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We apply the decoherence formalism to an interacting scalar field theory. In the spirit of the

decoherence literature, we consider a ‘‘system field’’ and an ‘‘environment field’’ that interact via a

cubic coupling. We solve for the propagator of the system field, where we include the self-energy

corrections due to the interaction with the environment field. In this paper, we consider an environment in

the vacuum state (T ¼ 0). We show that neglecting inaccessible non-Gaussian correlators increases the

entropy of the system as perceived by the observer. Moreover, we consider the effect of a changing mass

of the system field in the adiabatic regime, and we find that at late times no additional entropy has been

generated.
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I. INTRODUCTION

A. Outline

We aim to apply the decoherence formalism to an inter-
acting quantum field theoretical model. The main idea in
the framework of decoherence ([1–4], for reviews see [5–
9]) is that a macroscopic system cannot be separated from
its environment. The conventional strategy is to assume the
existence of a distinct system, environment, and observer.
If the observer and the environment are weakly coupled,
we are allowed to integrate the environment out to study its
average effect on the system perceived by the observer.
Alternatively one could say that the environmental degrees
of freedom are inaccessible to the observer. This averaging
process is an intrinsically nonunitary operation, which
consequently gives rise to an increase in entropy of the
system. A quantum system with a large entropy, in turn,
corresponds to an effectively classical system.

It is however difficult to realistically apply the decoher-
ence machinery to quantum field theory: this requires in
general involved out-of-equilibrium, finite temperature,
interacting quantum field theoretical computations. It is
of course widely appreciated that entropy can be generated
as a result of an incomplete knowledge of a system. We
thus need to keep in mind what quantities are actually
measured in quantum field theory: all information in a
system that can in principle be observed by a ‘‘perfect
observer’’ is contained in the n-point correlators of the
system. However, realistic observers are not capable of
measuring irreducible n-point functions of arbitrary order
as they are limited by the sensitivity of their apparatus.
Therefore, it is important to realize that inaccessible higher

order correlators, from the observer’s perspective, yield an
increase in entropy of the system. We thus propose the
following viewpoint when applying the decoherence pro-
gram to quantum field theory1: Neglecting observationally
inaccessible correlators will give rise to an increase in
entropy of the system as perceived by the observer.
As an example, consider some interacting quantum field

theory where information is stored in either two-point or
Gaussian correlators or in higher order, non-Gaussian cor-
relators. The latter are generated generically in any inter-
acting field theory. If we assume that the information
stored in these non-Gaussian correlators is barely acces-
sible in experiments, then neglecting this information will
give rise to an increase in the entropy. From the Gaussian
correlators, we can fix the entropy uniquely [14,16]. As
before, a quantum system with a considerable amount of
entropy corresponds to a classical system.2 We emphasize
that this definition can be improved if e.g. three- or four-
point correlators are accessible through experiments such
that knowledge of these correlators is included in the
definition of the entropy [14]. It is important to stress
that this procedure does not require a nonunitary process
of tracing out environmental degrees of freedom.
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1Older work can already be interpreted in a similar spirit
[10,11]. Here, we propose it as a strict procedure [12,13] of
how to study entropy generation in the 2PI formalism, also see
[14]. Recently, during the last stages of writing this paper, we
found an interesting article by Giraud and Serreau [15] address-
ing the question of entropy production in an interacting field
theory from a similar perspective.

2Our definition of classicality differs from the approach used
in some of the literature, where, for example, coherent states
with large occupation numbers are also considered to have many
classical properties, even though these states have vanishing
entropy.
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In order to apply these rather abstract ideas to a scalar
field toy model, let us outline our paper. We will consider
the following interacting scalar field theory:

S½�;�� ¼
Z

dDxL½�;��

¼
Z

dDxL0½�� þL0½�� þLint½�;��; (1)

where

L0½�� ¼ �1
2@��ðxÞ@��ðxÞ��� � 1

2m
2
�ðtÞ�2ðxÞ; (2a)

L0½�� ¼ �1
2@��ðxÞ@��ðxÞ��� � 1

2m
2
��

2ðxÞ; (2b)

Lint½�;�� ¼ � �

3!
�3ðxÞ � 1

2
h�2ðxÞ�ðxÞ; (2c)

where ��� ¼ diagð�1; 1; 1; . . .Þ is the D-dimensional

Minkowski metric. Here, �ðxÞ will play the role of the
system, interacting with an environment �ðxÞ, where we
assume that � � h such that the environment is in thermal
equilibrium at temperature T. In this paper, we study an
environment of temperature T ¼ 0, i.e., an environment in
its vacuum state and we postpone the finite temperature

corrections to a future publication. We assume that h�̂i ¼
0 ¼ h�̂i, which can be realized by suitably renormalizing
the tadpoles.

Another application of our calculation is baryogenesis in
an early Universe setting where the system is driven out of

equilibrium by a changing mass term m2
�ðtÞ generated by a

time dependent Higgs-like scalar field during a symmetry
breaking. For electroweak baryogenesis, we can neglect
the Universe’s expansion during the phase transition and
our assumption to work in Minkowski spacetime is well
justified.
As we study out-of-equilibrium quantum field theory,

we work in the Schwinger-Keldysh formalism. The two
particle irreducible (2PI) effective action then captures the
effect of perturbative loop corrections to the various propa-
gators {�� and {��. Of course we will discuss these

equations of motion in greater detail in the main text, but
when we omit all indices and arguments, they have the
following structure:

ð@2 �m2
�Þ{�� �

Z
M�{�� ¼ {�D; (3a)

ð@2 �m2
�Þ{�� �

Z
M�{�� ¼ {�D; (3b)

where M� and M� are the corresponding self-masses.

These two equations are non-Gaussian due to the coupling
of the two fields with coupling constant h. Multiplying
Eq. (3a) by �0;� ¼ ð@2 �m2

�Þ�1�D and Eq. (3b) by

�0;� ¼ ð@2 �m2
�Þ�1�D and integrating, one gets the fol-

lowing Schwinger-Dyson equations:

The dressed � propagators (double solid lines) can be written as the sum of the tree level propagators (solid lines) and the
self-mass corrections due to interaction with the dressed � field (double dashed lines), and vice versa for the environment
field.

Let us at this point explicitly state the two main assumptions of our work. First, we assume that our observer is only
sensitive to Gaussian correlation functions. This implies that we use only these correlators to calculate the entropy [14].
Secondly, we neglect the backreaction from the system field on the environment field, i.e., we assume that we can neglect
the self-mass corrections due to the � field in Eq. (4)b. This assumption thus implies that the environment remains at
temperature T ¼ 0. In particular, the self-mass corrections to the system propagators in Eq. (4)a are now given by
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The first diagram contains the leading order self-mass
correction, at order Oðh2=!2

�Þ, where !2
� ¼ m2

� þ k2. It
effectively is a Gaussian correction to the� propagators as
it acts just like a known source to�. Note that in Eq. (5) we
dropped a diagram at order Oðh2�2=!4

�Þ since it is irrele-
vant for the argument presented below.

Looking at Eq. (5) we see that these assumptions are
well justified by perturbative arguments provided there are
no secular effects: the backreaction of the system field on
the environment field and the first intrinsically non-
Gaussian correction occurs only at orderOðh4=!4

�Þ, which
can be appreciated by examining the second Feynman
diagram on the right-hand side of Eq. (5). The 3-point
function of the system, an intrinsically non-Gaussian cor-
relator, is at one-loop level also perturbatively suppressed
at order Oðh3=!3

�Þ.
Finally, let us just mention that the concept of the pointer

basis is frequently discussed in the decoherence literature.
The pointer basis of our theory in the highly squeezed limit
is the field amplitude basis [14], occurring, for example, in
cosmological perturbation theory. Intuitively, this can be
appreciated as follows: the Hamiltonian of a squeezed state
is dominated by the potential term. A system in interaction
with an environment at temperature T minimizes its free
energy F ¼ H � TS. The system will realize this by in-
creasing its entropy S, mainly due to increasing the spread
in momentum h�̂2i since that hardly affects the
Hamiltonian, whereas it does significantly affect the en-
tropy. In other words, the field amplitude basis is robust
under the process of decoherence, qualifying it as a proper
pointer basis. Note that � is a pointer basis only in the
statistical sense, such that there is a well-defined probabil-
ity distribution function from which a measurement is
drawn.

Having discussed the setup of our theory, the assump-
tions used and their justification, let us direct our attention
to discussing potential applications. Our results are rele-
vant for several research areas: the study of decoherence of
cosmological perturbations, of out-of-equilibrium quan-
tum field theory, and of baryogenesis.

B. Decoherence of cosmological perturbations

Although applications of the framework of decoherence
are mainly directed toward experimental efforts (for ex-
ample related to the increasingly relevant field of quantum
computing), it also concerns quantum field theory (see e.g.
[17]). Research efforts are primarily focused on addressing
the fundamental question of the decoherence of cosmo-
logical perturbations; see e.g. [16,18–36]. One of the most
important consequences of the inflationary paradigm is that
it provides us with a causal explanation of how initial
density inhomogeneities can be laid out on super-Hubble
scales that seed the large scale structure we observe in the
Universe today in, for example, clusters of galaxies. The
decoherence formalism applied to cosmological perturba-

tions aims at describing the transition between the quantum
nature of the initial density inhomogeneities as a conse-
quence of inflation and the classical stochastic behavior as
assumed by large scale structure theory.
In the literature, specific models, for example, assume

that during inflation the UV (or sub-Hubble) modes of a
field, once integrated out, decohere the IR (or super-
Hubble) modes because the former modes are inaccessible
observationally ([37–39], however also see [40]). A similar
split of UV and IR modes has been made in the context of
stochastic inflation, see, e.g., [41–46]. In [47] vacuum
fluctuations decohere the mean field, turning it into a
classical stochastic field. In [16] it is argued that self-
mass corrections to the equation of motion for the statisti-
cal propagator can be rewritten in terms of a stochastic
noise term that in turn decoheres the system. In [31] it was
shown that isocurvature modes decohere the adiabatic
mode.

C. Nonequilibrium quantum field theory

In recent years, the study of nonequilibrium quantum
field theory has become more and more tractable (for
review articles, see [48,49]). A central ingredient in per-
forming these studies is the two particle irreducible action,
from which quantum corrections to propagators can be
investigated. Out-of-equilibrium ��4ðxÞ theory has exten-
sively been studied in, for example, [50–58]. The dynamics
of nonequilibrium fermions has been addressed in, e.g.,
[59].
An interesting study has been performed in [60], where

one also studies, under certain assumptions, the dynamics
of a system field that interacts via a cubic coupling with a
thermal bath, which we also consider. Their thermal bath
consists of two scalar fields with different masses. Very
recently, another interesting calculation for ��4ðxÞ self-
interaction has been performed in [15] where one calcu-
lates a decoherence parameter and thermalization of an
initial pure state.
Calzetta and Hu consider in [61,62] also an out-of-

equilibrium ��4ðxÞ theory. What we would refer to as
‘‘Gaussian–von Neumann entropy’’ is referred to as ‘‘cor-
relation entropy’’ in [62]. They prove an H theorem for a
quantum mechanical OðNÞ model.
Renormalizing the Kadanoff-Baym equations is a subtle

business. In ��4ðxÞ theory it has been examined in differ-
ent contexts in [63–70]. We will also come to address the
question of renormalizing our cubically interacting field
theory. Our main finding is that the structure of the renor-
malized equations of motion differs from the unrenormal-
ized equations, which has in general to our knowledge not
previously been considered in the literature.
Furthermore, imposing initial conditions at some finite

time t0 results in additional infinities that have to be
renormalized separately according to the authors of [71–
74]. Another interesting study has been performed by

DECOHERENCE IN AN INTERACTING QUANTUM FIELD . . . PHYSICAL REVIEW D 81, 065030 (2010)

065030-3



Garny and Muller in [75] in which the renormalized
Kadanoff-Baym equations, again in ��4ðxÞ, are numeri-
cally integrated by imposing non-Gaussian initial condi-
tions. We differ in our approach as we consider the memory
effects from the interacting theory at times before t0. We
can then impose appropriate Gaussian initial conditions at
t0 without encountering initial time divergences.

D. Baryogenesis

This work is in part inspired by fundamental questions
concerning the problem of entropy in field theory, and in
part by electroweak scale baryogenesis. The problem is to
calculate axial vector currents generated by a CP violating
advancing phase interface of a true vacuum bubble at the
electroweak phase transition. These currents then feed in
hot sphalerons, thus biasing baryon production. The axial
currents are difficult to calculate reliably, since a controlled
calculation would include nonequilibrium dynamics in a
finite temperature plasma in the presence of a nonadiabati-
cally changing mass parameter. In this paper we neither
include a plasma at finite temperature (this will be done in
a future companion paper), nor do we consider scattering
of fermions on a nonadiabatically changing phase inter-
face. Yet there are important similarities between the prob-
lem we address here and baryogenesis: our interacting
scalar field model (2) mimics the Yukawa part of the
Lagrangian of the standard model, whereby one scalar field
plays the role of the Higgs field, while the other is a heavy
fermion (top quark or a chargino of a supersymmetric
theory). The role of the axial current is taken by the entropy
which are both sensitive to quantum coherence and the
phase interface is a time dependent mass parameter m2

�ðtÞ.
The importance of quantum coherence in baryogenesis is
also treated in [76–78], where a coherent mixture of fer-
mions has been used to generate baryons in grand unified
theories during preheating after inflation. However, the
authors of [76–78] treat the interactions phenomenologi-
cally in the relaxation time approximation.

Quantum mechanical scattering on bubble walls in a
thermal bath may become the dominant mechanism for
baryon production when the walls are thin and has been
addressed in several papers in the mid 1990s [79–84],
mostly in the context of baryogenesis within the standard
model. Currently, the consensus is that so far no satisfac-
tory solution to the problem has been found. Recently
Herranen, Kainulainen, and Rahkila [85–87] have rein-
vigorated interest in the problem, which has gained on
timeliness by the upcoming LHC experiments. Their ap-
proach is based on the observation that the constraint
equations for fermions and scalars admit a third particle
shell at a vanishing energy, k0 ¼ 0. The authors show that
this third shell can be used to correctly reproduce the Klein
paradox both for fermions and bosons in a step potential,
and hope that their intrinsically off-shell formulation can
be used to include interactions in a field theoretical set-

tings, for which off-shell physics is essential. The authors
have studied both fermionic [85,86] and bosonic [87]
quantum mechanical reflection in the presence of scatter-
ings. However, not all scatterings implied by the Kadanoff-
Baym equations are taken into account. One important
motivation for the present paper is to work within a set
of approximations where all relevant terms in the
Kadanoff-Baym equations are kept.

II. ENTROPYAND PROPAGATORS

A. The statistical propagator and entropy

There is a connection between the statistical propagator
and the Gaussian entropy of a system ([14], also see
[10,16]). In quantum field theory, one can calculate many
propagators, with different properties associated with each,
but not all of them are independent. In this work, we will be
primarily interested in solving for the statistical propagator
of the system. Let us mention that the information con-
tained in the statistical propagator is also encoded in the
two Wightman functions. Generically, in the presence of
quantum fluctuations, one needs complete knowledge of
the causal propagator in order to solve for the statistical
propagator. In the simple free theory example we consider
in Appendix A, we can directly solve for the statistical
propagator however and no prior knowledge of the causal
propagator is required.
The statistical propagator describes how states are popu-

lated and is in the Heisenberg picture defined by

F�ðx; x0Þ ¼ 1
2 Tr½	̂ðt0Þf�̂ðx0Þ; �̂ðxÞg�

¼ 1
2 Tr½	̂ðt0Þð�̂ðx0Þ�̂ðxÞ þ �̂ðxÞ�̂ðx0ÞÞ�; (6)

given some density matrix operator 	̂ðt0Þ. The causal
propagator roughly describes the number of accessible
states and is given by the commutator of the two fields:

{�c
�ðx; x0Þ ¼ Trð	̂ðt0Þ½�̂ðxÞ; �̂ðx0Þ�Þ

¼ Tr½	̂ðt0Þð�̂ðxÞ�̂ðx0Þ � �̂ðx0Þ�̂ðxÞÞ�: (7)

In spatially homogeneous backgrounds, we can Fourier
transform, e.g., the statistical propagator as follows:

F�ðk; t; t0Þ ¼
Z

dð ~x� ~x0ÞF�ðx; x0Þe�{ ~k�ð ~x� ~x0Þ; (8)

which in the case we will consider in this paper only

depends on k ¼k ~k k . It is only the statistical propagator
and its various time derivatives that determine the entropy.
In short, the entropy is fixed by the area in phase space �
the state of the system occupies and is given by

�2
kðtÞ ¼ 4½Fðk; t; t0Þ@t@t0Fðk; t; t0Þ � f@tFðk; t; t0Þg2�jt¼t0 :

(9)

Throughout the paper, and, in particular, in this equation
we set @ ¼ 1. We also set c ¼ 1. The entropy per mode
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then follows as

SkðtÞ ¼ �kðtÞ þ 1

2
log

�
�kðtÞ þ 1

2

�

� �kðtÞ � 1

2
log

�
�kðtÞ � 1

2

�
: (10)

Finally, it is interesting to note that the phase space area
can be related to an effective phase space particle number
density per mode or the statistical particle number density
per mode as

nkðtÞ ¼ �kðtÞ � 1

2
: (11)

In Appendix A we illustrate our ideas by studying a non-
trivial exact case: quantum scattering due to a changing
mass in the free case, i.e., the interaction coefficients h and
� in Eq. (2c) are switched off. For a free scalar field with a
smoothly changing mass term, we show that�kðtÞ ¼ 1 and
hence no entropy has been generated by the mass change.
Secondly, we point out that the reader should not confuse
the statistical particle number density in Eq. (11) with the
parameter j
kj2 characterizing nonadiabaticity of the mass
change in Eq. (A25b), which in the literature is often
referred to as a particle number as well [88]. This parame-
ter is nonzero, and possibly large, simply because the
asymptotic in and out vacua differ.

B. Propagators in the Schwinger-Keldysh formalism

The material included in this section may well be famil-
iar to the experienced reader, but we include it nevertheless
for pedagogical reasons and in order to clearly establish
our notation. Let us consider the expectation value of an

operator Q̂ðtÞ in the Heisenberg picture, given a density
matrix operator 	̂ðt0Þ:

hQ̂ðtÞi ¼ Tr½	̂ðt0ÞQ̂ðtÞ�

¼ Tr

�
	̂ðt0Þ

�
�T exp

�
{
Z t

t0

dt0Ĥðt0Þ
��
Q̂ðt0Þ

�
�
T exp

�
�{

Z t

t0

dt0Ĥðt0Þ
���

; (12)

where t0 < t denotes an initial time, �T and T denote the
antitime ordering and time ordering operations, respec-

tively, and ĤðtÞ denotes the Hamiltonian. If Q̂ in the
Scrödinger picture depends explicitly on time, we should

replace Q̂ðt0Þ by Q̂SðtÞ.
The Schwinger-Keldysh formalism, or closed time path

(CTP) formalism, or in-in formalism, is based on the
original papers by Schwinger [89] and Keldysh [90] and
is particularly useful for nonequilibrium quantum field
theory (also see [91–95]). According to the CTP formal-
ism, the expectation value above can be calculated from the
in-in generating functional in the path integral formulation:

Z½J�þ; J��; J�þ; J��; 	ðt0Þ� ¼
Z

D�þ
0 D��

0 D�þ
0 D��

0 h�þ
0 ; �

þ
0 j	̂ðt0Þj��

0 ; �
�
0 i
Z ��

0

�þ
0

D�þD���½�þðtfÞ ���ðtfÞ�

�
Z ��

0

�þ
0

D�þD���½�þðtfÞ � ��ðtfÞ� exp
�
{
Z

dD�1x
Z tf

t0

dt0ðL½�þ; �þ; t0� �L½��; ��; t0�

þ J�þ�þ þ J���� þ J
�
þ�þ þ J����Þ

�
; (13)

where the Lagrangian is given in Eq. (1). We can use the
well-known Schwinger-Keldysh contour depicted in
Figs. 1 and 2. It runs from t0 up to tf, where both times
can in principle be extended to negative and positive

infinity, respectively (as depicted in Fig. 2). As we will
come to discuss, the two paths are not equivalent in an
interacting quantum field theory, where memory effects
play an important role. In this paper, we will extend t0 to
negative infinity at some point, but let us for the moment
keep it finite. Clearly, these contours are closely related to

Re t

Im t

FIG. 1. Schwinger-Keldysh contour with finite initial time t0
and final time tf.

Re t

Im t

FIG. 2. Schwinger-Keldysh contour where the initial and final
times in Fig. 1 have been extended to negative and positive
infinity, respectively.
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the two evolution operators in Eq. (12). The fields� and �
and their corresponding sources J� and J� split up on the
upper (þ ) and lower (� ) parts of the contour, where
necessarily the conditions �þðtfÞ ¼ ��ðtfÞ and �þðtfÞ ¼
��ðtfÞ apply. These conditions are indeed enforced by the
two functional � distributions. The first functional integrals
in (13) are over the initial configuration space at t0, where
the system is specified by the density operator (density
matrix) 	̂ðt0Þ. The path integrals in (13) run over the
Schwinger-Keldysh contour in Figs. 1 and 2.

Expectation values of n-point functions are obtained by
varying the generating functional (13) as follows:

Tr ½	̂ðt0Þ �T½�̂ðx1Þ � � � �̂ðxnÞ�T½�̂ðy1Þ � � � �̂ðykÞ��

¼ �nþkZ½J; 	ðt0Þ�
{�J��ðx1Þ � � � {�J��ðxnÞ{�J�þðy1Þ � � � {�J�þðykÞ

��������J¼0
;

provided that x0j � tf and y
0
j � tf for all j, and where J ¼

ðJ��; J��Þ. We can now define the following propagators:

{�þþ
� ðx; x0Þ ¼ Tr½	̂ðt0ÞT½�̂ðx0Þ�̂ðxÞ��

¼ Tr½	̂ðt0Þ�̂þðx0Þ�̂þðxÞ�

¼ �2Z½J; 	ðt0Þ�
{�J�þðxÞ{�J�þðx0Þ

��������J¼0
; (14a)

{���
� ðx; x0Þ ¼ Tr½	̂ðt0Þ �T½�̂ðx0Þ�̂ðxÞ��

¼ Tr½	̂ðt0Þ�̂�ðx0Þ�̂�ðxÞ�

¼ �2Z½J; 	ðt0Þ�
{�J��ðxÞ{�J��ðx0Þ

��������J¼0
; (14b)

{��þ
� ðx; x0Þ ¼ Tr½	̂ðt0Þ�̂ðxÞ�̂ðx0Þ�

¼ Tr½	̂ðt0Þ�̂�ðxÞ�̂þðx0Þ�

¼ �2Z½J; 	ðt0Þ�
{�J��ðxÞ{�J�þðx0Þ

��������J¼0
; (14c)

{�þ�
� ðx; x0Þ ¼ Tr½	̂ðt0Þ�̂ðx0Þ�̂ðxÞ�

¼ Tr½	̂ðt0Þ�̂�ðx0Þ�̂þðxÞ�

¼ �2Z½J; 	ðt0Þ�
{�J�þðxÞ{�J��ðx0Þ

��������J¼0
: (14d)

We define the various propagators for the � field analo-
gously. In the absence of a condensate for � all mixed two-
point functions, such as

h�j�̂ðx0Þ�̂ðxÞj�i; (15)

vanish by virtue of the interaction term (2c). In Eq. (14),
{�þþ

� ðx; x0Þ � {�F
�ðx; x0Þ denotes the Feynman or time or-

dered propagator and {���
� ðx; x0Þ represents the antitime

ordered propagator. The twoWightman functions are given
by {��þ

� ðx; x0Þ and {�þ�
� ðx; x0Þ. From Eq. (1) we infer that

the free Feynman propagator obeys

D x{�
þþ
�;0 ðx; x0Þ � ð@2x �m2Þ{�þþ

�;0 ðx; x0Þ ¼ {�Dðx� x0Þ;
(16)

where @2x ¼ ���@�@� and where the same identity holds

for {�þþ
�;0 ðx; x0Þ. In the presence of interactions the equation

of motion for the Feynman propagator becomes much
more involved and we will discus it shortly. One can easily
show that at tree level the Wightman functions obey the
homogeneous equation:

D x{�
þ�
�;0 ðx; x0Þ ¼ 0 ¼ Dx{�

�þ
�;0 ðx; x0Þ: (17)

Identical relations hold for the free � propagators. The four
propagators defined above are not independent. The
Wightman functions, for example, constitute the time or-
dered and antitime ordered propagators:

{�þþ
� ðx; x0Þ ¼ �ðt� t0Þ{��þ

� ðx; x0Þ þ �ðt0 � tÞ{�þ�
� ðx; x0Þ;

(18a)

{���
� ðx; x0Þ ¼ �ðt0 � tÞ{��þ

� ðx; x0Þ þ �ðt� t0Þ{�þ�
� ðx; x0Þ;

(18b)

where t ¼ x0, t0 ¼ x00, and where this identity holds for the
� propagators as well. Appreciate that

{�þþ
� ðx; x0Þ þ {���

� ðx; x0Þ ¼ {��þ
� ðx; x0Þ þ {�þ�

� ðx; x0Þ;
(18c)

{��þ
� ðx; x0Þ ¼ {�þ�

� ðx0; xÞ; (18d)

are exact identities and they are also satisfied by the
� propagators. We write the four Green’s functions in the
2� 2 Keldysh propagator matrix form:

{G�ðx; x0Þ ¼
{�þþ

� {�þ�
�

{��þ
� {���

�

 !
; (19)

which at tree level obeys

D x{G�;0ðx; x0Þ ¼ {�3�Dðx� x0Þ; (20)

where �3 ¼ diagð1;�1Þ is the third Pauli matrix, which
we can also write as

ð�3Þab ¼ a�ab; (21)

where a, b ¼ �.
Let us define some more Green’s functions. In Sec. II A

we already defined the causal and statistical propagator,
but let us for completeness list them again. The causal
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Green’s function, also known as the Pauli-Jordan or
Schwinger or spectral two-point function, {�c

� � {�PJ
� �

A� � 	�, is given by

{�c
�ðx; x0Þ ¼ Trð	̂ðt0Þ½�̂ðxÞ; �̂ðx0Þ�Þ

¼ {��þ
� ðx; x0Þ � {�þ�

� ðx; x0Þ; (22)

and the statistical or Hadamard two-point function, F� �
�H

�, is given by

F�ðx; x0Þ ¼ 1
2 Tr½	̂ðt0Þf�̂ðx0Þ; �̂ðxÞg�

¼ 1
2ð{��þ

� ðx; x0Þ þ {�þ�
� ðx; x0ÞÞ: (23)

The retarded ({�r) and advanced ({�a) propagators are
defined as

{�r
�ðx; x0Þ ¼ {�þþ

� ðx; x0Þ � {�þ�
� ðx; x0Þ

¼ �½{���
� ðx; x0Þ � {��þ

� ðx; x0Þ�
¼ �ðt� t0Þ{�c

�ðx; x0Þ; (24a)

{�a
�ðx; x0Þ ¼ {�þþ

� ðx; x0Þ � {��þ
� ðx; x0Þ

¼ �½{���
� ðx; x0Þ � {�þ�

� ðx; x0Þ�
¼ ��ðt0 � tÞ{�c

�ðx; x0Þ: (24b)

Moreover, we can express all propagators {�ab
� solely in

terms of the causal and statistical propagators:

{�þ�
� ðx; x0Þ ¼ F�ðx; x0Þ � 1

2{�
c
�ðx; x0Þ; (25a)

{��þ
� ðx; x0Þ ¼ F�ðx; x0Þ þ 1

2{�
c
�ðx; x0Þ; (25b)

{�þþ
� ðx; x0Þ ¼ F�ðx; x0Þ þ 1

2 sgnðt� t0Þ{�c
�ðx; x0Þ; (25c)

{���
� ðx; x0Þ ¼ F�ðx; x0Þ � 1

2 sgnðt� t0Þ{�c
�ðx; x0Þ: (25d)

Since Fy
� ¼ F� and ð{�c

�Þy ¼ �{�c
�, the relations above

correspond to splitting the various Green’s functions into
their Hermitian and anti-Hermitian parts (for that reason
we do not put an { in front of F�). The definitions of the

retarded, advanced, causal, and the statistical propagators
and the relations between them easily extend to the � field.

C. The Kadanoff-Baym equations

In order to study the effect of perturbative loop correc-
tions on classical expectation values, one often considers
the effective action. In this section wewill calculate the 2PI
effective action, using the Schwinger-Keldysh formalism
outlined above. The 2PI effective action is the relevant
functional to consider because it captures the interaction
of the � and � fields in the right way. Varying the 2PI
effective action with respect to the propagators yields the

so-called Kadanoff-Baym equations that govern their dy-
namics. These equations of motion contain the nonlocal
scalar self-energy corrections or self-mass corrections to
the propagator.
In the present section, we shall mainly follow

[48,94,96,97]. We can extract the Feynman rules from
the interaction part of the tree level action (2c):

L int½�;�� ¼ �X
a¼�

a

�
�

3!
ð�aðxÞÞ3 þ 1

2
hð�aðxÞÞ2�aðxÞ

�
:

(26)

The Feynman propagator is promoted to {G� and each

vertex has two polarities: plus (þ ) and minus (� ),
such that the minus vertex gains an extra minus sign þ{�
as compared to the standard perturbation theory plus vertex
�{�.
The 2PI effective action can be obtained as a double

Legendre transform from the generating functional W for
connected Green’s functions with respect to the linear
source J and another quadratic source (see, e.g., [48]). In
the absence of field condensates the background fields
vanish:

��a � h�j�̂aj�i ¼ 0; (27a)

��a � h�j�̂aj�i ¼ 0; (27b)

in which case the variation with respect to the linear or
quadratic sources can easily be related. In particular, the
definitions of the four propagators in Eq. (14) remain valid.
The effective action formally reads [48,93,98,99]

�½ ��a; ��a; {�ab
� ; {�ab

� �
¼ S½ ��a; ��a� þ {

2
Tr ln½ð{�ab

� Þ�1� þ {

2
Tr ln½ð{�ab

� Þ�1�

þ {

2
Tr

�2S½ ��a; ��a�
� ��a� ��b

{�ab
� þ {

2
Tr

�2S½ ��a; ��a�
� ��a� ��b

{�ab
�

þ �ð2Þ½ ��a; ��a; {�ab
� ; {�ab

� �: (28)

Here, �ð2Þ denotes the 2PI contribution to the effective
action. Moreover, we omitted the dependence on all vari-
ables for notational convenience. Several Feynman dia-
grams contribute to the effective action of which the one-
and two-loop order contributions are given in Fig. 3. We
can now write the effective action up to two loops as

�½{�ab
� ; {�ab

� � ¼ �0½{�ab
� ; {�ab

� � þ �1½{�ab
� ; {�ab

� �
þ �2½{�ab

� ; {�ab
� �; (29)

where the subscript denotes the number of loops and where
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�0½{�ab
� ; {�ab

� � ¼
Z

dDxdDx0
X

a;b¼�

a

2
ð@2x �m2

�Þ�Dðx� x0Þ�ab{�ba
� ðx0; xÞ

þ
Z

dDxdDx0
X

a;b¼�

a

2
ð@2x �m2

�Þ�Dðx� x0Þ�ab{�ba
� ðx0; xÞ; (30a)

�1½{�ab
� ; {�ab

� � ¼ � {

2
Tr ln½{�aa

� ðx; xÞ� � {

2
Tr ln½{�aa

� ðx; xÞ�; (30b)

�2½{�ab
� ; {�ab

� � ¼ {�2

12

Z
dDxdDx0

X
a;b¼�

abð{�ab
� ðx0; xÞÞ3 þ {h2

4

Z
dDxdDx0

X
a;b¼�

abð{�ab
� ðx; x0ÞÞ2{�ab

� ðx0; xÞ; (30c)

where Tr denotes a trace over both spacetime variables and the Keldysh indices �. The equations of motion for the
propagators result as usual from the variational principle:

��½{�ab
� ; {�ab

� �
�{�ab

�

¼ 0; (31a)

��½{�ab
� ; {�ab

� �
�{�ab

�

¼ 0: (31b)

Explicitly, they yield

a

2
ð@2x �m2

�Þ�Dðx� x0Þ�ab � {

2
½{�ab

� ðx; x0Þ��1 þ {h2

4
abð{�ab

� ðx; x0ÞÞ2 ¼ 0; (32a)

a

2
ð@2x �m2

�Þ�Dðx� x0Þ�ab � {

2
½{�ab

� ðx; x0Þ��1 þ {�2

4
abð{�ab

� ðx; x0ÞÞ2 þ {h2

2
ab{�ab

� ðx; x0Þ{�ab
� ðx; x0Þ ¼ 0: (32b)

We will bring these equations into a more familiar form by multiplying by 2a{�bc
� ðx0; x00Þ and 2a{�bc

� ðx0; x00Þ, respectively,
and then integrating over x0 and summing over b ¼ �. This results in the following one-loop Kadanoff-Baym [100]
equations for the elements of the Keldysh propagator {Gðx; x0Þ:

ð@2x �m2
�Þ{�ab

� ðx; x0Þ � X
c¼�

c
Z

dDx1M
ac
� ðx; x1Þ{�cb

� ðx1; x0Þ ¼ a�ab{�Dðx� x0Þ; (33a)

ð@2x �m2
�Þ{�ab

� ðx; x0Þ � X
c¼�

c
Z

dDx1M
ac
� ðx; x1Þ{�cb

� ðx1; x0Þ ¼ a�ab{�Dðx� x0Þ; (33b)

where the self-masses at one loop have the form:

{Mac
� ðx; x1Þ ¼ �2ac

��2½{�ab
� ; {�ab

� �
�{�ca

� ðx1; xÞ ¼ � {h2

2
ð{�ac

� ðx; x1ÞÞ2; (34a)

{Mac
� ðx; x1Þ ¼ �2ac

��2½{�ab
� ; {�ab

� �
�{�ca

� ðx1; xÞ ¼ � {�2

2
ð{�ac

� ðx; x1ÞÞ2 � {h2{�ac
� ðx; x1Þ{�ac

� ðx; x1Þ; (34b)

where in the last step we used the Hermiticity symmetry of the operator {G, according to which {�acðx; x0Þ ¼ {�caðx0; xÞ.
The Feynman diagrams contributing to the one-loop self-mass are given in Fig. 4. We have chosen the definition of (34)
such that the structure of the self-mass resembles that of the propagators. The factor 1=2 in (34) originates from the
symmetry factor of the one-loop self-mass diagram.

Equation (33a) consists of the following four equations:

FIG. 3. Contributions to the 2PI effective action up to two-loop order. The double solid lines denote � propagators, whereas the
double dashed lines correspond to � propagators.
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ð@2x �m2
�Þ{�þþ

� ðx; x0Þ �
Z

dDy½{Mþþ
� ðx; yÞ{�þþ

� ðy; x0Þ � {Mþ�
� ðx; yÞ{��þ

� ðy; x0Þ� ¼ {�Dðx� x0Þ; (35a)

ð@2x �m2
�Þ{�þ�

� ðx; x0Þ �
Z

dDy½{Mþþ
� ðx; yÞ{�þ�

� ðy; x0Þ � {Mþ�
� ðx; yÞ{���

� ðy; x0Þ� ¼ 0; (35b)

ð@2x �m2
�Þ{��þ

� ðx; x0Þ �
Z

dDy½{M�þ
� ðx; yÞ{�þþ

� ðy; x0Þ � {M��
� ðx; yÞ{��þ

� ðy; x0Þ� ¼ 0; (35c)

ð@2x �m2
�Þ{���

� ðx; x0Þ �
Z

dDy½{M�þ
� ðx; yÞ{�þ�

� ðy; x0Þ � {M��
� ðx; yÞ{���

� ðy; x0Þ� ¼ �{�Dðx� x0Þ; (35d)

but in the light of Eq. (18), only two of them are independent. Note that we have another set of four equations of motion for
the � field. In the end, we will be interested in solving this equation of motion in Fourier space, e.g.,

{�ab
� ðx; x0Þ ¼

Z dD�1 ~k

ð2�ÞD�1
{�ab

� ð ~k; t; t0Þe{ ~kð ~x� ~x0Þ; (36a)

{�ab
� ð ~k; t; t0Þ ¼

Z
dD�1ð ~x� ~x0Þ{�ab

� ðx; x0Þe�{ ~kð ~x� ~x0Þ: (36b)

Such that Eq. (35) transforms into

ð@2t þ k2 þm2
�Þ{�þþ

� ðk; t; t0Þ þ
Z 1

�1
dt1½{Mþþ

� ðk; t; t1Þ{�þþ
� ðk; t1; t0Þ � {Mþ�

� ðk; t; t1Þ{��þ
� ðk; t1; t0Þ� ¼ {�ðt� t0Þ; (37a)

ð@2t þ k2 þm2
�Þ{�þ�

� ðk; t; t0Þ þ
Z 1

�1
dt1½{Mþþ

� ðk; t; t1Þ{�þ�
� ðk; t1; t0Þ � {Mþ�

� ðk; t; t1Þ{���
� ðk; t1; t0Þ� ¼ 0; (37b)

ð@2t þ k2 þm2
�Þ{��þ

� ðk; t; t0Þ þ
Z 1

�1
dt1½{M�þ

� ðk; t; t1Þ{�þþ
� ðk; t1; t0Þ � {M��

� ðk; t; t0Þ{��þ
� ðk; t1; t0Þ� ¼ 0; (37c)

ð@2t þ k2 þm2
�Þ{���

� ðk; t; t0Þ þ
Z 1

�1
dt1½{M�þ

� ðk; t; t1Þ{�þ�
� ðk; t1; t0Þ � {M��

� ðk; t; t1Þ{���
� ðk; t1; t0Þ� ¼�{�ðt� t0Þ: (37d)

Note that we have extended t0 ! �1 in the equation
above. Again, we have an analogous set of equations of
motion for the � field. In principle we can solve these
coupled equations of motion only numerically in full gen-
erality. Our strategy is to push the analytical calculation
forward as far as possible, before relying on numerical
methods. Before we make an important simplifying as-
sumption, let us first consider the renormalization of our
theory.

III. RENORMALIZING THE KADANOFF-BAYM
EQUATIONS

In order to renormalize equation of motion (35) or (37)
above, we need to Fourier transform also with respect to
the difference of the time variables:

{�ab
� ðx; x0Þ ¼

Z dDk

ð2�ÞD {�ab
� ðk�Þe{k�ðx�x0Þ; (38a)

{�ab
� ðk�Þ ¼

Z
dDðx� x0Þ{�ab

� ðx; x0Þe�{k�ðx�x0Þ: (38b)

There is a subtlety: for the moment we neglect the time
dependence in the mass term. We only use this assumption
to renormalize. In the end it turns out that we need a mass
independent counterterm to cancel all divergences in our
theory, which allows us to consider a time varying mass
term again. In fact, as we assume there is no residual
dependence on the average time coordinate ðtþ t0Þ=2 in
{�ab

� ðk�Þ, Eq. (38) coincides with a Wigner transform.

Fourier transforming equation of motion (35) yields

FIG. 4. Contributions to the self-masses up to one-loop order. Again, the double solid lines denote � propagators, whereas the
double dashed lines correspond to � propagators. Hence, the first two Feynman diagrams contribute to the self-mass of �ðxÞ, and only
the third diagram contributes to the self-mass of �ðxÞ.
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ð�k�k
� �m2

� � {Mþþ
� ðk�ÞÞ{�þþ

� ðk�Þ þ {Mþ�
� ðk�Þ{��þ

� ðk�Þ ¼ {; (39a)

ð�k�k
� �m2

� � {Mþþ
� ðk�ÞÞ{�þ�

� ðk�Þ þ {Mþ�
� ðk�Þ{���

� ðk�Þ ¼ 0; (39b)

ð�k�k
� �m2

� þ {M��
� ðk�ÞÞ{��þ

� ðk�Þ � {M�þ
� ðk�Þ{�þþ

� ðk�Þ ¼ 0; (39c)

ð�k�k
� �m2

� þ {M��
� ðk�ÞÞ{���

� ðk�Þ � {M�þ
� ðk�Þ{�þ�

� ðk�Þ ¼ �{: (39d)

Here and henceforth, we use the notation k�k
� ¼ �k20 þ

k2 to distinguish the four-vector length from the spatial
three-vector length k ¼k ~k k . Because of the convolution,
the equations of motion above are local in Fourier space.
Let us remind the reader again that analogous equations
hold for the � propagators. As already announced in the
Introduction, we shall not solve the dynamical equations
for both� and � propagators. Instead, we shall assume the
following hierarchy of couplings:

h 	 � (40)

and expand the solution in powers of h=� 	 1. In fact, we
shall solve the system only at order ðh=�Þ0. This does not
imply that the h�2� interaction is unimportant: we will
only assume that � is large such that the � field is ther-
malized by its strong self-interaction. This allows us to
approximate the solutions of the dynamical equations for �
as thermal propagators which we derived in the appendix
in Eq. (B10), see [101]:

{�þþ
� ðk�Þ ¼ �{

k�k
� þm2

� � {

þ 2��ðk�k� þm2

�Þneq� ðjk0jÞ;

(41a)

{���
� ðk�Þ ¼ {

k�k
� þm2

� þ {

þ 2��ðk�k� þm2

�Þneq� ðjk0jÞ;

(41b)

{�þ�
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ½�ð�k0Þþ n
eq
� ðjk0jÞ�; (41c)

{��þ
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ½�ðk0Þþneq� ðjk0jÞ�; (41d)

where the Bose-Einstein distribution is given by

neq� ðk0Þ ¼ 1

e
k
0 � 1

; 
 ¼ 1

kBT
; (42)

with kB denoting the Stefan-Boltzmann constant and T the
temperature. Let us remark that assumption (40) allows us
to compute the quantum corrections to the � propagators
as it depends solely on � propagators running in the loop.
We neglect the backreaction of the system field on the
environment field, such that the latter remains in thermal
equilibrium at temperature T. This assumption is perturba-
tively well justified as already discussed in the Intro-
duction. Furthermore, we neglected for simplicity the
Oð�2Þ correction to the propagators above that will slightly
change the equilibrium of the environment field. Note
finally that, in our approximation scheme, the dynamics
of the system propagators is effectively influenced only by
the usual 1PI self-mass correction.

In this paper, we consider only an environment field � in
its vacuum state at T ¼ 0 and we postpone the finite
temperature corrections to a future publication. Any diver-
gences, if present, originate from the vacuum contributions
to the self-masses, i.e., the vacuum propagators at T ¼ 0
are a useful case to consider anyway:

{�þþ
� ðk�Þ ¼ �{

k�k
� þm2

� � {

; (43a)

{���
� ðk�Þ ¼ {

k�k
� þm2

� þ {

; (43b)

{�þ�
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ�ð�k0Þ; (43c)

{��þ
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ�ðk0Þ: (43d)

We evaluate the Feynman self-mass {Mþþ
� ðx; x0Þ following

from Eq. (34a) where we make the simplifying assumption
m� ! 0. Let us briefly expatiate justifying this assumption

as at first sight it seems that m� ! 0 makes our approxi-

mation scheme more susceptible to undesired backreaction
effects.3 It is a priori not at all clear that the backreaction is
negligible: if we examine the second Feynman diagram on
the right-hand side of Eq. (4)b we see that the leading order
backreaction occurs at orderOðh2=!2

�Þ. Since in our setup
!2

� ¼ k2 þm2
� ¼ k2, it is clear that the backreaction on

deep IR Fourier modes of the environment field is pertur-
batively unsuppressed. Despite that, it does not spoil the
perturbative arguments employed in the Introduction: the
influence of the environment field on the system field is
still perturbatively under control. In order to see this, let us
consider the first non-Gaussian contribution on the right-
hand side of Eq. (5). Indeed, one can show that the IR part
of the inner loop is phase space suppressed: the IR part of

this integral is given by
R ��
0 d4q½ðk�k� �m2

�Þðq� þ k�Þ�
ðq� þ k�Þ��1 
 ��2=m2

� when m� > h ’ ��. Nevertheless,

we admit it would be worthwhile to examine these inte-
grals for m� � 0 and see whether the results presented in

this paper are robust under this change.
We thus need to evaluate

{�þþ
� ðx; x0Þ ¼

Z dDk

ð2�ÞD {�þþ
� ðk�Þe{kðx�x0Þ: (44)

This integral can be performed in arbitrary dimensions by
making use of two straightforward contour integrations
and [102,103]:

3We thank Julien Serreau for this useful comment.
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Z dD�1 ~k

ð2�ÞD�1
ei

~k� ~xfðkÞ ¼ 2

ð4�ÞD�1=2

�
Z 1

0
dkkD�2

JD�3=2ðkxÞ
ð12 kxÞD�3=2

fðkÞ;

(45)

which is valid for any function fðkÞ that depends solely on

k ¼k ~k k . J�ðkxÞ is a Bessel function of the first kind. This
yields

{�þþ
� ðx; x0Þ ¼ �ðD2 � 1Þ

4�D=2

1

�xD�2þþ ðx; x0Þ : (46)

Here, �x2þþðx; x0Þ is one of the distance functions between
two spacetime points x and x0 frequently used in the
Schwinger-Keldysh formalism and given by

�x2þþðx; x0Þ ¼ �ðjt� t0j � i"Þ2 þ k ~x� ~x0k2; (47a)

�x2þ�ðx; x0Þ ¼ �ðt� t0 þ i"Þ2 þ k ~x� ~x0k2; (47b)

�x2�þðx; x0Þ ¼ �ðt� t0 � i"Þ2 þ k ~x� ~x0k2; (47c)

�x2��ðx; x0Þ ¼ �ðjt� t0j þ i"Þ2 þ k ~x� ~x0k2: (47d)

We thus immediately find from Eqs. (34a) and (46)

{Mþþ
� ðx; x0Þ ¼ � {h2

2

�2ðD2 � 1Þ
16�D

1

�x2D�4þþ ðx; x0Þ : (48)

The other self-masses can be obtained from this expression
using the appropriate " pole prescription as indicated in
Eq. (47). We will now rewrite this expression slightly in
order to extract the divergence. For an arbitrary exponent

 � D, 
 � 2, we can easily derive

1

�x
þþðx; x0Þ
¼ 1

ð
� 2Þð
�DÞ @
2 1

�x
�2
þþ ðx; x0Þ : (49)

Furthermore, recall [104,105]

@2
1

�xD�2þþ ðx; x0Þ ¼
4�D=2

�ðD�2
2 Þ {�

Dðx� x0Þ: (50a)

Let us also recall the similar identities for the other dis-
tance functions:

@2
1

�xD�2�� ðx; x0Þ ¼ � 4�D=2

�ðD�2
2 Þ {�

Dðx� x0Þ; (50b)

@2
1

�xD�2þ� ðx; x0Þ ¼ 0; (50c)

@2
1

�xD�2�þ ðx; x0Þ ¼ 0: (50d)

We now arrange Eq. (48), using (49) and (50a)

{Mþþ
� ðx; x0Þ ¼ � {h2�2ðD2 � 1Þ

64�D

1

ðD� 3ÞðD� 4Þ
�
�
@2
�

1

�x2D�6þþ ðx; x0Þ �
�D�4

�xD�2þþ ðx; x0Þ
�

þ 4�D=2�D�4

�ðD�2
2 Þ {�Dðx� x0Þ

�
: (51)

Here, the scale � has been introduced on dimensional
grounds. If we Taylor expand the term in curly brackets4

around D ¼ 4, we find

{Mþþ
� ðx; x0Þ ¼ � {h2�ðD2 � 1Þ�D�4

16�D=2ðD� 3ÞðD� 4Þ {�
Dðx� x0Þ

þ {h2

128�4
@2
�
logð�2�x2þþðx; x0ÞÞ

�x2þþðx; x0Þ
�

þOðD� 4Þ: (52)

We have been able to separate a local ðD� 4Þ�1 diver-
gence and a nonlocal finite term to the self-mass. In order
to precisely cancel the divergence, we can thus add a local
counterterm, i.e., an ordinary mass term of the form:

{M��
�;ctðx; x0Þ ¼ � {h2�ðD2 � 1Þ�D�4

16�D=2ðD� 3ÞðD� 4Þ {�
Dðx� x0Þ:

(53)

The relative sign difference of {M��
�;ctðx; x0Þ is due to

Eq. (50b). We are left with the following renormalized
self-mass:

{Mþþ
�;renðx; x0Þ ¼ � {h2�2ðD2 � 1Þ

64�D

1

ðD� 3ÞðD� 4Þ
� @2

�
1

�x2D�6þþ ðx; x0Þ �
�D�4

�xD�2þþ ðx; x0Þ
�
: (54)

Wewill now perform a spatial Fourier transform in order to
solve for the dynamics this term generates:

{Mþþ
�;renð ~k; t; t0Þ ¼

Z
dD�1ð ~x� ~x0Þ{Mþþ

�;renðx; x0Þe�{ ~kð ~x� ~x0Þ:

(55)

By introducing a regulator in order to dispose of the overall
surface terms arising from two partial integrations, we can
easily convert the partial derivatives. Using several analytic
extensions, we obtain

4Note that in the minimal subtraction scheme, one would also
expand the term multiplying the Dirac delta function around
D ¼ 4, which gives rise, once integrated at the level of the
equation of motion, to a finite local contribution to the mass
of �.
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{Mþþ
�;renðk; t; t0Þ ¼

{h2�2ðD2 � 1Þ2ðD�13Þ=2��ðDþ1Þ=2

kðD�3Þ=2ðD� 3ÞðD� 4Þ ð@2t þ k2Þ

�
�
��D�42ð3�DÞ=2�1=2kðD�5Þ=2

�ðD�2
2 Þ e�{kðj�tj�{
Þ þ kD�4ð{j�tj þ 
Þð5�DÞ=2

2D�4�ðD� 3Þ KðD�5Þ=2ðkðij�tj þ 
ÞÞ
�
; (56)

where k ¼k ~k k , �t ¼ t� t0 and where K�ðzÞ is the modified Bessel function of the second kind. We expand this result
around D ¼ 4:

{Mþþ
�;renðk; t; t0Þ ¼

{h2

32�2
ffiffiffiffiffiffiffiffiffi
2k�

p ð@2t þ k2Þ

�
� ffiffiffiffiffi

�

2k

r
e�{kðj�tj�{
Þ

�
�eþ log

�
k

2{�2ðj�tj� {
Þ
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{j�tj þ 


p
@�K�ð{kðj�tj � {
ÞÞj�¼1=2

�
þOðD� 4Þ:

(57)

Here, �E is the Euler-Mascheroni constant. Moreover, the scale � introduced earlier combines nicely with the other terms
to make the argument of the logarithm dimensionless as it should. Indeed, we need to find an expression for the derivative
with respect to the order � of K�ðzÞ. Starting from the general expansion:

K�ðzÞ ¼ � cscð��Þ
2

X1
k¼0

�
1

�ðk� �þ 1Þk!
�
z

2

�
2k�� � 1

�ðkþ �þ 1Þk!
�
z

2

�
2kþ�

�
; (58)

we immediately derive

@�K�ðzÞj�¼1=2 ¼ �
ffiffiffiffiffi
�

2z

r
ez½Chið2zÞ � Shið2zÞ� ¼ �

ffiffiffiffiffi
�

2z

r
ez
�
�E þ logð2zÞ þ

Z 2z

0
dt

cosht� 1

t
�
Z 2z

0
dt

sinht

t

�
; (59)

where Chið2zÞ and Shið2zÞ are the hyperbolic cosine and
hyperbolic sine integral functions, respectively, defined by
the expressions on the second line. In our case, the variable
z is imaginary, so it proves useful to extract an { and convert
this expression to the somewhat more familiar sine and
cosine integral functions, defined by

siðzÞ ¼ �
Z 1

z
dt

sint

t
; (60a)

ciðzÞ ¼ �
Z 1

z
dt

cost

t
: (60b)

We finally arrive at

{Mþþ
�;renðk; t; t0Þ ¼

{h2

64k�2
ð@2t þ k2Þ

�
�
e�{kj�tj

�
�E þ log

�
k

2{�2ðj�tj � {
Þ
��

þ e{kj�tjðcið2kðj�tj � {
ÞÞ
� {sið2kðj�tj � {
ÞÞÞ

�
þOðD� 4Þ;

(61)

where we have set the 
 regulators in the exponents to zero
as the expression is well defined. Rather than going several
times through the calculation above to determine the other
self-masses, we make use of a few analytic extensions.
Observe, for example, that if �t > 0, �xþþðx; x0Þ and
�x�þðx; x0Þ coincide; hence the expressions for self-

masses {Mþþ
�;renðk; t; t0Þ and {M�þ

� ðk; t; t0Þ should also coin-
cide in that region. All we need to do is to sensibly analyti-
cally extend to �t < 0. We will thus need

si ð�zÞ ¼ �siðzÞ � �: (62)

If �t < 0, we have to carefully make use of the 
 pole
prescription in the cosine integral function:

cið�2kð��tþ {
ÞÞ ¼ �
Z 1

�2kð��tþ{
Þ
dt

cost

t

¼ �
�Z �{


�2kð��tÞ
dtþ

Z 2kð��tÞ

�{

dt

þ
Z 1

2kð��tÞ
dt

�
cost

t

¼ � logð{
Þ þ logð�{
Þ
þ cið2kð��tÞÞ

¼ �{�þ cið2kð��tÞÞ: (63)

We thus find the following expressions for the renormal-
ized self-masses:

{Mab
�;renðk; t; t0Þ ¼ ð@2t þ k2Þ{Zab

� ðk; t; t0Þ; (64a)

where
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Z��
� ðk; t; t0Þ ¼ h2

64k�2

�
e�{kj�tj

�
�E þ log

�
k

2�2j�tj
�
� {

�

2

�

þ e�{kj�tjðcið2kj�tjÞ� {sið2kj�tjÞÞ
�
; (64b)

Z��
� ðk; t; t0Þ ¼ h2

64k�2

�
e�{k�t

�
�E þ log

�
k

2�2j�tj
�

� {
�

2
sgnð�tÞ

�
þ e�{k�tðcið2kj�tjÞ

� {sgnð�tÞsið2kj�tjÞÞ
�
: (64c)

First, appreciate that {M�þ
� ðk; t; t0Þ and {Mþ�

� ðk; t; t0Þ need
not be renormalized. The reason is that these expressions
do not contain a divergence in D ¼ 4, which can be seen
from Eqs. (50c) and (50d). Moreover, the local counterterm
which we add to renormalize {M��

� ðk; t; t0Þ contains the
opposite sign as compared to {Mþþ

� ðk; t; t0Þ because of
Eq. (50b), which we already stated in Eq. (53). Finally,
we have sent all 
 regulators to zero as the expression
above is well defined in the limit �t ! 0.

We performed two independent checks of the calcula-
tion above. First, one can renormalize via a calculation in
Fourier space (rather than position space). We show that
the two results agree in Appendix C. Second, one can
calculate the retarded self-mass directly from the position
space result using (52) and compare with the result ob-
tained from (64). We show that the two results agree in
Appendix D.

If one were to evaluate the two time derivatives in the
expressions above, one would find a divergent answer in
the limit when �t ! 0. We also show this in Appendix C.
This does not reflect an incorrect renormalization proce-
dure. It is crucial to extract the two time derivatives as

presented above in order to properly take the effect of the
self-masses into account as only now Zab

� ðk; t; t0Þ is finite at
coincidence �t ! 0. Indeed, this is most easily seen in
position space.5

Let us compare these expressions with existing litera-
ture. In, e.g., [48,66] it is derived that the renormalized
equations for ��4ðxÞ theory have an identical structure as
the unrenormalized equations. In our theory, clearly, the
structure of the two equations changes as we need to
extract an operator of the form (@2t þ k2), as derived in
Eq. (64).

IV. DECOUPLING THE KADANOFF-BAYM
EQUATIONS

Having renormalized our theory, we are ready to mas-
sage the Kadanoff-Baym equations (37) in two different
ways. First, we will write Kadanoff-Baym equations in
terms of the causal and statistical propagator such that
they decouple. This is of course a vital step required to
solve the Kadanoff-Baym equations in the next section.
Second, we show that when wewrite the equations in terms
of the advanced and retarded propagators, the one-loop
contributions preserve causality as they should.
Note that the structure of the self-mass (34) is such that

we can construct relations analogous to Eq. (25), which of
course hold identically for �:

Zþ�
� ðk; t; t0Þ ¼ ZF

�ðk; t; t0Þ � 1
2{Z

c
�ðk; t; t0Þ; (65a)

Z�þ
� ðk; t; t0Þ ¼ ZF

�ðk; t; t0Þ þ 1
2{Z

c
�ðk; t; t0Þ; (65b)

Zþþ
� ðk; t; t0Þ ¼ ZF

�ðk; t; t0Þ þ 1
2sgnðt� t0Þ{Zc

�ðk; t; t0Þ; (65c)

Z��
� ðk; t; t0Þ ¼ ZF

�ðk; t; t0Þ � 1
2sgnðt� t0Þ{Zc

�ðk; t; t0Þ; (65d)

such that we find from (64):

ZF
�ðk; t; t0Þ ¼

1

2
½Z�þ

� ðk; t; t0Þ þ Zþ�
� ðk; t; t0Þ�

¼ h2

64k�2

�
cosðk�tÞ

�
�E þ log

�
k

2�2j�tj
�
þ cið2kj�tjÞ

�
þ sinðkj�tjÞ

�
sið2kj�tjÞ � �

2

��
; (66a)

Zc
�ðk; t; t0Þ ¼ {½Zþ�

� ðk; t; t0Þ � Z�þ
� ðk; t; t0Þ�

¼ h2

64k�2

�
�2 cosðk�tÞsgnð�tÞ

�
sið2kj�tjÞ þ �

2

�
þ 2 sinðk�tÞ

�
cið2kj�tjÞ � �E � log

�
k

2�2j�tj
���

: (66b)

The expressions for � differ due to (34). We can derive a system of two closed equations for the causal and statistical
propagator by adding and subtracting Eqs. (37c) and (37b). In order to obtain the equation of motion for the causal
propagator (7), we subtract (37b) from (37c) to find

5One can easily recognize that the structure of the renormalized self-masses in Eq. (64) is identical to the d’Alembertian in Fourier
space. The presence of Zab

� ðk; t; t0Þ induces time dependence in the propagator. A similar phenomenon has been observed in [106],
where this phenomenon is referred to as a ‘‘finite wave function renormalization,’’ in which the effect of gravitons on fermions in an
expanding Universe is investigated.
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ð@2t þ k2 þm2
�Þ{�c

�ðk; t; t0Þ þ
1

2

Z 1

�1
dt1½f{M�þ

� ðk; t; t1Þ � {Mþ�
� ðk; t; t1Þgsgnðt1 � t0Þ þ {Mþþ

�;renðk; t; t1Þ
� {M��

�;renðk; t; t1Þ�{�c
�ðk; t1; t0Þ ¼ 0: (67)

Using Eqs. (64) and (65) we find

ð@2t þ k2 þm2
�Þ�c

�ðk; t; t0Þ � ð@2t þ k2Þ
Z t

t0
dt1Z

c
�ðk; t; t1Þ�c

�ðk; t1; t0Þ ¼ 0: (68)

Note that Eq. (68) is causal, in the sense that no knowledge in the future of the maximum of t, t0 is needed to specify
{�c

�ðk; t; t0Þ. Moreover, at one loop the evolution of {�c
� requires only knowledge of the Green’s functions in the time

interval between t0 and t, and is thus independent of the initial conditions at t0 ¼ �1. Finally note that we deleted the { in
front of {�c

� in the equation of motion above to stress that �c
� is real to prepare this equation for numerical integration.

In order to get an equation for the statistical Hadamard function (6), we add Eq. (35b) to (35c) to get

ð@2t þ k2 þm2
�ÞF�ðk; t; t0Þ þ 1

2

Z 1

�1
dt1½{Mþþ

�;renðk; t; t1Þ � {Mþ�
� ðk; t; t1Þ þ {M�þ

� ðk; t; t1Þ � {M��
�;renðk; t; t1Þ�F�ðk; t1; t0Þ

þ 1

4

Z 1

�1
dt1½f{Mþ�

� ðk; t; t1Þ þ {M�þ
� ðk; t; t1Þgsgnðt1 � t0Þ � {Mþþ

�;renðk; t; t1Þ � {M��
�;renðk; t; t1Þ�{�c

�ðk; t1; t0Þ ¼ 0: (69)

Again using (64) and (65) we find the relevant differential
equation for the statistical propagator:

ð@2t þ k2 þm2
�ÞF�ðk; t; t0Þ � ð@2t þ k2Þ

�
�Z t

�1
dt1Z

c
�ðk; t; t1ÞF�ðk; t1; t0Þ

�
Z t0

�1
dt1Z

F
�ðk; t; t1Þ�c

�ðk; t1; t0Þ
�
¼ 0: (70)

We can thus say that the equations of motion for the causal
and statistical propagator have decoupled in the following
sense: the differential equations haven been brought in
triangular form. Note that Eqs. (68) and (70) together
with the causal and statistical self-masses in Eq. (66)
represent a closed causal system of equations suitable for
integration in terms of an initial value problem. Given the
knowledge of F and {�c for both � and�, all other Green’s
functions can be reconstructed from Eq. (25). This strategy
was used (see [48] and references therein) to study the
dynamics of out-of-equilibrium quantum statistical (scalar
and fermionic) field theories. Indeed, we will solve
Eqs. (68) and (70) numerically in the next section. We
emphasize however that the form of Eqs. (68) and (70)
differs from the ones found in [48]. The renormalized
equations of motion have a different structure than the
unrenormalized ones, which is not taken into account in,
e.g., [48,66].

Before doing so, let us show that the one-loop self-
masses do not spoil causality in another way: the retarded
and advanced Green’s functions only receive information
from the past and future light cone, respectively. Now
subtracting Eq. (37b) from (37a) one obtains

ð@2t þ k2 þm2
�Þ{�r

�ðk; t; t0Þ
þ
Z 1

�1
dt1{M

r
�;renðk; t; t1Þ{�r

�ðk; t1; t0Þ ¼ {�ðt� t0Þ:
(71)

Making use of Eq. (D4) we find

{Mr
�;renðk; t; t1Þ ¼ �ð@2t þ k2Þ�ðt� t1ÞZc

�ðk; t; t1Þ: (72)

Equation of motion (71) transforms into

ð@2t þ k2 þm2
�Þ{�r

�ðk; t; t0Þ
� ð@2t þ k2Þ

Z t

�1
dt1Z

c
�ðk; t; t1Þ{�r

�ðk; t1; t0Þ
¼ {�ðt� t0Þ: (73)

The retarded self-mass gets contributions only from within
the past light cone, i.e., when t1 < t.
Similar to Eq. (73), we can subtract Eq. (37c) from (37a)

to obtain the equation of motion for the advanced propa-
gator:

ð@2t þ k2 þm2
�Þ{�a

�ðk; t; t0Þ
þ
Z 1

�1
dt1½ð{Mþþ

�;renðk; t; t1Þ
� {M�þ

� ðk; t; t1ÞÞ{�þþ
� ðk; t1; t0Þ � ð{Mþ�

� ðk; t; t1Þ
� {M��

�;renðk; t; t1ÞÞ{��þ
� ðk; t1; t0Þ� ¼ {�ðt� t0Þ: (74)

This yields

ð@2t þ k2 þm2
�Þ{�a

�ðk; t; t0Þ
� ð@2t þ k2Þ

Z 1

t
dt1Z

c
�ðk; t; t1Þ{�a

�ðk; t1; t0Þ ¼ {�ðt� t0Þ;
(75)

KOKSMA, PROKOPEC, AND SCHMIDT PHYSICAL REVIEW D 81, 065030 (2010)

065030-14



where we find an analogous relation for the advanced self-
mass:

{Ma
�;renðk; t; t1Þ ¼ �ð@2t þ k2Þ�ðt1 � tÞZc

�ðk; t; t1Þ: (76)

As expected, {Ma
�;renðk; t; t1Þ acquires contributions from

the future only, i.e., when t1 > t. Rather than solving for
the causal propagator, we could alternatively solve for the
retarded propagator or the advanced propagator. We will
however not pursue this in the present work.

V. NUMERICALLY SOLVING THE KADANOFF-
BAYM EQUATIONS

Let us once more explicitly write down the equations of
motion of the causal and statistical propagators (68) and
(70) we will numerically tackle in this section:

ð@2t þ k2 þm2
�Þ�c

�ðk; t; t0Þ � ð@2t þ k2Þ
Z t

t0
dt1Z

c
�ðk; t; t1Þ�c

�ðk; t1; t0Þ ¼ 0; (77a)

ð@2t þ k2 þm2
�ÞF�ðk; t; t0Þ � ð@2t þ k2Þ

�Z t

�1
dt1Z

c
�ðk; t; t1ÞF�ðk; t1; t0Þ �

Z t0

�1
dt1Z

F
�ðk; t; t1Þ�c

�ðk; t1; t0Þ
�
¼ 0: (77b)

The causal and statistical self-masses are given in Eq. (66).
In particular, we will be interested in two cases:

m�ðtÞ ¼ m0 ¼ const; (78a)

m2
�ðtÞ ¼ Aþ B tanhð	t� 50Þ; (78b)

where we let A and B take different values. Let us take a
closer look at the two equations of motion above. Clearly,
we first need to determine the causal propagator. Note that
equations of motion (77) depend on two variables, i.e., for
each t0, we have to solve this equation of motion.6 The self-
mass corrections contribute only through a ‘‘memory ker-
nel’’ (memory integral over time) between t0 and t. The
boundary conditions for determining the causal propagator
are as follows:

�c
�ðt; tÞ ¼ 0; (79a)

@t�
c
�ðt; t0Þjt¼t0 ¼ �1: (79b)

Condition (79a) has to be satisfied by definition and con-
dition (79b) follows from the Wronskian normalization
condition due to the commutation relations.

Once we have solved for the causal propagator, we turn
our attention to the second equation (77b). Suppose we
would not have sent t0 ! �1. The equation for the sta-
tistical propagator then would have been of the following
form:

ð@2t þ k2 þm2
�ÞF�ðk; t; t0Þ

� ð@2t þ k2Þ
�Z t

t0

dt1Z
c
�ðk; t; t1ÞF�ðk; t1; t0Þ

�
Z t0

t0

dt1Z
F
�ðk; t; t1Þ�c

�ðk; t1; t0Þ
�
¼ 0: (80)

Clearly, Eqs. (77b) and (80) are not equivalent. Equa-
tion (77b) contains a memory kernel from the infinite
past up to t and t0, whereas Eq. (80) only contains memory
kernels from t0 onward. This corresponds to an interaction
that is switched on nonadiabatically at time t0. To under-
stand this, consider replacing the coupling constant h
hidden in the self-masses (66) with7

h ! h�ðt1 � t0Þ: (81)

The step function would then have transformed Eq. (77b)
to (80) which mimics switching on the interaction between
the two fields at some finite time t0. The two standard
Schwinger-Keldysh contours presented in Figs. 1 and 2 are
thus not equivalent in interacting quantum field theories
where memory effects play an important role. Al-
ternatively, we could say that nonlocality, generic for any
interacting quantum field theory, enforces the memory
kernel to start at the infinite past. This effect has, in the
context of electromagnetic radiation, been recognized and
investigated by Serreau [107]. In the work of Borsanyi and
Reinosa [67,68], the memory integral, extended to negative
infinity, plays an important role too. They suggest to use
that in connection with a generalized dissipation-
fluctuation theorem.
Needless to say, we have to start at some finite time in

our numerical analysis. We therefore make the assumption
to approximate the propagators in the memory kernels
from the negative past to t0 with the free propagators:

6Alternatively, we could have written down the equations of
motion of the causal and statistical propagator where the opera-
tor acts on the other leg of the propagator, on t0. Then we would
have to solve these four equations of motion simultaneously.
Needless to say the two methods are completely equivalent. 7Note that t > t1 by construction.
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ð@2t þ k2 þm2
�ÞF�ðk; t; t0Þ � ð@2t þ k2Þ

�Z t0

�1
dt1Z

c
�ðk; t; t1ÞFfree

� ðk; t1; t0Þ þ
Z t

t0

dt1Z
c
�ðk; t; t1ÞF�ðk; t1; t0Þ

�
Z t0

�1
dt1Z

F
�ðk; t; t1Þ�c;free

� ðk; t1; t0Þ �
Z t0

t0

dt1Z
F
�ðk; t; t1Þ�c

�ðk; t1; t0Þ
�
¼ 0; (82)

where Ffree
� ðk; t1; t0Þ and �c;free

� ðk; t1; t0Þ are the free propagators obtained in Eq. (A9). This approximation induces an error
of the order Oðh4=!4

�Þ. An alternative approach has been outlined in [75] where, for ��4ðxÞ theory, non-Gaussian initial
conditions at t0 are imposed. We can explicitly evaluate the infinite past memory kernel:

Mfree
F ðk; t; t0; t0Þ ¼ ð@2t þ k2Þ

Z t0

�1
dt1½Zc

�ðk; t; t1ÞFfree
� ðk; t1; t0Þ � ZF

�ðk; t; t1Þ�c;free
� ðk; t1; t0Þ�

¼ h2

32�2!in

Z t0

�1
dt1

cosðktþ!int
0 � ðkþ!inÞt1Þ

t� t1
: (83)

We change variables to � ¼ t� t1 to find

Mfree
F ðk; t; t0; t0Þ ¼ h2

32�2!in

Z 1

t�t0

d�
cosððkþ!inÞ��!inðt� t0ÞÞ

�

¼ � h2

32�2!in

½cosð!inðt� t0ÞÞciððkþ!inÞðt� t0ÞÞ þ sinð!inðt� t0ÞÞsiððkþ!inÞðt� t0ÞÞ�: (84)

We postpone the discussion of imposing boundary conditions for F� at t0 to Sec. VA. Equation (77) transforms into

ð@2t þ k2þm2
�Þ�c

�ðk; t; t0Þ� ð@2t þ k2Þ
Z t

t0
dt1Z

c
�ðk; t; t1Þ�c

�ðk; t1; t0Þ ¼ 0;

(85a)

ð@2t þ k2þm2
�ÞF�ðk; t; t0Þ�Mfree

F ðk; t; t0; t0Þ� ð@2t þ k2Þ
�Z t

t0

dt1Z
c
�ðk; t; t1ÞF�ðk; t1; t0Þ�

Z t0

t0

dt1Z
F
�ðk; t; t1Þ�c

�ðk; t1; t0Þ
�
¼ 0:

(85b)

We have now prepared the problem for numerical integra-
tion. In the numerical code, we take t0 ¼ 0 and we let 	t
and 	t0 run between 0 and 100. In order to solve differential
equation (85b), we thus need to evaluate two more memory
kernels. The one involving the causal propagator can be
computed immediately. Once we have solved for the sta-
tistical propagator, our life becomes much easier as we can
immediately find the phase space area via relation (9). The
phase space area fixes the entropy.

Differential equation (85b) merits another remark. If we
let t ! t0, we encounter a logarithmic divergence in
Mfree

F ðk; t; t0; t0Þ as ciðxÞ / logðxÞ as x ! 0. This divergence
is only apparent. Intuitively, this should of course be the
case as we introduced the boundary time t0 by hand and no
divergences should arise consequently. If h ¼ const, the
time t0 is introduced as a fictitious time, and hence observ-
ables cannot depend on t0. Of course, neglecting the mem-
ory integral from negative past infinity to t0 introduces a
dependence on t0. Thus, removing the distant memory
integrals completely is equivalent to setting h ! h�ðt1 �
t0Þ as in Eq. (81). We will prove that this logarithmic
divergence is only apparent rigorously by rewriting
Eq. (85a) for the causal propagator and (85b) for the

statistical propagator in a different form, and by using
the symmetry properties of the propagators. Focusing first
on the equation of motion for the causal propagator (85a),
note that we can transfer the t derivative to a t1 derivative
by using the fact that the causal self-mass (66b) is a
function of �t ¼ t� t1 only:

@2t
Z t

t0
dt1Z

c
�ðk; t; t1Þ�c

�ðk; t1; t0Þ

¼ �@t

�Z t

t0
dt1@t1Z

c
�ðk; t; t1Þ�c

�ðk; t1; t0Þ
�

¼ @t

�Z t

t0
dt1Z

c
�ðk; t; t1Þ@t1�c

�ðk; t1; t0Þ
�

¼ �Zc
�ðk; t; t0Þ þ

Z t

t0
dt1Z

c
�ðk; t; t1Þ@2t1�c

�ðk; t1; t0Þ;
(86)

where we partially integrated in the third line [the bound-
ary terms vanish by virtue of Eq. (79a) and Zc

�ðk; t; tÞ ¼ 0],

and we used the commutation relations in the fourth. We
transform the equation of motion of the statistical propa-
gator (85b) analogously to find
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ð@2t þ k2 þm2
�Þ�c

�ðk; t; t0Þ þ Zc
�ðk; t; t0Þ �

Z t

t0
dt1Z

c
�ðk; t; t1Þð@2t1 þ k2Þ�c

�ðk; t1; t0Þ ¼ 0; (87a)

ð@2t þ k2 þm2
�ÞF�ðk; t; t0Þ �Mfree

F ðk; t; t0; t0Þ � ½@tZc
�ðk; t; t0ÞF�ðk; t0; t0Þ � @tZ

F
�ðk; t; t0Þ�c

�ðk; t0; t0Þ � ZF
�ðk; t; t0Þ

þ Zc
�ðk; t; t0Þ@t0F�ðk; t0; t0Þ � ZF

�ðk; t; t0Þ@t0�c
�ðk; t0; t0Þ� �

Z t

t0

dt1Z
c
�ðk; t; t1Þð@2t1 þ k2ÞF�ðk; t1; t0Þ

þ
Z t0

t0

dt1Z
F
�ðk; t; t1Þð@2t1 þ k2Þ�c

�ðk; t1; t0Þ ¼ 0: (87b)

These two differential equations should be completely
equivalent to Eq. (85). In fact, we have found a nontrivial
test of our numerical code: the results of Eq. (85) and of the
two equations above should agree. Wewill show this in due
course.

Now, we can see another logarithmic divergence appear-
ing in @tZ

c
�ðk; t; t0Þ in Eq. (87b) when we send t ! t0. The

reader can easily verify that the logarithmic divergences in
Mfree

F ðk; t; t0; t0Þ and @tZ
c
�ðk; t; t0ÞF�ðk; t0; t0Þ in Eq. (87b)

above cancel to leave a finite result when t ! t0 if we set
2F�ðk; t0; t0Þ ¼ cosð!inðt0 � t0ÞÞ=!in. We thus find that at

orderOðh2=!2
�Þ no divergences at t0 remain and we expect

that a similar treatment would cure these types of apparent
divergences at higher order: clearly, t0 has been introduced
by hand so this should not lead to any irregularities.

Let us finally make some remarks about the literature.
The authors of [71–74] study out-of-equilibrium ��4ðxÞ.
They encounter, after renormalization, a residual diver-
gence in their theory at the surface of initial boundary
conditions at t0 which they choose to renormalize sepa-
rately. We differ in their approach as we do not find these
residual divergences. The infinite past memory kernel
precisely takes care of these as can be appreciated from
the previous discussion. This is also the case in the ap-
proach of [67,68] mentioned before.

A. Constant mass solutions

The constant mass case is interesting as we can make
nontrivial statements based on some analytical calcula-
tions. The bottom line is that the generated entropy is
constant. The argument is rather simple. When m� ¼
const, we have

F�ðk; t; t0Þ ¼ F�ðk; t� t0Þ: (88)

Using a few Fourier transforms (38), we have

F�ðk; 0Þ ¼
Z 1

�1
dk0

2�
F�ðk�Þ; (89a)

@tF�ðk;�tÞj�t¼0 ¼ �{
Z 1

�1
dk0

2�
k0F�ðk�Þ; (89b)

@t0@tF�ðk;�tÞj�t¼0 ¼
Z 1

�1
dk0

2�
k20F�ðk�Þ: (89c)

The right-hand sides no longer contain any time depen-
dence. Hence, the left-hand sides are also time indepen-
dent. This implies that the phase space area �k is constant,
and so is the generated entropy. As we insert some finite t0,
we expect to observe some transient dependence of the
entropy on time because we approximated the propagators
in the infinite past memory kernel with free propagators.
When this behavior has died out, the entropy should settle
to its constant value derived from Eqs. (9), (10), and (89).
Indeed, this constant entropy does not necessarily equal 0.
We interpret this nonzero entropy as the entropy generated
by the coupling to the second field, which in the effective
action acts as a source for F�. Effectively, this opens up

phase space for the system field that previously was inac-
cessible for it. More accessible phase space for the system
field in turn implies that less information about the system
field is accessible to us, and hence we observe an increase
in entropy.
In order to evaluate the integrals above, we have derived

the statistical propagator in Fourier space in Appendix E.
The result is

F�ðk�Þ ¼ � {

2
sgnðk0Þ�ðk20 � k2Þ

�
1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ � {h2

32� sgnðk0Þ�ðk20 � k2Þ

� 1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ þ {h2

32� sgnðk0Þ�ðk20 � k2Þ

�
: (90)

To gain some intuitive understanding, we depicted the
statistical propagator for h=	 ¼ 3=2 and for h=	 ¼ 4 in
Fig. 5. When h=	 ¼ 0, we have a �-function dispersion
relation as usual but in the presence of a nonzero coupling,

the � function broadens to a so-called ‘‘quasiparticle peak’’
of a Breit-Wigner form. For h=	 ¼ 4, this peak is still well
pronounced, but when we enter the strongly coupled re-
gime, this simple picture breaks down when the resonance
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becomes broad and we can no longer sensibly talk about a
‘‘quasiparticle,’’ but rather we should think of a ‘‘collection
of quasiparticles.’’

The integrals in Eq. (89) can now be evaluated numeri-
cally to yield the appropriate initial conditions. For ex-
ample when k=	 ¼ 1, m�=	 ¼ 1, and h=	 ¼ 4, we find

F�ðk=	 ¼ 1;�tÞj�t¼0 ¼ 0:351 96; (91a)

@tF�ðk=	 ¼ 1;�tÞj�t¼0 ¼ 0; (91b)

@t0@tF�ðk=	 ¼ 1;�tÞj�t¼0 ¼ 0:731 20: (91c)

Clearly, Eq. (91b) holds for all values of k,m�, and h as the

integrand is an odd function of k0, which can be appreci-
ated from Eqs. (89b) and (90). The numerical value of the
phase space area in this case follows from (9) and (91) as

�ms ¼ 1:014 61> 1: (92)

Hence also

Sms ¼ 0:043 27> 0; (93)

where the subscript ms is an abbreviation for ‘‘mixed
state.’’

From the phase space area �ms we can easily obtain the
statistical particle number density (11). It is interesting to
study its behavior as a function of k. Figure 6 clearly shows
that in the deep UV the particle number density vanishes:
the interaction between the two fields only produces par-
ticles (in the statistical sense) in the IR. Moreover, using
Fig. 6, we can show

nkðh;m�Þ ! nUV

�
h

k

�
¼ �

h2

k2
; (94)

in the deep UV. In fact, we can estimate the constant of
proportionality � appearing in Eq. (94) as � ’ 0:0008
which turns out to be insensitive to the value of the mass
of the system field m� and the coupling h. The mass only

influences the IR behavior, as expected, which can also be
appreciated from Fig. 6. Note finally that the formal diver-
gence of derived quantities, such as the total particle
number per volume N=V ¼ R

d3k=ð2�Þ3nk or the total
entropy per volume S=V ¼ R

d3k=ð2�Þ3Sk, does not pose
any problems for the dynamics we are about to solve since
these quantities do not enter the equations of motion.
So far, we postponed the discussion of imposing bound-

ary conditions for numerically determining the statistical
propagator. We just proved that, independently of how one
imposes initial conditions, the phase space area should
settle to a constant value and for a specific choice of
parameters, we have been able to calculate this constant
in Eq. (92). One could think of at least two separate ways of
imposing boundary conditions: ‘‘pure state initial condi-
tions’’ and what we will henceforth refer to as ‘‘mixed state
initial conditions.’’ If we constrain the statistical propaga-
tor to occupy the minimal allowed phase space area ini-
tially, we set

F�ðt0; t0Þ ¼ 1

2!in

; (95a)

@tF�ðt; t0Þjt¼t0 ¼ 0; (95b)

@t0@tF�ðt; t0Þjt¼t0¼t0 ¼
!in

2
; (95c)

1 2 3 4
k

10

8

6

4

Log nk

FIG. 6 (color online). Statistical particle number density nk as
a function of k=	. We used h=	 ¼ 1 and m�=	 ¼ 1 (black solid

line), h=	 ¼ 2 and m�=	 ¼ 1 (black dashed line), h=	 ¼ 1 and

m�=	 ¼ 0:5 [gray (blue) line] and h=	 ¼ 2 and m�=	 ¼ 0:5

[gray (blue) dashed line]. In the UV nk vanishes irrespective of
the value of h=	 or m�=	. Particles are only produced by the

interaction in the statistical sense in the IR. The mass only
influences the IR behavior. Moreover, one can show by appro-
priate rescalings of the functions above that nk is given by
Eq. (94) in the UV.

0.0 0.5 1.0 1.5 2.0
k0

10

20
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40

F k

FIG. 5. Statistical propagator in Fourier space for a small
coupling h=	 ¼ 3=2 (solid line) and a larger one h=	 ¼ 4
(dashed line). Because of a nonzero coupling, we observe that
the � function, present in the original dispersion relation, has
broadened to a ‘‘quasiparticle peak,’’ roughly of a Breit-Wigner
form. If the coupling increases, the quasiparticle peak broadens
further. Clearly, when h � !� in the strongly coupled regime,

we have a ‘‘collection of quasiparticles.’’ We used k=	 ¼ 1,
m�=	 ¼ 1, and �=	 ¼ 1.
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and !in is determined from Eq. (A11). This yields

�kðt0Þ ¼ 1; (96)

such that Skðt0Þ ¼ 0. Physically, this means that despite the
fact that interactions enlarge the accessible phase space of
the system field, we force it to occupy a minimal area
initially and let it evolve.8 Alternatively, we can impose
mixed state initial conditions, i.e., the values calculated
from Eqs. (89) and (90):

F�ðk; t0; t0Þ ¼
Z 1

�1
dk0

2�
F�ðk�Þ; (97a)

@tF�ðk; t; t0Þjt¼t0¼t0 ¼ 0; (97b)

@t0@tF�ðk; t; t0Þjt¼t0¼t0 ¼
Z 1

�1
dk0

2�
k20F�ðk�Þ; (97c)

such that initially

�kðt0Þ ¼ �ms ¼ const; (98)

and also Sms > 0. Clearly, boundary conditions (97) can
only be evaluated numerically for each choice of parame-
ters. Needless to say we are completely free to impose any
other type of initial conditions as well, but we consider the
two cases above to be physically well motivated if the
system is close to its minimum energy state.

In Fig. 7, we show the phase space evolution for both
pure state initial conditions (black line) and mixed state
initial conditions (red line). For pure state initial condi-
tions, the evolution is precisely as anticipated. The phase
space area increases from its minimal area �kðt0Þ ¼ 1, to
the asymptotic value �ms calculated in Eq. (92). For mixed
state initial conditions, we first observe some transient
behavior which eventually decays. We then smoothly
evolve to�ms. The initial transient is due to our assumption
to approximate the propagators in the memory kernel from
past infinity to t0 with free propagators. As is apparent from
(84), its effect becomes less important as time elapses.

From the evolution of the phase space area (for pure
state initial conditions), we can immediately find the time
evolution of the entropy SkðtÞ in Fig. 8. This shows that
entropy has been generated by interaction with an environ-
ment that is in the vacuum state assuming that some
observer is only sensitive to Gaussian correlators. The
entropy eventually settles to its asymptotic value Sms cal-
culated from �ms and Eq. (10). As can be anticipated, the
generated entropy per mode is small: both system and
environment are in a state close to the minimum energy
state (T ¼ 0).

We conclude that when the mass m� is a constant, no

further entropy is generated if we start with mixed state

initial conditions. However, we do observe a generation of
entropy if we start with pure state initial conditions. This
increase in entropy can be understood by the system’s
tendency to evolve toward the vacuum state of the interact-
ing theory.
Let us return once more to Fig. 7. The fact that our

numerical asymptote is located slightly above the one
calculated from (92) can be attributed to the accuracy of
the implementation of the infinite past memory kernel.
This can be appreciated from Fig. 9 where we test the
accuracy of our code. Clearly, the numerically found
asymptote decreases toward �ms as accuracy increases.
Moreover, observe that the initial violent oscillations in

Sms

0 20 40 60 80 100
t

0.01

0.02

0.03

0.04

0.05
S

FIG. 8. Entropy generation for the system field � through
interaction with the environment � in the vacuum state. As
both fields are in a vacuum state, the entropy generation is
relatively small. We used pure state initial conditions Skðt0Þ ¼
0 and k=	 ¼ 1, m�=	 ¼ 1, h=	 ¼ 4 and N ¼ 2000. The en-

tropy settles to a constant value Sms calculated from the value of
�ms of Fig. 7 and Eq. (10).

ms

0 20 40 60 80 100
t

1.005

1.010

1.015

FIG. 7 (color online). Phase space evolution for constant m�

for pure state initial conditions �kðt0Þ ¼ 1 (black line) and
mixed state initial conditions [gray (red) line] �kðt0Þ ¼ �ms.
In both cases the phase space area settles to the constant value
�ms, indicated by the dashed line and calculated in Eq. (92). We
use k=	 ¼ 1, m�=	 ¼ 1, h=	 ¼ 4, and N ¼ 2000.

8If we would not include the infinite past memory kernel
Mfree

F ðk; t; t0; t0Þ and indeed consider a coupling between two
fields that is switched on nonadiabatically at some finite time
t0 as previously discussed, the pure state initial condition would
be the natural choice for this problem.
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�kðtÞ decrease as accuracy improves. Also, we have
chosen !�t, where �t is the step size of the numerical
integration, such that we resolve all the oscillations. For a
N ¼ 2000 run at t	 ¼ 100, we have !�t ’ 0:071 for the
parameters used in Fig. 7. Also, we can observe a ‘‘beat-
ing’’ phenomenon that persists even if the accuracy in-
creases (and that can hence not be attributed to numerical
artifacts). It is caused by a frequency mismatch by approx-
imating the propagators in the infinite past memory kernel
by free propagators. Finally, let us discuss Fig. 10. Here,
we show the difference between the phase space evolution
calculated from Eq. (85) and from (87). The dashed line is

more accurate than the dotted one, which in turn is more
accurate than the solid line. Clearly, the differences dis-
appear when the accuracy improves. This confirms our
numerical analysis in a nontrivial way.

B. The decoherence time scale

We define the decoherence time scale to be the charac-
teristic time it takes for the phase space area �kðtÞ to settle
to its constant mixed state value �ms. One can suppose that
such a process is described by a differential equation of the
following form:

� _�kðtÞ þ �kðh;!�Þ��kðtÞ ¼ 0; (99)

where ��kðtÞ ¼ �kðtÞ � �ms and where �kðh;!�Þ is the
decoherence rate. This equation is equivalent to _nk ¼
��kðnk � nmsÞ, where nk is defined in Eq. (11) and nms

is the stationary n corresponding to�ms. We anticipate that
the decoherence rate depends both on the coupling con-
stant and on the energy of our system field.9 The following
intuitive picture is helpful: the solution of Eq. (99) results
in an exponential decay to the mixed state value ��kðtÞ /
exp½��kðh;!�Þt�. Furthermore, a stronger coupling h

should result in a larger value of �kðh;!�Þ. However, a
larger energy !2

� ¼ m2
� þ k2 should be reflected in a

smaller value of �kðh;!�Þ. On dimensional grounds, we

thus anticipate

�kðh;!�Þ ¼ h2

!�

�; (100)

where � ¼ const. Let us now test this expected scaling
relation.
Looking back at Fig. 7, we see in the first few time steps

that �kðtÞ oscillates. Clearly, the time scale of these fluc-
tuations has nothing to do with the decoherence time scale,
but rather can be fully attributed to numerical accuracy. To
capture the decoherence time scale correctly, we thus con-
sider the difference �ms

k ðtÞ � �ps
k ðtÞ of the evolution of the

phase space area�ms
k ðtÞ using mixed state initial conditions

and �ps
k ðtÞ using pure state initial conditions. On a loga-

rithmic scale, we observe in Fig. 11 an exponential decay
toward �ms (solid line). Moreover, the slope should not
depend on the particular choice of initial conditions. To
this end, we also calculate the difference of �ms

k ðtÞ �
�

nps
k ðtÞ, where �nps

k ðtÞ follows from setting 1<�
nps
k ðt0Þ<

�ms
k ðt0Þ initially. In order to do this, we kept the value

of F�ðk; t0; t0Þ identical to the value it had for the mixed

state boundary conditions but reduced the value of
@t0@tF�ðk; t; t0Þjt¼t0¼t0 such that the inequality 1<

�nps
k ðt0Þ< �ms

k ðt0Þ is satisfied. The resulting decoherence

rates precisely coincide as seen in Fig. 11, where we plot

5 10 15 20 25
t

0.002

0.004

0.006

FIG. 10. Test of our numerical code. This plot shows the
difference of the phase space area calculated from Eqs. (85) and
(87) for different values of N but the same values for the other
parameters k=	 ¼ 1, m�=	 ¼ 1, and h=	 ¼ 4 for pure state

initial conditions. We used N ¼ 1000 at t ¼ 100 (solid line),
N ¼ 1000 at t ¼ 50 (dotted line), and N ¼ 1000 at t ¼ 25
(dashed line). The difference between the two methods disap-
pears as the accuracy of the numerical evolution increases.

ms
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t
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1.015
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FIG. 9 (color online). Convergence for the phase space evolu-
tion presented in Fig. 7. The black and red (the darker ones) lines
are identical to the ones in Fig. 7 and most accurate (N ¼ 2000).
The gray and yellow lines (the lighter ones) are calculated with
N ¼ 1000. The other parameters are kept fixed. Clearly, the
difference between �ms and the numerical asymptotes decreases
as the accuracy increases.

9Ideally, we should of course take the Oðh2=!2
�Þ to !�

through the dispersion relation into account.
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logð��Þ � log

�
�ms

k ðtÞ ��ps
k ðtÞ

�ms
k ðt0Þ ��

ps
k ðt0Þ

�
; (101)

and likewise for �
nps
k ðtÞ (dashed line).

We can repeat the steps outlined above for a different
choice of parameters m and h. By rescaling the obtained
decoherence rates by a factor of !�=h

2, we can test the

scaling relation (99). All decoherence rates now precisely
overlap as we depicted in Fig. 12. We can thus estimate the
value of the constant of proportionality � appearing in
Eq. (100):

�kðh;!�Þ ¼ ð0:0101� 0:0003Þ h
2

!�

: (102)

This relation gives the decoherence rate for our particular

model. This result is nothing but the single particle decay
rate:

��!�� ¼ � Imð{MþþÞ
!�

¼ 1

32�

h2

!�

; (103)

where we have used Eq. (C2) and e.g. [60,108]. Let us
compare the result (102) to the literature. Let us remark
that most of the calculations have been performed in an
expanding Universe setting, or with a different model, so it
is hard to compare this result quantitatively. In [39] it was
found that, for a different model during inflation, the
decoherence rate is proportional to the spatial volume,
which we do not find.

C. Changing mass solutions

Finally, let us discuss the evolution of the phase space
area when m2

�ðtÞ is changing according to Eq. (78b). The

analytic expression for the statistical propagator in Fourier
space we previously derived in Eq. (90) is no longer valid.
Introducing a time dependent mass m2

�ðtÞ, generated by a

time dependent Higgs-like scalar field, breaks the time
translation invariance of the problem. Consequently, the
statistical propagator Fðk; t; t0Þ no longer depends only on
the time difference of its time variables �t ¼ t� t0, be-
cause considering m2

�ðtÞ introduces a proper time depen-

dence on the average time coordinate � ¼ ðtþ t0Þ=2 in the
problem. When the mass is changing rapidly, we can only
rely on numerical methods. However, asymptotically,
where the mass settles again to a constant value, the
analysis performed in the previous section should still
apply.
We impose mixed state boundary conditions as in

Eq. (97) such that �kðt0Þ ¼ �ms initially. Of course, the
value of the mass inserted to calculate these initial con-
ditions is the value of the initial mass, valid before the mass
jump.
If the mass changes nonadiabatically, this results in a

significant particle creation according to the discussion in
Appendix A. We can thus identify the following regimes:

j
kj2 	 1 adiabatic regime; (104a)

j
kj2 � 1 nonadiabatic regime; (104b)

where 
k is given is Eq. (A25b). For the parameters we
used in Figs. 13 and 15 we are in the adiabatic regime
(j
kj2 ¼ 3:5� 10�4).
In Fig. 13 we study a mass increase from m�=	 ¼ 0:75

to m�=	 ¼ 2 (black line). This decreases the phase space

area and consequently the entropy decreases, which we
depicted in Fig. 14. Intuitively, a larger mass of the � field
reduces the effect of the quantum corrections of the � field.

Hence �ð2Þ
ms < �ð1Þ

ms, where �
ð2Þ
ms is the constant phase space
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t
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0.05

h2
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FIG. 12 (color online). Decoherence time scale. We confirm
the scaling relation for the decoherence time scale anticipated in
Eq. (100). For all plots we took k=	 ¼ 1 and N ¼ 1000, and
furthermore we used m�=	 ¼ 1, h=	 ¼ 4 (solid red line),

m�=	 ¼ 1, h=	 ¼ 1 (dashed red line), m�=	 ¼ 4, h=	 ¼ 4

(solid blue line, higher frequency), and m�=	 ¼ 4, h=	 ¼ 1

(dashed blue line, higher frequency).
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FIG. 11. Exponential approach to �ms. We study, for different
initial conditions, differences of �kðtÞ on a logarithmic scale
defined by Eq. (101). Clearly, the decoherence rate does not
depend on the initial conditions. We used k=	 ¼ 1, m�=	 ¼ 1,

h=	 ¼ 4, and N ¼ 2000.
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area calculated for m�=	 ¼ 2:0 from three Fourier inte-

grals as in Eq. (91). Likewise,�ð1Þ
ms corresponds to the phase

space area calculated for m�=	 ¼ 0:75. The relevant be-

havior to compare with is the constant mass phase space
evolution for m�=	 ¼ 2 which we also depicted in Fig. 13

in gray. Clearly, the late time asymptotes of the two func-
tions coincide and we conclude that, also at late times, no
entropy has been generated. As we are in the deep adiabatic
regime, this is to be expected.

Now let us study the opposite: a mass decrease from
m�=	 ¼ 2 to m�=	 ¼ 0:75. This is depicted (black line)

in Fig. 15. Clearly, the phase space area increases from�ð2Þ
ms

to �ð1Þ
ms and we plotted the resulting entropy increase in

Fig. 16. Again, we compared this evolution with the phase
space area calculated for a constant mass m�=	 ¼ 0:75

(gray line). As the two asymptotes also coincide in this
case, we conclude that no entropy has been generated at
late times by the mass change. Of course, it would be very
interesting to see what happens when we study the same
process in the nonadiabatic regime and we hope to address
this question in a future publication.
If we compare the evolution of the entropy in time in

these two cases with the free case SkðtÞ ¼ 0, the interacting
case reveals much more interesting behavior. First, due to
the presence of an environment field, the constant value to
which the entropy settles asymptotically is different from
zero, unlike the free case. Second, a changing mass induces
dynamics: the entropy depends on time and evolves from

one value Sð1Þms to another Sð2Þms or vice versa.

ms
1

ms
2

0 20 40 60 80 100
t

1.005

1.010

1.015

1.020

1.025

FIG. 13. Phase space area decrease due to a mass increase
from m�=	 ¼ 0:75 to m�=	 ¼ 2 (solid black line). We used

h=	 ¼ 4, k=	 ¼ 1, and N ¼ 2000. We thus observe a slight
entropy decrease. The solid gray line denotes the constant mass
phase space evolution for m�=	 ¼ 2. As the two asymptotes

coincide, we conclude no entropy has been generated at late

times by the mass change. �ð1Þ
ms and �ð2Þ

ms are the constant mixed
phase space areas calculated for m�=	 ¼ 0:75 and m�=	 ¼ 2,

respectively.
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FIG. 14. Entropy decrease for the case presented in Fig. 13.
Because of the mass increase, the phase space area decreases
which results consequently in a drop in the entropy.
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FIG. 15. Phase space area increase due to a mass decrease
from m�=	 ¼ 2 to m�=	 ¼ 0:75 (solid black line). The other

parameters are the same as in Fig. 13. The solid gray line denotes
the constant mass phase space evolution for m�=	 ¼ 0:75.

Again the two asymptotes coincide and no entropy has been
generated at late times by the mass change.
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FIG. 16. Entropy increase for the case presented in Fig. 15.
Clearly, a mass decrease gives rise to a slight entropy increase.
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VI. CONCLUSION

We apply the decoherence framework to quantum field
theory. We consider two scalar fields, one corresponding to
a ‘‘system field,’’ the second to an ‘‘environment field,’’ in
interaction via a cubic coupling. Here, we consider an
environment in its vacuum state (T ¼ 0) and postpone
finite temperature contributions to a future publication.
We neglect the backreaction of the environment field on
the system field, assuming that the former remains at
T ¼ 0.

We advocate the following point of view regarding a
sensible application of decoherence to quantum field the-
ory: for some observer inaccessible higher order correla-
tors give rise, once neglected, to an increase in entropy Sk
of the system. This is inspired by realizing that correlators
are measured in quantum field theories and that higher
order irreducible n-point functions are usually perturba-
tively suppressed. In this work, we assume that our ob-
server is only sensitive to Gaussian correlators and will
hence neglect higher order, non-Gaussian correlators.
Neglecting the information stored in these higher order
correlators gives rise to an increase of the entropy of the
system. If the system initially occupies the minimal area in
phase space [characterized by a pure state with Skðt0Þ ¼ 0],
we numerically calculate the evolution of the entropy SkðtÞ
in Fig. 8. Also, we calculate the asymptotic value of the
phase space area �ms and the entropy Sms as a function of
the coupling h, the mass m�, and k to which these func-

tions evolve. This increase in entropy can be understood
from the system’s tendency to evolve toward the vacuum
state of the interacting theory. Even though we do not solve
the full 2PI equations at one loop, we have strong numeri-
cal evidence that within our approximation scheme, the
system evolves toward its correct stationary interacting
vacuum state. If the system, however, starts out initially
occupying the state characterized by Sms, we observe no
further increase in the entropy. Furthermore, we calculate
the decoherence rate in Eq. (102) which charaterizes the
exponential rate at which the system approaches its sta-
tionary state.

Secondly, we study the effect of a time dependent mass
m2

�ðtÞ of the system field. Now, calculating SkðtÞ can only

be addressed numerically. Starting out at mixed state initial
conditions Skðt0Þ ¼ Sms > 0, we observe an entropy in-
crease (decrease) due to a mass decrease (increase) as
depicted in Figs. 14 and 16, respectively. By comparing
with the constant mass evolution for the entropy, we con-
clude that no additional entropy has been generated asymp-
totically by the mass jump. As we study mass changes in
the deep adiabatic regime, it remains to be investigated
whether this statement also holds in the nonadiabatic
regime.

We also would like to draw a few somewhat more
technical conclusions. It is important to stress that in
interacting field theories where memory effects play a

crucial role, one cannot just insert initial conditions at
some arbitrary finite time t0, because one then neglects
the memory effects existing from the infinite asymptotic
past to t0. In numerical computations however, one has to
start at some finite time. We therefore approximate the
propagators in the memory integral from the past infinity
to t0 by free propagators, inducing a perturbatively sup-
pressed error.
Also, it has not been previously appreciated in the

literature that renormalizing the vacuum contribution in
the Kadanoff-Baym equations can actually significantly
change the structure of these equations. In order to prop-
erly take account of the renormalized self-mass contribu-
tion we had to extract two time derivatives which can
readily be seen from Eq. (64).
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APPENDIX A: QUANTUM EFFECTS OF A
CHANGING MASS: FREE CASE

It is interesting to compare our results to a nontrivial
exact case: scattering of a changing mass field in the spirit
of Birrell and Davies [88]. The solutions presented here
stem from the cosmological particle creation literature
(based on [109,110]) and are originally due to Bernard
and Duncan [111]. Let us consider the action of a free
scalar field:

S½�� ¼
Z

d4x

�
� 1

2
@��ðxÞ@��ðxÞ��� � 1

2
m2

�ðtÞ�2ðxÞ
�
;

(A1)

where, as usual, ��� ¼ diagð�1; 1; 1; 1Þ is the Minkowski

metric, and where we consider the following behavior of
the mass m�ðtÞ of the scalar field:

m2
�ðtÞ ¼ ðAþ B tanhð	tÞÞ: (A2)

From (A1), it follows that

ð@2t � @2i þm2
�ðtÞÞ�ðxÞ ¼ 0: (A3)

The vacuum causal and statistical propagators follow from
(6) and (7) where 	̂ðt0Þ ¼ j0ih0j as
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{�c
�ðx; x0Þ ¼ h0j½�̂ðxÞ; �̂ðx0Þ�j0i; (A4a)

F�ðx; x0Þ ¼ 1
2h0jf�̂ðx0Þ; �̂ðxÞgj0i: (A4b)

Let us quantize our fields in D dimensions by making use
of creation and annihilation operators:

�̂ðxÞ ¼
Z dD�1 ~k

ð2�ÞD�1
ðâ ~k�kðtÞei ~k� ~x þ ây~k�

�
kðtÞe�i ~k� ~xÞ:

(A5)

The annihilation operator acts as usual on the vacuum:

â ~kj0i ¼ 0; (A6a)

and we impose the following commutation relations:

½â ~k; â
y
~k0
� ¼ ð2�ÞD�1�D�1ð ~k� ~k0Þ: (A6b)

Hence the equation of motion for the mode functions�kðtÞ
of �ðxÞ, defined by relation (A5), follows straightfor-
wardly as

ð@2t þ k2 þm2
�ðtÞÞ�kðtÞ ¼ 0; (A7)

where k ¼k ~k k . The mode functions determine the causal
and statistical propagators from (A4) completely:

{�c
�ðk; t; t0Þ ¼ �kðtÞ��

kðt0Þ ��kðt0Þ��
kðtÞ; (A8a)

F�ðk; t; t0Þ ¼ 1
2f�kðt0Þ��

kðtÞ þ�kðtÞ��
kðt0Þg: (A8b)

Let us at this point for completeness calculate the constant
mass causal and statistical propagators in Fourier space.
We just insert a constant mass m�, rather than a changing

one as in Eq. (A2):

{�c
�ðk; t; t0Þ ¼ � {

!
sinð!ðt� t0ÞÞ; (A9a)

F�ðk; t; t0Þ ¼ 1

2!
cosð!ðt� t0ÞÞ; (A9b)

where !2 ¼ m2
� þ k2. Let us now return to the changing

mass case. The physical picture is clear: we would like to
study reflection and transmission, i.e., scattering, of an
incoming wave due to the changing mass. Before solving
this equation of motion exactly, let us first solve for the
asymptotic mode functions to gain intuitive understanding.
In the asymptotic past (t ! �1), Eq. (A7) is solved by

�in
k ðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2!in

p exp½�{!int�; (A10)

i.e., one right-moving or incoming wave with frequency:

!in ¼ ðk2 þ A� BÞ1=2: (A11)

In the infinite asymptotic future, the solution necessarily is
an appropriately normalized linear superposition of a left-

and right-moving wave:

�out
k ðtÞ ¼ �k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2!out

p exp½�{!outt� þ 
k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2!out

p

� exp½{!outt�; (A12)

where

!out ¼ ðk2 þ Aþ BÞ1=2; (A13)

and where

jj�kjj2 � jj
kjj2 ¼ 1; (A14)

for a consistent canonical quantization. In both asymptotic
regions we can now immediately calculate the statistical
propagator from Eq. (A8b):

Finðk; t; t0Þ ¼ 1

2!in

cosð!inðt� t0ÞÞ; (A15a)

Foutðk; t; t0Þ ¼ 1

2!out

½ðj�kj2 þ j
kj2Þ
� cosð!outðt� t0ÞÞ þ �k


�
ke

�{!outðtþt0Þ

þ ��
k
ke

{!outðtþt0Þ�: (A15b)

Using Eq. (9), we can calculate the area in phase space the
in and out states occupy:

�in
k ðtÞ ¼ 1; (A16a)

�out
k ðtÞ ¼ 1: (A16b)

Hence for the entropy we find

Sink ðtÞ ¼ 0 ¼ Soutk ðtÞ: (A17)

We conclude that in both asymptotic regions the entropy is
zero and no entropy has been generated by changing the
mass.
However, we can do better than study the asymptotic

behavior only. Birrell and Davies study cosmological par-
ticle creation in Sec. 3.4 of their book [88] in a simple,
conveniently chosen cosmological setting. They consider a
scale factor as a function of conformal time að�Þ which
behaves as

a2ð�Þ ¼ Aþ B tanhð	�Þ: (A18)

This represents an asymptotically static universe with a
smooth expansion connecting these two asymptotic re-
gions. Indeed, the equation of motion (in conformal time)
for the mode functions Birrell and Davies consider coin-
cides precisely with (A7). The solution to (A7) which
behaves as a positive frequency mode in the asymptotic
past (t ! �1) can be expressed in terms of Gauss’ hyper-
geometric function 2F1:

KOKSMA, PROKOPEC, AND SCHMIDT PHYSICAL REVIEW D 81, 065030 (2010)

065030-24



�in
k ðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2!in

p exp

�
�{!þt� {

!�
	

logf2 coshð	tÞg
�
2F1

�
1þ {

!�
	

; {
!�
	

; 1� {
!in

	
;
1

2
f1þ tanhð	tÞg

�
; (A19)

such that

lim
t!�1�

in
k ðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2!in

p exp½�{!int�; (A20)

where we defined !in and !out in Eqs. (A11) and (A13), respectively, and

!� ¼ 1
2ð!out �!inÞ: (A21)

Alternatively, the modes which reduce to positive frequency modes in the out region are given by

�out
k ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2!out

p exp

�
�{!þt� {

!�
	

logf2 coshð	tÞg
�
2F1

�
1þ {

!�
	

; {
!�
	

; 1þ {
!out

	
;
1

2
f1þ tanhð	tÞg

�
; (A22)

such that

lim
t!1�

out
k ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2!out

p exp½�{!outt�: (A23)

We can rewrite the hypergeometric functions using
Eqs. (15.3.3) and (15.3.6) of [112] and identify

�in
k ðtÞ ¼ �k�

out
k ðtÞ þ 
k�

out�
k ðtÞ; (A24)

where

�k ¼
�
!out

!in

�
1=2 �ð1� {!in=	Þ�ð�{!out=	Þ

�ð�{!þ=	Þ�ð1� {!þ=	Þ ; (A25a)


k ¼
�
!out

!in

�
1=2 �ð1� {!in=	Þ�ð{!out=	Þ

�ð{!�=	Þ�ð1þ {!�=	Þ : (A25b)

Having the mode functions at our disposal, we can find (the
rather cumbersome expressions for) the exact causal and
statistical propagators. The statistical and causal propaga-
tors can however neatly be visualized. Figure 17 shows the
causal propagator with a constant mass from Eq. (A9a) for
comparison to the changing mass case. In Figs. 18 and 19

we show the exact causal propagator for a relatively small
increase of the mass (fromm�=	 ¼ 0 tom�=	 ¼ 1) and a
larger one (fromm�=	 ¼ 0 tom�=	 ¼ 4) for one particu-
lar Fourier mode only (k=	 ¼ 1). Figures 20–22 show the
analogous statistical propagators.
We can easily relate the statistical propagator to the

phase space area by making use of Eq. (9). It will not
come as a surprise to the reader that we find

�kðtÞ ¼ 1; (A26)

and hence

SkðtÞ ¼ 0; (A27)

also for all intermediate times. A final remark is in order.
The reader should not confuse j
kj2 calculated from
Eq. (A25b) with the phase space particle number density
or statistical number density (11). Although the mass is
changing, the phase space particle density remains zero but
j
kj2, which in the literature is often referred to as a
particle number, can change significantly as can be appre-

FIG. 17 (color online). Causal propagator with a constant
mass. Parameters: k=	 ¼ 1, m�=	 ¼ 1.

FIG. 18 (color online). Causal propagator for a small change in
the mass. Parameters: k=	 ¼ 1, A=	2 ¼ B=	2 ¼ 1=2.
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ciated from Fig. 23. This is just caused by the fact that the
in and out vacua differ. We plot the behavior of j
kj2 as a
function of mout=	 in both the adiabatic regime (j
kj2 	
1) and nonadiabatic regime (j
kj2 � 1).

This simple example suggests the following: (i) the area
in phase space a state occupies is a good quantitative
measure of the entropy, (ii) the statistical propagator con-
tains all the information required to calculate this phase
space area, and (iii) a changing mass does not change the
entropy for a free scalar field. If we contrast this result with
the calculations performed in the main body of the paper, it
is important to realize that just a changing mass, in the
absence of interactions, produces no entropy, whereas we
have shown that the entropy can change in the interacting
case.

FIG. 19 (color online). Causal propagator for a large change in
the mass. Parameters: k=	 ¼ 1, A=	2 ¼ B=	2 ¼ 2.

FIG. 20 (color online). Statistical propagator with a constant
mass. Parameters: k=	 ¼ 1, m�=	 ¼ 1.

FIG. 21 (color online). Statistical propagator for a small
change in the mass. Parameters: k=	 ¼ 1, A=	2 ¼ B=	2 ¼ 1=2.

FIG. 22 (color online). Statistical propagator for a large
change in the mass. Parameters: k=	 ¼ 1, A=	2 ¼ B=	2 ¼ 2.
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FIG. 23. This plot shows j
kj2 as a function of the final mass
mout=	, for fixed k=	 ¼ 0:01. The dashed line shows the adia-
batic regime (min=	 ¼ 0:2), whereas the solid line shows the
nonadiabatic regime (min=	 ¼ 0:02).
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APPENDIX B: EVALUATION OF THE THERMAL PROPAGATORS

In this Appendix, we will for pedagogical reasons derive the thermal propagators from first principles. The four thermal
propagators should solve the standard differential equation (19). We start by summarizing the conditions the thermal
propagators have to satisfy in position space:

{�þþ
� ðx; x0Þ þ {���

� ðx; x0Þ ¼ {��þ
� ðx; x0Þ þ {�þ�

� ðx; x0Þ; (B1a)

{�þþ
� ðx; x0Þ � {���

� ðx; x0Þ ¼ sgnðt� t0Þð{��þ
� ðx; x0Þ � {�þ�

� ðx; x0ÞÞ; (B1b)

{��þ
� ðx; x0Þ ¼ {�þ�

� ðx0; xÞ; (B1c)

{��þ
� ððt� {
; �xÞ; x0Þ ¼ {�þ�

� ðx0; xÞ; (B1d)

½�ðt; �xÞ; _�ðt; �x0Þ� ¼ @t0 f{��þ
� ðx; x0Þ � {�þ�

� ðx; x0Þgjt¼t0 ¼ {�ð3Þð �x� �x0Þ: (B1e)

Here, the first condition [identical to (18c)] and the second
relate the sum and the difference of the time ordered and
antitime ordered propagators to the two Wightman func-
tions, respectively. The third condition is just identical to
(18d). Condition (B1d) is the well-known KMS condition
or Kubo-Martin-Schwinger condition, see [113,114]. The
KMS condition corresponds to periodic boundary condi-
tions in the imaginary time direction due to assuming a
thermal density matrix operator 	̂th / exp½�
Ĥ�. The
final equation arises from requiring standard commutation
relations. Fourier transforming the equations above ac-
cording to (38) yields

{�þþ
� ðk�Þþ {���

� ðk�Þ ¼ {��þ
� ðk�Þþ {�þ�

� ðk�Þ; (B2a)

{�þþ
� ðk�Þ� {���

� ðk�Þ ¼ P

� �2{

k�k
� þm2

�

�
; (B2b)

{��þ
� ðk�Þ ¼ {�þ�

� ð�k�Þ; (B2c)

{��þ
� ðk�Þ ¼ e
k

0
{�þ�

� ðk�Þ; (B2d)

{��þ
� ðk�Þ� {�þ�

� ðk�Þ ¼ 2�sgnðk0Þ�ðk�k� þm2
�Þ: (B2e)

To obtain the second relation (B2b), we recall

sgn ðxÞ ¼ P
Z 1

�1
dk

1

{�k
e{kx; (B3)

where P denotes the Cauchy principal value. Rela-
tions (B2d) and (B2e) trivially yield the two thermal
Wightman functions:

{�þ�
� ðk�Þ ¼ 2�sgnðk0Þ�ðk�k� þm2

�Þneq� ðk0Þ; (B4a)

{��þ
� ðk�Þ ¼ 2�sgnðk0Þ�ðk�k� þm2

�Þð1þneq� ðk0ÞÞ; (B4b)
where neq� ðk0Þ is the Bose-Einstein distribution given by
(42). In order to solve for the time ordered and antitime
ordered propagators, let us make the following general
Ansätze:

{�þþ
� ðk�Þ ¼ �{

k�k
� þm2

� � {

þ �ðk�k� þm2

�Þfðk0Þ;

(B5a)

{���
� ðk�Þ ¼ {

k�k
� þm2

� þ {

þ �ðk�k� þm2

�Þgðk0Þ:

(B5b)

The functions fðk0Þ and gðk0Þ do not depend on ki due to
the delta function. We have already chosen the time or-
dered and antitime ordered pole prescription. This is par-
ticularly convenient because, as we will appreciate in a
moment, this allows us to easily recover the familiar vac-
uum solutions when T ! 0. We will return to this subtlety
shortly. Condition (B2b) immediately implies

fðk0Þ ¼ gðk0Þ; (B6)

where we have made use of the Dirac identity:

1

xþ {

¼ P

1

x
� {��ðxÞ: (B7)

Because of the time ordering, {�þþðx; x0Þ ¼ {�þþðx0; xÞ
such that {�þþðk�Þ ¼ {�þþð�k�Þ. This consideration
likewise applies for the antitime ordered propagator and
suggests that the most economic way of writing fðk0Þ is in
terms of jk0j. We observe

1
2 þ neq� ðk0Þ ¼ sgnðk0Þð12 þ neq� ðjk0jÞÞ: (B8)

Using the relation above and condition (B2a):

fðk0Þ ¼ 2�n
eq
� ðjk0jÞ: (B9)

The thermal propagators are thus given by

{�þþ
� ðk�Þ ¼ �{

k�k
� þm2

� � {

þ 2��ðk�k� þm2

�Þneq� ðjk0jÞ;

(B10a)

{���
� ðk�Þ ¼ {

k�k
� þm2

� þ {

þ 2��ðk�k� þm2

�Þneq� ðjk0jÞ;

(B10b)

{�þ�
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ½�ð�k0Þþn
eq
� ðjk0jÞ�;

(B10c)

{��þ
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ½�ðk0Þþneq� ðjk0jÞ�: (B10d)

If we now let T ! 0 to obtain the familiar vacuum solu-
tions, we find
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{�þþ
� ðk�Þ ¼ �{

k�k
� þm2

� � {

; (B11a)

{���
� ðk�Þ ¼ {

k�k
� þm2

� þ {

; (B11b)

{�þ�
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ�ð�k0Þ; (B11c)

{��þ
� ðk�Þ ¼ 2��ðk�k� þm2

�Þ�ðk0Þ: (B11d)

Clearly, writing the thermal propagators in the form (B10)
above facilitates obtaining the vacuum solutions easily.
The reason is that neq� ðjk0jÞ ! 0 when T ! 0, whereas
this statement does not hold for n

eq
� ðk0Þ.

The freedom to choose a different pole prescription such
as the advanced or retarded pole prescription is just an
equivalent way of writing the thermal propagators, which
can easily be verified by making use of the Dirac identity
(B7). The vacuum and thermal contributions to {�þþ

� ðk�Þ
and {���

� ðk�Þ separate only so neatly when we use the

time ordered and antitime ordered contours to evaluate
these propagators, respectively.

APPENDIX C: ALTERNATIVE METHOD OF
RENORMALIZING THE SELF-MASSES

In this Appendix, we find the correctly renormalized
self-masses by means of an alternative Fourier space cal-

culation. From Eqs. (34a) and (43a) we immediately de-
duce

{Mþþ
� ðk�Þ ¼ � {h2

2

Z
dDðx� x0Þð{�þþ

� ðx; x0ÞÞ2e�{kðx�x0Þ

¼ {h2

2

Z dDk0

ð2�ÞD
1

k0�k0� þm2
� � {


� 1

ðk� � k0�Þðk� � k0�Þ þm2
� � {


¼ �h2

2

Z 1

0
dx

Z dDl

ð2�ÞD

� 1

ðl�l� þ k�k
�xð1� xÞ þm2

� � {
Þ2 ;
(C1)

where we used Feynman’s trick (see e.g. [115]), performed
a Wick rotation, and defined l� ¼ k0� � xk� as the new

Euclideanized integration variable. The integral can now
straightforwardly be performed, which yields when
m� ! 0:

{Mþþ
� ðk�Þ ¼ h2ðD� 2Þðk�k� � {
ÞðD�4Þ=221�2D�ð3�DÞ=2�ðD�2

2 Þ
�ðD2Þ�ðD�1

2 Þ sinð�D2 Þ

¼ h2�4�D

16�2ðD� 4Þ �
h2

32�2

�
2� �E � log

�
k�k

� � {


4��2

��
þOðD� 4Þ; (C2)

where in the last line we have expanded around D ¼ 4 as usual and we have again introduced a scale � to make the
argument of the logarithm dimensionless. Observe that the (numerical value of the) divergent term coincides with Eq. (51)
as it should. Note that for {M��

� ðk�Þ, we would have to use the other Wick rotation (in order not to cross the poles) giving
us the desired minus sign difference just as in the position space calculation. Finally, we need to perform the k0 integral in
order to derive the self-mass in Fourier space. The relevant integral is

{Mþþ
�;renðk; t; t0Þ ¼

h2

32�2

Z 1

�1
dk0

2�
e�{k0�t

�
�E � 2þ log

�
k�k

� � {


4��2

��

¼ � h2

64�3

�
2��ð�tÞflogð4��2Þ þ 2� �Eg �

Z 1

�1
dk0e�{k0�tflogjk2 � ðk0Þ2j � {��ððk0Þ2 � k2Þg

�
:

(C3)

In order to make the inverse Fourier integral convergent, we introduce 
 regulators where appropriate. As an intermediate
result, we present

{Mþþ
�;renðk; t; t0Þ ¼ � h2

32�2

�
�ð�tÞflogð4��2Þ þ 2� �Eg þ ½�E þ logð�{fj�tj þ {
gÞ� cosðkfj�tj þ {
gÞ

�{�ðj�tj þ {
Þ
þ ½�E þ logð{fj�tj � {
gÞ� cosðkfj�tj � {
gÞ

{�ðj�tj � {
Þ þ 1

2

�
e�{kð�tj�{
Þ

j�tj � {

� e{kð�tjþ{
Þ

j�tj þ {


��
: (C4)

Clearly, the 
 regulators in the logarithms and exponents are redundant and can be sent to zero. Using the Dirac rule in
Eq. (B7) once more, we finally arrive at
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{Mþþ
�;renðk; t; t0Þ ¼ � h2

32�2

�
�ð�tÞf�E þ 2þ logð4��2�t2Þg þ e�{kj�tj

j�tj � {


�
: (C5)

This result is divergent when we let �t ! 0. As already discussed in the paper in Sec. III, the correct way to deal with this
is to extract two time derivatives acting on e.g. Zþþ

� ðk; t; t0Þ. We then remain with a perfectly finite result, which can be
appreciated from Eq. (64).

To prove this, let us indeed evaluate the two time derivatives in Eq. (64). The result is

{Mþþ
�;renðk; t; t0Þ ¼ � h2

32�2

�
�ð�tÞflogð4�2�t2Þg þ e�{kj�tj

j�tj � {


�
� h2

32�2
�ð�tÞ½�E þ 2þ logð�Þ�

¼ � h2

32�2

�
�ð�tÞf�E þ 2þ logð4��2�t2Þg þ e�{kj�tj

j�tj � {


�
: (C6)

The first line contains two elements. The first is obtained
directly from evaluating the double time derivative in
Eq. (64). The second contribution originates from expand-
ing the term multiplying the delta function in Eq. (51)
around D ¼ 4, corresponding to the minimal subtraction
renormalization scheme. Indeed, the second line of
Eq. (C6) is identical to (C5) as it should be. This shows
that the position space and Fourier space calculations yield
identical results; however the former calculation proves to

be superior to the latter as the two extracted time deriva-
tives appear naturally in that case.

APPENDIX D: RETARDED SELF-MASS

The retarded self-mass {Mr
�;renðx; x0Þ can be obtained

by means of an independent calculation by making use
of Eq. (52):

{Mr
�;renðx; x0Þ ¼ {Mþþ

�;renðx; x0Þ � {Mþ�
� ðx; x0Þ ¼ {h2

128�4
@2
�
logð�2�x2þþðx; x0ÞÞ

�x2þþðx; x0Þ
� logð�2�x2þ�ðx; x0ÞÞ

�x2þ�ðx; x0Þ
�

¼ {h2

1024�4
@4½log2ð�2�x2þþðx; x0ÞÞ � 2 logð�2�x2þþðx; x0ÞÞ � log2ð�2�x2þ�ðx; x0ÞÞ

þ 2 logð�2�x2þ�ðx; x0ÞÞ�

¼ h2

256�3
@4½�ð�t2 � r2Þ�ð�tÞf1� logð�2ð�t2 � r2ÞÞg�; (D1)

where as before r ¼k ~x� ~x0 k . In Fourier space we find after some partial integrations:

{Mr
�;renðk; t; t0Þ ¼

h2

256�3
ð@2t þ k2Þ2

Z
d3ð ~x� ~x0Þ�ð�t2 � r2Þ�ð�tÞ½1� logð�2ð�t2 � r2ÞÞ�e�{ ~k�ð ~x� ~x0Þ

¼ h2

64k�2
ð@2t þ k2Þ2�ð�tÞ�t2

�
sinðk�tÞ� k�tcosðk�tÞ

ðk�tÞ2 ð1� logð�2�t2ÞÞ�
Z 1

0
dxx sinðk�txÞ logð1� x2Þ

�
:

(D2)

The last integral is performed in e.g. [116]:

{Mr
�;renðk; t; t0Þ ¼

h2

64k3�2
ð@2t þ k2Þ2�ð�tÞ

�
ðk�t cosðk�tÞ � sinðk�tÞÞ

�
cið2k�tÞ � �E � log

�
k

2�2�t

�
� 1

�

þ ðcosðk�tÞ þ k�t sinðk�tÞÞ
�
�

2
þ sið2k�tÞ

�
� 2 sinðk�tÞ

�
: (D3)

Since the term in square brackets is proportional to ð�tÞ2 as �t ! 0, the �ð�tÞ commutes through one of the (@2t þ k2)
operators. Evaluating it further yields

{Mr
�;renðk; t; t0Þ ¼

h2

32k�2
ð@2t þ k2Þ�ð�tÞ

�
cosðk�tÞ

�
�

2
þ sið2k�tÞ

�
� sinðk�tÞ

�
cið2k�tÞ � �E � log

�
k

2�2�t

���
: (D4)
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If we determine the retarded self-mass directly from
Eq. (64), we find perfect agreement with the result above,
representing yet another consistency check of (64).

APPENDIX E: THE STATISTICAL PROPAGATOR
IN FOURIER SPACE

Let us now calculate the statistical propagator in Fourier
space. The starting point is the equation of motion (39) in
Fourier space. We can straightforwardly write the two
Wightman functions as

{��þ
� ðk�Þ ¼ �{M�þ

� ðk�Þ{�a
�ðk�Þ

k�k
� þm2

� þ {Mr
�;renðk�Þ

; (E1a)

{�þ�
� ðk�Þ ¼ �{Mþ�

� ðk�Þ{�a
�ðk�Þ

k�k
� þm2

� þ {Mr
�;renðk�Þ

; (E1b)

where we have made use of the definition of the advanced
propagator (24b) in Fourier space:

{�a
�ðk�Þ ¼

�{

k�k
� þm2

� þ {Ma
�;renðk�Þ

: (E2)

Moreover, we made use of

{Mr
�;renðk�Þ ¼ {Mþþ

�;renðk�Þ � {Mþ�
� ðk�Þ

¼ {M�þ
� ðk�Þ � {M��

�;renðk�Þ; (E3a)

{Ma
�;renðk�Þ ¼ {Mþþ

�;renðk�Þ � {M�þ
� ðk�Þ

¼ {Mþ�
� ðk�Þ � {M��

�;renðk�Þ: (E3b)

Clearly, we need to evaluate some self-masses in Fourier
space. The simplest method of determining e.g. {Mþ�

� ðk�Þ
or {M�þ

� ðk�Þ is to use the retarded self-mass in Fourier

space and {Mþþ
�;renðk�Þ which we already derived before in

Appendix C. Using expressions (72) and (D4) we can
derive

{Mr
�;renðk�Þ ¼

Z 1

�1
d�te{k

0�t{Mr
�;renðk;�tÞ

¼ � h2

64k�2
ð�k20 þ k2Þ

Z 1

0
d�t

�
e{ðkþk0Þ�t

�
�{ðcið2k�tÞ � logð2k�tÞ � �EÞ � �

2
� sið2k�tÞ

�

þ e{ðk0�kÞ�t
�
{ðcið2k�tÞ � logð2k�tÞ � �EÞ � �

2
� sið2k�tÞ

�
� 2{ logð2��tÞðe{ðkþk0þ{
Þ�t � e{ðk0�kþ{
Þ�tÞ

�
;

(E4)

where k20 ¼ ðk0Þ2 and where we have used two partial
integrations and disposed ourselves of the boundary terms
by introducing an 
 regulator where necessary. We can now
useZ 1

0
dx logð
xÞe{�x ¼ � {

�

�
log

��{�þ 





�
þ �E

�
; (E5)

and moreover we write

e{ðk0�kÞ�t ¼ �{

k0 � k
@te

{ðk0�kÞ�t; (E6)

to prepare for another partial integration. Equation (E4)
evaluates to

{Mr
�;renðk�Þ ¼ � h2

64k�2

�
2ðk0 � kÞ

�
log

��{ðkþ k0Þ þ 


2�

�

þ �E

�
� 2ðk0 þ kÞ

�
log

��{ðk0 � kÞ þ 


2�

�

þ �E

�
þ
Z 1

0
d�t

2k0

�t

� ðe{ðk0þkÞ�t � e{ðk0�kÞ�tÞ
�
: (E7)

For �, 
 2 R, we can use

lim
z#0

Z 1

z
d�t

�
cosð��tÞ � 1

�t
� cosð
�tÞ � 1

�t

�

¼ log

�j
j
j�j

�
; (E8)

to evaluate the remaining integrals. The result is

{Mr
�;renðk�Þ ¼

h2

32�2

�
log

��k20 þ k2 � {sgnðk0Þ

4�2

�
þ 2�E

�
:

(E9)

From {Mr
�;renðk�Þ ¼ {Mþþ

�;renðk�Þ � {Mþ�
� ðk�Þ we can im-

mediately find the Wightman self-masses. We take
{Mþþ

�;renðk�Þ from Eq. (C2), but we have to make sure we
use the same subtraction scheme as in our position space
calculation in Eq. (52). We therefore modify Eq. (C2)
slightly to

{Mþþ
�;renðk�Þ ¼

h2

32�2

�
log

��k20 þ k2 � {


4�2

�
þ 2�E

�
:

(E10)

We thus find
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{Mþ�
� ðk�Þ ¼ � {h2

16�
�ð�k0 � kÞ; (E11a)

{M�þ
� ðk�Þ ¼ � {h2

16�
�ðk0 � kÞ: (E11b)

As a check, we consider the following relation that has to
be satisfied:

{Mþþ
�;renðk�Þ þ {M��

�;renðk�Þ ¼ {Mþ�
� ðk�Þ þ {M�þ

� ðk�Þ:
(E12)

Of course, {Mþþ
�;renðk�Þ is given in Eq. (E10) which also

allows us to derive the antitime ordered self-mass:

{M��
�;renðk�Þ ¼ � h2

32�2

�
log

��k20 þ k2 þ {


4�2

�
þ 2�E

�
;

(E13)

where {M��
�;renðk�Þ contains an additional minus sign be-

cause of theWick rotation (see Appendix C for details). We
thus find

{Mþ�
� ðk�Þ þ {M�þ

� ðk�Þ ¼ � {h2

16�
�ðk20 � k2Þ: (E14)

This is in perfect agreement with Eq. (E11).
Using Eqs. (E1), (E10), and (E11) we can derive our

solutions for the two Wightman functions in Fourier space:

{�þ�
� ðk�Þ ¼ {�ð�k0 � kÞ

�
1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ � {h2

32� sgnðk0Þ�ðk20 � k2Þ

� 1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ þ {h2

32� sgnðk0Þ�ðk20 � k2Þ

�
; (E15a)

{��þ
� ðk�Þ ¼ �{�ðk0 � kÞ

�
1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ � {h2

32� sgnðk0Þ�ðk20 � k2Þ

� 1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ þ {h2

32� sgnðk0Þ�ðk20 � k2Þ

�
: (E15b)

The limit h ! 0 in the equations above nicely agrees with the vacuum Wightman propagators in Eqs. (43c) and (43d).
Hence the statistical propagator in Fourier space reads

F�ðk�Þ ¼ � {

2
sgnðk0Þ�ðk20 � k2Þ

�
1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ � {h2

32� sgnðk0Þ�ðk20 � k2Þ

� 1

k�k
� þm2

� þ h2

32�2 ðlogðjk�k
�j

4�2 Þ þ 2�EÞ þ {h2

32� sgnðk0Þ�ðk20 � k2Þ

�
: (E16)

[1] H. D. Zeh, Found. Phys. 1, 69 (1970).
[2] W.H. Zurek, Phys. Rev. D 24, 1516 (1981).
[3] E. Joos and H.D. Zeh, Z. Phys. B 59, 223 (1985).
[4] W.H. Zurek, Phys. Today 44, 36 (1991).
[5] J. B. Hartle, arXiv:gr-qc/9304006.
[6] D. Giulini, C. Kiefer, E. Joos, J. Kupsch, I. O. Stamatescu,

and H.D. Zeh, Decoherence and the Appearance of a
Classical World in Quantum Theory (Springer, New York,
2003), 2nd ed.

[7] J. P. Paz and W.H. Zurek, Proceedings of the 72nd Les
Houches Summer School on ‘‘Coherent Matter Waves’’
(1999).

[8] W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[9] M.A. Schlosshauer, Decoherence and the Quantum-to-
Classical Transition (Springer, New York, 2008).

[10] T. Prokopec, Classical Quantum Gravity 10, 2295 (1993).
[11] R. H. Brandenberger, T. Prokopec, and V. F. Mukhanov,

Phys. Rev. D 48, 2443 (1993).
[12] J. F. Koksma, ‘‘Trends in Theory’’ Conference, Dalfsen,

The Netherlands, 2009 (2009).
[13] J. F. Koksma and T. Prokopec, Quantum Reflection in a

Thermal Bath, ‘‘Electroweak Phase Transition’’
Workshop, Nordita, Stockholm, Sweden, 2009 (2009).

[14] J. F. Koksma, T. Prokopec, and M.G. Schmidt, Entropy
and Correlators in Quantum Field Theory (unpublished).

[15] A. Giraud and J. Serreau, arXiv:0910.2570.

DECOHERENCE IN AN INTERACTING QUANTUM FIELD . . . PHYSICAL REVIEW D 81, 065030 (2010)

065030-31



[16] D. Campo and R. Parentani, Phys. Rev. D 78, 065045
(2008).

[17] H. T. Elze, Nucl. Phys. B436, 213 (1995).
[18] R. H. Brandenberger, R. Laflamme, and M. Mijic, Mod.

Phys. Lett. A 5, 2311 (1990).
[19] D. Polarski and A.A. Starobinsky, Classical Quantum

Gravity 13, 377 (1996).
[20] J. Lesgourgues, D. Polarski, and A.A. Starobinsky, Nucl.

Phys. B497, 479 (1997).
[21] C. Kiefer, D. Polarski, and A.A. Starobinsky, Int. J. Mod.

Phys. D 7, 455 (1998).
[22] C. Kiefer and D. Polarski, Ann. Phys. (Leipzig) 7, 137

(1998).
[23] C. Kiefer, J. Lesgourgues, D. Polarski, and A.A.

Starobinsky, Classical Quantum Gravity 15, L67 (1998).
[24] C. Kiefer, Lect. Notes Phys. 541, 158 (2000).
[25] D. Campo and R. Parentani, Int. J. Theor. Phys. 44, 1705

(2005).
[26] D. Campo and R. Parentani, Phys. Rev. D 72, 045015

(2005).
[27] C. P. Burgess, R. Holman, and D. Hoover, Phys. Rev. D 77,

063534 (2008).
[28] P. Martineau, Classical Quantum Gravity 24, 5817

(2007).
[29] D. H. Lyth and D. Seery, Phys. Lett. B 662, 309

(2008).
[30] C. Kiefer, I. Lohmar, D. Polarski, and A.A. Starobinsky,

Classical Quantum Gravity 24, 1699 (2007).
[31] T. Prokopec and G. I. Rigopoulos, J. Cosmol. Astropart.

Phys. 11 (2007) 029.
[32] J.W. Sharman and G.D. Moore, J. Cosmol. Astropart.

Phys. 11 (2007) 020.
[33] C. Kiefer, I. Lohmar, D. Polarski, and A.A. Starobinsky, J.

Phys. Conf. Ser. 67, 012023 (2007).
[34] D. Campo and R. Parentani, Phys. Rev. D 78, 065044

(2008).
[35] C. Kiefer and D. Polarski, arXiv:0810.0087.
[36] D. Sudarsky, arXiv:0906.0315.
[37] F. Lombardo and F. D. Mazzitelli, Phys. Rev. D 53, 2001

(1996).
[38] F. C. Lombardo, F. D. Mazzitelli, and R. J. Rivers, Nucl.

Phys. B672, 462 (2003).
[39] F. C. Lombardo and D. Lopez Nacir, Phys. Rev. D 72,

063506 (2005).
[40] S. Habib, Phys. Rev. D 46, 2408 (1992).
[41] A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50,

6357 (1994).
[42] O. E. Buryak, Phys. Rev. D 53, 1763 (1996).
[43] H. Casini, R. Montemayor, and P. Sisterna, Phys. Rev. D

59, 063512 (1999).
[44] E. A. Calzetta, B. L. Hu, and F. D. Mazzitelli, Phys. Rep.

352, 459 (2001).
[45] J. Martin and M.A. Musso, Phys. Rev. D 71, 063514

(2005).
[46] N. C. Tsamis and R. P. Woodard, Nucl. Phys. B724, 295

(2005).
[47] E. Calzetta and B. L. Hu, Phys. Rev. D 52, 6770 (1995).
[48] J. Berges, AIP Conf. Proc. 739, 3 (2004).
[49] J. Berges and S. Borsanyi, Nucl. Phys. A785, 58 (2007).
[50] G. Aarts and J. Berges, Phys. Rev. D 64, 105010 (2001).
[51] J. Berges, Nucl. Phys. A699, 847 (2002).

[52] G. Aarts and J. Berges, Phys. Rev. Lett. 88, 041603
(2002).

[53] G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, and J.
Serreau, Phys. Rev. D 66, 045008 (2002).

[54] J. Berges and J. Serreau, Phys. Rev. Lett. 91, 111601
(2003).

[55] S. Juchem, W. Cassing, and C. Greiner, Phys. Rev. D 69,
025006 (2004).

[56] S. Juchem, W. Cassing, and C. Greiner, Nucl. Phys. A743,
92 (2004).

[57] A. Arrizabalaga, J. Smit, and A. Tranberg, J. High Energy
Phys. 10 (2004) 017.

[58] A. Arrizabalaga, J. Smit, and A. Tranberg, Phys. Rev. D
72, 025014 (2005).

[59] J. Berges, S. Borsanyi, and J. Serreau, Nucl. Phys. B660,
51 (2003).

[60] A. Anisimov, W. Buchmuller, M. Drewes, and S.
Mendizabal, Ann. Phys. (N.Y.) 324, 1234 (2009).

[61] E. A. Calzetta and B. L. Hu, arXiv:hep-ph/0205271.
[62] E. A. Calzetta and B. L. Hu, Phys. Rev. D 68, 065027

(2003).
[63] H. van Hees and J. Knoll, Phys. Rev. D 65, 025010

(2001).
[64] H. Van Hees and J. Knoll, Phys. Rev. D 65, 105005 (2002).
[65] H. van Hees and J. Knoll, Phys. Rev. D 66, 025028 (2002).
[66] J. Berges, S. Borsanyi, U. Reinosa, and J. Serreau, Ann.

Phys. (N.Y.) 320, 344 (2005).
[67] S. Borsanyi and U. Reinosa, Phys. Rev. D 80, 125029

(2009).
[68] S. Borsanyi and U. Reinosa, Nucl. Phys. A820, 147c

(2009).
[69] J. P. Blaizot, E. Iancu, and U. Reinosa, Nucl. Phys. A736,

149 (2004).
[70] J. P. Blaizot, E. Iancu, and U. Reinosa, Phys. Lett. B 568,

160 (2003).
[71] H. Collins and R. Holman, Phys. Rev. D 70, 084019

(2004).
[72] H. Collins and R. Holman, Phys. Rev. D 71, 085009

(2005).
[73] H. Collins and R. Holman, Phys. Rev. D 74, 045009

(2006).
[74] H. Collins and R. Holman, arXiv:hep-th/0609002.
[75] M. Garny and M.M. Muller, Phys. Rev. D 80, 085011

(2009).
[76] B. Garbrecht, T. Prokopec, and M.G. Schmidt, Phys. Rev.

Lett. 92, 061303 (2004).
[77] B. Garbrecht, T. Prokopec, and M.G. Schmidt, arXiv:hep-

ph/0410132.
[78] B. Garbrecht, T. Prokopec, and M.G. Schmidt, Nucl.

Phys. B736, 133 (2006).
[79] G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. D 50, 774

(1994).
[80] G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. Lett. 70,

2833 (1993); 71, 210(E) (1993).
[81] M. B. Gavela, P. Hernandez, J. Orloff, and O. Pene, Mod.

Phys. Lett. A 9, 795 (1994).
[82] P. Huet and E. Sather, Phys. Rev. D 51, 379 (1995).
[83] M. B. Gavela, M. Lozano, J. Orloff, and O. Pene, Nucl.

Phys. B430, 345 (1994).
[84] M. B. Gavela, P. Hernandez, J. Orloff, O. Pene, and C.

Quimbay, Nucl. Phys. B430, 382 (1994).

KOKSMA, PROKOPEC, AND SCHMIDT PHYSICAL REVIEW D 81, 065030 (2010)

065030-32



[85] M. Herranen, K. Kainulainen, and P.M. Rahkila, J. High
Energy Phys. 09 (2008) 032.

[86] M. Herranen, K. Kainulainen, and P.M. Rahkila, Nucl.
Phys. B810, 389 (2009).

[87] M. Herranen, K. Kainulainen, and P.M. Rahkila, J. High
Energy Phys. 05 (2009) 119.

[88] N. D. Birrell and P. C.W. Davies, Quantum Fields in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge,
England, 1982).

[89] J. S. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961).
[90] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov.

Phys. JETP 20, 1018 (1965)].
[91] K. c. Chou, Z. b. Su, B. l. Hao, and L. Yu, Phys. Rep. 118,

1 (1985).
[92] R. D. Jordan, Phys. Rev. D 33, 444 (1986).
[93] E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).
[94] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[95] J. F. Koksma, T. Prokopec, and G. I. Rigopoulos, Classical

Quantum Gravity 25, 125009 (2008).
[96] T. Prokopec, M.G. Schmidt, and S. Weinstock, Ann. Phys.

(N.Y.) 314, 208 (2004).
[97] M. van der Meulen and J. Smit, J. Cosmol. Astropart.

Phys. 11 (2007) 023.
[98] J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D

10, 2428 (1974).
[99] R. Jackiw, Phys. Rev. D 9, 1686 (1974).

[100] L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (Benjamin Press, New York, 1962).

[101] M. Le Bellac, Thermal Field Theory, Cambridge
Monographs on Mathematical Physics (Cambridge
University Press, Cambridge, England, 1996).

[102] I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals,
Series and Products (Academic Press, New York, 1965).

[103] T.M. Janssen, S. P. Miao, T. Prokopec, and R. P. Woodard,
Classical Quantum Gravity 25, 245013 (2008).

[104] T. Janssen and T. Prokopec, Classical Quantum Gravity
25, 055007 (2008).

[105] T. Janssen, S. P. Miao, and T. Prokopec, arXiv:0807.0439.
[106] S. P. Miao and R. P. Woodard, Phys. Rev. D 74, 024021

(2006).
[107] J. Serreau, J. High Energy Phys. 05 (2004) 078.
[108] H. A. Weldon, Phys. Rev. D 28, 2007 (1983).
[109] L. Parker, Phys. Rev. Lett. 21, 562 (1968).
[110] L. Parker, Phys. Rev. 183, 1057 (1969).
[111] C.W. Bernard and A. Duncan, Ann. Phys. (N.Y.) 107, 201

(1977).
[112] M. Abramowitz and I. A. Stegun, Handbook of

Mathematical Functions (Dover Publications, New York,
1965).

[113] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[114] P. C. Martin and J. S. Schwinger, Phys. Rev. 115, 1342

(1959).
[115] M. E. Peskin and D.V. Schroeder, An Introduction to

Quantum Field Theory (Westview Press, 1995).
[116] T. Prokopec, O. Tornkvist, and R. P. Woodard, Ann. Phys.

(N.Y.) 303, 251 (2003).

DECOHERENCE IN AN INTERACTING QUANTUM FIELD . . . PHYSICAL REVIEW D 81, 065030 (2010)

065030-33


