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We consider the Casimir-Helmholtz free energy at nonzero temperature T for a circular cylinder and

perfectly conducting wedge closed by a cylindrical arc, either perfectly conducting or isorefractive. The

energy expression at nonzero temperature may be regularized to obtain a finite value, except for a singular

corner term in the case of the wedge which is present also at zero temperature. Assuming the medium in

the interior of the cylinder or wedge be nondispersive with refractive index n, the temperature dependence

enters only through the nondimensional parameter 2�naT, a being the radius of the cylinder or cylindrical

arc. We show explicitly that the known zero-temperature result is regained in the limit aT ! 0 and that

previously derived high-temperature asymptotics for the cylindrical shell are reproduced exactly.
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I. INTRODUCTION

The Casimir effect [1] is the name given to energies and
forces due to field fluctuations in the presence of bounda-
ries. Once a theoretical curiosity, the effect has gained
enormous and still increasing attention since its first quan-
titative measurement a good decade ago [2]. Reviews of
recent progress include Refs. [3–5].

The first geometry, considered in Casimir’s classic paper
[1] was that of two perfectly conducting plates, generalized
to arbitrary dispersive materials by Lifshitz [6]. The force
between parallel plates of any purely dielectric material is
attractive, and it was therefore surprising when it was
shown by Boyer that the Casimir stress on a perfectly
conducting spherical shell is repulsive [7].

While it was clear from Boyer’s result that the Casimir
effect has a strong geometry dependence, results for new
geometries were slow in coming for a long time, and it was
only in 1981 that DeRaad and Milton calculated the
Casimir energy for a circularly cylindrical shell [8].
Since then a number of analytical efforts have added to
the knowledge of the Casimir effect in cylindrical cavities,
both perfectly conducting [9–12] and (magneto)dielectric
[13–18]. Most treatments of the cylindrical geometry have
dealt with the zero-temperature situation, and only a few
calculations have concerned finite temperature [19–21],
and in these references only the high-temperature asymp-
totics were derived. No analytical expression valid for all
temperatures exists for the cylindrical geometry to our
knowledge.

A related geometry is the wedge. First considered with
respect to the Casimir effect in the 1970s [22,23], it has
been the subject of several treatments later [24–28]. The
geometry is inviting in that it is analytically solvable and
contains the geometries of parallel plates and a single semi-
infinite plate as limiting cases. The geometry of a wedge
intercut by a cylindrical shell was considered by
Nesterenko and coworkers [29,30] and energy densities
in the same geometry were calculated by Saharian and
coworkers [31–33]. We are not aware of any previous
efforts to tackle the Casimir energy problem for a wedge
at nonzero temperature.
We recently revisited the latter geometry to calculate the

energy, at zero temperature, of a perfectly conducting
wedge closed by a cylindrical boundary, either perfectly
conducting or magnetodielectric [34]. We showed how that
energy could be written on the form (subscript 0 indicates
zero-temperature)

E 0 ¼ ~E0ðpÞ þ Ê; (1.1)

where ~E0 is a finite, regularizable energy closely analogous

to that found for a cylinder [8,10], whereas Ê is a divergent
term associated with the corners where the arc meets the
wedge.
Here and in the following we will make frequent use of

the symbol

p ¼ �=�; (1.2)

where the physical range is p 2 ½12 ;1Þ, but which we will

in general allow to take any real positive value. Throughout
our calculations we set c ¼ @ ¼ kB ¼ 1. It was shown [34]

that Ê could be rendered finite provided the arc become
transparent at high frequencies.
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The calculations in [34] were extended to the first con-
sideration of a wedge which is not perfectly conducting but
instead assumed to be isorefractive (diaphanous), i.e., spa-

tially uniform speed of light [35]. In that case the term Ê is
not present at all. The diaphanous wedge is analogous to
the system of an annular region between two perfectly
conducting cylinders, intercut by two semitransparent, ra-
dially directed interfaces [36,37]. Notably, while the en-
ergy expressions for a perfectly conducting wedge or
circularly cylindrical shell require some regularization
scheme in order to give numerical meaning, the energy
expression obtained for the diaphanous wedge is immedi-
ately finite. A review of the Casimir wedge problem and an
early exposition of the issue we elaborate herein are found
in Ref. [38].

Naturally, for the geometry of a perfectly conducting

cylinder there is no divergent term Ê since there are no
sharp corners. It turns out (c.f. the discussion in Section III
of Ref. [34]) that the Casimir energy of a perfectly con-
ducting cylindrical shell is

~E cyl ¼ 2~Eðp ¼ 1Þ: (1.3)

Thus, all of the calculations in the following sections,
which are carried out for general p, are valid also for a
cylindrical shell by letting p ! 1 and multiplying by an
overall factor of 2.

In the following we derive an analytical expression for
the Casimir energy of a perfectly conducting wedge (mod-
ulo a singular term as encountered in the past) and a
perfectly conducting cylindrical shell, valid for arbitrary
opening angles and all temperatures. This extends the
calculations for the perfectly conducting wedge presented
in Ref. [34], and simultaneously those for a circularly
cylindrical conducting shell [8,10], to the case of finite
temperature. We show how the energy expression, which
for T > 0 is the Helmholtz free energy, may be regularized
by a scheme of Epstein-zeta functions to obtain a numeri-
cally useful expression. We show explicitly that the ex-
pression thus obtained reduces to the previously derived
zero-temperature limit, and that the two leading terms of
the high-temperature asymptotic expansion, derived by
Bordag, Nesterenko, and Pirozhenko [21], are reproduced
exactly as a special case.

II. CASIMIR-HELMHOLTZ FREE ENERGY OF
WEDGE AND CYLINDER

We take as our starting point the zero-temperature en-
ergy derived in [34] for the geometry of a perfectly con-
ducting wedge of opening angle � closed by a perfectly
conducting cylindrical arc of radius a, shown on the left
side of Fig. 1.

Henceforth we shall focus on the term ~E0, which may be
written [34]

~E 0 ¼
X1
m¼0

0
Em0 (2.1)

with

E m0 ¼ � 1

8�2

Z 1

�1
dk

Z 1

�1
d��

d

d�

� ln½ImpðxÞI0mpðxÞKmpðxÞK0
mpðxÞ�; (2.2)

where we define the shorthand x2 ¼ a2ðk2 þ n2�2Þ where
n is the index of refraction of the medium inside the wedge.
We assume n to be constant with respect to � and uniform
in space. Here ! ¼ i� is the reciprocal of imaginary
(Euclidian) time. By means of partial integration with
respect to � , adding a trivial constant and noting that the
integrand is symmetrical under � ! �� and k ! �k, this
may be written on the familiar form

E m0 ¼ 1

2�2

Z 1

0
dk

Z 1

0
d� ln½1� x2�2

mpðxÞ�; (2.3)

wherein we use the shorthand

��ðxÞ ¼ d

dx
½I�ðxÞK�ðxÞ�: (2.4)

The Helmholtz free energy at T > 0 is obtained from the
‘trace-log’ formula (2.3) by compactifying the Euclidean
time axis as is well known. Technically this amounts to the
transition

Z 1

0
d�fð�Þ ! 2�T

X1
j¼0

0
fð�jÞ; (2.5)

where �j ¼ 2�jT are the Matsubara frequencies.

Changing the integration variable from axial momentum
k to x, the resulting expression for the finite part of the free
energy may be written

~E ¼ T

�a

X1
m¼0

0X1
j¼0

0
em;j; (2.6)

where

FIG. 1 (color online). The geometry considered: (left) a wedge
of opening angle � closed by a cylindrical shell at radius a. The
results are automatically applicable to a cylindrical shell of
radius a (right) when � ¼ � [Eq. (1.3)].
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em;jð�; pÞ ¼
Z 1

j�

dxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2�2

p ln½1� x2�2
mpðxÞ�; (2.7)

and where we have defined the dimensionless temperature

� ¼ 2�naT: (2.8)

Similarly to the case at zero-temperature this simple ex-
pression is in need of regularization in order to give nu-
merical meaning since it is formally divergent.

III. REGULARIZATION OF THE FREE ENERGY
EXPRESSION

We here follow a scheme closely reminiscent of that of
DeRaad and Milton [8], and particularly Milton,
Nesterenko, and Nesterenko [10] (cf. also Appendix A of
Ref. [34]).

As follows from the uniform asymptotic expansion of
modified cylindrical Bessel functions, e.g. Sec. 9.7 of
Ref. [39], the logarithmic factor in the integrand of (2.7)
has the asymptotic behavior

ln½1� x2�2
mp� �� x4

4ðm2p2 þ x2Þ3 ; m; x!1; (3.1a)

ln½1� x2�2
0� �� x4

4ð1þ x2Þ3 ; x!1: (3.1b)

To see how this behavior gives rise to a formal diver-
gence, consider the case of large m for which

em;j �� 1

4

Z 1

j�

dxx5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2�2

p ðm2p2 þ x2Þ3

¼ � 1

4

Z 1

0

dyðy4 þ 2j2�2y2 þ j4�4Þ
ðm2p2 þ j2�2 þ y2Þ3 (3.2a)

¼ � 3�

64’
� �j2�2

32’3
� 3�j4�4

64’5
; (3.2b)

where we substituted y2 ¼ x2 � j2�2 and defined the short-
hand

’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2 þ �2j2

q
: (3.3)

The three terms of (3.2b) correspond to the three terms of
the integrand of (3.2a). All of the terms of (3.2b) clearly
diverge when summed over j and m.

The first step in regularization is to add and subtract the
asymptotic behavior (3.1) in the form (3.2a)

~E ¼ �E þ E1 (3.4)

where we define the energy with the leading asymptotic
term subtracted,

�E ¼ T

�a

X1
m¼0

0X1
j¼0

0
~em;j (3.5a)

~em;j ¼
Z 1

j�

dxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2�2

p

�
�
ln½1� x2�2

mpðxÞ� þ x4

4ðm2p2 þ x2Þ3
�
; (3.5b)

~e0;j ¼
Z 1

j�

dxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2�2

p

�
�
ln½1� x2�2

0ðxÞ� þ
x4

4ð1þ x2Þ3
�
; (3.5c)

and the additional, nonregularized energy

E 1 ¼ � T

4�a

X1
m¼0

0X1
j¼0

0 Z 1

0

dyðy4 þ 2j2�2y2 þ j4�4Þ
ð~’2 þ y2Þ3 :

(3.6)

wherein

~’ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2j2
p

; m ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2 þ �2j2

p
; m � 1

: (3.7)

To regularize E1 we introduce the small quantity s and
write

E1 ¼ � T

4�a
lim
s!0þ

X1
m¼0

0X1
j¼0

0 Z 1

0

dyy�s

ð~’2 þ y2Þ3

� ðy4 þ 2j2�2y2 þ j4�4Þ

� � T

64a
lim
s!0þ

X1
m¼0

0X1
j¼0

0� 3

~’1þs
þ 2j2�2

~’3þs
þ 3j4�4

~’5þs

�
; (3.8)

where as in Eq. (3.2b) we have used the evaluation,

Z 1

0

dyy4�s

ð~’2 þ y2Þ3 ¼
�ð1� sÞð3� sÞ

16~’1þs
sec

�s

2
; (3.9)

which is valid for�1< s < 5, so it may be used for s near
0, near 2, or near 4. We use the relations [@� ¼ @=@�]

@�
1

~’q ¼ � q�j2

~’qþ2
; (3.10a)

@2�
1

~’q ¼ � qj2

~’qþ2
þ qðqþ 2Þ�2j4

~’qþ4
(3.10b)

to write

E 1 ¼ � T

64a
ð3� 3�@� þ �2@2�Þ lim

s!0þ

X1
m¼0

0X1
j¼0

0 1

~’1þs
:

(3.11)

The sum in (3.11) can be regularized by analytical
continuation. We will write it in the following form, using
symmetry properties with respect to m $ �m and j $
�j:
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lim
s!0þ

X1
m¼0

0X1
j¼0

0 1

~’1þs
¼ 1

4
lim
s!0þ

X
m;j2Z

1

~’1þs

¼ 1

4
þ 1

4
Sð�; pÞ þ 1

2
Kð�Þ: (3.12)

Here we have defined

S ð�; pÞ ¼ lim
s!0þ

X
m;j2Z

00 1

’1þs
¼ Sðp; �Þ; (3.13)

wherein the double prime on the summation mark means
that the term m ¼ j ¼ 0 is explicitly excluded, and

K ð�Þ ¼ lim
s!0þ

X1
j¼1

�
1

~’1þs
� 1

’1þs

�
m¼0

¼ X1
j¼1

j�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2�2

p
j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2�2

p : (3.14)

Clearly, Kð�Þ is finite for all � > 0.
The function Sð�; pÞ may be regularized by use of the

Chowla-Selberg formula [see e.g. Eq. (4.33) of Ref. [40]]

X
m;j2Z

00
ðam2 þ bmjþ cj2Þ�q

¼ 2�ð2qÞa�q þ 22q
ffiffiffiffi
�

p
aq�1�ðq� 1

2Þ�ð2q� 1Þ
�ðqÞ�q�ð1=2Þ

þ 2qþð5=2Þ�q

�ðqÞ�ð1=2Þðq�ð1=2ÞÞ ffiffiffi
a

p
X1
l¼1

lq�ð1=2Þ�1�2qðlÞ

� cosðl�b=aÞKq�ð1=2Þð�l
ffiffiffiffi
�

p
=aÞ; (3.15)

where

� ¼ 4ac� b2; (3.16)

�wðlÞ ¼
X
�jl
�w; (3.17)

where � are summed over the divisors of l and it is assumed
that �> 0. K is again the modified Bessel function of the
second kind. The apparent pole as q ! 1

2 now vanishes due

to a cancellation between the first two terms of (3.15), and
we find that letting q ¼ 1

2 þ s
2 and taking the limit s ! 0þ

(here a ¼ p2, b ¼ 0, c ¼ �2)

S ð�; pÞ ¼ 2

p

�
�� ln

4�p

�

�
þ 8

p

X1
l¼1

�0ðlÞK0ð2�l�=pÞ

(3.18)

where � ¼ 0:577216 . . . is Euler’s constant. Now �0ðlÞ is
simply the number of positive divisors of l, �0ð1Þ ¼ 1,
�0ð2Þ ¼ �0ð3Þ ¼ 2, �0ð4Þ ¼ 3 etc. Note that Eq. (3.18) is
valid for all �; although it appears most convenient for
large �, it is, by the symmetry property seen in Eq. (3.13),
equally useful for small �.

We finally write down the final, regularized energy of
the wedge (and, simultaneously, cylinder) at finite T, using
the convention used in Ref. [34]

~Eð�; p; aÞ ¼ 1

8�na2
eð�; pÞ; (3.19)

in terms of

eð�; pÞ ¼ 4�

�

X1
m¼0

0X1
j¼0

0
~em;jð�; pÞ � �

64
ð3� 3�@� þ �2@2�Þ

� ½1þ 2Kð�Þ þ Sð�; pÞ�: (3.20)

with ~em;j;K, and S given in Eqs. (3.5), (3.14), and (3.18),

respectively. The differentiations with respect to � are now
straightforward, should the full expanded expression be
desirable.
In Fig. 2 we plot the three additional terms in the second

line of Eq. (3.20) where we have defined the shorthand

T̂ ¼ ð3� 3�@� þ �2@2�Þ; (3.21a)

ESð�; pÞ ¼ �

64
T̂ Sð�; pÞ;

EKð�; pÞ ¼ �

32
T̂Kð�Þ: (3.21b)

Figure 3 shows a numerical calculation of eð�; p ¼ 3Þ as
a function of � along with its high and low � asymptotes
(see derivations in the following sections). The calculation
was performed by ‘‘brute force’’ by truncating the sums
after a number of terms, and has somewhat limited accu-

10
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−1

−0.5
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1

1.5

2

 

 

Dimensionless temperature τ 

−ln (2π/p) / 4

FIG. 2 (color online). The additional terms of the regularized
energy in Eq. (3.20) which are subtracted from the double sum
there in the case p ¼ 3. Shown also is the sum of the three
additional terms and their low-temperature asymptotic value
from Eq. (4.11).
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racy due to the large number of terms in the j sum in
Eq. (3.20) required for small �, scaling as ��1.

IV. REGAINING THE LIMIT OF ZERO
TEMPERATURE

Comparing Eq. (3.20) with the zero-temperature result
derived in Ref. [34], and previously known for the cylin-
drical shell [8,10], it is not obvious that our expression
simplifies to the zero-temperature result as � ! 0. In this
section we show that upon careful examination the correct
limit is in fact obtained.

Let us write down the zero-temperature result ~E0 for
general p in its regularized form suitable for comparison1

[c.f. Ref. [34], Eq. (4.14)]:

~E0 ¼ 1

2
�E0 þ

X1
m¼1

�Em þ 1

32�na2
lnð2�=pÞ; (4.1a)

�E0 ¼ 1

4�na2

Z 1

0
dxx

�
�
lnð1� x2�2

0Þ þ
x4

4ð1þ x2Þ3
�
; (4.1b)

�Em0 ¼ 1

4�na2

Z 1

0
dxx

�
�
lnð1� x2�2

mpÞ þ x4

4ðm2p2 þ x2Þ3
�
: (4.1c)

The finite temperature quantity �E of Eq. (3.5) is analytic
as � ! 0 and inverse application of the transition (2.5)
simply gives us

�E !�!0 1

2
�E0 þ

X1
m¼1

�Em: (4.2)

What remains is essentially to determine the low � behav-
ior of Kð�Þ and Sð�; aÞ to check that the last term of
Eq. (4.1a) may be regained.
To study the behavior of S it is convenient to employ the

symmetry relation Sð�; pÞ ¼ Sðp; �Þ which gives

S ð�; pÞ ¼ 2

�

�
�� ln

4��

p

�
þ 8

�

X1
l¼1

�0ðlÞK0ð2�lp=�Þ:

(4.3)

For large arguments K0ðxÞ / expð�xÞ, so the sum over l is
exponentially small as � ! 0. This immediately gives the
asymptotic behavior:

S ð�; pÞ � 2

�
½�� lnð2�=pÞ � ln2� ln��; � ! 0:

(4.4)

Next we turn to Kð�Þ. Using the Euler-Maclaurin for-
mula (e.g. Ref. [39], p. 806) we have

K ð�Þ ¼ X1
l¼0

ßð�þ l�Þ

¼ 1

�

Z 1

�
dtßðtÞ þ 1

2
ßð�Þ �X1

l¼1

�2l�1B2l

ð2lÞ! ßð2l�1Þð�Þ

(4.5)

with

ßðtÞ ¼ t�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p : (4.6)

The integral has the solution

Z 1

�
dtßðtÞ ¼ ln

2�

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p

¼ ln�þ ln2� �þ 1

6
�3 þ . . . (4.7)

as � ! 0. Moreover, ßð�Þ ¼ �1=�þ 1� 1
2 �

2 þ . . . , and

upon inspection we recognize that

�2l�1ßð2l�1Þð�Þ ¼ ð2l� 1Þ!
�

þ ð�1Þl
�ð2lÞ!
2ll!

�
2
�2l þ . . .

(4.8)

To leading order in �, thus, the sum in Eq. (4.5) reads 1
� �P1

l¼1 B2l=2l. As is typically the case for series expansions

close to nonanalytical points, the series is formally diver-
gent. It can, however, be regularized by means of Borel
summation [41]. For a highly similar problem and details

10
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−2

10
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FIG. 3 (color online). Dimensionless energy eð�; pÞ for the
case p ¼ 3, i.e. opening angle � ¼ �=3, approximated by a
‘‘brute force’’ calculation truncating the sums. The zero-
temperature limit and high-� asymptote are shown as dashed
lines.

1These definitions of �E0 and �Em0 differ from those of Ref. [34]
by a prefactor n.
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on how to approach it, see Ref. [42]. We show in
Appendix A that the Borel regularized sum evaluates to

X1
l¼1

B2l

2l
¼ �� 1

2
: (4.9)

Thus we have found the low-� expansion of Kð�Þ:

K ð�Þ� 1

�
ðln�þ ln2��Þ� 1

2
þ . . . ; �! 0: (4.10)

Further terms cancel at least to order �2, the leading order
correction being at least of order �4.

Combining (4.4) and (4.10) we find, to leading order in
�, the expression in square brackets in (3.20):

½1þ2KþS���2

�
lnð2�=pÞþOð�4Þ; �! 0 (4.11)

and using

ð3� 3�@� þ �2@2�Þ 1� ¼ 8

�
(4.12)

we regain exactly the zero-temperature result (4.1). As
illustrated in Fig. 3 this limit is reached very rapidly as � !
0. While we have ascertained in the above that the correc-
tion term in (4.11) is at least of order �4, there is reason to
suspect that the behavior is in fact exponential, as is the
case for S as seen from Eq. (4.3).

V. HIGH-� ASYMPTOTICS: AGREEMENT WITH
PREVIOUS RESULTS FOR CYLINDRICAL SHELL

We will finally determine the asymptotic behavior in the

limit � � 1. Here the contribution from �E is given by the
zeroth Matsubara term only. Consider the reduced energy
eð�; pÞ of Eq. (3.20) in which

4�

�

X1
m¼0

0X1
j¼0

0
~em;jð�; pÞ � 2�

�
CðpÞ; � ! 1; (5.1)

with

CðpÞ ¼ 1

2

Z 1

0
dx

�
lnð1� x2�2

0Þ þ
x4

4ð1þ x2Þ3
�

þ X1
m¼1

Z 1

0
dx

�
lnð1� x2�2

mpÞ þ x4

4ðm2p2 þ x2Þ3
�
:

(5.2)

Some numerical values are

Cð1Þ ¼ �0:75814; (5.3a)

Cð2Þ ¼ �0:76558; (5.3b)

Cð3Þ ¼ �0:76645: (5.3c)

These values were obtained with Mathematica, including
100 terms in the sum while checking convergence.

The high-� behavior of S is given immediately by
Eq. (3.18):

S ð�; pÞ � 2

p
ð�� ln4�pþ ln�Þ; � ! 1 (5.4)

where the correction term is exponential, wherewith

�@�S � 2

p
; �2@2�S �� 2

p
:

To study the behavior of Kð�Þ and its derivatives it is
useful to define 	 ¼ 1=� and write Kð�Þ ¼ 	H ð	Þ with

H ð	Þ ¼ X1
j¼1

j� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 	2

p
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 	2

p : (5.5)

With a little calculation one ascertains that

�ð3� 3�@� þ �2@2�ÞKð�Þ ¼ ð8þ 7	@	 þ 	2@2	ÞH ð	Þ:
(5.6)

When 	 ! 0 it is simple to see from

H 0ð	Þ ¼ �	
X1
j¼1

ðj2 þ 	2Þ�ð3=2Þ; (5.7a)

H 00ð	Þ ¼ X1
j¼1

2	2 � j2

ðj2 þ 	2Þ5=2 ; (5.7b)

that

H ð	Þ � 1

2
	H 0ð	Þ � 1

2
	2H 00ð	Þ

� � 1

2
	2�ð3Þ; 	 ! 0:

Hence we can safely ignore the term involving K at high
�.
Combining this, the high-� behavior of eð�; pÞ is

eð�; pÞ � �

�
2CðpÞ
�

� 3pþ 6ð�� ln4�pÞ � 8

64p

� 3

32p
ln�

�
: (5.8)

The high-temperature asymptotics of perfectly conduct-
ing spherical and cylindrical shells with vacuum inside and
outside were calculated by Bordag, Nesterenko, and
Pirozhenko [20,21] using the method of heat kernel coef-
ficients. They, like us, found that the two leading order
terms were of order T and T lnT as T ! 1. The latter of
these terms had been worked out some time previously by
Balian and Duplantier [19], who also found an approxi-
mate (though not very accurate) value for the former.
The result of the calculations reported in [21] was, in our

notation

~Ecyl ��0:22924
T

a
� 3T

64a
ln
aT

2
þOðT�1Þ

¼ � �

8�a2

�
0:44237þ 3

16
ln�þOð��2Þ

�
: (5.9)
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As previously mentioned, ~Ecyl ¼ 2~Ep¼1. With the ex-

pansion (5.8) we find, using (5.3a),

2~Ep¼1 �� �

8�a2

�
6�� 5� 6 ln4�

32
� 4

�
Cð1Þ

þ 3

16
ln�þ . . .

�

¼ � �

8�a2

�
0:44270þ 3

16
ln�þ . . .

�
: (5.10)

The slight numerical difference we believe to be due to the
approximate numerical method used in [21]. We show
analytically in Appendix B that the correspondence is in
fact exact.

One may note the absence in Eq. (5.8) of a specific term
proportional to T2 found for the non-closed wedge in
Ref. [27]and attributed to the presence of the wedge
apex. This term does not refer to the radius a, however,
and has thus been subtracted from our free energy expres-
sion ab initio. Likewise, a Stefan-Boltzmann energy term
proportional to T4 is in general present, but is geometry
independent and does not contribute to the free energy (c.f.
Ref. [21] for a discussion)

VI. WEDGE WITH DIAPHANOUS ARC

The above results can easily be extended to the case
where the perfectly conducting arc is replaced by a diapha-
nous arc, that is, a magnetodielectric interface so that the
product n2 ¼ "
 is the same for radii both smaller than
and greater than a as shown in Fig. 4. This geometry was
considered at zero temperature in Ref. [34]. The electro-
magnetic boundary conditions at the arc separate in a
simple way in this case and the dependence on material
properties enters only through the reflection coefficient

� ¼ "2 � "1
"2 þ "1

¼ �
2 �
1


2 þ
1

: (6.1)

The change in geometry leaves the energy expression
(2.3) unaltered but for the simple replacement

ln½1� x2�2
mpðxÞ� ! ln½1� �2x2�2

mpðxÞ�: (6.2)

This merely introduces a prefactor �2 in all correction
terms, and we can write down the result for the diaphanous
wedge, and simultaneously cylinder (by letting p ¼ 1 and
multiplying by 2 as discussed above), as:

~E�ð�; p; aÞ ¼ 1

8�na2
e�ð�; pÞ; (6.3a)

e�ð�; pÞ ¼ 4�

�

X1
m¼0

0X1
j¼0

0
~em;jð�; p; �Þ

� ��2

64
ð3� 3�@� þ �2@2�Þ

� ½1þ 2Kð�Þ þ Sð�; pÞ�; (6.3b)

wherein

~em;jð�; p; �Þ ¼
Z 1

j�

dxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2�2

p
�
ln½1� �2x2�2

mpðxÞ�

þ �2x4

4ðm2p2 þ x2Þ3
�
; (6.3c)

~e0;jð�; �Þ ¼
Z 1

j�

dxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � j2�2

p
�
ln½1� �2x2�2

0ðxÞ�

þ �2x4

4ð1þ x2Þ3
�
: (6.3d)

Since � enters the correction terms from renormalization
only through the prefactor, generalization of the weak-
coupling expansions (to leading order in �2) considered
in [34] to nonzero � is trivial.

VII. CONCLUDING REMARKS

We have given for the first time results for the tempera-
ture dependence of the Casimir energy for a wedge, closed
by a circular arc, all boundaries being perfectly conduct-
ing. This includes, as a special case, the perfectly conduct-
ing cylindrical shell case. (Except for that case, there is a
divergent term, due to the corner where the circular arc
meets the wedge boundaries, which we here simply omit.)
The low-temperature result agrees with the zero-
temperature result found previously, except for what is
probably an exponentially small correction, while the
high-temperature result agrees with that of Bordag,
Nesterenko, and Pirozhenko for the case of a cylinder [21].
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APPENDIX A: EVALUATION OF EQ. (4.9) BY
BOREL SUMMATION

To evaluate a (possibly divergent) series Z ¼ P1
l¼1 al by

Borel summation [41] we define the function

FIG. 4 (color online). Same geometry as in Fig. 1 but now with
diaphanous instead of perfectly conducting arc, i.e., so that n2 ¼
"
 is the same both sides of the interface. We still assume
nondispersive media.
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�ðxÞ ¼ X1
l¼1

al
l!
xl: (A1)

If�ðxÞ is finite for sufficiently small x, we define the Borel
transform as

B ðxÞ ¼
Z 1

0
dte�t�ðxtÞ; (A2)

from which the Borel regularized value of the sum Z is Z ¼
Bð1Þ. We consider the sum

X1
l¼1

B2l

2l
¼ 1

2
þX1

l¼1

Bl

l
; (A3)

since B1 ¼ �1=2 and B3 ¼ B5 ¼ B7 ¼ . . . ¼ 0. The
Borel transform of the latter sum is thus

B ðxÞ ¼
Z 1

0
dte�t

X1
l¼1

Bl

l � l! ðxtÞ
l: (A4)

The generating function of the Bernoulli numbers is

X1
l¼1

Bl

l!
yl ¼ y

ey � 1
� 1 (A5)

which allows us to evaluate

dB
dx

ðxÞ ¼ 1

x

Z 1

0
dte�t

X1
l¼1

Bl

l!
ðxtÞl ¼

Z 1

0

dtte�t

ext � 1
� 1

x

¼ x�2
Z 1

0

duue�uðxþ1Þ=x

1� e�u � 1

x

¼ x�2c ð1Þ
�
xþ 1

x

�
� 1

x
; (A6)

where c ðnÞðxÞ is the polygamma function, whose integral
representation was recognized (Ref. [39] Eq. 6.4.1) by
making the substitution u ¼ xt. Thus we evaluate the in-
tegral to

B ðxÞ þ lnx ¼
Z x dy

y2
c ð1Þ

�
yþ 1

y

�

¼ �
Z ðxþ1Þ=x

dvc ð1ÞðvÞ

¼ �c

�
xþ 1

x

�
þ constant; (A7)

where from the requirement that Bð0Þ ¼ 0 we see that the
integration constant is zero. Thus we find the Borel value
of the sum (A3) to be

X1
l¼1

B2l

2l
¼ 1

2
þBð1Þ ¼ �� 1

2
; (A8)

noting that c ð2Þ ¼ 1� �.

APPENDIX B: CORRESPONDENCEWITH HIGH-T
ASYMPTOTICS FOR THE CYLINDER IN VACUUM

The heat kernel expansion for high temperatures calcu-
lated in Ref. [21] for the cylindrical shell in vacuum begins

~Ecyl ��T

2
� 0ð0Þ � a3=2

ð4�Þ3=2 T lnT þ . . .

¼ � �

8�a2

�
2a� 0ð0Þ � 3

16
ln2�aþ 3

16
ln�þ . . .

�

(B1)

where the ‘‘zeta determinant’’ � 0ð0Þ is a constant defined in
Ref. [21] and we have inserted their value [20,21]

a3=2

ð4�Þ3=2 ¼ 3

64a
: (B2)

The term proportional to � ln� is obviously identical to our
expression in Eq. (5.10). We consider only the term linear
in �. Comparison with (5.10) gives, with minimal manipu-
lation, that the asymptotes correspond exactly according to
~Ecyl ¼ 2~Ep¼1, provided

�a� 0ð0Þ þ 2Cð1Þ ¼ �

64

�
6�� 5þ 6 ln

a

2

�
: (B3)

In Appendix B of [21] we find the following expression

�a� 0ð0Þ ¼
Z 1

0
dyy

d

dy
ln½1� y2�2

0ðyÞ� þ 2
X1
m¼1

m
Z 1

0
dyy

� d

dy

�
ln

�
1�m2y2�2

mðmyÞ
�
þ y4t6

4m2

�

þ �

32

�
3�� 4þ 3 ln

a

2

�
(B4)

with t ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
. Let us call the two integrals in (B4)

X0 and Xm, where the latter is the integral inside the sum.
After a partial integration and, in the case of Xm, a sub-
stitution ym ¼ x, these can be written on the familiar form

X0 ¼�
Z 1

0
dx ln½1� x2�2

0ðxÞ� (B5a)

Xm ¼� 1

m

Z 1

0
dx

�
ln½1� x2�2

mðxÞ�þ z4

4ðm2þ x2Þ3
�
: (B5b)

Comparing with (5.2) we see that

�a� 0ð0Þ þ 2Cð1Þ ¼
Z 1

0

dxx4

4ð1þ x2Þ3 þ
�

32

�
3�� 4þ 3 ln

a

2

�

¼ �

64

�
6�� 5þ 6 ln

a

2

�
(B6)

since 1
4

R1
0 dxx4=ð1þ x2Þ3 ¼ 3�=64. We have thus shown

the correspondence analytically.
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