bulk cosmo-
logical singularities. From the bulk point of view,
supergravity breaks down and possible resolutions of the
cosmological singularity stem from stringy effects. Indeed
noting �0 � 1ffiffiffiffiffiffi

gsN
p ¼ 1

gYM
ffiffiffi
N

p from the usual AdS/CFT dic-

tionary and extrapolating naively to these time-dependent
cases with a nontrivial dilaton, we have �0 � 1

e�=2
ffiffiffi
N

p indi-

cating vanishing effective tension for stringy excitations,
when e� ! 0 near the singularity. In general, we expect
that stringy effects are becoming important near the bulk
singularity, corresponding to possible gauge coupling ef-
fects in the dual gauge theory. It is therefore interesting to
understand world sheet string effects in the vicinity of the
singularity. Owing to the technical difficulties with string
quantization in an AdS background with RR flux, we
would like to look for simpler, purely gravitational back-
grounds as toy models whose singularity structure shares
some essential features with the backgrounds in the AdS/
CFT investigations.

In [1], we described purely gravitational spacetimes,
with no other background fields turned on, containing
null Kasner-like cosmological singularities where tidal
forces diverge. The Kasner exponents satisfy certain alge-
braic relations stemming from the supergravity equations
of motion. These are related by a coordinate transformation
to anisotropic plane waves with singularities. We then

studied the free string spectra in these backgrounds, aided
by the fact that the string mode functions can be exactly
solved for in these backgrounds. Using the mode asymp-
totics in the near singularity region, the world sheet
Hamiltonian in light cone gauge can be simplified enabling
a detailed analysis of the string spectrum.
The Schrodinger wave functional was found to be a

useful diagnostic for the response of gauge theories to
time-dependent coupling sources [4]: these theories are
dual to AdS cosmologies with spacelike singularities, in
particular, with dilaton profiles vanishing as e� � tp, p >
0, with t being a timelike time coordinate. Among other
things, [4] found that the quantum mechanical wave func-
tion of the system, describing its response to the external
time dependence, in general acquires a time-dependent
phase factor. For p � 1, this phase becomes wildly oscil-
lating and diverges as t ! 0�. As a result, the wave func-
tion of the system (in the Schrodinger picture) does not
have a well-defined limit as t ! 0�. In contrast for p < 1,
the phase factor does not diverge and the wave function has
a well-defined limit as t ! 0�. The energy diverges in both
cases. By contrast, null singularities with e� � ðxþÞp ap-
pear to be better defined [2], with a well-defined ‘‘near
singularity’’ wave function and no divergences1. These
findings could acquire possible modifications due to gauge
coupling renormalization effects, as discussed in [4].
Motivated by this, in the present paper, we continue

investigating null singularities and the string world sheet
description, following [1]. Along the lines of the
Schrodinger wave functional analysis [4] described above,
we study the Schrodinger equation for the string wave

1Indeed, in terms of the redefined gauge fields ~A� ¼ e��=2A�,
the gauge theory interaction terms become unimportant near the
singularity [2] and the light cone Hamiltonian containing simply
the kinetic terms gives rise to a free light cone Schrodinger
equation for the gauge theory wave functional. Operators in-
volving ~A� are likely to not have local bulk duals as argued in
[2], again suggesting stringy effects.
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functions using the free string Hamiltonian to study the
response of strings to null Kasner-like cosmological singu-
larities, thereby gaining insights into string propagation
across these null singularities. We find that for singularities
whose Kasner exponents satisfy certain relations, the
wavefunction has a well-defined limit near the singularity,
as xþ ! 0�. We compare this with the corresponding
description in other variables. We then describe certain
regulated versions of these spacetimes where the singular
region is excised by a substringy but nonsingular region
(albeit by a nonanalytic regulator), and study the string
spectra in these regulated regions. The string modes can
luckily be again solved for exactly, giving some insight
into how string oscillator states turn on near the singularity.
In particular, comparing the (instantaneous) masses of
string oscillator states with the local energy (curvature)
scales in the regulated near-singularity region, we find that
a finite number of oscillator states are light for a finite
regulator.

In Sec. II, we review some key points of [1], and then
discuss the Schrodinger wave functional in Sec. III. In
Sec. IV, we describe various dimensional properties of
these spacetimes that make this description consistent
with the no-scale property of plane wave spacetimes (that
these are related to by a coordinate transformation). Finally
in Sec. V, we discuss some regulated versions of these
singularities and string propagation in them, closing with
a discussion in Sec. VI.

II. REVIEWING NULL SINGULARITIES AND
STRINGS

We are interested in purely gravitational spacetime
backgrounds (for simplicity) that have a big-crunch (-
bang) type of singularity at some value of the lightlike
time coordinate xþ. Thus consider

ds2 ¼ efðxþÞð�2dxþdx� þ dxidxiÞ þ ehðxþÞdxmdxm; (1)

with two null scale factors (and all other backgrounds
fields vanishing). It is straightforward to generalize this

to multiple scale factors ehmðxþÞ. Simple classes of null
Kasner-like cosmological singularities arise in the vicinity
of xþ ¼ 0 with

ds2 ¼ ðxþÞað�2dxþdx� þ dxidxiÞ þ ðxþÞbdxmdxm;
a > 0;

(2)

where i ¼ 1, 2, m ¼ 3; . . . ; D� 2. A solution with a < 0
can be transformed to one with a > 0 by redefining yþ ¼
1
xþ . These are Ricci-flat solutions to the Einstein equations

if Rþþ ¼ 0, i.e.

1

2
ðf0Þ2 � f00 þD� 4

4
ð�2h00 � ðh0Þ2 þ 2f0h0Þ ¼ 0

) a2 þ 2aþD� 4

2
ð�b2 þ 2bþ 2abÞ ¼ 0: (3)

The first equation, in terms of the scale factors ef, eh,
shows that the curvature for the 4D scale factor ef is
sourced by those for the ‘‘internal space’’ scale factor eh:
indeed the h (and more generally hm for multiple scale
factors) are the analogs of the dilaton scalar in the AdS/
CFT cosmological context [2–4] where the corresponding

equation was Rð4Þ
þþ ¼ 1

2 ð@þ�Þ2. That is, the kinetic terms

ð@þhmÞ2 (and related cross-terms) play the role of the
dilaton in driving the singular behavior of the 4D part of
the spacetime.

For any b � a, these give solutions 2a ¼ �2� ðD�
4Þb� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ðD� 4ÞðD� 2Þb2p
. Requiring a > 0 means

we take the positive radical. Requiring unambiguous ana-
lytic continuation from xþ < 0 to xþ > 0 across the singu-
larity means a, b are even integers: this is more restrictive
but such solutions do exist.2 While no curvature invariants
diverge in these null backgrounds, the Riemann compo-
nents RþIþI, I ¼ i, m, are nonvanishing giving diverging
tidal forces: analyzing the deviation of null geodesic con-
gruences, we find the accelerations ai, am � 1

ðxþÞ2aþ2 . We

refer to [1] for details on the various properties of these
spacetimes and the Kasner exponents.
We would like to study string propagation in these back-

grounds. Starting with the closed string world sheet action

S ¼ �R
d�d�
4��0

ffiffiffiffiffiffiffi�h
p

hab@aX
�@bX

�g��ðXÞ, we use light

cone gauge xþ ¼ � and set h�� ¼ 0, with Eð�; �Þ ¼ffiffiffiffiffiffiffiffiffiffiffi
� h��

h��

q
, as in [27] (see also [28]), obtaining

S ¼ � 1

4��0
Z

d2�

�
�EgIJ@�X

I@�X
J þ 1

E
gIJ@�X

I@�X
J

� 2Egþ�@�X�
�
: (4)

Then setting the momentum conjugate to X� to a

�-independent constant p� ¼ Egþ�
2��0 ¼ � 1

2��0 by a

�-independent �-reparametrization invariance (not fixed
by the gauge fixing above), we obtain E ¼ � 1

gþ�
, giving

S ¼ 1

4��0
Z

d2�ðð@�XiÞ2 � e2fð�Þð@�XiÞ2

þ ehð�Þ�fð�Þð@�XmÞ2 � ehð�Þþfð�Þð@�XmÞ2Þ; (5)

containing only the physical transverse degrees of freedom
XI � Xi, Xm, of the string. We can now calculate the

Hamiltonian H½X�; p�; XI;�I� [using E¼ 2��0p�
gþ�

in (4)],

and solve for X� using @�X
� ¼ @H

@p�
.

The light cone gauge quantization of strings in these
backgrounds is aided by the fact that the classical string

2From eq. (10) of [1], we have ða; bÞ ¼
ð0; 2Þ; ð44;�2Þ; ð44; 92Þ; ð2068;�92Þ . . . , for D ¼ 26 (bosonic
string), and ða; bÞ ¼ ð0; 2Þ; ð12;�2Þ; ð12; 28Þ; ð180;�28Þ;
ð180; 390Þ; . . . , for D ¼ 10 (superstring).
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modes here can be exactly solved for from the world sheet
equations of motion following from (5): we have the mode
functions

fInð�Þ ¼
ffiffiffiffiffiffiffiffiffi
n�dI

p �
cIn1JðdI=2aþ2Þ

�
n�aþ1

aþ 1

�

þ cIn2YðdI=2aþ2Þ
�
n�aþ1

aþ 1

��
; (6)

where dI ¼ 1, 2�, for I ¼ i, m, respectively, � ¼ aþ1�b
2

and cIn1, cIn2 are constants. Using the basis modes
fInð�Þein�, we can then mode expand the world sheet
coordinate fields XIð�; �Þ. Then by the usual procedure
to simplify the Hamiltonian using the mode expansion, we
obtain

H¼ 1

2�0 ðð _Xi
0Þ2þ�b�að _Xm

0 Þ2Þþ
1

2�0
X
n

jkinj2ððfain;ai�ng

þf~ain; ~ai�ngÞðj _finj2þn2�2ajfinj2Þ�fain; ~aingðð _finÞ2
þn2�2aðfinÞ2Þ�fai�n; ~a

i�ngðð _fi�n Þ2þn2�2aðfi�n Þ2ÞÞ
þ 1

2�0
X
n

jkmn j2ððfamn ;am�ngþf~amn ; ~am�ngÞð�b�aj _fmn j2

þn2�bþajfmn j2Þ�famn ; ~amn gð�b�að _fmn Þ2þn2�bþaðfmn Þ2Þ
�fam�n; ~a

m�ngð�b�að _fm�
n Þ2þn2�bþaðfm�

n Þ2ÞÞ: (7)

We now introduce a cutoff null surface at xþ � � ¼ �c,
akin to a stretched horizon outside a black hole horizon,
and will evaluate the various mode asymptotics on this
constant null-time surface. The mode function asymptotics
show distinct behavior for the low lying (small oscillation
number n & nc � 1

�aþ1
c

) and highly stringy (large n � nc)

modes in the near singularity region. From the mode
functions, we find the asymptotics as � ¼ �c ! 0,

fIn ! �I
n0 þ �I

n��
dI
c ;

n�aþ1
c

ðaþ 1Þ & 1;

fIn � 1

�a=2c

e�in�aþ1
c =lðaþ1Þ; fmn � 1

�b=2c

e�in�aþ1
c =ðaþ1Þ;

n�aþ1
c

ðaþ 1Þ � 1; (8)

where the �I
n0, �

I
n� are constant coefficients arising from

the Bessel function expansions and involving cIn1, c
I
n2. The

highly stringy modes (positive frequency in the second
line, with cIn1 ¼ 1, cIn2 ¼ �i) are essentially ultrashort
wavelength relative to the cutoff length scale �c. Note
that this implies that for �aþ1

c * 1, the n ¼ 1 oscillator
state is already ‘‘highly stringy’’. Note that for any nonzero
if infinitesimal regularization �c, there exist such highly
stringy modes, of sufficiently high n that are oscillatory.
Details on the near singularity string spectrum can be
found in [1]. Later (Sec. IV) we will revisit this being

explicit about the length scales involved, to gain insight
into how oscillator states turn on near the singularity.

III. WAVE FUNCTIONS AND THE SCHRODINGER
PICTURE

Here we will use the Schrodinger equation to describe
wave functions for near singularity string states and gain
insights into free string propagation across the singularity.3

Our analysis of the general Schrodinger wave functional
has parallels with that of the Schrodinger wave functionals
for gauge theory duals of AdS cosmologies with spacelike
singularities in [4].

A.Wave functions, oscillator states and the Schrodinger
equation

From [1] (Sec. III), the string world sheet Hamiltonian in
terms of the oscillator operators for the low-lying and
highly stringy modes is

H< ¼ ��0ððpi0Þ2 þ �a�bðpm0Þ2Þ þ
X
n

�

2ðaþ 1Þn2

	
�

1

jcin0j
ðbiyn�bin� þ n2�2abiyn0b

i
n0

�

þ 1

jcmn0j
ðð2�Þ2�a�bbmy

n� bmn� þ n2�bþabmy
n0 b

m
n0ÞÞ;

H> � �a
X

I;n�nc

1

aþ 1
ðaI�na

I
n þ ~aI�n~a

I
n þ nÞ; (9)

with the bIn-oscillators defined as linear combinations
bIn0 ¼ �I

n0a
I
n � �I�

n0~a
I�n, bIn� ¼ �I

n�a
I
n � �I�

n�~a
I�n, of the

creation-annihilation operators aIn, ~aIn, for the low-lying
modes. This can be seen by analyzing the Hamiltonian (7)
and using the mode asymptotics (8).
We see that the Hamiltonian does not mix the various

operators for different I-directions, and also for different
oscillator levels n. Thus we can write H ¼ P

IHI, where

H<
i ¼ ��0ðpi0Þ2 þ

X
n&nc

�

2ðaþ 1Þjcin0jn2

	 ðbiyn�bin� þ n2�2abiyn0b
i
n0Þ

H<
m ¼ ��0�a�bðpm0Þ2 þ

X
n&nc

�

2ðaþ 1Þjcmn0jn2

	 ðð2�Þ2�a�bbmy
n� bmn� þ n2�bþabmy

n0 b
m
n0Þ;

H>
I � �a

X
I;n�nc

1

aþ 1
ðaI�na

I
n þ ~aI�n~a

I
n þ nÞ: (10)

Each HI decouples into a contribution H<
I from the low-

3Our analysis is essentially from the bosonic parts of the string
world sheet theory. Since the world sheet fermion terms are
quadratic (with covariant derivatives) for these purely gravita-
tional backgrounds, we expect that including them will not
qualitatively change our results here.
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lying modes (n & nc � 1
�aþ1
c

) and another H>
I from the

highly stringy modes (n � nc � 1
�aþ1
c

).

In this free string limit, the general state j�i then
factorizes into a product of states

Q
I;<;>j�<

I ij�>
I i, de-

coupled both in the various I-directions as well as between
the low-lying and highly stringy modes. The Schrodinger
equation i @

@� j�i ¼ Hj�i for the general state then factor-

izes into a set of equations for each I-direction as

i
@

@�
j�Ii ¼ HIj�Ii (11)

In the near singularity limit � ! 0, we see that these
equations simplify and become (keeping only the leading
terms)

i
@

@�
j�<

i i ¼ H<
i j�<

i i �
�
��0ðpi0Þ2 þ

X
n&nc

�

2ðaþ 1Þjcin0jn2
biyn�bin�

�
j�<

i i;

i
@

@�
j�<

mi ¼ H<
m j�<

mi � �a�b

�
��0ðpm0Þ2 þ

X
n&nc

ð2�Þ2�
2ðaþ 1Þjcmn0jn2

bmy
n� bmn�

�
j�<

mi; b > 0;

� �aþb

� X
n&nc

�

2ðaþ 1Þjcmn0j
bmy
n0 b

m
n0

�
j�<

mi; b < 0;

i
@

@�
j�>

I i ¼ H<
I j�<

I i � �a
� X
I;n�nc

1

aþ 1
ðaI�na

I
n þ ~aI�n~a

I
n þ nÞ

�
j�>

I i: (12)

These equations can be recast as Schrodinger equations
with time-independent Hamiltonians i@�I

j�Ii ¼ H0
Ij�i

(with @�I
HI ¼ 0) in terms of some time parameter �I

depending on the particular modes in question. For in-
stance, �>

I ¼ R
�ad� ¼ �aþ1

aþ1 for the highly stringy modes
in the last line above. Thus we see that j�<

i i is well defined
across � ! 0 as long this time-independent Schrodinger
equation has a well-defined time parameter �I. From the
form of these equations, we see that for both b > 0, b < 0,
the states j�<

mi are well-defined as long as �aþ1�b ¼ �2� is
well-defined as � ! 0, i.e. if 2� � 0.

The highly stringy modes are very high frequency and
essentially do not see the time-dependence of the back-
ground at all, giving a free Schrodinger equation (in flat
space effectively) in the last line of (12). Thus the states
j�>

I i are well defined as � ! 0.
Let us now make a comment on a point particle prop-

agating in these backgrounds, with action S ¼R
d� 1

2�ð�ÞgIJ _xI _xJ, where �ð�Þ is the worldline metric.

Fixing lightcone gauge xþ ¼ �, the lightcone momentum

p� ¼ �ð�Þgþ�
2 is conserved. This gives the conjugate mo-

menta pI ¼ �ð�ÞgII _xI and the Hamiltonian H ¼
1

2�ð�ÞgII p
2
I ¼ 1

2p�
ðp2

i þ �a�bp2
mÞ. We can also solve for x�

using @�x
� ¼ @H

@p�
, using �ð�Þ ¼ 2p�

gþ�
. The fact that this

point particle Hamiltonian appears well-defined dovetails
with the fact that the low-lying oscillator modes of the
string have asymptotics similar to the zero mode (point
particle). Note however that the spacetimes in question are
singular only due to diverging tidal forces arising in con-
gruences of null geodesics. This suggests that such a
singularity might reflect in wave propagation of field
modes in the near singularity region, rather than in single
particle propagation. It would be interesting to explore this
further.

B. The Schrodinger wave functional

In [1] (and reviewed earlier), we described a ‘‘nuts-and-
bolts’’ approach to string propagation near these null
Kasner-like singularities, by solving for the world sheet
string mode functions, constructing the Hamiltonian and
then the near singularity string spectrum. This then leads to
the Schrodinger equation description of the string wave
function in the previous subsection. Here wewill describe a
more general Schrodinger wave functional for string states.
This has parallels with the analysis of [4]. We will see how
this dovetails with the earlier analysis.
The world sheet string Hamiltonian following from the

action (5) is

H ¼ 1

4��0
Z

d�½ð2��0Þ2ð�iÞ2 þ �2að@�XiÞ2

þ ð2��0Þ2�a�bð�mÞ2 þ �aþbð@�XmÞ2�: (13)

As we will elaborate on in Sec. IV (incorporating length

scales in this system), the range of
R
d� is

R2�jp�j�0
0 d�,

involving the light cone momentum p�. This Hamiltonian
is the physical Hamiltonian H ¼ �pþ satisfying the
physical state condition m2 ¼ �2gþ�pþp� � gIIðpI0Þ2.
Let us denote by�½XIð�Þ; �� the wave functional for string
fields XIð�Þ � Xið�Þ, Xmð�Þ. Then the Schrodinger equa-
tion for the wave functional and the functional momentum
operator is

i@��½XI; �� ¼ H½XI; ���½XI; ��;

�I½�� ¼ �i
	

	XI½�� :
(14)

In light cone gauge xþ ¼ �, this is essentially the
Schrodinger equation for the evolution in spacetime
i @
@xþ � of the string wavefunctional. Since spatial trans-
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lations are symmetries on the world sheet, spatial momenta
are conserved. Now we see that the Hamiltonian is simply
the sum H ¼ P

IHI½XI� of decoupled contributions from
each of the string coordinate fields XI. Therefore in the free
string limit, it is consistent to assume that the string wave
functional also factorizes into decoupled pieces as

�½XI� ¼ Y
I

�I½XI� ¼ Y
i;m

�i½Xi��m½Xm�: (15)

Then the Schrodinger equation becomes

X
I

i@��I

�I

¼
P
I
HI½XI��
�

¼ X
I

HI�I

�I

: (16)

Thus it is consistent to assume that this equation is sepa-
rable into decoupled equations for each string coordinate
field as

i@��I½XI; �� ¼ HI½XI��I½XI; ��: (17)

For the Xi, this becomes (since a > 0)

i@��i½Xi; �� ¼
Z d�

4��0 ½ð2��0Þ2ð�iÞ2

þ �2að@�XiÞ2��i½Xi; �� !�!0

� ��0 Z d�
	2

	Xi½��2 �
i½Xi; ��; (18)

This is the Schrodinger equation for free propagation in a
time-independent background, as in flat space: thus we
conclude that free string propagation in the xi-directions
is nonsingular.

For the Xm, the Schrodinger equation becomes

i@��m½Xm; �� ¼ 1

4��0
Z

d�

�
�ð2��0Þ2�a�b 	2

	Xm½��2

þ �aþbð@�XmÞ2
�
�m½Xm; ��: (19)

This has different behavior depending on the Kasner ex-
ponents a, b. For b > 0, the kinetic term dominates as � !
0 and we have

i@��m½Xm; �� ¼ ���0�a�b
Z

d�
	2

	Xm½��2 �
m½Xm; ��;

(20)

which can be recast as the free Schrodinger equation

i@��m½Xm; �� ¼ ���0 Z d�
	2

	Xm½��2 �
m½Xm; ��;

� ¼
Z

d��a�b ¼ �2�

2�
: (21)

This is well defined for 2� ¼ aþ 1� b � 0.
Alternatively, we can solve for the time dependence of
(20) to obtain

�½Xm; �� ¼ ei��
0ð�2�=2�Þ

R
d�ð	2=	Xm½��2Þ�½Xm�: (22)

The phase in the functional operator is well-defined if
2� � 0: else we obtain a ‘‘wildly’’ oscillating phase as
� ! 0.
For b < 0, the potential term dominates and the

Schrodinger equation becomes

i@��m½Xm;��¼ �aþb

4��0
Z
d�ð@�XmÞ2�m½Xm;��; ½b<0�;

(23)

) i@��m½Xm; �� ¼ 1

4��0
Z

d�ð@�XmÞ2�m½Xm; ��;

� ¼ �aþbþ1

aþ bþ 1
¼ �2�

2�
; (24)

which is again well defined if 2� ¼ aþ 1� jbj � 0.
Alternatively, we can solve for the time-dependent

phase of the wave function as �½Xm; �� �
e�ið�2�=8���0Þ

R
d�ð@�XmÞ2�½Xm�, with a well-defined phase

if 2� � 0.
Now to see the highly stringy modes, we write the

Hamiltonian (13) as

H>½XI� ¼ �a

4��0
Z

d�

�ð2��0Þ2ð�IÞ2
gII

þ gIIð@�XIÞ2
�

¼ �a

4��0
Z

d�ðaI�aIy� þ aIy� aI�Þ; (25)

in terms of the instantaneous creation-annihilation opera-

tors aI� ¼ 1ffiffi
2

p ð ffiffiffiffiffiffi
gII

p ð@�XIÞ þ ið2��0Þ�Iffiffiffiffiffi
gII

p Þ. This rewriting of

the Hamiltonian above is only valid for modes that are
sufficiently high frequency that the background time de-
pendence appears frozen to them: indeed apart from the �a

prefactor, this is essentially the flat space string
Hamiltonian as it should be for such modes. Recasting in
terms of mode expansions, we see that the Hamiltonian
above is essentially the same as that for the highly stringy
modes [i.e. H>, last line of (9)]. The corresponding
Schrodinger equation then is

i@��
>½XI; �� ¼ H>½XI��>½XI; ��

) i@�aþ1=ðaþ1Þ�>½XI; �� ¼ H>
flat�

>½XI; ��:
(26)

The form of Eqs. (18), (20), (23), and (26) is similar to
(12).
Thus the general Schrodinger picture wave functional

�½XIð�Þ� description recovers the earlier ‘‘nuts-and-bolts’’
description and is consistent with various detailed aspects
of the spectrum and wave functions described in [1] and in
the previous subsection. This suggests that string propaga-
tion is well-defined across null singularities with 2� ¼ aþ
1� b � 0. These are in fact the singularities where the
classical near-singularity string mode functions do not
diverge [1].
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C. Other variables and the Schrodinger
wave functional

Here we compare the above with the corresponding
description in other variables that arise if we use other
spacetime coordinates.

In terms of the affine parameter � ¼ ðxþÞaþ1

aþ1 , we can

write these spacetimes as

ds2 ¼ �2d�dx� þ �AI ðdxIÞ2; AI ¼ aI
aþ 1

: (27)

Now gþ� ¼ �1 and fixing light cone gauge � ¼ �, the
string world sheet Hamiltonian becomes

H ¼ 1

4��0
Z

d�

�
ð2��0Þ2 ð�

IÞ2
gII

þ gIIð@�XIÞ2
�

¼ 1

4��0
Z

d�

�
ð2��0Þ2 ð�

IÞ2
�AI

þ �AI ð@�XIÞ2
�
; (28)

Now consider AI > 0. Then as � ! 0, the kinetic terms
dominate and the Schrodinger equation becomes

i@��½XI; �� ¼ ���0��AI

Z
d�

	2

	XI2
�½XI; �� (29)

giving for the time-dependence

�½XI; �� � e�i��0ð�1�AI =1�AIÞ
R

d�ð	2=	XI2Þ�½XI�: (30)

The phase in the functional operator is well-defined if AI <
1. Alternatively, we can recast (29) as a free Schrodinger
equation in terms of the time parameter �1�AI which is
well-defined if AI < 1.

For spacetimes with AI < 0, the potential terms domi-
nate and we have

i@��½XI; �� ¼ ��jAI j

4��0
Z

d�ð@�XIÞ2�½XI; ��; (31)

giving for the time-dependence

�½XI; �� � e�iðð�1�jAI jÞ=ð4��0ð1�jAI jÞÞÞ
R

d�ð@�XIÞ2�½XI�; (32)

which is well defined for jAIj< 1.
The condition jAIj< 1 is equivalent to 2� � 0 (e.g.

b
aþ1 
 1) stated earlier. These spacetimes are in a sense

the analogs of the cases p < 1 with a well-defined wave
functional phase arising in the gauge theories dual to AdS
cosmologies with spacelike singularities [4]. There is no
manifest time-dependent divergence in the Hamiltonian
here, unlike the dilaton prefactor there.

Now we discuss Brinkman coordinates. From [1], we

know that the coordinate transformation xI ¼ ðxþÞ�aI=2yI,
where aI � a, b, recasts the spacetimes (2) in manifest
plane-wave form (this is also valid for singularities with
multiple Kasner exponents)

ds2 ¼ �2ðxþÞadxþdy� þ
�X

I

�
a2I
4
� aIðaþ 1Þ

2

�
ðyIÞ2

�

	 ðdxþÞ2
ðxþÞ2 þ ðdyIÞ2: (33)

Here we have redefined y� ¼ x� þ ð
P

I
aIðyIÞ2

4ðxþÞaþ1 Þ. For aI ¼ a,

b distinct, these are in general anisotropic plane-waves
with singularities. After further redefining to the affine

parameter � ¼ ðxþÞaþ1

aþ1 , we obtain the metric

ds2 ¼ �2d�dy� þX
I


IðyIÞ2 d�
2

�2
þ ðdyIÞ2;


I ¼ AI

4
ðAI � 2Þ:

(34)

The string world sheet Hamiltonian in light cone gauge
� ¼ � is

H ¼ 1

4��0
Z

d�

�
ð2��0Þ2ð�I

yÞ2 þ ð@�yIÞ2

�X
I


I

�2
ðyIÞ2

�
: (35)

We see that the Hamiltonian in these variables yI contains a
mass-term which diverges as � ! 0. The wave functional
then acquires a wildly oscillating phase as � ! 0

�½yI; �� � e
�ði=�ÞP

I


IðyIÞ2
�½yI�: (36)

This renders a well-defined Schrodinger wave functional
interpretation near the singularity difficult in these
Brinkman coordinates.
In the Rosen-like coordinates with the variables XI, as

we have seen, there is no such divergent mass-term and the
Schrodinger wave functional shows smooth behavior
across the singularity for spacetimes with jAIj< 1. In
some sense, this is akin to the difference between the X
and ~X dual gauge theory variables discussed in [4]. Of
course physical observables defined appropriately presum-
ably are well-defined independent of the choice of varia-
bles, although they might be more transparent in some
variables.

IV. NULL SINGULARITIES, STRINGS, AND
LENGTH SCALES

We now describe some relevant length scales that arise
in string propagation in the vicinity of null cosmological
singularities, essentially drawing various results from [1]
but being explicit about length scales. Our goal is to gain
insights into how string oscillator states get excited in the
near singularity region. In the next section, we will study
regulated versions of the singularity which will render
further support to this picture.
The no-scale nature of these spacetimes, i.e. requiring no

explicit length scale, is manifest in the plane-wave
(Brinkman) form (33) and (34). In the Rosen coordinates
(2), where the null cosmology interpretation is manifest,
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the dimensions of various coordinates are nontrivial, as
they should be to maintain the no-scale property. In par-

ticular, the affine parameter � ¼ ðxþÞaþ1

aþ1 is of dimension

length (L), so that dimxþ � L1=ðaþ1Þ. This implies that

dimxi � L1�a=ð2ðaþ1ÞÞ and dimxm � L1�b=ð2ðaþ1ÞÞ. The
length scale characterizing the near singularity region is
set by the tidal forces, or the acceleration: this gives the
scale of curvature as ai � Mc ¼ 1

ðxþÞ2aþ2 of dimension 1
L2 .

The light cone gauge condition fixes dim�aþ1 ¼
dim� ¼ L. We now introduce the coordinate length l of
the string, so that

R
d� � R

2�l
0 d�. From the world sheet

Lagrangian, we then see that the momentum conjugate to
X� is p� ¼ � l

2��0 , so that the coordinate length l is

related to the light cone momentum of the string as

l ¼ 2�jp�j�0 � 2�p��0: (37)

We see that p� 
 0 and will denote jp�j by p� for
convenience in what follows (note that pþ ¼ �gþ�p�
is positive but time-dependent). Our conventions agree
with those of [29] for flat space. The corresponding
Hamiltonian,�pþ, reexpressing the momenta�I in terms
of @�X

I, is

H ¼ 1

4��0
Z

d�½ð@�XiÞ2 þ e2fð�Þð@�XiÞ2

þ ehð�Þ�fð�Þð@�XmÞ2 þ ehð�Þþfð�Þð@�XmÞ2� (38)

then shows that the dimensions of each term are consistent

with dimXi ¼ L1�a=ð2ðaþ1Þ, dimXm ¼ L1�b=ð2ðaþ1Þ. The

Hamiltonian then has dimH ¼ dim1
� ¼ L�1=ðaþ1Þ.

The mode function asymptotics for the low-lying and
highly stringy modes in the near singularity region on a
cutoff null surface xþ ¼ � ¼ �c are

fin ! �i
n0 þ �i

n�

�c

l1=ðaþ1Þ ; fmn ! �m
n0 þ �m

n�

�2�c

l2�=ðaþ1Þ ;

n�aþ1
c

lðaþ 1Þ � 1; fin � la=ð2ðaþ1ÞÞ

�a=2c

e�in�aþ1
c =lðaþ1Þ;

fmn � lb=ð2ðaþ1ÞÞ

�b=2c

e�in�aþ1
c =lðaþ1Þ;

n�aþ1
c

lðaþ 1Þ � 1; (39)

where the �I
n0, �

I
n� are constant coefficients arising from

the Bessel function expansions (and in the second line, we
have chosen positive frequency modes, cIn1 ¼ 1, cIn2 ¼�i). A mode is highly stringy on this cutoff surface if

n � l

�aþ1
c

� p��0

�aþ1
c

; (40)

the characteristic scale being a combination of the light
cone momentum and the string scale. Thus this implies that
for �aþ1

c * p��0, the n ¼ 1 oscillator state is already
‘‘highly stringy.’’

The masses of the highly stringy states is m2 � 1
�0 	

ðaiyn ain þ . . .Þ. Thus a single oscillator excitation has mass

m2 ¼ n
�0 . Comparing with the typical curvature scale (set

by the tidal forces), we find

m2

Mc

� m2

ai
� n

�0ð 1
�2aþ2
c

Þ : (41)

Thus oscillator states satisfying

p��0

�aþ1
c

� n � �0

�2aþ2
c

(42)

are light relative to the typical energy scales in the near
singularity region. The first inequality is from our defini-
tion of highly stringy modes [second line of (39)]. This also
implicitly requires that p��aþ1

c � 1, as � ! 0. These are
in a sense the ‘‘instantaneous’’ masses of string states on
the surface � ¼ �c. This picture suggests that the typical
tidal forces in the near singularity region are sufficiently
high that they excite several highly stringy states. However
for a given cutoff surface � ¼ �c away from the singularity,

only oscillators with n & �0
�2aþ2
c

are light. As �c ! 0, this

upper cutoff on the oscillator number also increases. Thus
as we approach the singularity, all oscillator states become
light and get excited.
In what follows, we will study certain regulated versions

of these singularities and string propagation in them, which
vindicates the picture above.

V. REGULATING THE SINGULARITY

We now describe some regulated versions of such null
singularities. These will in fact require an explicit length
scale at which the singularity is regulated, so that they are
not ‘‘no-scale’’ anymore. Some other regularized versions
of plane-wave singularities have been discussed in e.g. [25]
(see also [9,30] for interesting related discussions in other
kinds of null singularities).
We see that some natural analytic regulators appear to

violate some energy conditions so that they are not allowed
regularizations. For instance, consider modifying (2) with
a metric ansatz of the form (1) where the 4D scale factor is

now ef ¼ La½ðxþL Þ2 þ �2�a=2. Thus the scale factor departs
from the earlier one at a length scale given by L (of dim�),
within which the spacetime is not singular. � is a small
regulating parameter. This gives the Ricci curvature for the
4D part of the spacetime as

ef ¼ La

��
xþ

L

�
2 þ �2

�
a=2 ) Rð4Þ

þþ

¼ 1

2
ðf0Þ2 � f00 !xþ!0 � a

ðL�Þ2 < 0: (43)

Since this is essentially the 4D local energy density Tþþ,
such a regulator violates energy positivity in the regulated
region. Similar observations also hold for an analytic regu-

lator of the form ef ¼ LaððxþL Þa þ �2Þ.
In terms of the D-dim system, we find no solution to

RðDÞ
þþ ¼ 0 whose 4D scale factor ef is of the above form:
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the additional terms in RðDÞ
þþ in the regulated region (xþ �

L�) are of the form �ð2aþðD�4ÞbÞ
ðL�Þ2 , which is negative

definite.4

This kind of a regulator can be thought of as a universal

near singularity xþ ! 0 limit of ef ¼ La½1� ð1�
�Þe�ðxþ=LÞÞ2�a=2 � La½�þ ð1� �ÞðxþL Þ2�a=2, or other regula-
tors, and so such an energy condition violation is a fairly
basic problem of low energy regulators of the singularity.
A similar feature also occurs in the AdS dilatonic null
cosmologies discussed in [2].

An alternative regularization, although not analytic, is

ef ¼ La

�jxþj
L

þ �

�
a
; eh ¼ Lb

�jxþj
L

þ �

�
b
: (44)

This does not have the problem above: we find

Rð4Þ
þþ ¼ aðaþ 2Þ

2ðjxþj þ L�Þ2 ;

RðDÞ
þþ ¼ 1

2
ðf0Þ2 � f00 þD� 4

4
ð�2h00 � ðh0Þ2 þ 2f0h0Þ

¼ a2 þ 2aþ D�4
2 ð�b2 þ 2bþ 2abÞ

ðjxþj þ L�Þ2 : (45)

Thus this regulated system is automatically a solution to

RðDÞ
þþ ¼ 0 since the expression in the numerator vanishes

for the original singular solution. The Riemann curvature
components and the tidal forces, given by the geodesic
deviation, are

Rþiþi ¼ aðaþ 2Þ
4

ðjxþj þ L�Þa�2;

Rþmþm ¼ bð2aþ 2� bÞ
4

ðjxþj þ L�Þb�2;

ai; am � 1

L2aþ2ðjxþjL þ �Þ2aþ2
;

(46)

so that in the regulated region jxþj � L�, the curvature
scale is 1

ðL�Þaþ1 , large but finite, and so are the tidal forces.

Null geodesics propagating solely along xþ (at constant
x�, xi, xm) with cross section along the xi or xm directions
have an affine parameter

� ¼ const
Z

dxþðjxþj þ L�Þa ¼ const
ðjxþj þ L�Þaþ1

aþ 1
:

(47)

It is worth mentioning that although the regulated space-
time appears nonanalytic, the geodesics, affine parameter,
and curvature are continuous in the regulated region as we
cross xþ ¼ 0.

This regulated spacetime can also be recast as a plane
waveEQ-TARGET;temp:intralink-;d48;316;723

ds2 ¼ �2ðjxþj þ �Þadxþdy� þ
�X

I

�
a2I
4
� aIðaþ 1Þ

2

�

	 ðyIÞ2
� ðdxþÞ2
ðjxþj þ �Þ2 þ ðdyIÞ2; (48)

whose singularity is now regulated.
There is of course nothing sacrosanct in such a regulari-

zation of the singularity. Our purpose here is to simply use
the regularization (44) as a crutch to gain insights into
string oscillator states turning on. It would be interesting
to explore these further with perhaps an analytic regulator,
possibly with other fields (e.g. the dilaton) turned on.
In the next subsection, we will find that the string

spectrum can be solved exactly in these regulated back-
grounds too.

A. Strings near the regulated singularity

We are primarily interested in the approach from early
times to the almost-singular region to see how string
oscillator states turn on, so the nonanalyticity in the metric
across xþ ¼ 0 will not concern us. Let us therefore study
the spacetime (1) with the scale factors (44) for � ¼ xþ <
0. For simplicity, we will abuse notation and use � ¼ xþ
rather than �� ¼ �xþ. Also in what follows, we will
denote p� to mean jp�j as before, for convenience.
The world sheet action is given in (4), which we would

like to quantize using lightcone gauge, as in [1]. Keeping
the string length factors explicit, we set the momentum

conjugate to X� to a �-independent constant p� ¼ Egþ�l
2��0 ¼

� l
2��0 by a �-independent reparametrization invariance,

thus obtaining E ¼ � 1
gþ�

. This then gives the reduced

action in the second line of (4), containing only the physi-
cal transverse oscillation modes XI � Xi, Xm, of the string.
The string world sheet equations of motion in the regu-

lated near singularity region are

@2�X
i � L2a

�
�

L
þ �

�
2a
@2�X

i ¼ 0;

@2�X
m þ b� a

Lð�L þ �Þ@�X
m � L2a

�
�

L
þ �

�
2a
@2�X

m ¼ 0: (49)

Defining a new (dimensionless) variable �0 ¼ �
L þ �, these

can be recast as the equations of motion in the singular
spacetime [1] in terms of the variable �0. Then we can read
off the solutions for the mode functions (with � ¼ aþ1�b

2 ),

fInð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nLdI

ldI=ðaþ1Þ

�
�

L
þ �

�
dI

s �
cIn1JðdI=2aþ2Þ

	
�
nLaþ1ð�L þ �Þaþ1

lðaþ 1Þ
�

þ cIn2YðdI=2aþ2Þ
�
nLaþ1ð�L þ �Þaþ1

lðaþ 1Þ
��

;

(50)4From eq. (9) of [1], we have 2aþ ðD� 4Þb ¼ �2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðD� 4ÞðD� 2Þb2p

. Requiring a > 0 means we take the

positive radical. It can then be shown that 2aþ ðD� 4Þb > 0 if

a, b � 0.
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where we have introduced factors of l to make fIn dimen-
sionless. It is straightforward to see that removing the
regulator as � ! 0 reduces these mode functions to the
ones in (6): in particular, the scale L disappears as the no-
scale singular spacetime is recovered for � ! 0.

The mode expansion for the string world sheet fields is

XIð�; �Þ ¼ XI
0ð�Þ þ

X1
n¼1

ðkInfInð�ÞðaInein�=l þ ~aIne
�in�=lÞ

þ kI�n fI�n ð�ÞðaI�ne
�in�=l þ ~aI�ne

in�=lÞÞ: (51)

Working out the momenta and commutation relations, it

can be shown that kin ¼ i
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0l�1þ1=ðaþ1Þ
2jci

n0
jðaþ1Þ

r
, kmn ¼ i

n	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0l�1þ2�=ðaþ1Þ
2jcm

n0
jðaþ1Þ

r
. The �0, l dependences can be also fixed by

dimensional analysis. The oscillator algebras are
½aIn; aJ�m� ¼ ½~aIn; ~aJ�m� ¼ n	IJ	nm. The Hamiltonian (38)
in this case simplifies to

H ¼ l

2�0 ðð _Xi
0Þ2 þ �b�að _Xm

0 Þ2Þ þ
l

2�0
X
n

jkinj2
�
ðfain; ai�ng þ f~ain; ~ai�ngÞ

�
j _finj2 þ n2L2a

l2

�j�j
L

þ �

�
2ajfinj2

�

� fain; ~aing
�
ð _finÞ2 þ n2L2a

l2

�j�j
L

þ �

�
2aðfinÞ2

�
� fai�n; ~a

i�ng
�
ð _fi�n Þ2 þ n2L2a

l2

�j�j
L

þ �

�
2aðfi�n Þ2

��

þ l

2�0
X
n

jkmn j2
�
ðfamn ; am�ng þ f~amn ; ~am�ngÞ

�
�b�aj _fmn j2 þ n2Lbþa

l2

�j�j
L

þ �

�
bþajfmn j2

�
� famn ; ~amn g

�
�b�að _fmn Þ2

þ n2Lbþa

l2

�j�j
L

þ �

�
bþaðfmn Þ2

�
� fam�n; ~a

m�ng
�
�b�að _fm�

n Þ2 þ n2Lbþa

l2

�j�j
L

þ �

�
bþaðfm�

n Þ2
��

: (52)

We can now study the asymptotics of these mode func-
tions and then of stringy states in the regulated (but highly
curved) near singularity region. In particular, focussing on
the regulated region � � L, the mode functions above
become

fInð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðL�ÞdI
ldI=ðaþ1Þ

s �
cIn1JðdI=2aþ2Þ

�
nðL�Þaþ1

lðaþ 1Þ
�

þ cIn2YðdI=2aþ2Þ
�
nðL�Þaþ1

lðaþ 1Þ
��

; (53)

Now the mode asymptotics change depending on the cutoff
length scale Lc ¼ ðL�Þaþ1.

The low-lying string modes (small oscillation number
n � l

Lc
) have mode function asymptotics as � ! 0

fin ! �i
n0 þ �i

n�

�þ L�

l1=ðaþ1Þ ;

fmn ! �m
n0 þ �m

n�

ð�þ L�Þ2�
l2�=ðaþ1Þ ;

(54)

so that5 (for 2� � 0)

fin ! �i
n0;

_fin ! �i
n�

l1=ðaþ1Þ ; fmn ! �m
n0;

_fmn ! �m
n�

l2�=ðaþ1Þ ð2�Þð�þ L�Þ2��1:

(55)

Then the Hamiltonian (52) for these low-lying modes
simplifies and can be rewritten as

H< ¼ ��0

l
ððpi0Þ2 þ �a�bðpm0Þ2Þ þ

X
n

�

2ðaþ 1Þn2

	
�

1

jcin0j
�

1

l1=ðaþ1Þ b
iy
n�bin� þ n2

ð�þ L�Þ2a
l2�1=ðaþ1Þ biyn0b

i
n0

�

þ 1

jcmn0j
�
ð2�Þ2 ð�þ L�Þa�b

l2�=ðaþ1Þ bmy
n� bmn�

þ n2
ð�þ L�Þbþa

lð2�þ2bÞ=ðaþ1Þ b
my
n0 b

m
n0

��
; (56)

where we have defined new oscillator modes (and their
Hermitian conjugates)

bIn0 ¼ �I
n0a

I
n � �I�

n0~a
I�n; bIn� ¼ �I

n�a
I
n � �I�

n�~a
I�n;

I ¼ i; m: (57)

The algebra and other properties of these bI operators are
as discussed in [1]. The string oscillator masses m2 ¼
�2gþ�pþp� � gIIðpI0Þ2 recalling that p� ¼ � l

2��0 ,

�pþ ¼ H, then work out in the regulated region to (for
2� � 0)

5The constant coefficients �I, from the Bessel expansions, are

�i
n� ¼

ffiffiffi
n

p �
n

2aþ 2

�ð1=2aþ2Þ cin1 þ cin2 cot
�

2aþ2

�ð2aþ3
2aþ2Þ

;

�i
n0 ¼ �cin2

ffiffiffi
n

p �
n

2aþ 2

��ð1=2aþ2Þ cosec �
2aþ2

�ð2aþ1
2aþ2Þ

;

�m
n� ¼

ffiffiffi
n

p �
n

2aþ 2

�ð�=aþ1Þ cmn1 þ cmn2 cot
��
aþ1

�ðaþ�þ1
aþ1 Þ ;

�m
n0 ¼ �cmn2

ffiffiffi
n

p �
n

2aþ 2

��ð�=aþ1Þ cosec ��
aþ1

�ðaþ1��
aþ1 Þ :
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m2ð�Þ ! 1

2�0ðaþ 1Þ
X

i;m;n& l
Lc

�
la=ðaþ1Þ

ðL�Þa
Ni

n�

n2jcin0j

þ ðL�Þa
la=ðaþ1Þ

Ni
n0

jcin0j
þ ð2�Þ2lb=ðaþ1Þ

ðL�Þb
Nm

n�

n2jcmn0j

þ ðL�Þb
lb=ðaþ1Þ

Nm
n0

jcmn0j
�
; (58)

defining

Ni
n� ¼ biyn�bin�; Ni

n0 ¼ biyn0b
i
n0;

Nm
n� ¼ bmy

n� bmn�; Nm
n0 ¼ bmy

n0 b
m
n0:

(59)

The time-dependence in the masses shows that single
excitations are light relative to the local curvature scale
in the regulated region if (from the Ni

n� prefactor)

la=ðaþ1Þ=ð�0ðL�ÞaÞ
1=ðL�Þ2aþ2

� 1 ) ðL�Þaþ2 � �01=ðaþ1Þ

pa=ðaþ1Þ�
: (60)

To obtain some intuition for this, note that for a� 0 (al-

most flat space), we have L2
c ¼ ðL�Þ2 � �0

pa�
� �0, i.e. the

regulating length scale Lc is substringy. Similar expres-
sions can be obtained from the NI

n0;� prefactors.

For the case 2� < 0, the mode function asymptotics are
different: in particular, the mode functions fInð�Þ grow
large but are still finite due to the regulator. Then we can
again calculate the Hamiltonian and the oscillator masses
for this case.

Now we turn to the other asymptotic region of the
modes: the modes are oscillatory for

n � l

Lc

¼ p��0

Lc

: (61)

The mode function asymptotics for (these oscillatory)
highly stringy modes in the regulated region are (for posi-
tive frequency modes with c1 ¼ 1, c2 ¼ �i)

fin � la=ð2ðaþ1ÞÞ

ðL�Þa=2 e�inðL�Þaþ1=lðaþ1Þ;

fmn � lb=ð2ðaþ1ÞÞ

ðL�Þb=2 e�inðL�Þaþ1=lðaþ1Þ;

(62)

and their derivatives are

_f i
n �

�
� inðL�Þa

l
� a

2L�

�
e�inðL�Þaþ1=ðaþ1Þ

ðL�Þa=2 ;

_fmn �
�
� inðL�Þa

l
� b

2L�

�
e�inðL�Þaþ1=ðaþ1Þ

ðL�Þb=2 :

(63)

The Hamiltonian (7) for highly stringy modes then
simplifies to

H> � ðL�Þa
l

ðaI�na
I
n þ ~aI�n~a

I
n þ nÞ; (64)

where the constant prefactor arises as
l

2�0 l�1þð1=aþ1Þ�0 ðL�Þa
l2

lða=aþ1Þ. Thus the (instantaneous)

masses of the highly stringy states in the regulated region
are

m2 ��gþ�Hp� � 1

ðL�Þa
ðL�Þa
l

l

�0 ðNI
n þ ~NI

n þ nÞ

� 1

�0 ðNI
n þ ~NI

n þ nÞ: (65)

Relative to the local curvature scale given by 1
L2
c
, these

modes are light for oscillator states satisfying

p��0

Lc

� n � �0

L2
c

: (66)

This implicitly requires p� � 1
Lc
. The number of such

oscillator levels from is �0
L2
c
ð1� p�LcÞ. Thus for any finite

p� � 1
Lc
, only a finite set of the highly stringy oscillator

states are excited in the regulated near singularity region,
as expected. In the singular limit Lc ! 0, all oscillator
states are light and the number of excited oscillator states
diverges. Conversely in the sector p� � 1

Lc
, the window of

light highly stringy states pinches off.
As the light cone momentum p� increases, the lower

cutoff in (66) increases and the oscillator states that are
highly stringy must have higher n. Conversely, in the p� ¼
0 zero mode sector, essentially all oscillator states are
highly stringy.
With the singularity regulated at the string scale Lc � ls,

we see that no string oscillators are turned on in the
regulated region, i.e. n� 1 is already not a light state, from
(66). If instead the regulator is the Planck length Lc � lp,

then the oscillator state of highest level turned on is n�
ðlslpÞ2 � 1

g2=ðD�2Þ
s

, using the naive relation for the Newton

constant GD ¼ lD�2
p ¼ g2sl

D�2
s . This implicitly requires

p� � Mp. Thus in the weakly coupled (or free) string

limit gs ! 0, we have n � 1 in the regulated region
with a large number of highly stringy oscillator states
excited.
In a reduced quantummechanics of the oscillator modes,

the wave function of the nth highly stringy oscillator state
again has an oscillating phase (using sec. 3.3 of [1]) but one
that is nondivergent now, due to the regulator. The overall
damping of the real Gaussian part is also finite. We recall
from [1] that the wave functions for the low-lying oscillator
states are regular even in spacetimes with singularities for
2� � 0. In the regulated spacetime, the wave functions are
also well behaved for the cases 2� < 0.
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VI. DISCUSSION

We have described the Schrodinger picture wave func-
tional for string propagation across null singularities, rec-
onciling this with the description in terms of the
conventional Hamiltonian of oscillator states. The non-
singular behavior of the wave functional suggests that
free string propagation is well defined across null cosmo-
logical singularities satisfying certain relations among
their Kasner exponents (2� � 0). These are in fact the
singularities for which the classical near-singularity string
mode functions are nondivergent. While most of our dis-
cussion has been for two scale factors (or Kasner expo-
nents), it is straightforward to generalize this to multiple
Kasner exponents. In other variables, such as those arising
in Brinkman coordinates, the presence of a wildly oscillat-
ing phase makes such an interpretation of the Schrodinger
wave functional difficult. We then discussed the role of
length scales and also studied string propagation in space-
times of this sort where the singularity has been regulated
at some scale (with a certain regulator). This gives a
slightly clearer picture of how string oscillator modes get
excited near the singularity. In particular for a finite sub-
stringy regulator, there is a finite (but large) number of
string oscillator states excited near the singularity. If the
regularization occurs at the Planck scale, the highest such

oscillator state turned on is of level n� ðlslpÞ2. Thus

although the Schrodinger wave functional suggests well-
defined free string propagation for some of these singular-
ities, it is conceivable that the total production of light
string states is divergent, as already suggested in [6]. An
important related issue involves understanding the back-
reaction on the background of such light string modes.
Also note that our discussion of the Schrodinger wave
functional is essentially at the level of first quantized single
strings. The fact that there is a proliferation of light string
oscillator states suggests that perhaps a second quantized
framework, e.g. string field theory, incorporating string
interactions, might be useful for a more complete under-
standing of string propagation across such singularities. A
simple, if trite, possibility is simply that strings get highly
excited in the near singularity region but pass through
without significant interaction, then smoothly get deex-
cited as we evolve past the singularity towards late times.
It would be interesting to explore these further, and also
understand the apparently ill-defined singularities (with
2� < 0).

We have essentially used the scale factors hmðxþÞ in our
solutions here to simulate the role of the dilaton there in
that the internal hmðxþÞ scale factors shrinking effectively
drive the singularity in the xi-directions, just as the time-
varying dilaton drives the singularity in the AdS/CFT
cosmological context [2–4]. Based on our discussion
here, it would seem that the near singularity region in the
bulk null AdS cosmologies [2], having a sufficiently high
local energy density, is filled with (relatively light) string
oscillator states. Assuming that the bulk string theory has

no qualitatively new features stemming from the world
sheet coupling to the D3-brane 5-form flux, this system
might be qualitatively similar to the present case. It would
then seem that interaction effects between the various
string modes could become non-negligible near the null
singularity in the bulk. In these cases however, the string

(gauge) coupling gsðxþÞ ¼ e�ðxþÞ ¼ g2YMðxþÞ vanishes
near the singularity so that bulk string interactions might
be suppressed, modulo bulk reflections of possible gauge
theory renormalization effects as discussed (for AdS cos-
mologies with spacelike singularities) in [4]. Analogs of
such solutions here with null Kasner-like dilatonic cosmo-
logical singularities satisfy Rþþ ¼ 1

2 ð@þ�Þ2. With e� ¼
gsðxþÞ�, the Kasner exponents a, b, now satisfy a2 þ 2aþ
D�4
2 ð�b2 þ 2bþ 2abÞ ¼ �2

2 , and similarly for multiple

Kasner exponent solutions.
In general, one expects6 that null singularities have no�0

corrections: the lightlike nature forbids any nonzero cova-
riant contraction contributing to a higher derivative correc-
tion to the effective action that might correct the singular
region of the spacetime. As long as string interaction (gs)
effects also give only local covariant corrections to the low
energy effective action, these will also vanish. This might
lead us to imagine that null singularities are perhaps not
resolved at all since possible stringy corrections vanish, i.e.
these are not allowed singularities in string theory. In this
sense, these are quite different from spacelike singularities
where higher derivative corrections (i.e. stringy effects)
yield increasingly important corrections near the singular-
ity. This argument relies on the presence of the null isome-
try: however the low energy null isometry could be invalid
in the near singularity region, e.g. broken by stringy
effects.
From the world sheet analysis above (and in [1]), we see

detailed distinctions between the behavior of string modes
depending on the Kasner exponents leading us to suspect
that such a general no-go argument need not be strictly
true. Most notably, since string oscillator modes are being
excited, in particular, with a set of highly stringy modes
being light, it is conceivable that nonlocal stringy effects
become important near the singularity. The rough intuition
is that a string mode of high oscillation number corre-
sponds to a highly extended (or long and wiggly) string:
such highly extended strings would in general be expected
to intersect and thus interact nontrivially, fitting naturally
within a second quantized framework incorporating inter-
actions. This would be consistent with the idea that the low
energy notion of spacetime does not exist in the vicinity of
the singularity. Thus the possibility of a low energy mecha-
nism for null singularity resolution via higher derivative
corrections to a low energy effective description need not
exist either. Similar features can of course be recalled from
investigations of e.g. flop transitions in Calabi-Yau spaces.

6I thank A. Sen for discussions on this point.
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